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Abstract—The challenge of running complex physics code on
the largest computers available has led to dataflow paradigms
being explored. While such approaches are often applied at
smaller scales, the challenge of extreme-scale data flow computing
remains. The Uintah dataflow framework has consistently used
dataflow computing at the largest scales on complex physics
applications. At present Uintah contains two main dataflow
models. Both are based upon asynchronous communication.
One uses a static graph-based approach with asynchronous
communication and the other uses a more dynamic approach
that was introduced almost a decade ago. Subsequent changes
within the Uintah runtime system combined with many more
large scale experiments, has necessitated a reevaluation of these
two approaches, comparing them in the context of large scale
problems. While the static approach has worked well for some
large-scale simulations, the dynamic approach is seen to offer
performance improvements over the static case for a challenging
fluid-structure interaction problem at large scale that involves
fluid flow and a moving solid represented using particle method
on an adaptive mesh.

Index Terms—DataFlow, Asynchronous, Uintah, Runtime,
Scalability

I. INTRODUCTION

In the realm of scientific and engineering computing an

important class of dataflow algorithms and software are those

based upon the Asynchronous Many Task (AMT) paradigm.

Such architectures date back at least to [27] and have the

flexibility to handle both heterogeneous hardware architectures

and complex applications at large scale. An AMT program

consists of a flow of data control and data relationships

between tasks within the AMT model. Control of the dataflow

is through a runtime system that uses a dynamic directed acylic

graph (DAG) to guide task execution. Unlike bulk synchronous

parallel (BSP) approaches with a fixed execution order, the

AMT runtime extracts the appropriate level of parallelism

by automatically mapping tasks to available computational

resources. Specific examples are, Charm++ [14], Legion [32],

DHARMA [1], Uintah [19], STAPL [33], OCR [34], Par-

sec [6], StarPU [35], HTGS [36], and HPX [37]. Sterling

summarizes these and other examples in [26]. In this work

the effectiveness of this AMT approach is considered in the

context of the Utah open source Uintah software. The heart

of Uintah is a sophisticated computational framework that

can integrate multiple simulation components, analyze the

dependencies and communication patterns between them, and

execute the resulting multi-physics simulation [5], [19]. The

particular application focus of Uintah has made possible an

early transition to large scale applications [3], [10], [15],

[28]. This development of Uintah has been continuous since

Fig. 1. Outline of Uintah Architecture.

1998 through the University of Utah DOE Center for the

Simulation of Accidental Fires and Explosions (C-SAFE) [5]

(9/97 – 3/08), and then more recently from 2014 to 2020

through the DOE NNSA funded CCMSC Center in Utah.

In this latter case Uintah is being used to model a very

large clean coal boiler with turbulent combustion [15], [29].

Uintah solves complex systems of partial differential equations

(PDEs) on Structured AMR (SAMR) grids with a number of

applications codes and a runtime system that can integrate

multiple simulation components, analyze the dependencies and

communication patterns between them, and efficiently execute

the resulting multi-physics simulation. The architecture of Uin-

tah is shown in Figure I. Uintah presently contains five main

simulation algorithms, or components, and many user specific

packages: 1) the ICE compressible multi-material finite-

volume CFD component, 2) the particle-based Material Point
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Method (MPM) [4] for structural mechanics, 3) the combined

fluid-structure interaction (FSI) algorithm MPM-ICE [10], 4)

the Arches turbulent reacting CFD component [28], which

uses hypre [30] to solve the pressure Poisson equation that

arises from the low mach number approximation [25] and 5)

the multi-physics, platform-portable reacting flow component

Wasatch [23]. Three of these components are shown in Fig-

ure I. In addition there are many informal software applications

components written by specific application groups. Each of

these components generates a set of interconnected tasks.

These tasks are then “compiled” by Uintah into a task graph

where the MPI messages to connect the tasks are automatically

generated. The task graph is then executed by a scheduler,

either in a static or a dynamic fashion as is described below.

For visualization Uintah relies on the Visit package while for

fast I/O, PIDX [15] is used. Finally, while a discussion of

this is out of the scope of this work there is a major effort

underway to introduce a performance portability layer into

Uintah through the use of Kokkos [21].

