
Making Uintah Performance Portable for
Department of Energy Exascale Testbeds ⋆

John K. Holmen1[0000−0002−5934−2641], Marta Garćıa2[0000−0002−9495−5443],
Abhishek Bagusetty2[0000−0002−9642−921X], Allen Sanderson3, and Martin

Berzins3[0000−0002−5419−0634]

1 Oak Ridge National Laboratory, Oak Ridge TN, USA holmenjk@ornl.gov
2 Argonne National Laboratory, Lemont IL, USA {mgarcia,abagusetty}@anl.gov

3 University of Utah, Salt Lake City UT, USA {allen,mb}@sci.utah.edu

Abstract. To help ease ports to forthcoming Department of Energy
(DOE) exascale systems, testbeds have been made available to select
users. These testbeds are helpful for preparing codes to run on the
same hardware and similar software as in their respective exascale sys-
tems. This paper describes how the Uintah Computational Framework,
an open-source asynchronous many-task (AMT) runtime system, has
been modified to be performance portable across the DOE Crusher,
DOE Polaris, and DOE Sunspot testbeds in preparation for portable
simulations across the exascale DOE Frontier and DOE Aurora sys-
tems. The Crusher, Polaris, and Sunspot testbeds feature the AMD
MI250X, NVIDIA A100, and Intel PVC GPUs, respectively. This perfor-
mance portability has been made possible by extending Uintah’s inter-
mediate portability layer [18] to additionally support the Kokkos::HIP,
Kokkos::OpenMPTarget, and Kokkos::SYCL back-ends. This paper also
describes notable updates to Uintah’s support for Kokkos, which were
required to make this extension possible. Results are shown for a chal-
lenging radiative heat transfer calculation, central to the University of
Utah’s predictive boiler simulations. These results demonstrate single-
source portability across AMD-, NVIDIA-, and Intel-based GPUs using
various Kokkos back-ends.

Keywords: Asynchronous Many-Task Runtime System · Performance
Portability · Parallelism and Concurrency · Portability · Software Engi-
neering

⋆ Notice of copyright: This manuscript has been authored by UT-Battelle, LLC
under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
The United States Government retains and the publisher, by accepting the ar-
ticle for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States Gov-
ernment purposes. The Department of Energy will provide public access to these
results of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).



2 J.K. Holmen et al.

1 Introduction

Forthcoming Department of Energy (DOE) exascale systems pose new challenges
for large-scale simulation codes. These challenges include understanding how to
manage the increased concurrency, deep memory hierarchies, heterogeneity, and
diversity of such systems. Most notable among challenges are the new hardware
and software featured among systems such as the exascale DOE Frontier [12]
and DOE Aurora [11], which include AMD- and Intel–based GPUs, respectively.
This is a challenge as it is a significant departure from prior heterogeneous high
performance computing (HPC) systems featuring NVIDIA-based GPUs.

Development for exascale systems is enabled and simplified by testbeds that
have been made available to select users through early access programs such
as the Aurora Early Science Program and the Frontier Center for Accelerated
Application Readiness Program. These testbeds feature the same hardware and
similar software as in their respective exascale system. This availability eases the
preparation of user codes for forthcoming exascale systems by allowing devel-
opers to port their codes to the target architectures while waiting for exascale
systems to enter production and open to users.

This paper describes how the Uintah Computational Framework, an open-
source asynchronous many-task runtime system, has been extended to run in
a performance portable manner across the DOE Crusher, DOE Polaris, and
DOE Sunspot testbeds in preparation for portable simulations across the exas-
cale DOE Frontier and DOE Aurora systems. The Crusher, Polaris, and Sunspot
testbeds feature the AMDMI250X, NVIDIA A100, and Intel PVC GPUs, respec-
tively. These runs have been made possible by extending Uintah’s intermediate
portability layer [18] to also support the Kokkos::HIP, Kokkos::OpenMPTarget,
and Kokkos::SYCL back-ends. This paper also describes notable updates to Uin-
tah’s support for Kokkos, which were required to make this extension possible.
These updates include rewriting device-specific portions of Uintah’s runtime to
make use of portable Kokkos abstractions rather than raw CUDA.

To demonstrate Kokkos capabilities, a case study using Uintah’s newly ex-
tended intermediate portability layer and runtime system are examined for a
challenging radiative heat transfer calculation, central to the University of Utah’s
predictive boiler simulations. This case study shows single-source portability
across AMD-, NVIDIA-, and Intel-based GPUs with various Kokkos back-ends.
For AMD-based GPUs, single-source portability is shown using the Kokkos::HIP
and Kokkos::OpenMPTarget back-ends. For NVIDIA-based GPUs, single-source
portability is shown using the Kokkos::CUDA, Kokkos::OpenMPTarget, and
Kokkos::SYCL back-ends. For Intel-based GPUs, single-source portability is
shown using the Kokkos::OpenMPTarget and Kokkos::SYCL back-ends. Note,
an experimental Kokkos::OpenACC [43] back-end providing cross-vendor sup-
port is also available. However, functionality of this back-end was not tested as
a part of this work.

