
Distributed merge forest: A new fast and scalable approach for
topological analysis at scale

Xuan Huang
xuanhuang@sci.utah.edu

SCI Institute, University of Utah

Pavol Klacansky
klacansky@sci.utah.edu

SCI Institute, University of Utah

Steve Petruzza
steve.petruzza@usu.edu
Utah State University

Attila Gyulassy
jediati@sci.utah.edu

SCI Institute, University of Utah

Peer-Timo Bremer
bremer5@llnl.gov

Lawrence Livermore National
Laboratory

Valerio Pascucci
pascucci@sci.utah.edu

SCI Institute, University of Utah

ABSTRACT
Topological analysis is used in several domains to identify and
characterize important features in scientific data, and is now one
of the established classes of techniques of proven practical use
in scientific computing. The growth in parallelism and problem
size tackled by modern simulations poses a particular challenge for
these approaches. Fundamentally, the global encoding of topological
features necessitates interprocess communication that limits their
scaling. In this paper, we extend a new topological paradigm to the
case of distributed computing, where the construction of a global
merge tree is replaced by a distributed data structure, the merge
forest, trading slower individual queries on the structure for faster
end-to-end performance and scaling. Empirically, the queries that
are most negatively affected also tend to have limited practical
use. Our experimental results demonstrate the scalability of both
the merge forest construction and the parallel queries needed in
scientific workflows, and contrast this scalability with the two
established alternatives that construct variations of a global tree.

CCS CONCEPTS
• Theory of computation→ Distributed algorithms; • Math-
ematics of computing→ Exploratory data analysis.

KEYWORDS
distributed algorithms, topological data analysis, feature extraction

ACM Reference Format:
Xuan Huang, Pavol Klacansky, Steve Petruzza, Attila Gyulassy, Peer-Timo
Bremer, and Valerio Pascucci. 2021. Distributed merge forest: A new fast
and scalable approach for topological analysis at scale. In 2021 International
Conference on Supercomputing (ICS ’21), June 14–17, 2021, Virtual Event, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3447818.3460358

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICS ’21, June 14–17, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8335-6/21/06. . . $15.00
https://doi.org/10.1145/3447818.3460358

1 INTRODUCTION
Analysis of modern large-scale simulation and experimental data
continues to be an increasing challenge as the data grow in size and
complexity. In particular, contemporary supercomputers present
an increasing divergence between computing power and I/O band-
width. As a result, the quality or temporal resolution of data that
can be stored to disk for analysis is increasingly a small fraction of
the data generated by the simulation, limiting the quality of analysis
results. For example, saving only every n-th time step makes fea-
ture tracking challenging. Furthermore, the data generated already
exceed what can be analyzed post hoc on shared-memory systems.
Both factors contribute to a pressing need for scalable data analysis
on distributed systems: either operating in situ with the simulation
to access the highest quality data or to process massive data in a
timely manner.

Topological approaches provide amathematical language that en-
capsulates the relationships among intrinsic features of the data, al-
lowing scientists to formulate robust definitions of domain-specific
phenomena, studying them at the level of individual features. Al-
though certain classes of analyses are well suited for distributed
computation, topological techniques face a particular challenge,
because they inherently encode data that span many regions of
the domain decomposition typical of large-scale distributed simula-
tions. Topological approaches first encode the features of a function
in data structure that can then be queried efficiently to answer
domain-specific questions on a per-feature level. These approaches
have traditionally been limited by the need to resolve global in-
formation in the data structure encoding stage, with interprocess
communication limiting the scalability of most approaches. Our
work is motivated by the empirical observation that for the majority
of scientific workflows, only a small subset of available features
is used, and therefore much work is wasted in the encoding stage.
We extend to the distributed setting a reorganization of topological
computation and query workflows, where data-parallel partial re-
sults are computed rather than a full encoding of the topological
features, delaying communication to the query stage to resolve only
the necessary features.

The merge tree [6] is a topological structure that encodes the
merging and nesting of superlevel-set components associated with
local maxima. Once computed, the merge tree acts both as an accel-
eration structure and as a means of defining phenomena of interest.
It reduces the input size for answering queries about superlevel-set
components from 𝑂 (𝑁 ), where 𝑁 is the number of samples in a

367

https://doi.org/10.1145/3447818.3460358
https://doi.org/10.1145/3447818.3460358


ICS ’21, June 14–17, 2021, Virtual Event, USA Xuan Huang, Pavol Klacansky, Steve Petruzza, Attila Gyulassy, Peer-Timo Bremer, and Valerio Pascucci

dataset, to 𝑂 (𝑘), where 𝑘 is the number of maxima. Furthermore,
the maxima and branch points of the tree can assist in locating
phenomena of interest and defining local thresholds, enabling a
user to programmatically initiate queries at those locations that
adapt to the local scale of the data.

Components of the merge tree often correspond to phenomeno-
logical features. For instance, in combustion, regions around high-
valued local maxima of the temperature field identify ignition ker-
nels [15]. In turbulent flows, a threshold that is defined based on
the local tree structure around each maximum is used to extract
multi-scale vortex structures [5]. In atmospheric science, leaves and
sub-trees of the merge tree are used to extract locally thresholded
superlevel-set components around maxima to track high-pressure
regions [21]. The volume of superlevel-set components is used
to compute a percolation threshold, which is useful in studying
a flow’s turbulence and validating normalization schemes [7, 10].
Although there exist several approaches to computing merge trees
in a distributed setting [11, 16, 18], they are mainly focused on
building a global data structure that is later used to answer topo-
logical queries. The construction of a global tree is often a very
expensive task and requires a series of collective operations that
dramatically affect performance at scale. For the example of in situ
analysis, due to lower scalability compared to the simulation codes,
these algorithms become a bottleneck at a higher core count as they
take an increasingly larger proportion of a simulation time step. In
this paper, we extend a new approach of localized data structures
to the case of distributed computing, where the construction of a
global merge tree is replaced by a distributed data structure called
the merge forest.

We describe the distributed computation of a merge forest, and
adapt the algorithms for querying this structure to the distributed
setting. This topological data structure is later used to introduce
the first experimental performance study of topological queries on
distributed large-scale scientific data. Along with a demonstration
of linear scaling of the data structure computation, we present an
experimental study of topological queries and provide new insights
into resource contention and scalability when multiple queries are
executed asynchronously in parallel. We demonstrate a practical
use case in using the merge forest to find density clusters in a cos-
mology simulation. The observed performance demonstrates that
the introduced techniques represent a good choice for distributed
topological analysis in two important regimes: (i) at low core counts
where users perform feature space exploration and (ii) at large scale
where production in situ analytics are performed.

In summary, our contributions are:

• a scalable and distributed approach to compute localized
topological data structures (i.e., merge forest);
• a performance comparison with three distributed merge tree
algorithms for the construction of topological data structures
using different thresholds;
• implementation of fundamental distributed topological queries
on a merge forest using different parallelism strategies;
• a performance study of distributed topological queries at
scale, and a comparison with state-of-the-art implementa-
tions; and

• a performance analysis at scale of a distributed analysis use
case in cosmology simulation data.

