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Abstract. Radiative heat transfer is an important mechanism in a class of chal-
lenging engineering and research problems. A direct all-to-all treatment of these
problems is prohibitively expensive on large core counts due to pervasive all-
to-all MPI communication. The massive heat transfer problem arising from the
next generation of clean coal boilers being modeled by the Uintah framework
has radiation as a dominant heat transfer mode. Reverse Monte Carlo ray tracing
(RMCRT) can be used to solve for the radiative-flux divergence while accounting
for the effects of participating media. The ray tracing approach used here repli-
cates the geometry of the boiler on a multi-core node and then uses an all-to-all
communication phase to distribute the results globally. The cost of this all-to-all
is reduced by using an adaptive mesh approach in which a fine mesh is only used
locally, and a coarse mesh is used elsewhere. A model for communication and
computation complexity is used to predict performance of this new method. We
show this model is consistent with observed results and demonstrate excellent
strong scaling to 262K cores on the DOE Titan system on problem sizes that
were previously computationally intractable.
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1 Introduction

Our study is motivated primarily by the target problem of the University of Utah Carbon
Capture Multi-Disciplinary Simulation Center (CCMSC). This project aims to eventu-
ally simulate a 350MWe clean coal boiler being developed by Alstom Power during
the next five years, by using large parallel computers in a scalable manner for reacting,
large eddy simulations (LES)-based codes within the Uintah open source framework,
and to use accelerators at large scale.

Within the boiler, the hot combustion gases radiate energy to the boiler walls and to
tubes carrying water and steam that is superheated to a supercritical fluid. This steam
acts as the working fluid to drive the turbine for power generation. The residual en-
ergy in the mixture passes through a convective heat exchange system to extract as
much of the remaining energy as possible into the working fluid. This radiative flux
depends on the radiative properties of the participating media and temperature. The
mixture of particles and gases emits, absorbs and scatters radiation, the modeling of
which is a key computational element in these simulations. The radiation calculation, in
which the radiative-flux divergence at each cell of the discretized domain is calculated,



can take up to 50% of the overall CPU time per timestep using the discrete ordinates
method (DOM), one of the standard approaches to computing radiative heat transfer.
This method, which Uintah currently uses, is computationally expensive, involves mul-
tiple global, sparse linear solves and presents challenges both with the incorporation of
radiation physics such as scattering and to the use of parallel computers at very large
scales. Reverse Monte Carlo ray tracing (RMCRT), the focus of this work, is one of
the few numerical techniques that can accurately solve for the radiative-flux divergence
while accounting for the effects of participating media, naturally incorporates scattering
physics, and lends itself to scalable parallelism. The principal challenges with our ini-
tial, single fine mesh (single-level) RMCRT approach are the all-to-all communication
requirements and on-node memory constraints. To address these challenges, our study
explores a multi-level, adaptive mesh refinement (AMR) approach in which a fine mesh
is only used close to each grid point and a successively coarser mesh is used further
away. The central question of our study will be to determine if our AMR approach can
scale to large core counts on modern supercomputers, and if our communication and
computation models can accurately predict how this approach to radiation scales on
current, emerging and future architectures.

In what follows, Section 2 provides an overview of the Uintah software, while
Section 3 describes our RMCRT model in detail and provides an overview of the key
RMCRT approaches considered and used within Uintah. Section 4 details our model
of communication and computation for our multi-level AMR approach. Section 5 pro-
vides strong scaling results over a wide range of core counts (up to 262K cores) for this
approach, and an overview of related work is given in Section 6. The paper concludes
in Section 7 with future work in this area.

2 The Uintah Code

The Uintah open-source (MIT License) software has been widely ported and used for
many different types of problems involving fluids, solids and fluid-structure interac-
tion problems. The present status of Uintah, including applications, is described by [4].
The first documented full release of Uintah was in July 2009 and the latest in January
2015 [37]. Uintah consists of a set of parallel software components and libraries that
facilitate the solution of partial differential equations on structured adaptive mesh re-
finement (AMR) grids. Uintah presently contains four main simulation components:
1.) the multi-material ICE [20] code for both low and high-speed compressible flows;
2.) the multi-material, particle-based code MPM for structural mechanics; 3.) the com-
bined fluid-structure interaction (FSI) algorithm MPM-ICE [12] and 4.) the ARCHES
turbulent reacting CFD component [19] that was designed for simulating turbulent
reacting flows with participating media radiation. Uintah is highly scalable [24], [6],
runs on many National Science Foundation (NSF), Department of Energy (DOE) and
Department of Defense (DOD) parallel computers (Stampede, Mira, Titan, Vulcan,
Vesta, Garnet, Kilraine, etc) and is also used by many NSF, DOE and DOD projects
in areas such as angiogenesis, tissue engineering, green urban modeling, blast-wave
simulation, semi-conductor design and multi-scale materials research [4].