The remainder of this paper is structured as follows. Section 2 provides an
overview of the Uintah Computational Framework. Section 3 describes the ex-
tension of Uintah’s intermediate portability layer to support the Kokkos::HIP,



Making Uintah Performance Portable 3

Kokkos::OpenMPTarget, and Kokkos::SYCL back-ends and updates to Uintah’s
support for Kokkos. Section 4 describes the benchmark used for experiments.
Section 5 describes the systems used for experiments and presents results gath-
ered on the DOE Crusher, DOE Polaris, and DOE Sunspot testbeds. Section 6
describes related work and Section 7 concludes this paper.

2 The Uintah Computational Framework

The Uintah Computational Framework is an open-source asynchronous many-
task (AMT) runtime system and block-structured adaptive mesh refinement
(SAMR) framework specializing in large-scale simulation of fluid-structure in-
teraction problems. These problems are modeled by solving partial differential
equations on structured adaptive mesh refinement grids. Uintah is based upon
novel techniques for understanding a broad set of fluid-structure interaction
problems [4].

Through its lifetime, Uintah has been ported to a diverse set of major HPC
systems. Examples using Uintah’s MPI+Kokkos capabilities include the NSF
Frontera [20], DOE Lassen [19], DOE Summit [20], NSF Stampede 2 [17, 18],
DOE Theta [35], and DOE Titan [35] systems. Other examples include the Na-
tional Research Center of Parallel Computer Engineering and Technology (NR-
CPC) Sunway TaihuLight [44], DOE Titan [33, 23, 25], NSF Stampede [33, 17],
DOE Mira [33, 4], and NSF Blue Waters [4] systems.

The work presented here extends past efforts by demonstrating Uintah’s first
successful ports to heterogeneous HPC systems featuring AMD- and Intel-based
GPUs. This work makes use of Uintah’s MPI+Kokkos capabilities through the
runtime’s heterogeneous MPI+Kokkos task scheduler [19]. This scheduler sup-
ports use of 1 GPU and a subset of CPU cores per MPI process on heterogeneous
CPU+GPU nodes and executes tasks simultaneously across the host and device
based upon user-specified tags indicating where a task can run. For this work,
the majority of tasks were run on the GPU. Note, Uintah does not yet support
GPU-aware MPI. More details on Uintah’s heterogeneous MPI+Kokkos task
scheduler can be found in a recent paper [19].

3 Extending Uintah’s Intermediate Portability Layer

Introduced in 2019 [18], Uintah’s intermediate portability layer consists of 3 com-
ponents: (1) loop-level support providing application developers with framework-
specific abstractions (e.g., generic parallel loop statements) that map to interface-
specific abstractions (e.g., PPL-specific parallel loop statements), (2) application-
level support that includes a tagging system to identify which interfaces are
supported by a given loop, and (3) build-level support that includes selective
compilation of loops to allow for incremental refactoring and simultaneous use
of multiple underlying programming models for heterogeneous HPC systems.
More details on Uintah’s intermediate portability layer can be found in a recent
paper [18].



4 J.K. Holmen et al.

The goal of this intermediate layer is for application developers to, hopefully,
need only adopt the layer once to support current and future interfaces to un-
derlying programming models. For application developers, this layer allows for
easy adoption of underlying programming models without requiring knowledge
of low-level implementation details. For infrastructure developers, this layer al-
lows for easy addition, removal, and tuning of interfaces behind-the-scenes in
a single location, reducing the need for far-reaching changes across application
code.

As a part of this work, Uintah’s intermediate portability layer has been ex-
tended to support the Kokkos::HIP, Kokkos::OpenMPTarget, and Kokkos::SYCL
back-ends. Prior to this extension, however, notable updates to Uintah’s use of
Kokkos were necessary to make use of the latest Kokkos releases. Section 3.1 de-
scribes these updates and the state of Uintah’s support for Kokkos. Note, these
updates and extensions were made without any required changes to user-facing
abstractions.

3.1 State of Uintah’s Support for Kokkos

Prior to this work, Uintah’s support for Kokkos was limited to use of the
Kokkos::OpenMP and Kokkos::CUDA back-ends. This support had two key lim-
itations: (1) use of the Kokkos::CUDA back-end required use of a patched version
of Kokkos release 2.7.00 from May 2018 with custom modifications from Uintah
developers to add support for asynchronous execution [35], and (2) Uintah’s het-
erogeneous MPI+Kokkos task scheduler [19] used raw CUDA behind-the-scenes
for task scheduling, which is described further in [20]. Though they eased rapid
research development, these limitations posed challenges when working to addi-
tionally support the Kokkos::HIP, Kokkos::OpenMPTarget, and Kokkos::SYCL
back-ends, which required use of Kokkos releases newer than 2.7.00.