2 RELATEDWORK
The need to compute merge trees for ever larger data has resulted
in several approaches with varying degrees of success. Shared-
memory parallel approaches tend to be most useful for post hoc
exploratory analysis, at the cost of performance or limited flexibility.
Shared-memory parallel approaches using divide-and-conquer of
the domain [19], path tracing [2, 14], or range partition [8] all face
limited scalability due to the need to build a global merge tree from
constituent parts.

The seminal work on distributed merge trees [16, 17] was moti-
vated by two issues of topological analysis at scale: a global tree
larger than the node’s memory and parallel analysis. The described
local-global representation addresses both of these issues. It con-
sists of a local merge tree constructed for a restricted subset of data
(such as a region in a data decomposition) and a sparsified global
tree with respect to this local tree. The local trees are small and
so is the sparsified global tree, avoiding the issue of storing a full
global tree on each node. Moreover, queries have all the informa-
tion available from the local-global tree and can be executed with
minimal communication. Usually a reduction suffices at the end of
a query to gather the final result. The computation of local trees
depends only on a ghost layer, and thus exhibits ideal scaling. In
contrast, the construction of the sparsified global tree requires a
global reduction, limiting the overall scaling.

An observation of the locality of features in a subset of scientific
datasets leads to an approach that builds merge trees only for data
regions up to a predefined extent, improving scalability [11, 20].
Furthermore, in some cases, an a priori superlevel set is known and
data can be thresholded [11]. Then region growing can be resolved
until correct [18]. Unfortunately, if the exact threshold is unknown,
a conservative lower bound must be used, leading to less scalable
execution due to more work at the global reduction phase of the
algorithms.

Overall, these approaches focus on minimizing the communica-
tion during query time at the cost of an expensive precomputation.
An alternative is to avoid computing a global data structure and
run the analysis directly on the data. A potential middle ground
is to construct a partial localized data structure, accelerating local
queries, and resolving any global information on demand [9]. This
different split between precomputation and queries can result in an
overall reduction of the time to perform data analysis. We therefore
explore the direction of localized data structures and trade-offs
between communication during precomputation and queries on a
distributed machine.

3 BACKGROUND
An approach to studying a scalar function is to study its contours
and their behavior. A level set (an isosurface) is a preimage of a
threshold, and it can have multiple connected components. A su-
perlevel set is a preimage of all values greater than or equal to a
threshold, where the level set is its boundary. A sweep from the
maximum to the minimum of the function range can result in two
events in terms of superlevel sets: (i) a new component is born at a

368



Distributed merge forest: A new fast and scalable approach for topological analysis at scale ICS ’21, June 14–17, 2021, Virtual Event, USA

local maximum, or (ii) two components merge into one at a merge
saddle. A merge tree captures all these changes in the form of a tree,
rooted at the global minimum. Leaves correspond to local maxima,
internal nodes to merge saddles, and arcs encode the evolution of
superlevel-set components between component creation and merg-
ing. Therefore, this tree can serve as an acceleration structure for
querying superlevel-set-based features, because it allows a query to
skip vertices and edges in the data where there is no connectivity
change. For instance, finding the maximum of each connected com-
ponent given a superlevel-set threshold involves a symbolic cut and
connected component computation on the relatively sparse tree,
rather than traversing the domain. Often, this tree is several orders
of magnitude smaller than the input data. The strictly localized
data structure [9], called a merge forest, accelerates the recovery
of similar information, and we review the basic definitions and
algorithms from this work.

3.1 The Merge Forest
For parallel computing, the domain is usually partitioned into re-
gions, such as in an in situ setting. Each region could also include
layers of neighboring cells as ghost regions. We refer to the mesh
edges connecting vertices owned by different regions as the bridge
set. A merge forest (Fig. 1) is a collection of data structures local
to each region recording topological changes only within, and at,
region boundaries. Each region in the domain decomposition has
its corresponding local merge tree, as well as a subset of the bridge
set edges connecting the region to its neighboring regions (Fig. 1b).
These edges, a reduced bridge set, tie the local merge trees together,
and form a minimal set needed to reconstruct global features at
query time. We find a reduced bridge set by running a union-find
algorithm on sorted shared boundary between neighboring regions
and insert only the edges that have end vertices in two different
connected components. To extract a smaller set, the edges internal
to a region are processed before the edges connected to neighboring
regions (Alg. 1 [9]).

3.2 Querying the Merge Forest
Akin to a merge tree, a merge forest can serve as an acceleration
structure for topological queries, such as Maxima query returning
all local maxima in a dataset or Component query extracting the
vertex set of a connected component, when compared to running
those queries on the raw vertices of the mesh.

A forest-accelerated algorithm for extracting localmaxima (Alg. 1)
traverses each region’s local tree (line 3) to find its leaves. In con-
trast to a global tree, each leaf needs to be checked for absence of a
reduced bridge set edge connecting it to a higher valued vertex in
neighboring region (lines 5-6).

A more complex query is to extract a connected component of a
superlevel set containing a vertex (Alg. 2). The query starts by iden-
tifying a region containing the queried vertex, and tests if the value
at the vertex is below the threshold or was previously visited (line
2). The vertex is marked as visited (line 4), and its corresponding
arc in a local merge tree is accessed (line 5), then all vertices above
the specified threshold are added to the segmentation (line 6). Now,
the neighbors of an arc need to be traversed: local children, local
parent, and neighboring arcs in adjacent regions through reduced

5

9

3

2

6

8

74 1

(a) Two regions and bridge edges.

5

9

4

6

7
8

3

2

1

7

6

(b) Two local trees with their re-
duced bridge set.

Figure 1: An example of a domain partitioned into two re-
gions (a) and its corresponding merge forest (b) (reproduced
from [9], with permission). The input domain consists of
vertices with function values, solid edges internal to a re-
gion, and dashed edges connecting regions. On a regular grid,
both solid and dashed edges are defined implicitly by a 6-
subdivision neighborhood. For example, as we sweep the
function on the left from highest to lowest values, a com-
ponent is born at value 9 and then 7. These two components
merge at value 4. Recording these changes results in amerge
tree structure (solid lines on the right). In a merge forest, we
need to add a subset of the dashed lines (bridge set) connect-
ing the neighboring regions (reduced bridge set) tomaintain
connectivity information.