II. THE ORIGINAL UINTAH DATAFLOW FRAMEWORK

Uintah’s dataflow model utilizes an abstract task graph

representation of parallel computation and communication to

express data dependencies between multiple physics compo-

nents and to schedule work. This dataflow approach is similar

to Charm++ [14], but has its own different and distinctive

approach. For example, Uintah uses a “Data Warehouse”, a

distributed data store for simulation variables through which

all MPI data transfer takes place. Uintah’s Data Warehouse

abstraction ensures that the user-coded tasks are indepen-

dent of the hidden communications MPI layer. Each Uintah

component specifies a list of tasks to be performed and the

data dependencies between them in a declarative style. Each

task has a C++ method which is used to perform the actual

computation, and consumes some input and produces some

output (which is in turn the input of some future task).

The task graph is a directed acyclic graph of tasks that

allows Uintah to analyze the structure of the computation

to automatically enable load-balancing, data communication,

parallel I/O, and checkpoint/restart. The Uintah task scheduler

compiles all tasks and variable dependencies into a task graph

and is responsible for, 1) computing the dependencies of

tasks, 2) determining the order of execution, and 3.) ensuring

that the correct inter-process communication is performed.

Dependency edges are added between tasks based on the

supplied variable dependencies. The computed dependency

edges can be either internal or external. Internal dependencies

are between patches on the same processor and external

dependencies are between patches on different processors.

Thus internal dependencies imply a necessary order where
external dependencies specify required communication. The

compilation process also combines external dependencies from

the same source or to the same destination. The Uintah

scheduler automatically sets up MPI communication for data

dependencies between MPI processes. When a task completes,

its outputs are sent to other tasks that require them. A load

balancer component is responsible for assigning each patch to

a processor. Uintah’s load balancer utilizes space-filling curves

in order to cluster spatially contiguous patches together [16]

with a predictive workload approach. Initially, a static task

execution approach was employed and was successful for the

C-SAFE [5] research of Uintah’s first decade.

III. UINTAH’S ASYNCHRONOUS RUNTIME SYSTEM

Moving Uintah to larger machines and to applications that

have dynamically varying task graphs, such as adaptive mesh

refinement (AMR), exposed limitations in the static execution

paradigm. In particular, achieving scalability for AMR based

simulations, such as changing the grid in response to a solution

evolving in time, requires regridding, load balancing and task

scheduling [16] whenever regridding occurs. Poor performance

in any of these steps can lead to performance problems at

larger scales [8], [9], [16].

Results in [17] showed that with static execution there

was a substantial increase in MPI communication time at

larger numbers of cores. This was particularly the case on

fluid-structure simulations for which some mesh patches had

much more work due to the presence of the solid material

as modeled by MPM particles in parts of the domain and

not in others. Measurements showed that the delay in a task

waiting for an MPI message was nearly 80% of the total

MPI waiting time in Uintah. The new dynamic scheduler

introduced by [17] changes the task order during the execution

to overlap communication and computation. While substantial

development was required to support the dynamic and out-of-

order execution, there was a significant performance benefit in

lower MPI wait time and overall scalability. The runtimes were

higher however [17]. The dynamic scheduler utilizes two task

queues: an internal ready queue and an external ready queue.

If a task’s internal dependencies are satisfied, then that task

will be put in the internal ready queue where they will wait

until all required MPI communication has finished. A counter

of outstanding MPI messages is tracked for each task. When

this counter reaches zero, the communication is complete and

the task is ready to be executed. At that point it is placed in the

external ready queue. When scheduling a task the scheduler

chooses a task in the external ready queue based on a priority

algorithm. This process is illustrated in Figure 2. As long as

the external queue is not empty, the processor always has tasks

to run. This can help to overlap the MPI communication time

with task execution. This approach reduces MPI wait times

significantly [31].

There is one task graph per mesh patch and these graphs

are coupled either by MPI communications or internally to a

node. If there are more patches than cores, this means that

tasks associated with a patch in the interior of a domain

may start executing while tasks with external communications

have to wait for MPI transmitted halo elements for example,

as shown in Figure 3 in which the central four patches are

assumed to have halo values that reside on the same node.