Prior to adding support for new back-ends, limitation (1) was addressed
first to deprecate Uintah’s Kokkos 2.7.00 patch and modernize Uintah’s use of
Kokkos. This patch pre-dated Kokkos execution space instance functionality
and implemented instance-like functionality to achieve asynchronous execution
of parallel patterns when using the Kokkos::CUDA back-end. Deprecation was
a critical first step as Kokkos development has been advancing rapidly with
regular releases adding new functionality and back-end support. To deprecate
this patch, the only changes required in Uintah were minor interface changes.
Deprecation of this patch has been key for allowing Uintah’s use of Kokkos to
be updated more quickly as new Kokkos versions are released. Additionally, this
allows us to stay up to date with third party libraries used by Uintah that also
make use of the latest Kokkos releases (e.g., Hypre [13]).

Next, limitation (2) was addressed to remove the remaining raw CUDA used
in Uintah’s heterogeneous MPI+Kokkos task scheduler. This task scheduler used
cudaMemcpyAsync for asynchronous host-to-device (H2D) and device-to-host
(D2H) transfers and cudaStreamQuery to check the status of transfers. CUDA
streams, CUDA memory allocations, and CUDA kernels were also used behind-
the-scenes. Raw CUDA was replaced with portable alternatives by (1) replac-



Making Uintah Performance Portable 5

ing use of CUDA streams with Kokkos execution space instances, (2) replac-
ing use of CUDA memory allocations with Kokkos::kokkos malloc, (3) replacing
use of CUDA kernels with Kokkos::parallel for, (4) replacing use of cudaMem-
cpyAsync with Kokkos::deep copy, and (5) replacing use of cudaStreamQuery
with Kokkos::fence.

With limitation (1) and (2) addressed as a part of this work, Uintah’s use of
Kokkos was then updated from the May 2018 release to 2023 releases. Specifi-
cally, March 2023 release 4.0.0 was used for this work. This update allowed Uin-
tah to make use of newly supported Kokkos back-ends including Kokkos::HIP,
Kokkos::OpenMPTarget, and Kokkos::SYCL. To support these back-ends, Uin-
tah’s Kokkos::CUDA-specific device support was broadened to offer general de-
vice support through multiple back-ends. To ease parameter tuning, command-
line options were also added to allow the user to specify the execution pol-
icy type (e.g., TeamPolicy, RangePolicy, and MDRangePolicy) and low-level
parameters (e.g., chunk size and tile size) at run-time. Note, Uintah’s use of
Kokkos::OpenMP::partition master was also deprecated as a part of this up-
date due to the functionality being deprecated in Kokkos. A replacement was
implemented using Kokkos::partition space.

4 Radiation Modeling

Parallel reverse Monte-Carlo ray tracing (RMCRT) methods [23, 25] are one
of several methods available within Uintah for solving the radiative transport
equation. RMCRT models radiative heat transfer using random walks across rays
cast throughout the computational domain. These rays are traced in reverse,
towards their origin, to eliminate the need to trace rays that may never reach
an origin. During ray traversal, the amount of incoming intensity absorbed by
the origin is computed. This incoming intensity is then used to aid in solving
the radiative transport equation. The work presented here uses Uintah’s 2-Level
RMCRT-based radiation model to solve the Burns and Christon benchmark
problem described in [6]. More detailed information on RMCRT can be found
in a recent dissertation [22].

5 Experiments

Experiments made use of the DOE Crusher, DOE Polaris, and DOE Sunspot
testbeds at the Oak Ridge Leadership Computing Facility and Argonne Lead-
ership Computing Facility, respectively. Crusher, Polaris, and Sunspot feature
AMD-, NVIDIA-, and Intel-based GPUs, respectively. For this reason, perfor-
mance portability is important.

5.1 Crusher

Crusher is a testbed featuring the same hardware and similar software as the
exascale Frontier system. Crusher and Frontier are maintained at the Oak Ridge



6 J.K. Holmen et al.

Leadership Computing Facility. Frontier and Crusher (also known as Frontier
TDS) are currently Number 1 and Number 32 on June 2023’s Top500 list [38].

