Porting Uintah to Heterogeneous Systems

John K. Holmen Damodar Sahasrabudhe Martin Berzins
SCI Institute SCI Institute SCI Institute
University of Utah University of Utah University of Utah
Salt Lake City, USA Salt Lake City, USA Salt Lake City, USA
jholmen@sci.utah.edu damodars@sci.utah.edu mb@sci.utah.edu
ABSTRACT by the increasing architectural diversity with systems such as the

The Uintah Computational Framework is being prepared to make
portable use of forthcoming exascale systems, initially the DOE
Aurora system through the Aurora Early Science Program. This
paper describes the evolution of Uintah to be ready for such ar-
chitectures. A key part of this preparation has been the adoption
of the Kokkos performance portability layer in Uintah. The sheer
size of the Uintah codebase has made it imperative to have a repre-
sentative benchmark. The design of this benchmark and the use of
Kokkos within it is discussed. This paper complements recent work
with additional details and new scaling studies run 24x further than
earlier studies. Results are shown for two benchmarks executing
workloads representative of typical Uintah applications. These re-
sults demonstrate single-source portability across the DOE Summit
and NSF Frontera systems with good strong-scaling characteristics.
The challenge of extending this approach to anticipated exascale
systems is also considered.

CCS CONCEPTS

- Computer systems organization — Heterogeneous (hybrid) sys-
tems; » Computing methodologies — Parallel computing method-
ologies; » Software and its engineering — Software development
techniques; « Applied computing — Physical sciences and engi-
neering.

KEYWORDS

Asynchronous Many-Task Runtime System, Performance Portabil-
ity, Parallelism and Concurrency, Portability, Software Engineering

ACM Reference Format:

John K. Holmen, Damodar Sahasrabudhe, and Martin Berzins. 2018. Porting
Uintah to Heterogeneous Systems. In ,. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Forthcoming exascale systems pose new challenges for large-scale
simulation codes. These challenges include understanding how to
manage the increased concurrency, deep memory hierarchies, and
heterogeneity of such systems. Additional challenges are posed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PASC 22, PASC 22: ACM Symposium on Neural Gaze Detection, June 03-05, 2022, xxxx,
YY

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/10.1145/1122445.1122456

exascale DOE Aurora [1] and DOE Frontier [28] to feature pro-
posed Intel- and AMD-based GPUs, respectively. This, however,
complicates the design of today’s software as only heterogeneous
high performance computing (HPC) systems featuring NVIDIA-
based GPUs are available among current Top 10 of November 2021’s
Top500 list [39].

While such challenges can also be met by wholesale refactoring
or "hero-programming” efforts, it is desirable to make this process
easier. One possible approach is to use asynchronous many-task
(AMT) runtime systems to help manage the increased concurrency,
deep memory hierarchies, and heterogeneity. Examples include
Charm++ [21], HPX [20], Legion [3], PaRSEC [5], StarPU [2], and
Uintah [4]. Such runtimes are advantageous for their ability to
increase node-level parallelism through overdecomposition of an
application into many tasks while also managing low-level sys-
tem details necessary for efficient resource utilization behind-the-
scenes.

Performance portability layers (PPL) offer another approach for
addressing these challenges. Such layers allow developers to inter-
act with multiple underlying programming models (e.g., CUDA, HIP,
OpenMP, etc) through a single interface while also making efficient
use of such underlying programming models. Examples include
Kokkos [6], OCCA [25], RAJA [12], SYCL [33] and DPC++ [32].
There are many real-world applications using such approaches
with, for example, applications using Kokkos collected on their
GitHub [44]. A review of exascale challenges and performance
portable programming models can be found in a recent survey [19].
While such layers ease exascale challenges for application devel-
opers, PPLs shift the "hero-programming” effort to infrastructure
developers for those designing AMT runtimes due to the rapidly
evolving state of PPLs, complexity of AMT runtimes, and potentially
wide range of architectures and programming models to support.

One AMT runtime facing such challenges is the Uintah Computa-
tional Framework. Uintah addresses a complex suite of applications,
is heterogeneous-capable, and has been ported to a diverse set of
HPC systems. This paper considers how Uintah may be extended
to exascale by complementing recent work in [11] and building
on about a decade’s worth of research in adaptive meshing, run-
time systems, and radiation ray tracing. This paper also discusses
successes and challenges that have arisen when preparing for het-
erogeneous systems.