Algorithm 1 The Maxima query algorithm that returns all local
maxima in a domain.
1: function maxima(function 𝑔, forest 𝐹 )
2: 𝑚𝑎𝑥𝑖𝑚𝑎 ← ∅
3: for each local merge tree𝑇 in 𝐹 do
4: for each 𝑎𝑟𝑐 in𝑇 do
5: 𝑒𝑑𝑔𝑒𝑠 ← {(𝑎𝑟𝑐.𝑚𝑎𝑥𝑉𝑒𝑟𝑡𝑒𝑥, 𝑣) ∈ 𝑎𝑟𝑐.𝑒𝑑𝑔𝑒𝑠 | 𝑔 (𝑣) >

𝑔 (𝑎𝑟𝑐.𝑚𝑎𝑥𝑉𝑒𝑟𝑡𝑒𝑥) }
6: if 𝑎𝑟𝑐.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 = ∅ and 𝑒𝑑𝑔𝑒𝑠 = ∅ then
7: 𝑚𝑎𝑥𝑖𝑚𝑎 ←𝑚𝑎𝑥𝑖𝑚𝑎 ∪ 𝑎𝑟𝑐.𝑚𝑎𝑥𝑉𝑒𝑟𝑡𝑒𝑥

8: return𝑚𝑎𝑥𝑖𝑚𝑎

bridge set edges above the threshold (lines 7-9). For each arc, we
use its vertex with maximum function value (maxVertex) to start
the next recursive call. This recursive traversal ensures all arcs and
reduced bridge set edges in the component are visited. The query
terminates in linear time of the size of the forest in the worst case.

4 DISTRIBUTED TOPOLOGICAL QUERIES
We revisit the data structures and algorithms described in Section 3
and extend them to the context of a distributed setting. Let the
region graph be the adjacency graph of the partition of the domain
into regions, where each node represents a region in the domain
and an edge represents the spatial adjacency of the regions. We
model the queries and subsequent traversal of the merge forest as
a traversal of the region adjacency graph, where we move among
neighbor region nodes, each containing its local merge tree (Fig. 2).
In this model, we will consider the root node of the graph traversal

369



ICS ’21, June 14–17, 2021, Virtual Event, USA Xuan Huang, Pavol Klacansky, Steve Petruzza, Attila Gyulassy, Peer-Timo Bremer, and Valerio Pascucci

Algorithm 2 The Component query algorithm that returns the
vertices of a given component.
1: function component(function𝑔, forest 𝐹 , vertex 𝑣, thresholdℎ, visited

set𝑉𝑆)
2: if 𝑔 (𝑣) < ℎ or 𝑣 ∈ 𝑉𝑆 then
3: return ∅,𝑉𝑆

4: 𝑉𝑆 ← 𝑉𝑆 ∪ {𝑣 }
5: 𝑎𝑟𝑐𝑣 ← vertexToArc(𝐹 , 𝑣)
6: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ← {𝑢 ∈ 𝑎𝑟𝑐𝑣 .𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 | 𝑔 (𝑢) ≥ ℎ}
7: for each 𝑎𝑟𝑐𝑛 in arcNeighbors(𝑔, 𝐹 , 𝑎𝑟𝑐𝑣 , ℎ) do
8: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠′,𝑉𝑆 ← component(𝑔, 𝐹 , 𝑎𝑟𝑐𝑛 .𝑚𝑎𝑥𝑉𝑒𝑟𝑡𝑒𝑥 , ℎ,𝑉𝑆)
9: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ← 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ∪ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠′

10: return 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ,𝑉𝑆

to be the shard (i.e., the computing element associated to a single
block of data) containing the input vertex. The traversal will then
start from the root node and visit all the children nodes recursively.

We present distributed algorithms for three fundamental queries
useful for feature extraction, i) a query to find all maxima in the
domain; ii) a query to find the maximum with the highest function
value in a connected component (its representative) for a given
vertex and threshold; iii) a query to extract the mesh vertices consti-
tuting a component for a given vertex and threshold. These queries
can be used to build more complex queries.

4.1 Maxima Query
This query represents the simplest topological query and returns a
list of all maxima in a dataset. If a vertex has no higher neighbor, it is
a maximum. Therefore, the query needs only its local neighborhood,
and thus the distributed implementation is data parallel where each
shard independently traverses its local merge tree (the inner loop
on line 4 in Alg. 1) and its local reduced bridge set to find all local
maxima. Each region’s maxima are gathered and saved, or further
passed to subsequent queries. This query involves no interprocess
communication except to report results. The time complexity of this
query is 𝑂 (𝑟𝑛) when executed directly on the dataset, and 𝑂 ( |𝐹 |)
when accelerated with a merge forest (𝑟 is the number of regions, 𝑛
is the number of vertices inside a region, and |𝐹 | is the number of
nodes in a forest). The maxima query is usually followed by other
queries, such as to extract components, and thus building a data
structure is beneficial if the number of queries is large.

4.2 Component Query
The Component and ComponentMax queries are similar because
both traverse a connected component of a superlevel set. Therefore,
we discuss only the Component query.

The Component query receives as input a vertex and threshold
that are used to start the traversal of the merge forest. Starting from
the local tree corresponding to the region containing the input ver-
tex, we find the connected neighbors using the local reduced bridge
set. This strategy allows us to limit the communication only to the
neighbors that share a component (the arcNeighbors subroutine
on line 7 in Alg. 2). The traversal continues, potentially in other
regions (line 8), until the portion of the merge forest containing the
component is explored. Finally, the completion status is propagated
back in the reverse order, reaching the starting shard.

Figure 2: An illustration of a potential merge forest traver-
sal. For each query, we traverse the forest without explor-
ing all neighbors at each step. Instead, we use the local re-
duced bridge set to look up only the neighbors that have
arcs in common. In the first row, we depict the traversal of
data regions containing a feature (colored in red) in a cos-
mology dataset. In the second and third rows, we highlight
the visited regions, following respectively, a breadth-first
and depth-first traversal of the regions. The depth-first al-
gorithm serializes the execution of the query, whereas the
breadth-first approach enables more parallelism.

We note that this same traversal is not only useful to find the
component’s highest vertex (ComponentMax query) or extract a
component, but also can be used aswell for computingmetrics along
the components, such as volume, surface area, or other statistics.

Each shard starts its local traversal only when it receives incom-
ing query request. Each local merge tree has a finite number of arcs.
Each local traversal will mark some of the arcs visited, and continue
with the unvisited arcs. Eventually, all arcs required by the local
traversal are visited, and the shard reports the result to the parent
node. The communication pattern can be different depending on
the execution order (Fig. 3).

The execution of the query across regions is captured by a tra-
versal of the region adjacency graph. Each node of the tree (i.e.,
shard) performs the following operations:
• execute incoming queries (e.g., collecting local vertices of a
component in the local tree);
• evaluate incoming results from children nodes;
• forward queries to connected neighbors; and
• forward results to the parent node.

4.3 Regions Traversal Order
A traversal of regions implicitly defines a graph, and thus we can
apply different strategies from graph theory to traverse it, such as
a depth-first search (DFS) or breadth-first search (BFS). To avoid an
infinite traversal due to potential cycles in the graph, each region
maintains a set of visited vertices per query. We evaluate both ap-
proaches and analyze their impact on performance. Furthermore,
to reduce the number of messages between shards, we aggregate
all requests per neighboring shard into a single message. More-
over, we send a source vertex alongside the target vertex during a

370



Distributed merge forest: A new fast and scalable approach for topological analysis at scale ICS ’21, June 14–17, 2021, Virtual Event, USA

(a) (b)

Figure 3: Component query traversal of a merge forest may
vary depending on the order the messages are received by
neighboring regions. For example, (a) the bottom region re-
ceives the message, first resulting in four messages in total,
and (b) the top region is traversed first followed by the bot-
tom region (total three messages, because we batch all mes-
sages to the same region such as the arrow number 2). This
traversal variability can impact both the number of mes-
sages and the amount of parallelism during a query.