Uintah is unique in its combination of the MPM-ICE fluid-structure-interaction
solver, ARCHES heat transfer solver, AMR methods and directed acyclic graph (DAG)-
based runtime system. Uintah is one of the few codes that uses a DAG approach as part
of a production strength code in a way that is coupled to a runtime system. Uintah also
provides automated, large-scale parallelism through a design that maintains a clear par-
tition between applications code and its parallel infrastructure, making it possible to
achieve great increases in scalability through changes to the runtime system that ex-
ecutes the taskgraph, without changes to the taskgraph specifications themselves. The
combination of the broad applications class and separation of the applications problems
from a highly scalable runtime system has enabled engineers and computer scientists
to focus on what each does best, significantly lowering the entry barriers to those who
want to compute a parallel solution to an engineering problem. Uintah is open source,
freely available and is the only widely available MPM code. The broad international
user-base and rigorous testing ensure that the code may be used on a broad class of
applications.

Particular advances made in Uintah are scalable adaptive mesh refinement [25] cou-
pled to challenging multiphysics problems [5]. A key factor in improving performance
has been the reduction in MPI wait time through the dynamic and even out-of-order exe-
cution of task-graphs [29]. The need to reduce memory use in Uintah led to the adoption
of a nodal shared memory model in which there is only one MPI process per multicore
node, and execution on individual cores is through Pthreads [27]. This has made it pos-
sible to reduce memory use by a factor of 10 and to increase the scalability of Uintah
to 768K cores on complex fluid-structure interactions with adaptive mesh refinement.
Uintah’s thread-based runtime system [27], [30] uses: decentralized execution [29] of
the task-graph, implemented by each CPU core requesting work itself and perform-
ing its own MPI. A shared memory abstraction through Uintah’s data warehouse hides
message passing from the user but at the cost of multiple cores accessing the ware-
house originally. A shared memory approach that is lock-free [30] was implemented by
making use of atomic operations (supported by modern CPUs) and thus allows efficient
access by all cores to the shared data on a node. Finally, the nodal architecture of Uintah
has been extended to run tasks on one or more on-node accelerators [15]. This unified,
heterogeneous runtime system [28] makes use of a multi-stage queue architecture (two
sets of task queues) to organize work for CPU cores and accelerators in a dynamic way,
and is the focus of current development.

2.1 The ARCHES Combustion Simulation Component

The radiation models in Uintah have previously been a part of the ARCHES component,
which was designed for the simulation of turbulent reacting flows with participating
media. ARCHES is a three-dimensional, large eddy simulation (LES) code that uses a
low-Mach number variable density formulation to simulate heat, mass, and momentum
transport in reacting flows. The LES algorithm solves the filtered, density-weighted,
time-dependent coupled conservation equations for mass, momentum, energy, and par-
ticle moment equations in a Cartesian coordinate system [19]. This set of filtered equa-
tions is discretized in space and time and solved on a staggered, finite volume mesh.
The staggering scheme consists of four offset grids, one for storing scalar quantities



and three for each component of the velocity vector. Stability preserving, second or-
der explicit time-stepping schemes and flux limiting schemes are used to ensure that
scalar values remain bounded. ARCHES is second-order accurate in space and time
and is highly scalable through Uintah and its coupled solvers like hypre [10] to 256K
cores [36]. Research using ARCHES has been done on radiative heat transfer using
the parallel discrete ordinates method and the P1 approximation to the radiative trans-
port equation [22]. Recent work has shown that RMCRT methods are potentially more
efficient [17], [39].

3 RMCRT Model

Scalable modeling of radiation is currently one of the most challenging problems in
large-scale simulations, due to the global, all-to-all nature of radiation [31]. To sim-
ulate thermal transport, two fundamental approaches exist: random walk simulations,
and finite element/finite volume simulations, e.g., discrete ordinates method (DOM)
[3], which involves solving many large systems of equations. Accurate radiative-heat
transfer algorithms that handle complex physics are inherently computationally expen-
sive [16], particularly when high-accuracy is desired in cases where spectral or geomet-
ric complexity is involved. They also have limitations with respect to scalability, bias
and accuracy.