The approach taken to prepare Uintah relies on Kokkos to meet
challenges posed by diverse heterogeneous systems. The challenge
for large codebases such as Uintah is understanding how to evaluate
the success of such an approach at scale. One way to evaluate this
success is to use two of the most challenging and representative
parts of one of the most challenging Uintah applications of the last

PASC 22, PASC 22: ACM Symposium on Neural Gaze Detection, June 03-05, 2022, xxxx, YY

decade. Uintah’s performance is shown for these two benchmarks,
which have been prepared for forthcoming exascale systems. This
preparation has allowed us to achieve good strong-scaling to 24,576
NVIDIA V100 GPUs and 8,192 IBM POWERY processors using
MPI+Kokkos::OpenMP+Kokkos::CUDA on the DOE Summit system
and to 8,192 Cascade Lake processors using MPI+Kokkos::OpenMP
on the NSF Frontera system and to compare Uintah’s performance
across the two systems.

The work presented here complements recent work in [11],
which documents early design details and initial experiments. The
results shown here extend 24x beyond initial results. This paper
builds on [11] by providing additional design details, demonstrating
portability across leadership-class systems, explaining how linear
algebra is used at scale, discussing porting successes and challenges,
and describing next steps for exascale. While these results provide a
convincing base for moving to GPU-based exascale machines, they
also reinforce careful selection of run configurations and show that
application code may still need to be refactored to improve node
use.

The remainder of this paper is structured as follows. Section
2 provides an overview of AMT runtimes. Section 3 provides an
overview of the Uintah Computational Framework. Section 4 de-
scribes the challenges and successes in preparing Uintah for hetero-
geneous systems and an overview of Uintah’s runtime. Section 5
describes Uintah’s target exascale benchmarks. Section 6 describes
the systems used for strong-scaling studies and presents strong-
scaling results gathered on the DOE Summit and NSF Frontera
systems for two benchmarks executing workloads representative of
typical Uintah applications. Section 7 describes next steps needed
for Uintah’s exascale preparation and Section 8 concludes this pa-

per.

2 ASYNCHRONOUS MANY-TASK RUNTIME
SYSTEMS

The use of asynchronous many task programming goes back to the
1960s [18, 42]. The idea behind such an approach is that a program
consisting of a number of computational tasks may be specified
as a task graph and that such a task graph has advantages that
can be exploited to improve automated execution. Experience with
AMT systems such as Uintah shows this to be particularly true if
the task graph is complex and/or has behavior that may be hard to
predict beforehand (e.g., due to communication delays). The theory
for distributed memory cases is similar to that for multi-threaded
cases [43]. Randomized or greedy schedulers that use work-stealing
give surprisingly good results [43].

The AMT model relies on parallel slackness [43] in that the par-
allelism of the computation exceeds the physical parallelism of the
processor on which the program runs. In the context of a standard
message-passing parallel MPI program, this parallel slackness may
take the form of multiple execution streams on a compute node
whose number exceeds the physical on-node parallelism. In the
case of Uintah, there are multiple MPI programs each of which is a
task graph in itself. Even if each task graph is linear, there is the
potential for hiding delays by switching to another task graph. The
maximum benefit occurs when there is enough parallel slackness

J.K. Holmen et al.

to hide external data transfers or, at the least, to ensure that such
delays are reduced when more nodes are used as in strong scaling.

This characterization also exposes the challenge that in a simple
enough code, providing that asynchronous overlapped communi-
cation execution may be introduced, the full machinery of an AMT
may not be needed to achieve scalable execution and respectable
performance may be achieved in a more straightforward manner.
At the same time, however, when the behavior of the code becomes
hard to predict (e.g., when using adaptive multi-physics, adaptive
meshing, or adaptive multi-scale approaches), then unless a good
scheduling algorithm is in place scalability may be problematic. A
recent comparison of fixed execution and dynamic execution of a
complex multi-physics task graph was undertaken by Humphrey
and Berzins [14] in which a fully adaptive task execution approach
delivered considerable speedups over a fixed execution pattern of
the same problem with Uintah.

However, this does not automatically suggest that an AMT run-
time is immediately the best approach as managing task execution
on a variety of possible heterogeneous exascale machines appears,
as will be shown, to have its own challenges. For even relatively sim-
ple codes, running on a heterogeneous CPU-GPU architecture may
require decisions about which part of the code should be executed
where to achieve the best execution time. It is these challenges that
will be addressed in the context of the Uintah AMT framework.

3 THE UINTAH COMPUTATIONAL
FRAMEWORK

The Uintah Computational Framework is an open-source asynchro-
nous many-task (AMT) runtime system specializing in large-scale
simulation of fluid-structure interaction problems. These problems
are modeled by solving partial differential equations on structured
adaptive mesh refinement grids. Uintah is based upon novel tech-
niques for understanding a broad set of fluid-structure interaction
problems [4].