Table 1: Datasets used in our experiments. Neurons is a vol-
ume of high-resolution neurons images (two-photon mi-
croscopy), Cosmology is produced by a simulation of uni-
verse formation, and DNS is a channel flow simulation (pro-
duced by a direct numerical combustion simulation).

Dataset Resolution Size (GB) Arc count

Neurons 2048x2048x2048 16 910,677,279
Cosmology 2048x2048x2048 32 759,760,093
DNS 10240x7680x1536 900 138,601,501

query. This source vertex enables the neighbor to avoid traversing
back alongside the same bridge set edge and can be checked in a
logarithmic time.

Fig. 2 depicts the two types of traversal, DFS and BFS, indicating
the time when each computation can be executed on each region’s
data structure. This illustration highlights how the DFS approach
serializes the execution of the query, because each parent node has
to wait for the result of one of the children before sending the query
request to its other children. Conversely, the BFS approach allows
us to forward query requests to all children in parallel (i.e., spatial
neighbors in the domain containing a connected merge tree).

Finally, a set of queries can be executed sequentially or con-
currently. The sequential execution waits for a previous query to
finish before starting the next query, and thus limits the through-
put. In contrast, queries run concurrently reveal opportunities for
parallelism and overlapping of computation and communication,
maximizing throughput at the cost of increased memory usage.

5 EVALUATION
For our experiments, we used two supercomputers: the National
Energy Research Scientific Computing Center (NERSC) Cori su-
percomputer and the Texas Advanced Computing Center (TACC)
Stampede 2. Cori is a Cray XC40 supercomputer equipped with
9,688 KNL nodes, each with a single-socket 68-core Intel Xeon Phi
7250 processor, and 2,388 Haswell nodes, each with two sockets of
a 16-core Intel Xeon E5-2698 v3 processor. Stampede2 is the Univer-
sity of Texas at Austin’s flagship supercomputer. It hosts 4,200 KNL
compute nodes with the a single-socket 68-core Intel Xeon Phi 7250
processor (i.e., same as Cori’s KNL nodes), and 1,736 SKX compute
nodes with 48 Intel Xeon Platinum 8160 cores on two sockets. Due
to intermittent machine availability, we have performed the com-
parison between Reeber [1] (a library implementing the local-global
representation [16, 18]) and the merge forest (Fig. 13) on Stampede
2 and all other experiments on Cori. On both machines, we used
exclusively KNL nodes in order to obtain comparable results. In
all our experiments, we map each region of data to a separate MPI
rank and use MPI asynchronous communication API (i.e, Isend,
Irecv) for data exchange between ranks. Finally, for some of the
local debugging and profiling, we used the Intel® Trace Analyzer
[4].

The size of topological data structures is data dependent. There-
fore, we test the distributed construction and queries on a range
of different datasets: (i) a volume of high-resolution neurons im-
ages (two-photon microscopy), (ii) a cosmology [13], and (iii) a
channel flow simulation dataset [12] (i.e., computed via direct nu-
meric simulation; we will refer to it as DNS). Table 1 reports the
dimensions, size, and topological complexity of each dataset. The
arc count refers to the number of arcs in the global merge tree.
We performed experiments to measure the performance scalability
of the merge forest construction and three fundamental queries
in distributed setting: Maxima, ComponentMax, and Component
query. We compare the computation of the merge forest with the
state-of-the-art distributed merge tree implementations Parallel
Merge Tree (PMT) [11] and Reeber [1].

5.1 Distributed Merge Forest Construction
Performance

Large-scale simulations on supercomputers produce data in small
patches (or regions) that are distributed in memory among differ-
ent nodes and cores. The construction of the merge forest builds
local merge trees and reduced bridge sets for each region of the
domain. In our distributed implementation, we load a single layer
of ghost cells around each region to avoid communication with
neighbors during the computation. This approach makes the dis-
tributed construction of the merge forest a data parallel problem.
We demonstrate the scalability of this approach by performing both
weak and strong scaling experiments.

In a distributed setting, the domain decomposition plays a large
role in assigning data to computational resources. In many simu-
lations, the size of the region that each shard (or task) will ingest
or produce can either stay constant or vary in size at scale. For
our weak scaling experiments, we use a proxy of the cosmology
simulation dataset of increasing size to test the performance of
the data structure construction using three different region sizes.

371



ICS ’21, June 14–17, 2021, Virtual Event, USA Xuan Huang, Pavol Klacansky, Steve Petruzza, Attila Gyulassy, Peer-Timo Bremer, and Valerio Pascucci

512 4096 32768 65536
Number of cores

1

5

Ti
m

e 
(s

ec
)

0.036 0.036 0.036 0.036

0.468 0.469 0.467 0.468

5.551 5.572 5.565 5.56732^3
64^3
128^3

Figure 4: Weak scaling of the merge forest computation for
different region sizes. The performance results demonstrate
near-ideal scaling. In this plot, we report average time error
bars. The error bars are very short and, hence, are not visible
in the plot.

512 2048 8192 65536
Number of cores

1

5

10

50

Ti
m

e 
(s

ec
)

76.504

36.927

16.613

8.306

4.836

3.071

2.226
1.904

29.883

15.325

7.654

4.739

3.323

2.396
1.993 1.844

44.584

22.320

14.443

10.455

cosmology
neurons
dns

Figure 5: Strong scaling of the forest construction. Each core
computes a local tree and local reduced bridge set, and thus
we observe ideal scaling up to a point where load imbalance
andmachine variability limits further scaling. The superlin-
ear scaling of Cosmology and DNS datasets is a consequence
of decreasing region size and thus reducing the number of
vertices to be sorted per region (i.e.,𝑂 (𝑟 (𝑛 log𝑛)) complexity
of the forest computation).

The experimental results (Fig. 4) demonstrate that the data par-
allel nature of the merge forest data structure exhibits scalability
performance very close to the ideal scaling.