The Uintah ARCHES component is designed to solve the mass, momentum, mix-
ture fraction, and thermal energy governing equations inherent to coupled turbulent
reacting flows. ARCHES has relied primarily on a legacy DOM solver to compute the
radiative source term in the energy equation [19]. Monte Carlo ray tracing (MCRT)
methods for solving the radiative transport equation offer higher accuracy in two key
areas where DOM suffers: geometric fidelity and spectral resolution. In applications
where such high accuracy is important, MCRT can become more efficient than DOM
approaches. In particular, MCRT can potentially reduce the cost significantly by tak-
ing advantage of modern hardware on large distributed shared memory machines [14],
and now on distributed memory systems with on-node graphics processing unit (GPU)
accelerators, using a prototype GPU implementation of the single-level RMCRT [15],
written using NVidia CUDA.

3.1 Radiation and Ray Tracing Overview

The heat transfer problems arising from the clean coal boilers being modeled by the
Uintah framework has thermal radiation as a dominant heat transfer mode and involves
solving the conservation of energy equation and radiative heat transfer equation (RTE)
simultaneously. Thermal radiation in the target boiler simulations is loosely coupled to
the computational fluid dynamics (CFD) due to time-scale separation and is the right-
most source term in the conservation of energy equation shown by:
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where ¢, is the specific heat, T is the temperature field, p is the pressure, k is the thermal
conductivity, ¢ is the velocity vector, @ is the dissipation function, Q" is the heat gen-
erated within the medium, e.g. chemical reaction, and V - g, is the net radiative source.
The energy equation is then conventionally solved by ARCHES (finite volume) and the
temperature field, 7" is used to compute net radiative source term. This net radiative
source term is then fed back into energy equation (for the ongoing CFD calculation)
which is solved to update the temperature field, 7'.

A radiatively participating medium can emit, absorb and scatter thermal radiation.
The RTE (2) as shown in [41], is the equation describing the interaction of absorption,
emission and scattering for radiative heat transfer and is an integro-differential equation
with three spatial variables and two angles that determine the direction of s [41].
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In (2), k,, is the absorption coefficient, o, is the scattering coefficient (dependent on the
incoming direction s and wave number 77), 3,, is the extinction coefficient that describes
total loss in radiative intensity, I,, is the change in intensity of incoming radiation from
point s to point s 4+ ds and is determined by summing the contributions from emission,
absorption and scattering from direction § and scattering into the same direction S at
wave number 7). @, (s;, §) is the phase function that describes the probability that a ray
coming from direction s; will scatter into direction $ and integration is performed over
the entire solid angle (2; [32], [41].

DOM, MCRT and RMCRT all aim to approximate the radiative transfer equation.
In the case of RMCRT, a statistically significant number of rays (photon bundles) are
traced from a computational cell to the point of extinction. This method is then able
to calculate energy gains and losses for every element in the computational domain.
The process is considered reverse” through the Helmholtz Reciprocity Principle, e.g.
incoming and outgoing intensity can be considered as reversals of each other [13].
Through this process, the divergence of the heat flux for every sub-volume in the do-
main (and radiative heat flux for surfaces, e.g., boiler walls) is computed by Equation
3, as rays accumulate and attenuate intensity (measured in watts per square meter, SI
units based on the StefanBoltzmann constant) according to the RTE for an absorbing,
emitting and scattering medium.

V. q = KJ(47TIemmited - /4 Iabsorbeddg); (3)
where the rightmost term, f i LapsorbeqdS? is represented by the sum Zivzl Ir% for
each ray r up to N rays. The integration is performed over the entire solid angle (2. Ray
origins are randomly distributed throughout a given computational cell. In our imple-
mentation, the Mersenne Twister random number generator [26] is used to generate ray
origins. The ray marching algorithm proceeds in a similar fashion to that shown by [1].



Within the Uintah RMCRT module, rays are traced backwards from the detector,
thus eliminating the need to track ray bundles that never reach the detector [32]. Rather
than integrating the energy lost as a ray traverses the domain, RMCRT integrates the
incoming intensity absorbed at the origin, where the ray was emitted. RMCRT is more
amenable to domain decomposition, and thus Uintah’s parallelization scheme due to
the backward nature of the process [38], and the mutual exclusivity of the rays them-
selves. Figure 1 shows the back path of a ray from S to the emitter E, on a nine cell
structured mesh patch. Each i cell has its own temperature 7}, absorption coefficient
k;, scattering coefficient o; and appropriate pathlengths /; ; [15]. In each case the in-
coming intensity is calculated in each cell and then traced back through the other cells.
The Uintah RMCRT module computes how much of the outgoing intensity has been
attenuated along the path. When a ray hits a boundary, as on surface 17 in Figure 1,
the incoming intensities will be partially absorbed by the surface. When a ray hits a
hot boundary surface, its emitted surface intensity contributes back to point S. Rays are
terminated when their intensity is sufficiently small [15].
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Fig. 1. 2D Outline of reverse Monte Carlo ray tracing [15]