In effect an over-decomposition approach is used because of

the distributed and local nature of the patch task graphs. In
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Fig. 2. Uintah Nodal Architecture

particular, in the dynamic approach that the tasks on a node

may execute on any of the cores on that node. In contrast with

the static approach of the MPI Scheduler one fixed mesh patch

is assigned to a core and thus the exterior cores have to wait

for communications to arrive from other nodes.

Fig. 3. Uintah’s Patch-Based DAG structure.

IV. UINTAH’S PRESENT STATUS AND RUNTIME SYSTEM

As a result of continuous development, Uintah has a number

of distinctive features:

• A shared memory [17] approach that is lock-free, is

implemented by making use of atomic operations and

thus allows efficient access by all cores to the shared

data on a node. This involved a re-design of the shared

data structures so as to make them lock-free by using

hardware-based atomic operations, (as in modern CPUs);

• Decentralized execution [17] of the task graph is imple-

mented by each CPU core requesting work itself as this

eliminates having a single controlling thread on a core

and under use or contention for it;

• Accelerator task execution [20], [22] on a node is im-

plemented through an extension of the runtime system

that enables tasks to be executed efficiently (through

preloading of data) on one or more accelerators per

node and through rethinking data structures in the data

warehouse;

• A long-established and lightweight trace system that al-

lows identification of the scalability properties of different

parts of the code;

• The mesh refinement strategy of Uintah is used not

only for standard adaptive meshing [16] but also for a

novel approach to scalable ray-tracing radiation calcu-

lations [12], as well as to provide a resilience strategy,

in that coarse versions of patch data are stored on other

nodes to allow for recovery without checkpointing should

a node crash [24];

• The scalability of Uintah has been achieved where needed

through exploiting asynchronous (including out-of-order)

task execution, over-decomposition of tasks, overlapping

of communication and computation, work stealing task

graph prioritization based upon communication needs and

dependencies.

As well as the conventional CPU results shown, Uintah has

been used on GPU and Xeon Phi architectures [11], [12], [20],

and runs on both NSF, DOE, and other parallel computers

(Stampede, Stampede2, Mira, Titan, and Sunway TaihuLight),

and on many smaller clusters worldwide. With access to larger

and more diverse computational environments, the scalability

of the Uintah framework has been extended, necessitating

continual improvements in the framework itself.

There are two schedulers at present within Uintah that use

the approaches described in the previous section. The first

is known as the MPI Scheduler. This scheduler uses a pure
MPI or “MPI-only” approach, e.g., one MPI process per CPU

core, and employs a fixed task execution pattern for the task

graph. This may be thought of as a static dataflow approach,

as the execution pattern is derived from a topological sort of

the underlying task graph, with “fixed” connections between

tasks. Execution order of computational tasks is deterministic.

It is however important to note that because of the still-

asynchronous nature of nonblocking MPI communications

under this model, this approach is NOT a bulk synchronous

approach. The use of such an approach would be even less

efficient that the static task execution with asynchronous

communication approach used here. Nevertheless, the use of a

fixed execution pattern means that there may be delays in tasks

executing due to MPI wait times as was observed by Meng,

et al. [17]. Another limitation of this pure MPI scheduling

is the that task data dependencies have to be passed through

MPI messages and copied to another process’ memory even if

the source and destination tasks were on the same multi-core

node.

The need to improve Uintah’s scalability has led to the

adoption of a nodal shared memory model in which there is

only one MPI process per multicore node (or NUMA node),
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one global memory per node and task execution on individual

CPU cores is through Pthreads (std::thread) bound to

available cores on-node (MPI + X). This approach has led

to a second, multithreaded scheduler, known as the Unified

Scheduler. This scheduler has also helped made it possible

to reduce nodal memory footprint by a factor of 10 due

to the elimination of redundant halo information and global

metadata. Additionally, this approach eliminates the intranodal

MPI imposed by the pure MPI Scheduler. With the Unified

Scheduler, it is possible to achieve dynamic, out-of-order

execution of tasks (out of order with respect to the topological

sort used by the MPI scheduler). This model may be viewed
as a dynamic dataflow approach in that task execution is

nondeterministic. The connectivity edges within the task graph

are not static, and task execution order is determined solely by

message arrival times. This variability in task execution order

is evident on differing communications networks. The present

Unified Scheduler builds upon the original version of [17]

with the internal and external ready queues, for example, but

has been substantially revised in the course of recent work.

