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Abstract—Parallel computational frameworks for high perfor-
mance computing (HPC) are central to the advancement of sim-
ulation based studies in science and engineering. Unfortunately,
finding and fixing bugs in these frameworks can be extremely
time consuming. Left unchecked, these bugs can drastically
diminish the amount of new science that can be performed. This
paper presents our systematic study of the Uintah Computational
Framework, and our approaches to debug it more incisively.
Our key insight is to leverage the modular structure of Uintah
which lends itself to systematic debugging. In particular, we
have developed a new approach based on Coalesced Stack Trace
Graphs (CSTGs) that summarize the system behavior in terms of
key control flows manifested through function invocation chains.
We illustrate several scenarios how CSTGs could help efficiently
localize bugs, and present a case study of how we found and
fixed a real Uintah bug using CSTGs.

Index Terms—Computational Modeling and Frameworks, Par-
allel Programming, Reliability, Debugging Aids.

I. INTRODUCTION

Computational frameworks for high performance computing
(HPC) are central to the advancement of simulation based
studies in science and engineering. With the growing scale of
problems and the growing need to simulate problems at higher
resolutions, modern computational frameworks continue to
escalate in scale, now exceeding a million cores in their current
deployments.

As with many such codes, there are bugs present in the code
implementing computational frameworks. In the case of large
parallel frameworks, finding and fixing bugs can be an order of
magnitude more time consuming, particularly for those bugs
that arise from the parallel nature of the code and for which
testing may only be done through infrequently scheduled batch
runs, possibly at large core counts.

This lengthy debugging process can arise even though the
creators of computational frameworks put in considerable
effort and thought into carefully structuring them, while users
of these frameworks also write a non-trivial number of tests
as well as assertions in their code. Clearly, we need steady
progress to be made in systematic testing methods that help
trigger deeply hidden bugs, and also systematic debugging
methods that help observe these bugs as well as root-cause
them. This paper presents our systematic study of a compu-
tational framework under development at the University of

Utah called the Uintah Computational Framework [1] (or just
Uintah), and the efforts we are putting into Uintah in order to
debug its bugs quickly and effectively.

The prevalence of software bugs and the difficulty of
debugging are well known. As one recent example, the authors
of the popular Photoshop tool mention: ...the single longest-
lived bug I know of in Photoshop ended up being nestled in
that code. It hid out in there for about 10 years. ... the person
who put that in there didn’t think about the fact that ... [a pair
of calls] had to be made atomic whenever you’re sharing the
file position across threads. This reinforces the fact that bugs
that are rare to trigger and hard to root-cause (debug) can be
serious impediments to the design of large-scale and reliable
software. Our work is aimed at bringing in systematic (formal)
techniques for both triggering bugs as well as debugging,
which can be deployed in practice. Our main contribution is
a light-weight technique for comparing two executions of a
system—one typically the working (“golden”) version and the
other the new version being tested—based on their execution
profiles.

Compared to “traditional software systems,” there has, his-
torically, been relatively less attention paid to bugs occur-
ring within HPC in general and computational frameworks
in particular. However, this situation is rapidly changing.
Recently, the authors provided a perspective on this issue,
and covered facts specific to the academia and national
laboratories [2]. Two take-away points from this article are
now elaborated. First, HPC and the continuous mathematics
underlying the classes of problems solved by HPC codes is not
taught in mainstream Computer Science curricula, and there
is insufficient interest created amongst students and faculty
interested in rigorous software engineering methods to apply
their techniques to HPC. Second, the styles of concurrency
present in HPC qualitatively differ from well-studied situations
in rigorous software engineering. For instance, in rigorous
software engineering, considerable attention has been paid to
device drivers, operating systems, and transactional systems.
In contrast, in HPC, typical computations are based upon
large coupled systems of partial differential equations, run
for days (if not months), and are orchestrated around time-
stepped activities. Significant usage is made of infrastructural



Fig. 1. Strong Scaling of Uintah Benchmark Problem Using AMR

components (e.g., schedulers), adaptive mesh refinement algo-
rithms, as well as third-party libraries (e.g., iterative solvers
for large systems of linear equations). A typical computer-
science-trained software engineering researcher does not have
the background to understand all the components and their
interactions. Collaboration between HPC and core CS re-
searchers is crucial in developing suitable rigorous software
engineering approaches to modern computational frameworks.