For strong scaling experiments, the region size decreases as we
increase the number of cores (i.e., from 256x256x256 to 64x64x32).
The results reported in Fig. 5 show good scalability of the approach,
which decreases its efficiency when the region size becomes very
small. For the cosmology and DNS datasets, we note an initial
superlinear scaling that is caused by the logarithmic complex-
ity of the local computation. In particular, the time complexity
is 𝑂 (𝑟 (𝑛 log𝑛)), where 𝑟 is the number of regions (cores) and 𝑛

is the number of samples inside a region. For example, a dataset
with 1283 samples would take𝑂 (1(1283 log 1283)) on one core, but
𝑂 (8(643 log 643)) = 𝑂 (1283 log 643) on eight cores. In the case of
the neurons dataset, we do not see this effect because the increased
size of the reduced bridge set offsets the savings from the local

512 4096 32768 65536
Number of cores

1.00

1.02

1.04

1.06

1.08

A
rc

s c
ou

nt
 ra

tio

cosmology
neurons
dns

(a)

512 4096 32768 65536
Number of cores

1

2

3

4

5

6

R
ed

uc
ed

 b
rid

ge
 se

ts
 c

ou
nt

 ra
tio

cosmology
neurons
dns

(b)

Figure 6: Ratios representing the variation of the number of
arcs (a) and reduced bridge-set edges (b) in a merge forest
at a particular number of cores with respect to the forest of
initial experimental scale (i.e., 512 cores for theNeurons and
Cosmology datasets, 7,700 cores for the DNS dataset).

merge tree construction. In Fig. 6, we report the number of arcs
and bridge sets in each dataset at scale. These numbers show that
for smaller regions, we have an increasing number of both arcs and
reduced bridge-set edges. This increase happens because when a
region splits into smaller regions, some arcs are also split between
the two new regions, causing an increase in the total number of
arcs and reduced bridge-set edges.

5.2 Computation with Thresholds
In some cases, only high values encode features of interest, and
the computation of the topological data structures can be sped
up by ignoring all the data below a certain threshold. All three
evaluated implementations, merge forest, PMT, and Reeber, support
specification of this threshold. For this comparison, we performed
experiments using the cosmology dataset with varying core counts
and thresholds, where low values represent empty space, and high
values represent density clusters. More details on the cosmology
use case are given in Sec. 5.5.

At varying thresholds, we observe (Fig. 7) that the distributed
merge tree performance is greatly affected by the threshold value,
whereas the forest construction maintains a fairly constant per-
formance. This behavior is caused by the size of the global merge
tree, which for low thresholds is very dense and requires more
communication when using the PMT or Reeber. On the other hand,
the merge forest is not affected by communication overhead, and
its computation is mostly bounded by the local data structures’
creation time.

Finally, we selected a typical use case threshold (T=50) and per-
formed a strong scaling study (Fig. 8) to compare thresholded com-
putation of the merge forest with PMT. As expected, with increas-
ing core counts, the v-cycle in communication dominates the dis-
tributed merge tree construction, degrading performance, whereas
the forest construction maintains almost constant performance at
any scale.

372



Distributed merge forest: A new fast and scalable approach for topological analysis at scale ICS ’21, June 14–17, 2021, Virtual Event, USA

15 20 25 30 35 40 45 50
Threshold

5

10

15

20

25

30

35

40

Ti
m

e 
(s

ec
)

Parallel Merge Tree construction
Merge Forest construction

(a) 512 cores

15 20 25 30 35 40 45 50
Threshold

2

4

6

8

10

12

Ti
m

e 
(s

ec
)

Parallel Merge Tree construction
Merge Forest construction

(b) 4,096 cores

Figure 7: Time to compute the distributed merge tree vs the
merge forest at different thresholds using 512 (a) and 4,096
(b) cores. Note that at threshold 50 only 0.1% data is pro-
cessed compared to 0.6% at threshold 15.

5.3 Comparison of Distributed-Query
Strategies

The distributed topological queries described in Sec. 4 intersperse
local computation with occasional neighbor communication to tra-
verse features that span different regions of the domain (Fig. 2).
Specifically, in a distributed setting, the recursive calls of Com-
ponent and ComponentMax queries traversing bridge set edges
move the computation from one region of the domain to another,
requiring communication.

We can model this region traversal using a graph that we start
traversing from the vertex where the query originates through the
neighbors containing connecting arcs of the feature of interest.
This graph can be traversed in either a depth-first search (DFS) or
breadth-first search (BFS) order. To evaluate the performance of
the BFS and DFS approaches, we performed experiments at a small
scale, using eight MPI ranks, and observed the allocation of com-
putation and communication using the Intel® Trace Analyzer. In
Fig. 10a, we report the profiler measurements for the computation
of a ComponentMax query using a DFS (on top) vs a BFS (on the bot-
tom) approach. In this figure, the blue areas represent computation
and the red represent communication or waiting. In the DFS (on
top) profiling, we see how the query is effectively executed serially
(as depicted in at the bottom of Fig. 2). The BFS approach clearly
enables a much higher parallelism where all children nodes (i.e.,
neighboring regions) can receive and execute queries and return
their results to the parent in parallel. Given the higher parallelism
and better performance of the BFS traversal, we use this approach
in all our query experiments.

In the study of distributed topological queries, we performed
experiments in different settings to assess the performance of: (i)
queries executed sequentially, (ii) queries executed concurrently,
(iii) queries traversing large portions of the domain (iv), and (v)
queries targeting a specific topological analysis use case.

We start by observing and comparing the performance of topo-
logical queries when executed sequentially or concurrently. In our
first experiment, we sample one hundred random vertices uniformly
distributed in the domain, and we use the vertex data value as the
threshold for each query. In particular, we execute 100 queries
to find the maximum of the component containing the vertex at

512 4096 16384 32768 65536
Numeber of cores

2

4

6

8

10

12

Ti
m

e 
(s

ec
)

Parallel Merge Tree construction
Merge Forest construction

Figure 8: Strong scaling study of time to compute the global
merge tree vs the merge forest for a fixed threshold (T=50).
Thehigher runtime in the distributedmerge tree between 4k
and 32k cores is caused by the computation of the reduced
bridge set. We choose to use the bridge set instead of a sim-
pler ghost zone overlap in order to support AMR data.

that value in the Cosmology dataset. With important features be-
ing sparse in this data, the majority of these queries occur in the
low-valued background of the function, testing the worst-case per-
formance of the queries. In Fig. 9, we show the total time to compute
these 100 queries executed sequentially, concurrently, and individ-
ually (i.e., the average time to run one query). The single query
performance, shown in Fig. 9, scales reasonably well, even for worst-
case queries. Parallel efficiency decreases at scale as the smaller
region sizes generate a larger overall data structure in terms of arcs
and reduced bridge sets (as shown in Fig. 6), and also longer commu-
nication paths to identify the full extent of the features. However,
when running the same 100 queries concurrently, the utilization
and scalability improves significantly. We profile the execution of
sequential (i.e., executed sequentially) and concurrent queries to
observe the allocation of computation and communication time. In
Fig. 10b, 10c, we report the profiling for running sequential and
concurrent queries on a 512x512x512 subset of the neurons dataset
using eight cores. The profiling results show how the concurrent
execution of multiple queries allows a much better utilization of
the cores and a significantly faster execution.

5.4 Scaling Performance of Concurrent Queries
We perform experiments at scale running 100 randomly sampled
queries using three datasets described in Table 1. For each dataset,
we perform strong scaling studies of three fundamental queries:
Maxima, ComponentMax, and Component.

The threshold for each query is defined by the value at each
chosen vertex. This approach produces a selection of queries that
will traverse, in most cases, the largest features contained in the
dataset. In Fig. 11, we report the distribution of the number of arcs
traversed by 100 random ComponentMax queries in each dataset.
These histograms show that most queries traverse a large portion
or the entire dataset.