Uintah was initially developed by the University of Utah’s Center
for the Simulation of Accidental Fires and Explosions (C-SAFE),
which was started in 1997 through the Department of Energy’s
Advanced Simulation and Computing program. C-SAFE focused
on providing state-of-the-art, science-based tools for the numer-
ical simulation of accidental fires and explosions with emphasis
on handling and storage of highly flammable materials. The cen-
ter’s goal was to provide a software system in which fundamental
chemistry and engineering physics are fully coupled with nonlinear
solvers, optimization, computational steering, visualization, and
experimental data verification. The resulting system, Uintah, was
used to help evaluate the risks and safety issues associated with
fires and explosions in accidents involving both hydrocarbon and
energetic materials.

A key idea maintained in Uintah is that application developers
are isolated from infrastructure code. This is accomplished using
an AMT-based approach to overdecompose application code into
tasks and the computational domain into groups of individual cells,
which tasks iterate over, to increase node-level parallelism. This
approach is used to simplify development while easing the use of
the underlying hardware for application developers. For application
developers, this divide allows them to focus on writing loop-based

Porting Uintah to Heterogeneous Systems

Applications
| ARCHES | | MPM-ICE | [WASATCH |
Perf. Portability Layer (PPL) | 3P Libraries
| Intermediate PPL | | [Hypre Solver|
[Legacy Code| |[Kokkos Codel | | PIDX |

Task Graph

Runtime System

Architectures

Figure 1: Uintah Software Architecture.

tasks rather than building an understanding of low-level execution
details (e.g., data access patterns, load balancing, task scheduling).
For infrastructure developers, this divide allows for fine-tuning of
such details to be managed in a central location, reducing the need
for far-reaching changes across application code.

As shown in Figure 1, the topmost layer of Uintah, application
code, consists of simulation components such as ARCHES, which
has been the focus of Uintah’s exascale computing goals. Uintah
features four primary simulation components:

o ARCHES: This component targets the simulation of turbulent
reacting flows with participating media radiation [38].

e JCE: This component targets the simulation of both low-
speed and high-speed compressible flows [22].

e MPM: This component targets the simulation of multi-material,
particle-based structural mechanics [40].

e MPM-ICE: This component corresponds to the combination
of the ICE and MPM components for the simulation of fluid-
structure interactions [7, 8].

Application code is then decomposed into individual tasks that
correspond to, for example, physics routines that are executed on
either the host or device. Application code can make use of Uin-
tah’s intermediate portability layer [10] or third party libraries. The
resulting collection of tasks is then compiled into a task graph and
dynamically executed by the runtime system in an asynchronous
out-of-order manner with implicit work-stealing on the underly-
ing hardware. Execution is managed by the task scheduler, which
interacts with per-MPI process task queues to select and execute
ready tasks (e.g., tasks with satisfied data dependencies).

For C-SAFE, the target problem was the heating of an explosive
device placed in a large hydrocarbon pool fire and the subsequent
deflagration explosion and blast wave [29]. Following this work,
Uintah development focused on the solution of a problem that
involved the detonation of a large amount of explosives in a semi-
truck [4]. For the University of Utah’s participation in the DOE
/ NNSA PSAAP II initiative, Uintah development focused on the

PASC 22, PASC 22: ACM Symposium on Neural Gaze Detection, June 03-05, 2022, xxxx, YY

solution of a problem using large-scale simulation to predict the
performance of a commercial, 1200 MWe ultra-supercritical clean
coal boiler developed by Alstom (GE) Power. These predictions
supported the design and evaluation of an existing boiler capable
of providing power for nearly 1 million people.

For predictive boiler simulations, the ARCHES turbulent com-
bustion simulation component was used. ARCHES is a Large Eddy
Simulation (LES) code described further in [38]. This code is second-
order accurate in space and time and uses a low-Mach number, (M
<0.3), variable density formulation to model heat, mass, and mo-
mentum transport in turbulent reacting flows. The LES algorithm
used solves the filter, density-weighted, time-dependent coupled
conservation equations for mass, momentum, energy, and particle
moment equations.

The important Uintah technical advancements are described
in a series of student dissertations. Luitjen’s dissertation [24] re-
search introduced adaptive mesh refinement support. Meng’s dis-
sertation [26] research introduced dynamic task scheduling and
several task schedulers. Humphrey’s dissertation [13] research in-
troduced a scalable approach to radiation modeling. Peterson’s
dissertation [30] research introduced performant and portable GPU
support. Sahasrabudhe’s dissertation [34] research introduced a
resiliency component and other solutions aimed at addressing the
exascale challenges motivating this work.