RMCRT uses rays more efficiently than forward MCRT, but it is still an all-to-all
method, for which all of the geometric information and radiative properties (temper-
ature 7", absorption coefficient «, and cellType (boundary or flow cell)) for the entire
computational domain must be accessible by every ray [38]. When using a ray tracing
approach (forward or backward), two approaches for parallelizing the computation are
considered when using structured grids, 1.) parallelize by patch-based domain decom-
position with local information only and pass ray information at patch boundaries via
MPI, and 2.) parallelize by patch-based domain decomposition with global information
and reconstruct the domain for the quantities of interest on each node by passing domain
information via MPI. The first approach becomes untenable due to potentially billions
of rays whose information would need to be communicated as they traverse the domain.
In the second approach the primary difficulty is efficiently constructing the global in-
formation for millions of cells in a spatially decomposed (patch-based) domain. The



second approach is the one taken used in this work. While reconstruction of all geome-
try on each node has shown to limit the size of the problem that can be computed [17],
we will show that the multi-level mechanisms in Uintah allows representing a portion
of the domain at a coarser resolution, thus lowering the memory usage and message
volume, ultimately scaling to over 256K CPU cores. The hybrid memory approach of
Uintah also helps as only one copy of geometry and radiative properties is needed per
multi-core node [30]. RMCRT will be invoked largely on coarser mesh levels and the
CFD calculation will be performed on the highest resolved mesh.

3.2 Uintah RMCRT Approaches

Within the Uintah RMCRT module there are numerous approaches, each designed for
a specific use case, and range from a single-level method to a full adaptive mesh refine-
ment using an arbitrary number of grid levels with varying refinement ratios. Our study
focuses on the multi-level mesh refinement approach and its scalability to large core
counts. CPU Scaling results for this approach are shown in Section 5.

Single-Level RMCRT: The single level RMCRT approach was initially imple-
mented as a proof-of-concept to begin comparisons against the legacy DOM solver
within the Uintah ARCHES component. This approach focused on the benchmark prob-
lem described by Burns and Christen in [9]. In this approach, the quantity of interest,
the divergence of the heat flux, Vq is calculated for every cell in the computational do-
main. The entire domain is replicated on every node (with all-to-all communication) for
the following quantities; «, the absorption coefficient, a property of the medium the ray
is traveling through, oT?, a physical constant o- temperature field, T4 and, cel [Type, a
property of each computational cell in the domain to determine if along a given path, a
ray will reflect or stop on a given computational cell. These three properties are repre-
sented by 1 double, 1 double and 1 integer value respectively.

For Niotqr mesh cells, the amount of data communicated is O(N 2). While ac-
curate and effective at lower core counts, the volume of communication in this case
overwhelms the system for large problems in our experience. Calculations on domains
up to 5123 cells are possible on machines with at least 2GB RAM per core and only
when using Uintah’s multi-threaded runtime system, described in Section 2. Strong
scaling breakdown for the single-level approach occurs around 8-10K CPU cores for
a 3843 domain. Currently, Uintah has a production-grade GPU implementation of this
single-level approach that delivers a 4-6X speedup ! in mean time per timestep for this
benchmark with a domain size of 1282 cells. The work done to achieve accelerator task
scheduling and execution is detailed in [15]. Initial scalability and accuracy studies of
the single-level RMCRT algorithm are also shown in [17] which examines the accuracy
of the computed divergence of the heat flux as compared to published data and reveals
expected Monte-Carlo convergence.

Multi-level Adaptive Mesh Refinement: In this adaptive meshing approach, a
fine mesh is used locally and only coarser representations of the entire domain are
replicated on every node (with all-to-all communication) for the radiative properties,
T, k cellType. The fine level consists of a collection of patches where each patch is

" 1-NVIDIA K20 GPU vs. 16-Intel Xeon E5-2660 CPU cores @2.20GHz



considered a region of interest and individually processed using a local fine mesh and
underlying global coarse mesh data. Figure 2 illustrates a three-level mesh coarsening
scheme and how a ray might traverse this multi-level domain. Surrounding a patch is a
halo region which effectively increases the size (at the finest resolution) of each patch
in each direction, x, y and z. This distance is user specified. An arbitrary number of
successively coarser levels (received by each node during the all-to-all communication
phase) reside beneath the fine level for the rays to travel across once they have left the
fine level. Each ray first traverses a fine level patch until it moves beyond the boundary
and surrounding halo of this fine-level patch. At this point, the ray moves to a coarser
level. Once outside this coarse level, the ray moves again to a coarser level. The rays
move from level to level, similar to stair stepping, until the coarsest level is reached.
Once on the coarsest level, a ray cannot move to a finer level. The key goal of this ap-
proach is to achieve a reduction in both communication and computation costs as well
as memory usage. This approach is fundamental to our target problem, the 350MWe
boiler predictive case where the entire computational domain needs to be resolved to
adequately model the radiative heat flux.