The Crusher testbed is comprised of 192 HPE Cray EX235a nodes, each
with one 64-core AMD EPYC 7A53 “Optimized 3rd Gen EPYC” CPU and
four AMD MI250X GPUs, each with 2 Graphics Compute Dies (GCDs). Each
compute node has 512 GB of DDR4 memory and 512 GB of high-bandwidth
memory (HBM2E), 64 GB per GCD. The CPU is connected to the GPUs via
AMD’s Infinity Fabric which delivers a bandwidth of 36+36 GB/s. All GCDs
on a Crusher node are interconnected via Infinity Fabric delivering up to 50+50
GB/s for GCDs across GPUs, and up to 200+200 GB/s for GCDs on the same
GPU. Compute nodes on Crusher are interconnected via HPE’s Slingshot 11
interconnect.

5.2 Polaris

Polaris is a testbed featuring a similar heterogeneous CPU+GPU node configu-
ration and similar software as the forthcoming exascale Aurora system. Polaris
and Aurora are maintained at the Argonne Leadership Computing Facility. Po-
laris is currently Number 19 on June 2023’s Top500 list [38].

The Polaris testbed is comprised of 560 HPE Apollo Gen10+ nodes, each
with one 32-core AMD EPYC Milan 7543P CPU and four NVIDIA A100 GPUs
connected via NVLink. Each compute node has 512 GB of DDR4 memory and
160 GB of high-bandwidth memory (HBM2), 40 GB per GPU. Compute nodes
on Polaris are currently interconnected via HPE’s Slingshot 10 interconnect and
are scheduled to be upgraded to Slingshot 11 in 2023.

5.3 Sunspot

Sunspot is a testbed featuring the same hardware and similar software as the
forthcoming Aurora system. Sunspot and Aurora are maintained at the Argonne
Leadership Computing Facility.

The Sunspot testbed is comprised of 128 HPE Cray EX nodes, each with
two Intel Xeon CPU Max Series(Sapphire Rapids) processors and six Intel Data
Center GPU Max Series (Ponte Vecchio/PVC), each with 2 Stacks. Each com-
pute node has 512 GB of DDR5 memory, 512 GB of high-bandwidth memory
(HBM) on each CPU, and 128 GB of high-bandwidth memory (HBM) on each
GPU. Compute nodes on Sunspot are interconnected via HPE’s Slingshot 11
interconnect.

5.4 Testbed Comparisons

For testbed comparisons, experiments explored performance of various GPU
architectures (i.e., AMDMI250X, NVIDIA A100, and Intel PVC) using problems
sized to provide each GCD/GPU/Stack with eight 1283 fine mesh patches. Note,
additional demonstration of Uintah’s portable capabilities can be found among



Making Uintah Performance Portable 7

Table 1. Single-node timings across AMD MI250X, NVIDIA A100, and Intel PVC
GPUs. For Crusher, 1 MPI process is used per AMD MI250X GCD. For Polaris, 1
MPI process is used per NVIDIA A100 GPU. For Sunspot, 1 MPI process is used per
Intel PVC Stack.

Testbed Devices Back-End Execution Mean Time per

Used Used Used Policy Timestep (s)

Crusher 1x MI250X (2 GCDs) Kokkos::HIP MDRange 51.7

1x MI250X (2 GCDs) Kokkos::OpenMPTarget MDRange 53.3

Polaris 1x A100 Kokkos::CUDA Range 28.9

1x A100 Kokkos::OpenMPTarget Team 48.7

1x A100 Kokkos::SYCL Range 37.1

Sunspot 1x PVC (2 Stacks) Kokkos::OpenMPTarget Team 55.6

1x PVC (2 Stacks) Kokkos::SYCL MDRange 48.6

Crusher 4x MI250X (8 GCDs)* Kokkos::HIP MDRange 64.1

4x MI250X (8 GCDs)* Kokkos::OpenMPTarget MDRange 75.2

Polaris 4x A100* Kokkos::CUDA Range 39.2

4x A100* Kokkos::OpenMPTarget Team 60.3

4x A100* Kokkos::SYCL Range 47.4

Sunspot 6x PVC (12 Stacks)* Kokkos::OpenMPTarget Team 82.0

6x PVC (12 Stacks)* Kokkos::SYCL MDRange 65.9

*This configuration corresponds to use of a full node.

MPI+Kokkos results gathered on the NSF Frontera [20], DOE Lassen [19], DOE
Summit [20], NSF Stampede 2 [17, 18], DOE Theta [35], and DOE Titan [35]
systems.

Simulations were launched using 1 MPI process per GCD/GPU/Stack. Ex-
periments were performed to identify optimal run configurations using each
Kokkos back-end that worked on the target architecture with various Kokkos
execution policy types and parameters. Optimal run configurations were used
for the results to follow.

The simulation domain is decomposed into a collection of patches, which are
distributed across MPI processes. Here, a patch refers to the collection of cells
executed by a loop. The radiation modeling problem also uses adaptive mesh re-
finement to coarsen/refine patches [24]. Domain decomposition and, thus, patch
size is user-specified at run-time and remains fixed throughout the simulation.