As aresult of these advancements, Uintah has been widely ported
and used for large-scale simulation across a diverse set of leadership-
class HPC systems. For multicore systems, good scaling characteris-
tics have been demonstrated to 96K, 262K, 700K, and 700K cores on
the NSF Stampede, DOE Titan, DOE Mira, and NSF Blue Waters sys-
tems, respectively [4, 15, 27]. For GPU-based systems, good strong
scaling characteristics have been demonstrated to 16K GPUs [17]
on the DOE Titan system. For many-core systems, good strong scal-
ing characteristics have been demonstrated to 256 Knights Landing
processors on the NSF Stampede system [9] and 128 core groups
on the National Research Center of Parallel Computer Engineer-
ing and Technology (NRCPC) Sunway TaihuLight system [45]. For
standalone use of Kokkos::OpenMP, good strong scaling has been
shown to 1,728 Intel Knights Landing processors on the NSF Stam-
pede 2 system [10]. For standalone use of Kokkos::CUDA, good
strong scaling has been shown to 64 NVIDIA K20X GPUs on the
DOE Titan system [31]. For heterogeneous use of Kokkos::OpenMP
and Kokkos::CUDA, good strong scaling has been shown to 1,024
NVIDIA V100 GPUs and 512 IBM POWERY processors on the DOE
Lassen system [11].

4 VUINTAH’S PORTING APPROACH

Sections 4.1 though 4.4 discuss key successes and challenges from
Uintah’s preparation for heterogeneous systems. Additional lessons
learned can be found among details for easing indirect adoption of a
performance portability layer in large legacy codes [10] and details
for easing adoption of a heterogeneous MPI+PPL task scheduling
approach in an asynchronous many-task runtime system [11].

4.1 Use of Kokkos for Performance Portability

Uintah’s adoption of Kokkos began in 2014 [41] with a number
of Kokkos-related activities [10] pursued since. These activities

PASC 22, PASC 22: ACM Symposium on Neural Gaze Detection, June 03-05, 2022, xxxx, YY

have primarily focused on understanding where and how to add
parallelism using Kokkos abstractions. As a result, many related
efforts [9, 11, 31] have focused on understanding how Uintah’s ex-
isting task scheduling approaches change in the context of Kokkos.
More details on Uintah’s current heterogeneous MPI+PPL task
scheduling approach can be found in a recent paper [11].

One success of Uintah’s use of Kokkos has been the indirect adop-
tion of this performance portability layer [10], which has proved
beneficial in three main ways. Indirect adoption has made it possible
to (1) preserve legacy code for existing users, (2) reduce reliance on
Kokkos for new underlying programming models, and (3) further
simplify portable abstractions for non-CS application developers.
The latter has been particularly helpful for allowing application
developers to focus on science rather than learning new program-
ming models. More details on this indirect adoption approach can
be found in a recent paper [10].

One challenge for Uintah lies in its working use of Kokkos pro-
totypes that arose from early Kokkos adoption and the fast pace
at which both Kokkos and Uintah development moved. An exam-
ple of this is Uintah’s support for the asynchronous execution of
Kokkos::CUDA kernels, which currently relies on modifications to
Kokkos itself. Rather than adopt Kokkos’ latest solution, however,
early prototypes were preserved and development paths diverged.
Long-term, a better balance needs to be maintained between rapid
prototypes and production-grade solutions.

4.2 Use of MPI Endpoints for Third Party
Library Support

Uintah uses the Hypre linear solver library to solve pressure equa-
tions with billions of variables generated during simulations. Tra-
ditionally, Uintah has used Hypre in an MPI-Only setting using
one MPI process per CPU core with success scaling to 192k cores
[37]. One of the major lessons learned when moving to many-core
architectures has been how to make efficient use of Hypre with
MPI+OpenMP using MPI Endpoints (EP) and other optimizations.

One challenge for Uintah’s early use of Hypre with MPI+OpenMP
were 3x to 8x slowdowns over MPI-Only on Intel Knights Landing
(KNL) nodes. This was a result of thousands of OpenMP parallel for
loops being executed with very small workloads. Such workloads
were unable to justify synchronization costs at the end of every
such loop.

Early performance was improved by implementing a custom
lightweight parallel_for in Hypre. This lightweight parallel for
used atomic primitives and busy-waiting to achieve lock-free thread
synchronization to improve MPI+OpenMP performance by 1.5x to
3.9x. However, these improvements alone were not able to meet or
exceed MPI-Only performance.