Initial scalability results on a two-level methane jet problem are shown in [31].
This problem was run on the the DOE Titan, Mira and NSF Stampede systems with
10 rays per cell, two grid levels, a refinement ratio of four and a problem size of 256>
cells on the highest resolved mesh. These results provided an excellent starting point by
showing scaling to 16K CPU cores. Scaling results beyond 16K cores at the time was
not possible due to algorithmic issues, which were ultimately resolved in this work and
are detailed in Section 5.

RMCRT Using 3-level CFD Level
Mesh Coarsening Scheme Fine Resolution

N

Fig.2. RMCRT - 2D diagram of three-level mesh refinement scheme, illustrating how a ray from
a fine-level patch (right) might be traced across a coarsened domain (left).



4 Complexity Model

In this section we generalize the somewhat simplistic analysis given in [31] (as sug-
gested there) of the two-level scheme of [17] to a detailed discussion of both the com-
putational and communications costs of a multiple mesh level approach. Initially our
approach involves replicating the geometry of the target problem and constructing an
adaptive mesh for the radiation calculations. The adaptive mesh used by the radiation
calculation may be constructed directly from the efficient mesh data structure used to
describe the whole mesh. This is a one-time procedure and so is not analyzed further
here.

We suppose that on N3
cells in n3 .,
Npatch /Nnodes SO that each node has n?ocal fine mesh cells in nilocal patches. In the
ray tracing algorithm, each compute node then has to compute the heat fluxes, Vq on
its local mesh by ray tracing and to export the temperatures 7' and and the absorption
coefficient x on the original mesh to neighbouring "halo” nodes, or in a coarsened form
(possibly at multiple levels) to other nodes. Finally the coarsest mesh representations
are distributed to all the other nodes. The amount of information per cell transmitted is
two doubles «, cT* and one integer, cell_type.

To assess the complexity of RMCRT on a fixed fine mesh, computational exper-
iments to measure the per cell and per ray cost of the RMCRT:CPU implementation
were conducted on a single CPU with a single-level grid. Ray scattering and reflections
were not included in these experiments. In both experiments the absorption coefficient
was initialized according to the benchmark of Burns & Christen [9] with a uniform
temperature field. A grid with a single patch and 1 MPI process was used, thus elimi-
nated any communication costs. The grid resolution varied from 162, 323, 643 to 1283
cells with each cell using emitting 25 rays. The mean time per timestep (MTPTS) was
computed using 7 timesteps. The code was instrumented to sum the number of cells
traversed during the computation and it was shown that MTPTS = (n3 ., )**. In
the second experiment the number of grid cells in the domain was fixed at 41 and the
number of rays, n,q, per cell varied. The MTPTS was computed over 47 timesteps.
Here it was shown that the MTPTS varies linearly with the number of rays per cell.
Based on these experiments, the cost for a single patch, without any communication, is
approximately given by

odes compute nodes there is a global fine mesh of n2,__,

mesh patches. Define njocai = Mmesh/Nnodes, and defines npjocar =

global __ vx 3 4/3
Trmc’r‘t - C nTﬂySnmesh ’ (4)

where C* is a constant. This result may be interpreted as saying that the rays from each

of the n3 _, cells travel a distance of 1,55, cells on average. In the case of a fine mesh

on a node and a coarse representation of the rest of the mesh.

Tlocal 4/3 4/3

rmert O*nmys [n?ocal + (nmesh27m)3) (5)

Where 2™ is the refinement ratio used to obtain the coarse mesh. It is possible to
extend this analysis to more mesh refinement levels.
Communications Costs: The main step with regard to communication is to update the
temperatures 7' and and the absorption coefficients « every timestep. On a uniform fine
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mesh this is done by each node sending out the values of these quantities to all the other
compute nodes, and in a multiple mesh level approach this is done by each node sending
out the values of these quantities on the coarse mesh and fine mesh values locally.
Fine Mesh Global Communications: Each node has to transmit (N3,  —1) messages
of size (noca1)® - 3. This is currently done by a series of asynchronous sends but could
be done with an MPI_Allgather. This has a complexity of

a3l0g(Npodes) + ﬂNf:’,%diZ_l (Niocar)? for N3

‘th 3
- odes Dodes with ny . elements per mesh

patch, where « is the latency and § is the transmission cost per element [40]. This
result applies for both the recursive doubling and Bruck algorithms [40]. Other recursive
doubling algorithms result in a complexity of

a3log(Nnodes) + BIN3, ges — 1)(Niocar)®, s0 the cost may be dependent on the MPI
implementation used.