This paper summarizes preliminary results [3] from an on-
going collaboration between a subset of its authors interested
in building a high-end problem solving environment called
Uintah, and a subset interested in developing formal software
testing approaches that can help eliminate code-level bugs,
hence enhancing the value offered by Uintah. We are devel-
oping Uintah system Runtime Verification (URV) techniques
that can be deployed in field-debugging situations. We aim
to make our results broadly applicable to other computational
frameworks and HPC situations. While traditional debuggers
(e.g., Allinea DDT and Roguewave) are the mainstay of
today’s debugging methods, typically these tools are good at
explaining the execution steps close to the error site itself—
and not at providing high level explanations of cross-version
changes.

II. THE UINTAH COMPUTATIONAL FRAMEWORK

A proven approach to solving large-scale multi-physics
problems on large-scale parallel machines is to use compu-
tational frameworks such as Flash [4] and Chombo [5].

The Uintah Computational Framework1 originated in the
University of Utah DOE Center for the Simulation of Ac-
cidental Fires and Explosions (C-SAFE) (9/97-3/08) which
focused on providing software for the numerical modeling
and simulation of accidental fires and explosions. Uintah was

1For reasons of space, we cite here an earlier CiSE paper on the applications
of Uintah [6]; we refer the reader to that paper for more information and
references.

intended to make it possible to solve complex fluid-structure
interaction problems on parallel computers. In particular Uin-
tah is designed for full physics simulations of fluid-structure
interactions involving large deformations and phase change.
The term full physics refers to problems involving strong
coupling between the fluid and solid phases with a full Navier-
Stokes representation of fluid phase materials and the transient,
nonlinear response of solid phase materials which may include
chemical or phase transformation between the solid and fluid
phases. Uintah uses a full multi-material approach in which
each material is given a continuum description and is defined
over the complete computational domain.

Uintah contains four main simulation components: 1) the
ICE code for both low and high-speed compressible flows;
2) the multi-material particle-based code MPM for structural
mechanics; 3) the combined fluid-structure interaction (FSI)
algorithm MPM-ICE; and 4) the ARCHES turbulent react-
ing CFD component that was designed for simulation of
turbulent reacting flows with participating media radiation.
Uintah makes it possible to integrate multiple simulation
components, analyze the dependencies and communication
patterns between these components, and efficiently execute the
resulting multi-physics simulation.

These Uintah components are C++ classes that follow a sim-
ple interface to establish connections with other components
in the system. Uintah then utilizes a task-graph of parallel
computation and communication to express data dependencies
between multiple application components. The task-graph is
a directed acyclic graph (DAG) in which each task reads
inputs from the preceding task and produces outputs for the
subsequent tasks. The task’s inputs and outputs are specified
for a generic patch in a structured adaptive mesh refinement
(SAMR) grid, thus a DAG will be created with tasks of only
local patches. Each task has a C++ method for the actual
computation and each component specifies a list of tasks to
be performed and the data dependencies between them [7].

This design allows the application developer to only be
concerned with solving the partial differential equations on a
local set of block-structured adaptive meshes, without worry-
ing about explicit message passing calls in MPI, or indeed
parallelization in general. This is possible as the parallel
execution of the tasks is handled by a runtime system that
is application-independent. This division of labor between the
application code and the runtime system allows the developers
of the underlying parallel infrastructure to focus on scalability
concerns such as load balancing, task scheduling, communi-
cations, including accelerator or co-processor interaction.

Uintah scales well on a variety of machines at small
to medium scale (typically Intel or AMD processors with
Infiniband interconnects) and on larger Cray machines such as
Kraken and Titan. Uintah also runs on many other NSF and
DOE parallel computers (Stampede, Keeneland, Mira, etc).
Using its novel asynchronous task-based approach with fully
automated load balancing Uintah demonstrates good weak and
strong scalability up to 256k and 512k cores on DOE Titan
and Mira respectively as shown in Fig. 1.