The Unified Scheduler is also the only task scheduler that

supports GPU tasks. There are many important and substantial

differences however, primarily that 1) significant infrastructure

changes have been required for thread-safe access to shared

data structures, namely ensuring that asynchronous access to

the data warehouse is not potentially catastrophic, and 2)

task execution is based on external data flow (MPI), specif-

ically message arrival times, in other words when external

dependencies are met for a particular task. Achieving correct,

thread-safe access to Uintah’s Data Warehouse has required the

carefully combined use of atomic operations and other C++11

synchronization primitives. This has not only been required

in the Data Warehouse, but also for shared access to Uintah’s

task queues and within its MPI engine for things such as the

external dependency (MPI message) count.

Part of the challenge with a nodal shared memory model is

the selection, design, and usage of data structures, language

constructs, and synchronization primitives that 1.) achieve

correctness and thread safety, and 2.) do not create perfor-

mance bottlenecks due to unnecessary locks, coarse-grained

critical sections, and other serialization points within the code.

For Uintah, which currently uses MPI_THREAD_MULTIPLE
when employing the Unified Scheduler, allows individual

threads to perform their own MPI sends, receives, and col-

lective operations. This approach, in addition to shared access

to nodal task queues and Data Warehouse, uses mixed con-

currency models (MPI + std::thread + CUDA), a situation that

has the potential for problematic race conditions and deadlock

scenarios, some of which only manifest at larger scale in

our experience. Overly synchronized code can significantly

degrade or even negate the performance benefits gained from

a dataflow approach with asynchronous communication.

Prior to the results shown in Table II when running this chal-

lenging FSI problem at large scale, significant performance

degradation was observed within the Unified Scheduler. This

slowdown was 2.5-3X relative to the MPI Scheduler running

the same problem at scale, and warranted exploration. Sev-

eral synchronization and thread safety issues were discovered

within the Uintah infrastructure and addressed in this work:

• Unnecessary locks and other synchronization constructs

within Uintah’s DataWarehouse and MPI engine that

were replaced with simple usage of std::atomic<T>
and other built-in compare-and-swap (CAS) instructions;

• Inadvertent nested task queue locks;

• Unnecessary critical sections, that were still protected

by a mutex (std::mutex), likely remnants of earlier

design ideas not completed;

• Overly coarse-grained critical sections that were either

unnecessary or able to be made more fine-grained, some

of which were in the code critical path, e.g., processing

of MPI receives, which for MPI_THREAD_MULTIPLE,

encounters locks within the MPI library – a significant

serialization point for code that sees heavy thread traffic.

The resolution of these issues enabled the results in Table II

to be obtained. Due to the clear separation between Uintah

applications and its runtime, applications automatically benefit

from these runtime improvements.

V. EVALUATING DATAFLOW APPROACHES

In evaluating the static versus dynamic approaches on

more modern architectures than those used by Meng [17]

requires the status of the MPI and Unified schedulers to be

explained here. The principal contribution of this work is in the

improvements to the Unified Scheduler in order to overcome

the 2.5-3X slowdown over the MPI scheduler shown by Meng

in [17] on this FSI benchmark problem.

A. MPI Scheduler

The MPI Scheduler has been used on the DOE Mira archi-

tecture to achieve weak and strong scaling up to 512K CPU

cores [15] on the massive turbulent combustion coal boiler

simulations problems solved by the Utah CCMSC Center.

The hypre linear solver package [30] employed to solve the

linear systems that arise in this problem, as expected, only

weak scales and does not strong scale [15]. As this solver

is also used in some radiation calculations this is potentially

problematic, from a strong scaling point of view. While the

MPI scheduler uses fixed execution it seems to not be sensitive

to the task execution paradigm and depends more on the

asynchronous MPI approach used by Uintah for scalability

and performance. It is only at extreme scales and with very

dynamic workloads that we see a breakdown in scalability with

the fixed execution approach used by the MPI scheduler. In

terms of the experiments using the FSI problem in Section VI,

the principal breakdown in scalability for the MPI scheduler

is due to the fact that the computing cost of a patch with

particles is roughly six times that of computing a patch without

particles. This introduces a significant load imbalance that

leads to poor scaling due to the fact that load balancing

a region with particles, even with measurement-based load

balancing, is difficult to predict. In the case of the MPI
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scheduler, if one CPU core (a single MPI process) has finished

its assigned work faster than other cores, it idly waits for other

cores to finish, even if these cores are on the same node [17].