In Fig. 12, we report the strong scaling performance of execut-
ing 100 concurrent queries. The experimental performance results
show good scalability for all queries. In particular, the Maxima
performance is similar for the three datasets, because they perform

373



ICS ’21, June 14–17, 2021, Virtual Event, USA Xuan Huang, Pavol Klacansky, Steve Petruzza, Attila Gyulassy, Peer-Timo Bremer, and Valerio Pascucci

500 2048 8192 65536
Number of cores

1

10

50

100

Ti
m

e 
(s

ec
)

100 sequential queries
100 concurrent queries
single sequential query

Figure 9: Time for executing 100 ComponentMax queries se-
quentially, in parallel, and the individual query (i.e., time
to execute each of the 100 queries one at a time). The or-
ange line shows the average and standard deviation times
to run a single query. The green line represents running all
100 queries sequentially. Running queries concurrently al-
lows for greater utilization of the machine (the blue line).

a data parallel operation, which essentially consists of the traver-
sal of the local merge trees. This traversal does not require any
communication resulting in a very fast query. The ComponentMax
and Component queries’ performance results exhibit good strong
scalability. In particular, for the DNS dataset, we notice how Com-
ponentMax queries are faster due to fewer arcs and Component
queries are slower because of much larger features (i.e., more ver-
tices) present in the dataset (Table 1). Finally, queries on Cosmology
and Neurons datasets show very similar performance, with slightly
slower execution time for Neurons due to more arcs.

5.5 Topological Queries at Scale: Density
Clusters in Cosmology

Cosmological simulations compute the clumping of matter into
gravitationally bound objects called halos, which include galaxies
and dark matter [3]. Spatial regions of local high density can be
used as a proxy to identify potential halos, and statistics of these
regions mirror the relationship among the shape, density profile,
and substructure of halos. We propose an algorithm for extract-
ing high-density objects from grid data as a three-stage process:
(i) perform a Maxima query to identify all maxima and keep only
those above a given density threshold, (ii) perform a Component-
Max query for each maximum to identify the highest maximum
within each component, and (iii) extract the vertices of each com-
ponent highest maximum using the Component query, and gather
the component sizes. Although in this work we use these queries in
analyzing matter distribution in cosmology, the same queries can
be used to identify vortex cores in turbulence and ignition kernels
in combustion simulations, among other applications.

The Maxima query is data parallel whereas the cost of the Com-
ponentMax and Component depends on the size of the halos and
how they expand throughout the regions. The threshold that we
choose will affect the number of local maxima and the size of the
forest traversed by the ComponentMax queries as reported in Ta-
ble 2. We performed experiments using the Cosmology dataset, dark

Table 2: The thresholds used in the cosmology density-
region analysis with a corresponding number of maxima
and the proportion of data values above the threshold. High
thresholds capture only the densest clusters, whereas both
the number and size of clusters increase with lower thresh-
olds.

Threshold Maxima count Data proportion

500 45,167 0.003%
200 207,830 0.02%
100 504,153 0.05%
50 1,130,895 0.1%

matter density field, using two thresholds, one of interest to cos-
mologists (T=50) and one artificially high (T=5000) (dataset’s value
range is [0, 20104.877]). At these thresholds, the Maxima query
finds 388 (at T=5000) and 1,130,045 (at T = 50) local maxima, which
then trigger the execution of the same number of ComponentMax
queries, starting at these maxima. We find the component of each
highest maximum using the Component query and gather a his-
togram of sizes, one of the statistics of typical interest in studying
the evolution of halos.

In this topological analysis use case configuration, the features
are relatively small and span few regions. Fig. 13 shows the per-
formance of the high-density-region finding query. The time scale
for this query is very small for two reasons: (i) using a threshold
limits the number of resulting maxima from the Maxima query,
and (ii) the features identified in the dataset are small and so the
ComponentMax and Component query do not traverse a large por-
tion of the domain. The splitting of small features due to the region
decomposition may introduce communication overhead at higher
core counts, but since these features remain relatively local, the
overall time is fast. The experimental results also show how the
split of features among ranks at high core count can produce an
increase in execution time.

These experiments demonstrate not only the performance of
our approach but also that in many practical use cases topological
analysis can be performed efficiently without the need for a global
data structure or expensive preprocessing steps. For example, at
65,536 cores and threshold 5000, the forest computation took 1.92
seconds and subsequent queries 0.02 seconds, a fast end-to-end
time in the absolute sense.

Unfortunately, neither of the PMT nor the Reeber libraries pro-
vide a distributed query implementation to compare against (with
the exception of halo component extraction using the components
algorithm [18] in Reeber). Hence, in order to compare the perfor-
mance of queries using the different data structures, we imple-
mented Maxima and ComponentMax queries in the publicly avail-
able local-global implementation (Reeber). In our implementation
of the ComponentMax query, we precompute a subtree maximum
for each saddle to avoid traversing the tree toward leaves.

In Fig. 13, we report a strong scaling study that compares the
data structure construction and query run times for Reeber and the
distributed Merge Forest using the Cosmology dataset with varying
thresholds. Although the queries accelerated by Reeber are much

374



Distributed merge forest: A new fast and scalable approach for topological analysis at scale ICS ’21, June 14–17, 2021, Virtual Event, USA

(a) (b) (c)

Figure 10: Profiling of ComponentMax queries on a 512x512x512 subset of the Neurons dataset using eight cores. In (a) we
compare executions of a query using the DFS and BFS approach. The selection on top (for DFS) represents a 3.5 sec execution
time and 1.3 sec for the one on the bottom (for BFS). The blue areas represent computation, and the red represent commu-
nication or wait (for results) time. Black lines indicate communication between ranks. The DFS shows a very poor parallel
utilization, resulting in a serial computation. The BFS scheme, instead, sends out the workload across all neighbor ranks as
soon as possible and thus results in more parallelism and utilization. In (b), we report the execution of 10 sequential (top,
10.7 sec) and concurrent (bottom, 5.1 sec), which shows how the parallel execution of multiple concurrent queries allows a
better utilization of the cores and a faster execution. In (c), we report the execution of 10 (top, 5.2 sec) and 40 (bottom, 16.5
sec) random concurrent queries. Although the number of queries grows by a factor of four, the time only grows by a factor of
three, which indicates a good degree of parallelism and overall utilization.

0 20 40 60 80 100
% of forest arcs traversed

0

5

10

15

20

25

30

35

N
um

be
r o

f q
ue

rie
s

(a) Cosmology

0 20 40 60 80 100
% of forest arcs traversed

0

5

10

15

20

25

30

N
um

be
r o

f q
ue

rie
s

(b) Neurons

65 70 75 80 85 90 95 100
% of forest arcs traversed

0

10

20

30

40

50

60

N
um

be
r o

f q
ue

rie
s

(c) DNS

Figure 11: Percentage of arcs traversed by 100 random ComponentMax queries when using 65,536 cores for the cosmology (a)
and neurons (b) and 57,600 cores for the DNS (c) dataset.