Fig. 2. Volume Rendering of O2 Concentrations in a Clean Coal Boiler

Uintah is used for a broad range of multi-scale multi-
physics problems such as angiogenesis, tissue engineering,
green urban modeling, blast-wave simulation, semi-conductor
design and multi-scale materials research. A recent example
is the multiscale modeling of accidental explosions and det-
onations [6]. As part of the National Nuclear Security Ad-
ministrations (NNSA) Predictive Science Academic Alliance
Program II (PSAAP II), the University of Utah will serve
as a Multidisciplinary Simulation Center and will also use
Uintah on Department of Energy supercomputers to develop a
prototype low-cost, low-emissions coal power plant that could
electrify a mid-sized city. The goal of this research is to help
power poor nations while reducing greenhouse emissions in
developed ones. Uintah will be used to simulate and predict
performance for a proposed 350-megawatt boiler system that
burns pulverized coal boiler with pure oxygen rather than air.
These simulations (Fig. 2) will help guide the design of such
a boiler to ultimately provide economical power to developing
nations, and help industrialized nations meet increasingly
stringent emissions standards. Through a Collaborative Re-
search Alliance (CRA) funded by the U.S. Army Research
Laboratory, Uintah will also play a key role in serving as the
framework for multi-scale modeling tools developed within
this research alliance to ultimately deliver simulation-based
design of visionary electronic materials, devices and systems.
The objective of this Alliance is to conduct fundamental
research necessary to enable the quantitative understanding of
electronic materials from the smallest to the largest relevant
scales.

An important goal in this Department of Defense project is
for Uintah to become the underlying scaffolding for simulation
tools developed by the CRA, and ultimately that Uintah sup-
ports multiscale, multi-component coupling between arbitrary
component subsystems. Initial work in this area has been

focused on the development of generic, particle based simu-
lation capabilities within Uintah based on functionality within
the Lucretius molecular simulation package [8] (developed at
the University of Utah). Once fully implemented, molecular
dynamics (MD) simulations with polarizable force fields and
arbitrary imposed external potentials may be efficiently paral-
lelized by Uintahs infrastructure to achieve handling of much
larger systems.

A. Growth Phases of Uintah

One of the main approaches suggested for the move to
multi-petaflop architectures (and eventually exascale) is to use
a graph representation of the computation to schedule work, as
opposed to a bulk-synchronous approach in which blocks of
communication follow blocks of computation. The importance
of this approach for exascale computing is expressed by
recent studies [9]. Following this general direction, Uintah has
evolved over the past decade over three significant phases:

• 1998–2005: having a static task-graph structure and run-
ning at about 1000 cores;

• 2005–2010: incorporating many dynamic techniques, in-
cluding new adaptive mesh refinement methods, and
scaling to about 100K cores;

• 2010–2013: Uintah has shown promising results on prob-
lems as diverse as fluid-structure interaction and turbu-
lent combustion at scales well over 500K CPU cores.
It presently incorporates shared memory (thread-based)
schedulers as well as GPU-based schedulers.

Frameworks such as Uintah aspire to be critically important
components of our national high performance computing in-
frastructure, contributing to the solution of computationally
challenging problems of great national consequence. Being
based on sound and scalable organizational principles, they
lend themselves to easy adaptation as witnessed by the Uin-
tah phases mentioned above. For example, GPU schedulers
were incorporated into Uintah in a matter of weeks. This
fundamentally leads to systems such as Uintah being in a
state of perpetual development. Furthermore end-users are
always trying to solve larger and more challenging problems
as they stay at leading edges of their subjects. There is always
a shortage of CPU cycles, total memory capacity, network
bandwidth, and advanced developer time. In addition, there is
constant pressure to achieve useful science under tight budgets.
Structured software development and documentation compete
for expert designer time as much as the demands to simulate
new problems and to achieve higher operating efficiencies by
switching over to new machine architectures.

Previously, the formal methods authors of this paper have
explored various scalable formal debugging techniques for
large-scale HPC and thread-based systems (e.g., [2], [10]).
The URV project is different from these efforts since it is an
attempt to integrate light-weight and scalable formal methods
into a problem-solving environment that is undergoing rapid
development and real usage at scale.

There are many active projects in which parallel compu-
tation is organized around task-graphs. Charm++ [11] has



pioneered the task-graph approach and finds applications
in high-end molecular dynamics simulations. The DAGuE
framework [12] is a generic framework for architecture-aware
scheduling and management of micro-tasks on distributed
many-core heterogeneous architectures. Our interest in Uintah
stems from two factors: (1) Uintah has scaled by a factor of
1000 in core-count over a decade and finds numerous real-
world applications, (2) we are able to track its development
and apply and evaluate formal methods in a judicious manner.
We believe that our insights and results would transfer over
to other similar computational frameworks—in existence or
planned.