Coarse Mesh All-to-All: In the case of using a coarse mesh in which the mesh is
refined by a factor of 2™ in each dimension, each node has to transmit (N2 ,.. — 1)
messages of size (n7ocqi2~ ™) * 3. Thus reducing the communications volume, but not
the number of messages, by a factor of 2™ overall

Multi-level Adaptive Mesh Refinement: This approach considers each fine level patch
(individually) in the domain as a region of interest (ROI) and for each fine level patch,
the highest resolved CFD mesh is used. Figure 2 illustrates one patch being such a
region of interest. In the case of a region of interest consisting of P;,; patches, the
compute node must transmit the fine mesh information to all the local nodes close to
the ROI. In this context let L; be the nodes that are 7 levels of nodes removed from
node containing the region of interest. There will then be 26 level-1 nodes and 98 level-
2 nodes. Of course at the edges of a spatial simulation domain or in the case of a small
domain of interest each node will only have to communicate fine mesh values of x, oT*
to a fraction of the nodes. In this case let L)”’,. ~ be the number of active nodes (halo-
level nodes) at level j, where j < Nieyeis, active for the ith level of interest, where
active nodes are the local halos from the fine mesh. Furthermore let the refinement
factor be Qle) active at this level. Then the fine mesh communication associated with
this region of interest is given by

Nievels

Compnato = ¥ Lidve(o+ Blnugear2 ™))% 5 3) (6)
j=1

This means that the ratio of communications to computations R,;;, is now be given as:

((Nzodes — 1))(0[ + B(nlocal2_m)3 * 3) + Comfhalo

local
Trmcrt

Ratio =

@)

where « and f3 are defined above and scaled by the cost of a FLOP. Overall this expres-
sion allows us to analyze the relationship between computation and communications.
Strong scaling of RMCRT does not change the overall volume of data communi-
cated. Increasing the number of V,,,4.s by a factor of two simply reduces njocq; by
two. This does mean that the number of messages increases even with the total commu-
nications value being constant. Moving to MPI_Allgather also has the same issue but
the factor of 3l0gNyo4es also increased by adding 3. Thus for enough rays n,4,s with
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enough refinement by a factor of 2™ on the coarse radiation mesh, the computation
will likely dominate. A key challenge is that storage of O(1,,¢5,2~™)?) is required on
a multicore node and that an AMR mesh representation is needed at very large core
counts. Some aspects of this analysis are not dissimilar to earlier work by one of us on
PDE solvers with global coarse mesh operations [11] using algorithms related to those
of [8]. The results of this analysis will make it possible to prioritize subsequent serial
and parallel performance tuning and and also perhaps to make projections regarding
performance on forthcoming petascale and exascale architectures.

5 Scaling Studies

In this section, we show strong scalability results on the DOE Titan XK7 2 system for
the Burns and Christen [9] benchmark problem using the multi-level mesh refinement
approach. We define strong scaling as a decrease in execution time when a fixed size
problem is solved on more cores. This work focuses on using all CPU cores available on
Titan. Subsequent work will focus on additionally using all of Titan’s GPUs in addition
to its CPUs, following our prototype work on a single mesh in [15], [31].

The scaling challenges faced in this work have only become apparent by running
this challenging problem at such high core counts, stressing areas of infrastructure code
in ways never before seen, specifically Uintah’s task-graph compilation phase. With
Uintah’s directed acyclic graph (DAG)-based design [31], during an initial simulation
timestep, the initial timestep of a restart, or when the grid layout or its partition changes,
a new task graph needs be to created and compiled. Task-graph compilation is a com-
plex operation with multiple phases, including creation and scheduling of tasks them-
selves on local and neighboring patches (for halo exchange), keeping a history of what
these tasks require and compute, setting up connections between tasks (edges in the
DAG), and finally assigning MPI message tags to dependencies.

As the RMCRT ray trace task requests ghost cells across the entire domain (a global
halo) for ray marching, Uintah’s task-graph compilation algorithm was overcompensat-
ing when constructing lists of neighboring patches for local halo exchange. The cost of
this operation grew despite the number of patches per node remaining constant, result-
ing in task-graph compilation times of over four hours at 32K cores with 32,000 total
patches. This necessitated extensive algorithmic improvements to the task-graph com-
pilation algorithm. The original complexity of this operation was O(n; - log(ny) + ng -

log(ns)), and after optimization became O(n; -log(ny))+ O (% -log(nz) ), where ny
is the number of patches on coarse level, ns is the number of patches on fine level, and

p is the number of processor cores. This reduced the four hour task-graph compilation
time to under one minute at 32K cores, thus making possible the results presented here.