512 2048 8192 65536
Number of cores

10−3

10−2

Ti
m

e 
(s

ec
)

cosmology
neurons
dns

(a) Maxima

512 2048 8192 65536
Number of cores

1

10

50

100

Ti
m

e 
(s

ec
)

cosmology
neurons
dns

(b) ComponentMax

512 2048 8192 65536
Number of cores

1

10

50

100

200

Ti
m

e 
(s

ec
)

cosmology
neurons
dns

(c) Component

Figure 12: Strong scaling performance of executing 100 concurrent queries. Experiments are performed using three funda-
mental queries (i.e., Maxima, ComponentMax, Component) and three datasets.

faster than those accelerated by the merge forest, the overhead
of precomputing the full local-global tree in Reeber is enormous
(e.g., 20x slower). Thus, with non-thresholded dataset the merge
forest gives the shortest time to result, for every combination of
core count and query threshold. For instance, at 16k cores, with

a full data structure and query threshold T=50, the merge forest
computes the result in 13.89 sec = 1.88 sec compute + 12.01 sec
query, whereas Reeber computes the result in 201.5 sec = 201.4 sec
compute + 0.05 sec query, for an overall workflow speed-up of 14.6x.
However, if the threshold T=50 is used, the Reeber construction time

375



ICS ’21, June 14–17, 2021, Virtual Event, USA Xuan Huang, Pavol Klacansky, Steve Petruzza, Attila Gyulassy, Peer-Timo Bremer, and Valerio Pascucci

1024 2048 4096 8192 16384
Number of cores

100

101

102

Ti
m

e 
(s

ec
)

Reeber tree construction
Reeber tree construction T=50
Merge Forest construction
Merge Forest construction T=50
PMT T=50

(a) Tree construction

1024 2048 4096 8192 16384
Number of cores

0

2

4

6

8

10

12

Ti
m

e 
(s

ec
)

r-500
r-200
r-100
r-50
r-50-t-50
mf-500
mf-200
mf-100
mf-50

(b) High-density region queries

Figure 13: Strong scaling of data structures computation and
queries using the Cosmology dataset. In Figure (a) we com-
pare the construction of data structures forReeber, PMT, and
the distributed Merge Forest with a threshold of T=50, and
Reeber and distributed Merge Forest without threshold. The
Reeber construction of the merge tree is significantly slower
than that of the distributed Merge Forest without threshold-
ing (solid lines). However, if a portion of the data is removed
by thresholding (dashed lines), all three data structures can
be constructed in approximately the same time. In (b), we
report the strong scaling of the queries for high-density re-
gions in Cosmology. In this use case, we perform a Maxima
query to find the local maxima in each region of the domain
and then execute a ComponentMax and Component query
for each of them to find the individual components. The re-
ported queries are executed using different thresholds (Ta-
ble 2) using Reeber (dashed lines) and theMerge Forest (solid
lines). Results show that queries performed using the local-
global data structure are faster than queries on the merge
forest and are not affected by thresholding. However, this
performance gain on the query run-time is quite smallwhen
compared with the 20-times-slower tree construction (a).

can be greatly reduced. Thus, when combined with the fast query
execution, Reeber outperforms themerge forest in all configurations
we tested.

6 CONCLUSION
Large-scale topological data analysis is a growing challenge due to
limited scalability of existing algorithms. In particular, traditional
topological analysis techniques are limited by preprocessing steps
to encode global information into the data structures later used
for the analysis. In practice, we observe that, for most scientific
workflows, only a small subset of features is relevant to the user.
This observation suggests that we can use a lazy approach where
topological data structure can be computed locally, and all commu-
nication can be performed on demand at query time.

In this work, we describe the distributed computation of a merge
forest, a localized topological data structure that can be computed
in parallel without requiring any communication. Furthermore, we
introduce the first experimental study of topological queries at scale
using the merge forest.

We performed experiments on two supercomputers using three
large-scale scientific datasets and demonstrated that our approach
allows us to compute the merge forest with near-ideal performance

scalability. Moreover, we presented techniques to compute sequen-
tial and concurrent queries at scale and provided experimental
evidence of strong scalability performance of three fundamental
queries: Maxima, ComponentMax, and Component. Furthermore,
we have compared our approach with a state-of-the-art distributed
merge tree implementation using different thresholds and core
counts demonstrating faster construction time at scale. Additionally,
we measured the query performance when using local-global rep-
resentation that trades construction performance for faster queries.

Finally, we demonstrated the effectiveness and high performance
of the introduced techniques on an experimental topological analy-
sis use case of density cluster finding in a cosmology simulation
dataset. In this case, we showed how a common topological analysis
task can be performed quickly at scale by avoiding global opera-
tions and only using the distributed merge forest. This scalability
makes our approach a promising solution for future topological
analysis at scale.

We acknowledge that large-scale in situ analytics often use a
wide range of parameters at run-time for each analysis pipeline.
In the case of topological analysis, a specific parameter choice
could produce a very large number of topological queries to be
processed. In the current distributed query implementation, each
rank is processing query requests from neighbor ranks in order of
arrival. This fixed ordering can cause congestion and load imbalance
when the number of requests to some rank grows. Our experiments
executing queries on a very large number of components (i.e., in the
order of millions) demonstrate how performance and scalability can
be affected. Future work will investigate the usage of load balancing
and other techniques to handle those requests more efficiently
and improve the overall performance in those use cases. More
importantly, it is likely that a combination of the two extremes,
merge forest and local-global representation, driven by queries will
yield the best results. For example, if a certain number of queries is
reached traversing between two regions, a merge of the two regions
could be triggered to build a local-global tree in both regions to
avoid the communication cost by jumping between the two regions.

An important direction is to identify more abstract queries that
can serve as a framework to implement other queries. For example,
ComponentMax and Component queries could be abstracted into
TraverseComponent query. Similarly to MapReduce approach, this
query would take a map and reduce functions. The ComponentMax
would use a map function to extract the highest vertex of an arc,
and reduce function to get the highest vertex of all arcs.

Similarly, in situ settings could use a limited amount of resources
for analysis compared to the ones used to produce the data. In the
current study, we do not explicitly address load balancing issues of
queries, but this investigation could be an interesting direction for
future investigations.

ACKNOWLEDGMENTS
This work was funded in part by NSF OAC awards 1842042, 1941085,
NSF CMMI awards 1629660, LLNL LDRD project SI-20-001, DoE
award DE-FE0031880, and the Intel Graphics and Visualization
Institute of XeLLENCE. This material is based in part upon work
supported by the DoE NNSA under award DE-NA0002375. This
research was supported in part by the Exascale Computing Project

376



Distributed merge forest: A new fast and scalable approach for topological analysis at scale ICS ’21, June 14–17, 2021, Virtual Event, USA

(17-SC-20-SC), a collaborative effort of the DoE and the NNSA.
This work was performed in part under the auspices of the DoE
by LLNL under contract DE-AC52-07NA27344, and UT-Battelle,
LLC under contract DE-AC05-00OR22725. The authors thank the
Texas Advanced Computing Center for access to Stampede2 and the
National Energy Research Scientific Computing Center (NERSC)
for access to the Cori supercomputer.