B. Unified Scheduler

The Unified Scheduler has been employed on the same

CCMSC target boiler problem, when run with a reverse

Monte Carlo ray tracing (RMCRT) radiation solver [12]. The

excellent scaling seen with the radiation component on its own

translates to the whole boiler. Table I shows the mean time

per timestep (averaged over 10 timesteps involving a radiation

solve) from 16,384 to 262,144 CPU cores (1k to 16K single,

Nvidia K20 GPUs, respectively). The super linear scaling is

achieved as a result of the GPU kernels being executed at

maximum efficiency. As mentioned in Section IV, the Unified

Scheduler is the only Uintah task scheduler with GPU task

support, hence results for the MPI Scheduler are not shown.

These results show strong scaling out to near the full extent

of DOE Titan for a full production boiler case with Arches

and GPU-based RMCRT radiation solve, and they are the first

such results of such a complex geometry coupled to a full

combustion model [13].

TABLE I
UNIFIED SCHEDULER: COAL BOILER ON DOE TITAN

Cores 16K 32K 64K 128K 256K
GPUs 1K 2K 4K 8K 16K
Time 821 407 203 99 55

These results show excellent strong scaling for the whole

code. This is in part due to the time spent by the hypre linear

solver being a small part of the overall cost. Further details

are in Humphrey [13]. Humphrey also shows that with careful

use of mesh refinement it is possible to get the adaptive mesh

ray tracing code to weak scale [13]. It is thus one of the

few radiation algorithms with good strong and weak scaling

properties for these thermal radiation problems in which every

mesh cell is a potential radiation source.

VI. COMPARING STATIC AND DYNAMIC EXECUTION ON

AN FSI BENCHMARK

The benchmark problem used to compare the two schedulers

is the Fluid-Structure Interaction Benchmark developed by

Meng [17], [18]. This problem simulates a moving solid

through a domain filled with air to represent key features of

our benchmark problems as modeled using a combination of a

fluid solver and a particle method with adaptive meshing (the

MPMICE algorithm) in the Uintah framework. The differences

between the two schedulers are shown using the two separate

resolutions in [3] for our benchmark problem, resolution-A
(1923 cells) and resolution-B (3843 cells).

For the resolution-A case, three refinement levels are used

for the simulation grid with each level being a factor of four

more refined than the previous level. This problem has a total

of 3.62 billion particles, 518 million cells and 277,778 total

patches created on three AMR levels. While our benchmark

problem with resolution-A achieved excellent scalability to

512K CPU cores on the DOE Mira system [18], we observed

a significant breakdown in scaling at 768K CPU cores due to

there being less than 0.3 patches per core and hence devised

a much larger resolution problem.
This FSI problem, resolution-B, has a resolution of (3843

cells) by doubling the resolution in each direction resulting in

nearly an order of magnitude increase in problem size. The

resolution-B problem uses a grid with three mesh refinement

levels, with each level being a factor of four more refined than

the previous level, and has a total of 29.45 billion particles,

3.98 billion cells created on three AMR levels, and 1.18

million total patches.
The results shown in Table II show that for both these

resolutions, the new Unified Scheduler is both faster and

appears to scale better. For example with resolution-B at the

largest core count the static approach is 50% slower than the

asynchronous method. Overall the Unified Schedular now has

the potential to be the default scheduler for Uintah.

TABLE II
FSI PROBLEM UNIFIED VS MPI SCHEDULER ON DOE TITAN

Res A Res B
Cores MPI UNI MPI UNI
32K 17 13.5 - -
64K 12.8 7.5 77.5 65.1

128K 10.3 5.0 36.7 31.0
256K 8.2 3.6 26.2 17.6

VII. CONCLUSIONS

We have looked at the performance of two different dataflow

approaches to task execution within the Uintah software.

While the combination of static task execution and asyn-

chronous MPI messaging has proven to be reasonably effective

in some situations, for complex problems such as the fluid-

structure interaction problem shown here, the use of dynamic

asynchronous task execution offers clear performance benefits.
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