2 Titan is a Cray KX7 system located at Oak Ridge National Laboratory, where each node hosts
a 16-core AMD Opteron 6274 processor running at 2.2 GHz, 32 GB DDR3 memory and
1 NVIDIA Tesla K20x GPU with 6 GB GDDRS5 ECC memory. The entire machine offers
299,008 CPU cores and 18,688 GPUs (1 per node) and over 710 TB of RAM. Titan uses a
Cray Gemini 3D Torus network, 1.4 us latency, 20 GB/s peak injection bandwidth, and 52
GB/s peak memory bandwidth per node.
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5.1 CPU Strong Scaling of Multi-level Adaptive Mesh Refinement, RMCRT

Our scaling study focuses on a two-level AMR problem based on benchmark described
in [9], which exercises all of the main features of the AMR support within Uintah in
addition to the radiation physics required by our target problem. A fine level halo region
of four cells in each direction, x, y, z was used. The AMR grid consisted of two levels
with a refinement ratio of four, the CFD mesh being four times more resolved than
the radiation mesh. For three separate cases, the total number of cells on the highest
resolved level was 1283, 2563 and 5123 (green, red and blue lines respectively in Figure
3), with 100 rays per cell in each case. The total number of cells on the coarse level was
323, 643 and 1283. In all cases, each compute core was assigned at least 1 fine mesh
patch from the CFD level. Figure 3 shows excellent strong scaling characteristics for
our prototype, two-level benchmark problem [9]. The eventual breakdown in scaling in
each problem size is due to diminishing work, when a patch’s MPI messages begins
to exceed the cost of its computation, and hence the runtime system cannot overlap
computation with communication. Figure 4 additionally shows the MPI wait associated
with the global and local communications for this calculation along side the execution
times for each of the three cases above.

Though the actual communication patterns for this problem are perhaps more com-
plicated than our predictive model, due to MPI message combining and packing done
by Uintah, both Table 1 and Figure 4 illustrate points made in Section 4, that global
communications dominate and that the local communications do not have a significant
impact, and for enough rays and enough refinement on the coarse radiation mesh, the
computation does in fact dominate (Equation 7 of our predictive model). These results
also show how the number of MPI messages grows with the number of cores. A key
point to note, as is evidenced by the dominating global communications, is that the
refinement ratio of four reduces the global communication phase by a factor of 64 (ig-
noring communications latency for large messages) over a fine mesh all-to-all. If this
communications phase took 8-64 times as long it would destroy scalability.

Table 1. Total number of MPI messages and average number of messages per MPI rank for each
problem size, 1283, 256° and 5122 (fine mesh)

Cores 256 | 1k | 4k 8K 16K | 32K | 64K | 128K | 256k
1287 total msgs|[1001] 5860 [36304
avg msgs/node ||62.5]91.6 | 141.8

256° total msgs 9843 |52.1K|105.2K|212.1K|437.7K
avg msgs/node 153.8|203.3 | 205.6 | 207.0 | 213.7
5127 total msgs 338.2K|[673.8K| 1.36M |2.71M|5.42M [10.88M

avg msgs/node 660.5 | 658.0 [663.65|662.6 |661.36| 662.83
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2-Level Adaptive RMCRT - Strong Scaling
Burns & Christen Benchmark

OLCF-Titan System
1000 T T T T T T T T T T
L-1: 1283, L-0: 32"3 -
L-1:256"3, L-0: 64"3 —eo—
L-1: 51273, L-0: 128"3 —e—
Ideal [N
100 A =

~._

Mean Time Per Timestep (s)
S
T
4
/:
/

Multi-threaded MPI Scheduler
1 MPI proc & 16 threads per node
100 rays per cell
Fine-Level Halo: [4,4,4]
0.1 1 1 1 1 1 1 1 1 1 1
128 256 512 1024 2048 4096 8192 16K 32K 65K 131K 262K

CPU Cores

Fig. 3. Strong scaling of the two-level benchmark RMCRT problem on the DOE Titan system.
L-1 (Level-1) is the fine, CFD mesh and L-0 (Level-0) is the coarse, radiation mesh.