Problems were sized to provide each MPI process with eight 1283 fine mesh
patches. The problem is weak-scaled when moving from one device to a full node.
The problem was configured to cast 50 rays per cell and used a mesh refinement
ratio of 4. Results have been averaged over 7 consecutive timesteps. Note, this
problem does not weak scale as configured due to communication requirements.
However, excellent weak-scaling is possible through the use of aggressive mesh
refinement to reduce communication requirements [22].

Table 1 shows single-node timings across MI250X, A100, and PVC for the
Burns and Christon benchmark problem on a 2-level structured adaptive mesh
refinement grid. For each testbed, results were gathered using problems sized
to provide each MPI process with 256 × 256 × 256 cells on the fine mesh and
64 × 64 × 64 cells on the coarse mesh, respectively, for one fine mesh patch



8 J.K. Holmen et al.

size (1283 cells per fine mesh patch). These results are encouraging as they
demonstrate the portability of Kokkos across DOE exascale testbeds. In addition
to being able to run across multiple architectures with Kokkos, we were also
able to run across multiple Kokkos back-ends on a given architecture. Note,
Kokkos back-ends are supported to varying degrees on individual architectures.
For example, use of Kokkos::SYCL is not tested or officially supported on AMD-
based GPUs as of this writing.

6 Related Work

Uintah is one of many asynchronous many-task runtime systems and block-
structured adaptive mesh refinement frameworks. Examples of similar AMT
runtime systems include Charm++ [28], HPX [27], IRIS [29, 34], Legion [2],
PaRSEC [5], and StarPU [1]. Other examples of AMT-based approaches include
the combination of OpenMP tasking and target offloading [42]. Examples of
similar SAMR frameworks include BoxLib [46] (superseded by AMReX [45]),
Cactus [14], and Parthenon [15]. An analysis of performance portability for rep-
resentative AMT runtime systems, including Uintah, can be found in a recent
technical report [3]. A review of representative SAMR frameworks, including
Uintah, can be found in a recent survey [9].

Kokkos is one of many performance portability layers offering a single in-
terface to multiple underlying programming models (e.g., CUDA, HIP, Ope-
nACC, OpenCL, OpenMP, etc). Examples of similar performance portability
layers are OCCA [32], RAJA [21], and SYCL [37] / DPC++ [36]. Examples
of Exascale Computing Project codes using Kokkos can be found in a recent
survey [10]. Examples of “real-world” applications using Kokkos include Ar-
borX [30], BabelStream [8], K-Athena [16] (superseded by AthenaPK [15]),
kEDM [39], LAMMPS [40], and Octo-Tiger [7, 31] with a more extensive col-
lection of applications using Kokkos documented on their GitHub [41]. A review
of exascale challenges and performance portable programming models can be
found in a recent survey [26].

7 Conclusions and Future Work

This study has helped demonstrate Uintah’s preparedness for forthcoming DOE
exascale systems. Specifically, this work documents Uintah’s first portable use
of AMD- and Intel-based GPUs, whereas prior work was limited to NVIDIA-
based GPUs. This preparedness has been made possible by the extension of Uin-
tah’s intermediate portability layer [18] to additionally support the Kokkos::HIP,
Kokkos::OpenMPTarget, and Kokkos::SYCL back-ends. This extension has been
made possible by notable updates to Uintah’s support for Kokkos.

Kokkos capabilities have been shown across the DOE Crusher, DOE Polaris,
and DOE Sunspot testbeds when using Uintah’s intermediate portability layer to
make portable use of AMD-, NVIDIA-, and Intel-based GPUs, respectively, for
the benchmark examined. At the device- and node-level, single-source portability



Making Uintah Performance Portable 9

is shown across AMD-, NVIDIA-, and Intel-based GPUs using various Kokkos
back-ends. This portability offers encouragement as we prepare to make portable
use of the DOE Aurora and DOE Frontier systems. Next steps include portable
simulations across the DOE Aurora and DOE Frontier systems to help better
understand how Uintah scales across exascale systems.

8 Acknowledgments

This material is based upon work originally supported by the Department of En-
ergy, National Nuclear Security Administration, under Award Number(s) DE-
NA0002375. This research used resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under Contract
DE-AC02-06CH11357. This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC05-00OR22725. This work was supported by the Office
of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357.
Support for Allen Sanderson comes from the University of Texas at Austin under
Award Number(s) UTA19-001215 and a gift from the Intel One API Centers Pro-
gram. The authors would like to thank the ALCF and OLCF for early access to
exascale testbeds, including those operated by the Joint Laboratory for System
Evaluation (JLSE) at Argonne National Laboratory. The authors would also like
to thank the Aurora Early Science Program and Kokkos developer communities
for their continued support with special thanks to Daniel Arndt, Rahulkumar
Gayatri, Varsha Madananth, and Patrick Steinbrecher.