REFERENCES
[1] 2020. Reeber. https://github.com/mrzv/reeber.
[2] Aditya Acharya and Vijay Natarajan. 2015. A parallel and memory efficient algo-

rithm for constructing the contour tree. In 2015 IEEE Pacific Visualization Sympo-
sium (PacificVis). 271–278. https://doi.org/10.1109/PACIFICVIS.2015.7156387

[3] Ann S. Almgren, John B. Bell, Mike J. Lijewski, Zarija Lukić, and Ethan Van Andel.
2013. Nyx: A MASSIVELY PARALLEL AMR CODE FOR COMPUTATIONAL
COSMOLOGY. The Astrophysical Journal 765, 1 (feb 2013), 39. https://doi.org/
10.1088/0004-637x/765/1/39

[4] Ray Asbury and M Wrinn. 2004. MPI tuning with Intel/spl copy/Trace Analyzer
and Intel/spl copy/Trace Collector. In 2004 IEEE International Conference on Cluster
Computing (IEEE Cat. No. 04EX935). IEEE, 4.

[5] Peer-Timo Bremer, Andrea Gruber, Janine Bennett, Attila Gyulassy, Hemanth
Kolla, Jacqueline Chen, and Ray Grout. 2016. Identifying turbulent structures
through topological segmentation. Commun. Appl. Math. Comput. Sci. 11, 1 (2016),
37–53. https://doi.org/10.2140/camcos.2016.11.37

[6] Hamish Carr, Jack Snoeyink, and Ulrike Axen. 2003. Computing contour trees in
all dimensions. Computational Geometry 24, 2 (2003), 75–94.

[7] Anke Friederici, Wiebke Köpp, Marco Atzori, Ricardo Vinuesa, Philipp Schlatter,
and Tino Weinkauf. 2019. Distributed percolation analysis for turbulent flows.
In 2019 IEEE 9th Symposium on Large Data Analysis and Visualization (LDAV).
42–51. https://doi.org/10.1109/LDAV48142.2019.8944383

[8] Charles Gueunet, Pierre Fortin, Julien Jomier, and Julien Tierny. 2016. Contour
forests: Fast multi-threaded augmented contour trees. In 2016 IEEE 6th Symposium
on Large Data Analysis and Visualization (LDAV). 85–92. https://doi.org/10.1109/
LDAV.2016.7874333

[9] Pavol Klacansky, Attila Gyulassy, Peer-Timo Bremer, and Valerio Pascucci. 2019.
Toward localized topological data structures: Querying the forest for the tree.
IEEE Transactions on Visualization and Computer Graphics 26, 1 (2019), 173–183.

[10] Wiebke Köpp, Anke Friederici, Marco Atzori, Ricardo Vinuesa, Philipp Schlatter,
and Tino Weinkauf. 2019. Notes on percolation analysis of sampled scalar fields.
In Topology-Based Methods in Visualization (TopoInVis). Nyköping, Sweden.

[11] Aaditya G Landge, Valerio Pascucci, Attila Gyulassy, Janine C Bennett, Hemanth
Kolla, Jacqueline Chen, and Peer-Timo Bremer. 2014. In-situ feature extraction
of large scale combustion simulations using segmented merge trees. In SC’14:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 1020–1031.

[12] Myoungkyu Lee and Robert D. Moser. 2015. Direct numerical simulation of
turbulent channel flow up to 𝑅𝑒𝜏 ≈ 5200. Journal of Fluid Mechanics 774 (July
2015), 395–415. https://doi.org/10.1017/jfm.2015.268

[13] Zarija Lukic. 2019. Nyx cosmological simulation data. https://doi.org/10.21227/
k8gb-vq78

[14] Senthilnathan Maadasamy, Harish Doraiswamy, and Vijay Natarajan. 2012. A
hybrid parallel algorithm for computing and tracking level set topology. In 2012
19th International Conference on High Performance Computing. 1–10. https:
//doi.org/10.1109/HiPC.2012.6507496

[15] A Mascarenhas, RW Grout, Chun Sang Yoo, and JH Chen. 2009. Tracking flame
base movement and interaction with ignition kernels using topological methods.
In Journal of Physics: Conference Series, Vol. 180. IOP Publishing, 012086.

[16] Dmitriy Morozov and Gunther Weber. 2013. Distributed merge trees. In Proceed-
ings of the 18th ACM SIGPLAN symposium on Principles and practice of parallel
programming. 93–102.

[17] Dmitriy Morozov and Gunther H. Weber. 2014. Distributed contour trees. In
Topological Methods in Data Analysis and Visualization III. Springer, 89–102.
https://doi.org/10.1007/978-3-319-04099-8_6

[18] Arnur Nigmetov and Dmitriy Morozov. 2019. Local-global merge tree computa-
tion with local exchanges. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–13.

[19] Valerio Pascucci and Kree Cole-McLaughlin. 2004. Parallel computation of the
topology of level sets. Algorithmica 38, 1 (2004), 249–268.

[20] Steve Petruzza, Sean Treichler, Valerio Pascucci, and Peer-Timo Bremer. 2018.
Babelflow: An embedded domain specific language for parallel analysis and visu-
alization. In 2018 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 463–473.

[21] Wathsala Widanagamaachchi, Alexander Jacques, Bei Wang, Erik Crosman, Peer-
Timo Bremer, Valerio Pascucci, and John Horel. 2017. Exploring the evolution

of pressure-perturbations to understand atmospheric phenomena. In 2017 IEEE
Pacific Visualization Symposium (PacificVis). 101–110. https://doi.org/10.1109/
PACIFICVIS.2017.8031584

377

https://github.com/mrzv/reeber
https://doi.org/10.1109/PACIFICVIS.2015.7156387
https://doi.org/10.1088/0004-637x/765/1/39
https://doi.org/10.1088/0004-637x/765/1/39
https://doi.org/10.2140/camcos.2016.11.37
https://doi.org/10.1109/LDAV48142.2019.8944383
https://doi.org/10.1109/LDAV.2016.7874333
https://doi.org/10.1109/LDAV.2016.7874333
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.21227/k8gb-vq78
https://doi.org/10.21227/k8gb-vq78
https://doi.org/10.1109/HiPC.2012.6507496
https://doi.org/10.1109/HiPC.2012.6507496
https://doi.org/10.1007/978-3-319-04099-8_6
https://doi.org/10.1109/PACIFICVIS.2017.8031584
https://doi.org/10.1109/PACIFICVIS.2017.8031584

	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 The Merge Forest
	3.2 Querying the Merge Forest

	4 Distributed topological queries
	4.1 Maxima Query
	4.2 Component Query
	4.3 Regions Traversal Order

	5 Evaluation
	5.1 Distributed Merge Forest Construction Performance
	5.2 Computation with Thresholds
	5.3 Comparison of Distributed-Query Strategies
	5.4 Scaling Performance of Concurrent Queries
	5.5 Topological Queries at Scale: Density Clusters in Cosmology

	6 Conclusion
	Acknowledgments
	References