2-Level Adaptive RMCRT - with MPI Communication Costs
Burns & Christen Benchmark
OLCF-Titan System

1000

L-1: 128|A3, L-0: 32"‘3 4.'7 ! ! ! ! ! ! !
L-1:256"3, L-0: 64"3 —&—
L-1: 5123, L-0: 128"3 —e—
Ideal -
MPI Communication
100 - MPI Communication —&— =
MPI Communication —&—

Mean Time Per Timestep (s)
S
T 7
/

Multi-threaded MPI Scheduler

1 MPI proc & 16 threads per node
100 rays per cell

Fine-Level Halo: [4,4,4]

0.1 I 1 1 1 I 1 1 1 1 I
128 256 512 1024 2048 4096 8192 16K 32K 65K 131K 262K

CPU Cores

Fig. 4. Strong scaling with communication costs of the two-level benchmark. L-1 (Level-1) is the
fine, CFD mesh and L-0 (Level-0) is the coarse, radiation mesh
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5.2 Multi-Level Accuracy Considerations

To quantify the error associated with coarsening the radiative properties (temperature
T, absorption coefficient x, and cellType (boundary or flow cell)), an error analysis was
performed using a simplified version of the adaptive-meshing approach described in
Section 3. The grid consisted of a fine and coarse mesh and during a radiation timestep
the quantities necessary to compute V¢ were interpolated to the coarser grid level. The
radiation calculation was performed on the coarse level including all ray tracing. The
Vq was then compared using the computed solution of the Burns and Christen [9]
benchmark problem at the prescribed 41 locations. 100 rays per cell were used in the
computation and the refinement ratio between the coarse and fine grids was varied from
1 to 8. Figure 5 shows the L2 norm error of V¢ versus refinement ratio. This represents
a worse case scenario, as only coarsened quantities are used in the computation.

In addressing the issue of accuracy, our approach will be to continue sending the
coarse mesh in the all-to-all communication phase of each simulation timestep, but
to recover the fine mesh values of the radiative properties through interpolation. This
approach is well suited for GPU accelerators such as those on the Titan system, where
FLOPS are inexpensive relative to the cost of data movement. Further compression of
the coarse mesh information will also be investigated.

Div Q Error versus Refinement Ratio
Burns and Christon Benchmark
100 Rays per cell, 2 Levels
0.08 T T
X Error [
Y Error
A ZEmor A

0.07 2 |

0.06 A
& g
a 005 | a
2 004 F - g
l«3 Resolution:
= Coarse level: 41,41,41
a Fine level: RR * (41,41,41)

0.03 Div Q compared on L-0 4

0.02 | b

a
0.014 L L
1 2 4 8
Refinement Ratio

Fig. 5. L2 norm error of Vq vs refinement ratio, The error in each direction (x,y,z) is shown.

6 Related Work

Industrial codes, such as Fluent, incorporate straightforward radiation models such
as the discrete ordinates method in Fluent and Airpack [2], but scale to relatively
small numbers of cores. At the national labs, many cutting edge codes are developed,
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such as Fuego, CFDLIB, Kiva, and radiation codes ATTILA, DANTE, WEDGEHOG,
PARTISN [23], [21], but many of these are not generally available, are unsupported,
or are targeted at other problems such as neutron transport. There are also radiation
transport problems that use CFD codes and AMR techniques [18], [34], however, a
broad range of problems exist that require the concept of tracing rays or particles, such
as the simulation of light transport and electromagnetic waves. In the case of adap-
tive mesh codes there are many such solvers. Specific examples of these codes are the
Flash code [7], [35] based on adaptive oct-tree meshes and the physics AMR code
Enzo, [33], [42]. These examples are perhaps closest as these combine AMR and ra-
diation, but for very different problem classes. Most of these codes do not target the
problems that Uintah has been designed for, with large deformations, complex geome-
tries, high degrees of parallelism and now radiation.

7 Conclusions and Future Work

We have demonstrated that through leveraging the multi-level AMR infrastructure pro-
vided by the Uintah framework, we have developed a scalable approach to radiative
heat transfer using reverse Monte Carlo ray tracing. The scaling and communication
cost results shown in Section 5 provide a promising alternative to approaches to radia-
tion modeling such as discrete ordinates. Using our cost model for communication and
computation, we can predict how our approach to radiation modeling may scale and
perform on current, emerging and future architectures.

The addition of a scalable, hierarchical radiation solver within Uintah will also
benefit the general computational science engineering community in applications areas
such as turbulent combustion simulation and other energy-related problem. The broader
impact of our work may ultimately include algorithmic developments for related prob-
lems with pervasive all-to-all type communications in general, such as long-range elec-
trostatics in molecular dynamics, and will be of importance to a broad class of users,
developers, scientists and students for whom such problems are presently a bottleneck.

Our primary focus in moving beyond this study will be continued development of
RMCRT capabilities explored here, to provide support for several additional energy-
related problems within the scope of the Utah CCMSC. The relationship between ac-
curacy, number of rays cast, refinement ratios between grid levels and extent of the
fine-level halo region is being explored as part of the ongoing research goals. The cal-
culations demonstrated in this work are ideal candidates for large-scale accelerator use,
employing large numbers of rays for every cell in the computational domain. As such,
implementation of a multi-level GPU:RMCRT module is now underway with the aim
of using the whole of machines like Titan with accelerators.
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