References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: Starpu: a unified platform
for task scheduling on heterogeneous multicore architectures. Concurrency and
Computation: Practice and Experience 23(2), 187–198 (2011)

2. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: Expressing locality and
independence with logical regions. In: Proceedings of the international conference
on high performance computing, networking, storage and analysis. p. 66. IEEE
Computer Society Press (2012)

3. Bennett, J., Clay, R., Baker, G., Gamell, M., Hollman, D., Knight, S., Kolla, H.,
Sjaardema, G., Slattengren, N., Teranishi, K., Wilke, J., Bettencourt, M., Bova,
S., Franko, K., Lin, P., Grant, R., Hammond, S., Olivier, S., Kale, L., Jain, N.,
Mikida, E., Aiken, A., Bauer, M., Lee, W., Slaughter, E., Treichler, S., Berzins, M.,
Harman, T., Humphrey, A., Schmidt, J., Sunderland, D., McCormick, P., Gutier-
rez, S., Schulz, M., Bhatele, A., Boehme, D., Bremer, P., Gamblin, T.: ASC ATDM
level 2 milestone #5325: Asynchronous many-task runtime system analysis and as-
sessment for next generation platforms. Tech. rep., Sandia National Laboratories
(2015)

4. Berzins, M., Beckvermit, J., Harman, T., Bezdjian, A., Humphrey, A., Meng, Q.,
Schmidt, J., Wight, C.: Extending the uintah framework through the petascale
modeling of detonation in arrays of high explosive devices. SIAM Journal on Sci-
entific Computing 38(5), 101–122 (2016)



10 J.K. Holmen et al.

5. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Herault, T., Dongarra, J.J.:
Parsec: Exploiting heterogeneity to enhance scalability. Computing in Science En-
gineering 15(6), 36–45 (Nov 2013)

6. Burns, S., Christon, M.: Spatial domain-based parallelism in large-scale,
participating-media, radiative transport applications. Numerical Heat Transfer
31(4), 401–421 (1997)

7. Daiß, G., Simberg, M., Reverdell, A., Biddiscombe, J., Pollinger, T., Kaiser, H.,
Pflüger, D.: Beyond fork-join: Integration of performance portable kokkos kernels
with hpx. In: 2021 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW). pp. 377–386. IEEE (2021)

8. Deakin, T., Price, J., Martineau, M., McIntosh-Smith, S.: Evaluating attainable
memory bandwidth of parallel programming models via babelstream. International
Journal of Computational Science and Engineering 17(3), 247–262 (2018)

9. Dubey, A., Almgren, A., Bell, J., Berzins, M., Brandt, S., Bryan, G., Colella, P.,
Graves, D., Lijewski, M., Löffler, F., O’Shea, B., Schnetter, E., Straalen, B.V.,
Weide, K.: A survey of high level frameworks in block-structured adaptive mesh
refinement packages. Journal of Parallel and Distributed Computing (2014)

10. Evans, T.M., Siegel, A., Draeger, E.W., Deslippe, J., Francois, M.M., Germann,
T.C., Hart, W.E., Martin, D.F.: A survey of software implementations used by
application codes in the exascale computing project. The International Journal of
High Performance Computing Applications 36(1), 5–12 (2022)

11. Argonne Leadership Computing Facility: Aurora (2023),
https://www.alcf.anl.gov/aurora

12. Oak Ridge Leadership Computing Facility: Frontier (2023),
https://www.olcf.ornl.gov/frontier/

13. Falgout, R.D., Li, R., Sjögreen, B., Wang, L., Yang, U.M.: Porting hypre to het-
erogeneous computer architectures: Strategies and experiences. Parallel Computing
108, 102840 (2021). https://doi.org/https://doi.org/10.1016/j.parco.2021.102840

14. Goodale, T., Allen, G., Lanfermann, G., Massó, J., Radke, T., Seidel, E., Shalf, J.:
The cactus framework and toolkit: Design and applications. In: Palma, J.M.L.M.,
Sousa, A.A., Dongarra, J., Hernández, V. (eds.) High Performance Computing for
Computational Science — VECPAR 2002. pp. 197–227. Springer Berlin Heidelberg,
Berlin, Heidelberg (2003)

15. Grete, P., Dolence, J.C., Miller, J.M., Brown, J., Ryan, B., Gaspar, A., Glines, F.,
Swaminarayan, S., Lippuner, J., Solomon, C.J., et al.: Parthenon—a performance
portable block-structured adaptive mesh refinement framework. The Interna-
tional Journal of High Performance Computing Applications p. 10943420221143775
(2022)