III. UINTAH RUNTIME VERIFICATION

The current focus of URV is to help enhance the value of
Uintah by eliminating show-stopper code-level bugs as early
as possible. In this connection, it is too tempting to dismiss
the use of formal testing methods on account of the fact that
many of these methods do not scale well, and that many
interesting field bugs occur only at scale. While this may
be true in general, there are a number of bugs which are
reproducible at lower scales. This observation is supported by
error logs from previous Uintah versions where many of the
errors (e.g., double-free of a lock, mismatched MPI send and
receive addresses) were unrelated to problem scale. Of course,
scale-dependent bugs do exist. According to our experience,
such bugs are due to subtle combinations of code and message
passing, and are sometimes exceptionally challenging to find
at very large core counts with only batch access. Hence, they
are clearly important and are the eventual goal of our future
research.

In the URV project, we are motivated by one crucial
observation: the ease with which a system can be downscaled
depends on how well structured it is. There are many poorly
structured systems that allow only certain delicate combina-
tions of such operating parameters; sometimes, these param-
eters are not well documented. Uintah, on the other hand,
follows a fairly modular design, allowing many problems to
be run across a wide range of operating scales—from two
to thousands of CPU cores in many cases. There are only
relatively simple and well-documented parameter dependen-
cies that must be respected (relating to problem sizes and
the number of processes and threads). This gives us a fair
amount of confidence that well-designed formal methods can
be applied to Uintah at lower scales to detect many serious
bugs (examples are provided later in §III).
Scalable and Intuitive Debugging Methods. Our main con-
tribution in this paper is our approach to debug large-scale
parallel systems by highlighting the execution differences
between working and non-working versions of the system.
A straightforward “diff” of these systems (say by comparing
actual temporal traces) has an extremely low likelihood of
root-causing problems. This is because the actual parallel
program schedules of various threads and processes are likely
to differ from run to run—even for just one version of a system.
Our method relies on obtaining Coalesced Stack Trace Graphs

(CSTGs) that tend to forget schedule variations and highlight
the flow of function calls during execution. We demonstrate
that collecting CSTGs and diffing them is a practical approach
by demonstrating how we have helped Uintah developers
root-cause a bug caused by switching to a different Uintah
scheduler. While stack trace collection and analysis has been
previously studied in the context of tools and approaches such
as STAT [13] and HPCToolkit [14], their focus has not been
on cross-version (“delta”) debugging as we have implemented.

A. Coalesced Stack Trace Graphs

A stack trace is a report of the active function calls at
a certain point in time during the execution of a program.
Stack traces are commonly used to observe crashes and to
learn where a program failed, being very helpful in the debug
phase of software development. They are also being used in
more advanced techniques to help find problems in parallel
applications. For instance, STAT [13] uses stack traces to
compare the state of different processes in a given time,
making it easier to identify when a process is behaving
differently. Spectroscope [15] collect stack traces to diagnose
performance changes by comparing request flows.

Collecting stack traces throughout the execution of a pro-
gram may reveal interesting facts about its behavior. For
instance, it can show the number of times a function was
called and the different call paths leading to a function call.
However, the number of stack traces that can be obtained
from an execution may be very large. Therefore, for better
understanding of this data, we use graphs that can compact
several millions of stack traces in one manageable figure. We
call such a graph Coalesced Stack Trace Graph (CSTG), which
is a non-chronological view of everything recorded during an
execution (see Fig. 3(a) or 3(b)).

CSTG is a very compact and useful way to better understand
a program execution. More importantly, CSTGs have proven
helpful in many realistic bug-hunting scenarios, especially
when we are able to compare different CSTGs. As examples
we can cite:
Working and non working versions. Software projects are

often constantly evolving. New components are devel-
oped to replace the old ones, and sometimes they carry
new bugs. Understanding why a new component is not
doing what it is suppose to do can be easier when com-
paring executions against the older working component.

Symmetric events (e.g., sends/recvs, lock/unlock, new/delete).
Matching events are common in any program. Having a
simple visual representation of such events allows for a
quick identification of potential problems.

Repetitive sets of events (e.g., time-steps). It is common to
find algorithms that behave the same (or very similarly)
through a sequence of steps, such as in simulations
and loop iterations. Noticing that something unusual is
happening at some execution step is often easier when
using CSTGs.

Different processes and threads. In many parallel pro-
grams, the same work is done in different threads or



(a) CSTG for the Working Version.

(b) CSTG for the Crashing Version.