16. Grete, P., Glines, F.W., O’Shea, B.W.: K-athena: a performance portable struc-
tured grid finite volume magnetohydrodynamics code. IEEE Transactions on Par-
allel and Distributed Systems 32(1), 85–97 (2020)

17. Holmen, J.K., Humphrey, A., Sunderland, D., Berzins, M.: Improving Uintah’s
Scalability Through the Use of Portable Kokkos-Based Data Parallel Tasks. In:
Proceedings of the Practice and Experience in Advanced Research Computing
2017 on Sustainability, Success and Impact. pp. 27:1–27:8. PEARC17, ACM, New
York, NY, USA (2017)

18. Holmen, J.K., Peterson, B., Berzins, M.: An approach for indirectly adopting a
performance portability layer in large legacy codes. In: 2019 IEEE/ACM Interna-
tional Workshop on Performance, Portability and Productivity in HPC (P3HPC).
pp. 36–49 (2019). https://doi.org/10.1109/P3HPC49587.2019.00009



Making Uintah Performance Portable 11

19. Holmen, J.K., Sahasrabudhe, D., Berzins, M.: A heterogeneous mpi+ppl task
scheduling approach for asynchronous many-task runtime systems. In: Proceed-
ings of the Practice and Experience in Advanced Research Computing 2021 on
Sustainability, Success and Impact (PEARC21). ACM (2021)

20. Holmen, J.K., Sahasrabudhe, D., Berzins, M.: Porting uintah to heterogeneous
systems. In: Proceedings of the Platform for Advanced Scientific Computing Con-
ference. PASC ’22, Association for Computing Machinery, New York, NY, USA
(2022). https://doi.org/10.1145/3539781.3539794

21. Hornung, R.D., Keasler, J.A.: The raja portability layer: overview and status. Tech.
rep., Lawrence Livermore National Laboratory (LLNL), Livermore, CA (2014)

22. Humphrey, A.: Scalable Asynchronous Many-Task Runtime Solutions to Globally
Coupled Problems. Ph.D. thesis, School of Computing, University of Utah (2019)

23. Humphrey, A., Harman, T., Berzins, M., Smith, P.: A scalable algorithm for ra-
diative heat transfer using reverse monte carlo ray tracing. In: Kunkel, J.M., Lud-
wig, T. (eds.) High Performance Computing, Lecture Notes in Computer Science,
vol. 9137, pp. 212–230. Springer International Publishing (2015)

24. Humphrey, A., Meng, Q., Berzins, M., Harman, T.: Radiation modeling using the
uintah heterogeneous cpu/gpu runtime system. In: Proceedings of the first confer-
ence of the Extreme Science and Engineering Discovery Environment (XSEDE’12).
Association for Computing Machinery (2012)

25. Humphrey, A., Sunderland, D., Harman, T., Berzins, M.: Radiative heat transfer
calculation on 16384 gpus using a reverse monte carlo ray tracing approach with
adaptive mesh refinement. In: 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). pp. 1222–1231 (May 2016)

26. Johnson, A.: Area exam: General-purpose performance portable programming
models for productive exascale computing (2020)

27. Kaiser, H., Diehl, P., Lemoine, A.S., Lelbach, B.A., Amini, P., Berge, A., Biddis-
combe, J., Brandt, S.R., Gupta, N., Heller, T., Huck, K., Khatami, Z., Kheirkha-
han, A., Reverdell, A., Shirzad, S., Simberg, M., Wagle, B., Wei, W., Zhang, T.:
Hpx - the c++ standard library for parallelism and concurrency. Journal of Open
Source Software 5(53), 2352 (2020). https://doi.org/10.21105/joss.02352

28. Kale, L.V., Krishnan, S.: Charm++: A portable concurrent object oriented system
based on c++. In: Proceedings of the Eighth Annual Conference on Object-oriented
Programming Systems, Languages, and Applications. pp. 91–108. OOPSLA ’93,
ACM, New York, NY, USA (1993)

29. Kim, J., Lee, S., Johnston, B., Vetter, J.S.: Iris: A portable runtime sys-
tem exploiting multiple heterogeneous programming systems. In: 2021 IEEE
High Performance Extreme Computing Conference (HPEC). pp. 1–8 (2021).
https://doi.org/10.1109/HPEC49654.2021.9622873

30. Lebrun-Grandié, D., Prokopenko, A., Turcksin, B., Slattery, S.R.: Arborx: A per-
formance portable geometric search library. ACM Trans. Math. Softw. 47(1) (dec
2020). https://doi.org/10.1145/3412558

31. Marcello, D.C., Shiber, S., De Marco, O., Frank, J., Clayton, G.C., Motl, P.M.,
Diehl, P., Kaiser, H.: Octo-Tiger: A New, 3D Hydrodynamic Code for Stellar Merg-
ers That Uses Hpx Parallelization. Monthly Notices of the Royal Astronomical
Society 504(4), 5345–5382 (04 2021). https://doi.org/10.1093/mnras/stab937