Fig. 3. Using CSTGs to Understand a Bug.



Fig. 4. Difference Graph. Highlights the differences from Fig. 3(a) and Fig. 3(b).

processes. CSTGs can be used to identify when a thread
or process is not doing its assigned work properly by
comparing it to other threads or processes, respectively.

As we can see, CSTGs can be used in many different
scenarios not limited to the previous list. It is up to the user to
identify interesting collection points according to what he or
she wants to observe. The collection is made using a simple
function call. Every time this function is called, a stack trace
is collected and written to a file. The user can create variables
and conditions to control when to start, pause, and stop the
collection. Stack traces can be easily aggregated by different
time periods, processes, or threads by creating one file per
group of interest.

B. Understanding a Real Bug using CSTGs

Uintah simulation variables are stored in a data warehouse.
The data warehouse is a dictionary-based hash-map which
maps a variable name and patch id to the memory address of a
variable. Each task can get its read and write variable memory
by querying the data warehouse with a variable name and a
patch id. The task dependencies of the task graph guarantee
that there are no memory conflicts on local variables access,
while variable versioning guarantees that there are no memory
conflicts on foreign variables access. This means that a task’s

variable memory has already been isolated. Hence, no locks
are needed for reads and writes on a task’s variables memory.
However, the dictionary data itself still needs to be protected
when a new variable is created or an old variable is no longer
needed by other tasks. While this increases the overhead of
multi-threaded scheduling, locking on dictionary data is still
more efficient than locking all the variables.

We performed an initial case study to assess the usability
of CSTGs by using them to gain understanding of a real
Uintah bug. When running Uintah on a particular input
(mini boiler.ups, available with the source code), an exception
is thrown in the function DW::get() when looking for an
element that does not exist in the data warehouse. One can
think of two possible reasons why this element was not found:
either it was never inserted, or it was prematurely removed
from the data warehouse. Furthermore, the same error does not
appear when using a different Uintah scheduler component.

We proceed by inserting stack trace collectors before every
put() and remove() function of the data warehouse. Then, we
run Uintah in turn with both versions of the scheduler, and
collect stack traces visualized as CSTGs. Fig. 3(a) shows the
CSTG of the working version, while Fig. 3(b) shows the CSTG
of the crashing version.

It is not necessary to see all the details in these CSTGs.



However, it is apparent that there is a path to reduceMPI()
in the working version that does not appear in the crashing
version. Fig. 4 shows precisely that difference—the extra
green path does not occur in the crashing version. (The other
difference is related to the different names of the schedulers.)
By examining the path leading to reduceMPI(), we are able
to observe in the source code that the new scheduler never
calls function initiateReduction() that would eventually add
the missing data warehouse element that caused the crash.
Since the root cause of this bug is quite distant from the
actual crash location, relying on CSTGs enabled us to gain
understanding of this bug faster then what we would have been
able to achieve using only traditional debugging methods.

IV. CONCLUDING REMARKS

In this paper, we describe the Uintah Computational Frame-
work’s evolution, and its current capabilities. We argue the
need for a rigorous approach to the software engineering
of computational frameworks which have a long life-span
of decades. Given the constant state of evolution of these
frameworks in response to advances in software and hardware,
it is essential to have the means to evolve the design and
implementation of key components, and conduct differential
verification across versions. Formal documentation, as an
addition to existing guides, is another vital need, given the
personnel changes that can occur during the lifetime of these
frameworks. Without adequate tools for efficient debugging,
HPC projects can become crippled, with their lead developers
saddled with bugs that can take days or weeks to root-cause.

Following our recent successes, the collection and analysis
of CSTGs will be the imminent focus of the URV project. In
addition to straightforward approaches to compute differences
between CSTGs, we are beginning to investigate other means
of compressing the information contained in CSTGs and
make the difference computation more insightful. For exam-
ple, decorating CSTGs with information pertaining to locks
may help identify concurrency errors pertaining to incorrect
locking disciplines. We are also directing CSTG collection
and analysis to target centrally important Uintah components,
including the Data Warehouse.

One of the most tangible high-level outcomes of the URV
project may be to lend credence to our strong belief that
collaborations such as ours are possible, and are beneficial
to both sides: to HPC researchers who gain an appreciation
of CS formal methods; and to CS researchers who get a
chance to involve in concurrency verification problems of a
more fundamental nature that directly contributes to a nation’s
ability to conduct science and engineering research.
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