32. Medina, D.S., St-Cyr, A., Warburton, T.: Occa: A unified approach to multi-
threading languages. arXiv preprint arXiv:1403.0968 (2014)

33. Meng, Q., Humphrey, A., Schmidt, J., Berzins, M.: Investigating applications
portability with the uintah DAG-based runtime system on PetaScale supercom-



12 J.K. Holmen et al.

puters. In: Proceedings of SC13: International Conference for High Performance
Computing, Networking, Storage and Analysis. pp. 96:1–96:12 (2013)

34. Monil, M.A.H., Miniskar, N.R., Liu, F.Y., Vetter, J.S., Valero-Lara, P.: Laris:
Targeting portability and productivity for lapack codes on extreme heteroge-
neous systems by using iris. In: 2022 IEEE/ACM Redefining Scalability for
Diversely Heterogeneous Architectures Workshop (RSDHA). pp. 12–21 (2022).
https://doi.org/10.1109/RSDHA56811.2022.00007

35. Peterson, B., Humphrey, A., Holmen, J.K., Harman, T., Berzins, M., Sunderland,
D., Edwards, H.C.: Demonstrating GPU code portability and scalability for ra-
diative heat transfer computations. Journal of Computational Science 27, 303–319
(2018)

36. Reinders, J., Ashbaugh, B., Brodman, J., Kinsner, M., Pennycook, J., Tian, X.:
Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous Sys-
tems using C++ and SYCL. Springer Nature (2021)

37. Rovatsou, M., Howes, L., Keryell, R.: Khronos Group SYCL 2020 Specifica-
tion (2023), https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-
2020.pdf

38. Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: June 2023 — TOP 500 (2023),
https://top500.org/lists/top500/2023/06/

39. Takahashi, K., Watanakeesuntorn, W., Ichikawa, K., Park, J., Takano, R., Haga,
J., Sugihara, G., Pao, G.M.: kedm: A performance-portable implementation of
empirical dynamic modeling using kokkos. In: Practice and Experience in Advanced
Research Computing. PEARC ’21, Association for Computing Machinery, New
York, NY, USA (2021). https://doi.org/10.1145/3437359.3465571

40. Thompson, A.P., Aktulga, H.M., Berger, R., Bolintineanu, D.S., Brown, W.M.,
Crozier, P.S., in ’t Veld, P.J., Kohlmeyer, A., Moore, S.G., Nguyen, T.D., Shan,
R., Stevens, M.J., Tranchida, J., Trott, C., Plimpton, S.J.: Lammps - a flexi-
ble simulation tool for particle-based materials modeling at the atomic, meso,
and continuum scales. Computer Physics Communications 271, 108171 (2022).
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108171

41. Trott, C.: Apps Using Kokkos (2018), https://github.com/kokkos/kokkos/issues/1950
42. Valero-Lara, P., Kim, J., Hernandez, O., Vetter, J.: Openmp target task: Tasking

and target offloading on heterogeneous systems. In: Chaves, R., B. Heras, D., Ilic,
A., Unat, D., Badia, R.M., Bracciali, A., Diehl, P., Dubey, A., Sangyoon, O.,
L. Scott, S., Ricci, L. (eds.) Euro-Par 2021: Parallel Processing Workshops. pp.
445–455. Springer International Publishing, Cham (2022)

43. Valero-Lara, P., Lee, S., Gonzalez-Tallada, M., Denny, J., Vetter, J.S.:
Kokkacc: Enhancing kokkos with openacc. In: 2022 Workshop on Ac-
celerator Programming Using Directives (WACCPD). pp. 32–42 (2022).
https://doi.org/10.1109/WACCPD56842.2022.00009

44. Yang, Z., Sahasrabudhe, D., Humphrey, A., Berzins, M.: A preliminary port and
evaluation of the uintah amt runtime on sunway taihulight. In: 9th IEEE Interna-
tional Workshop on Parallel and Distributed Scientific and Engineering Computing
(PDSEC 2018). IEEE (May 2018)

45. Zhang, W., Almgren, A., Beckner, V., Bell, J., Blaschke, J., Chan, C., Day, M.,
Friesen, B., Gott, K., Graves, D., Katz, M., Myers, A., Nguyen, T., Nonaka, A.,
Rosso, M., Williams, S., Zingale, M.: AMReX: a framework for block-structured
adaptive mesh refinement. Journal of Open Source Software 4(37), 1370 (May
2019). https://doi.org/10.21105/joss.01370

46. Zhang, W., Almgren, A.S., Day, M., Nguyen, T., Shalf, J., Unat, D.: Boxlib with
tiling: An AMR software framework. CoRR abs/1604.03570 (2016)