One success for Uintah’s use of Hypre with MPI+OpenMP was
adopting MPI Endpoints (EP) and making a few other optimizations
to not only avoid slowdowns but achieve 2.4x speedups over MPI-
Only performance on 256 KNL nodes. In the MPI EP approach, every
team of OpenMP threads acts independently as if it is a separate
MPI rank (i.e., an MPI endpoint) making calls to Hypre. Smaller
team sizes reduce synchronization overhead and can exploit data
parallelism on many-core processors. This approach allows multiple
threads to participate in MPI communication instead of only the

J.K. Holmen et al.

single main thread as done by the original OpenMP implementation.
More details on this use of Hypre and MPI EP can be found in recent
papers [35, 36, 46].

4.3 Concurrent Development

The simultaneous development of challenging computational ap-
plication models and a runtime system capable of enabling scal-
able large-scale parallelism on a compressed timescale has only
been possible through "hero-programming" efforts carried out by a
multi-disciplinary team of research scientists, and students whose
backgrounds range from Computer Science and Electrical Engineer-
ing to Chemical Engineering and Mechanical Engineering. These
developers are generally either: (1) application developers focused
on large-scale science or (2) infrastructure developers focused on
supporting the science.

One success of Uintah’s concurrent multi-disciplinary develop-
ment has been good collaboration between application and infras-
tructure developers. This has led to the simplification of Uintah’s
portable abstractions to ease use for non-CS developers. An exam-
ple are application developer-guided variable accessors for Uintah’s
portable per-grid data structures. More broadly, such collaboration
has made possible very large-scale runs using INCITE allocations
and much applications-driven Computer Science research for large-
scale problems run on major HPC systems.

One challenge for Uintah’s concurrent multi-disciplinary devel-
opment has been striking a balance between application developer
focus on ease of use and infrastructure developer focus on rapid
performance portability prototypes. For example, application de-
velopers have stored input-generated variables in vectors with
different naming conventions that have made debugging difficult,
especially for race conditions. Another example is tasks being writ-
ten to cater to the science, rather than the hardware, with arithmetic
intensities making efficient resource utilization difficult. Conversely,
infrastructure developers have implemented custom solutions for
GPU asynchrony in Kokkos [31] but were unable to maintain pace
with Kokkos as such features were formally implemented. Another
example is infrastructure documentation seeing few updates dur-
ing development cycles. Nevertheless, insights provided from one
group to the other have been essential for the solution of large-scale
production-grade applications on major HPC systems.

4.4 Uintah Runtime System

Uintah uses the AMT model to increase node-level parallelism and
exploit the related task graph. Once built, Uintah’s task graph is
executed in an asynchronous out-of-order manner with implicit
work-stealing using Uintah’s underlying runtime system. Execution
is managed by the task scheduler, which interacts with per-MPI
process task queues to select and execute ready tasks (e.g., tasks
with satisfied data dependencies) and with data warehouses (DW-
House) for CPU and GPU. Figure 2 shows the logic forming Uintah’s
heterogeneous task scheduler.

In Figure 2, parallel lines connecting steps (1) through (9) cor-
respond to individual task executors. Here, a task executor cor-
responds to the resources assigned for individual task execution
(e.g., cores). Typically, Uintah simulations are run with many task
executors using few threads per task executor rather than few task

Porting Uintah to Heterogeneous Systems

PASC 22, PASC 22: ACM Symposium on Neural Gaze Detection, June 03-05, 2022, xxxx, YY

——3Task Executer Threads == Tasks push and pop < Data Flow < GPU Streams [__] Task Control Flow [_JTask queue = Datawarehouse

| Async transfer

Overlap com
v P P overlaps copy

. Multiple

~ and comm
and comp cpu fhrgads . Dataflow Async offload using multiple
LLELSEICT runnine in guarded by “ streams keeps GPU busy and
parallel coherency frees CPU thread
protocol
@) —
S M
2. Async H2D copies 3. Check Tasks with 4}" E:te%‘l'te
for MPI ready tasks* copies completed ‘_)I_ ak @
MPI asks

Completed

A

7. Check Tasks with
copies completed

9. MPI Test
and process

I H2D Tasks I I GPU Ready
Tasks queue queue Tasks
1 queue

e —
CPUDWHouse —)| GPU DWHouse

6. Async D2H copies
for completed Tasks

In CPU tasks
Progress
Tasks
Queue

5. Check for
completed tasks

* If needed, depending on the dependencies / ghost cells

I D2H Tasks I I Completed I
Queue Tasks

Queue

Figure 2: Uintah’s heterogeneous task scheduling logic.

executors using many threads per task executor. This is done to
avoid performance penalties for tasks that don’t scale well. Once
MPI receives have been posted, execution iterates over steps (2)
through (9) until all tasks have been executed.

A key limitation of Uintah’s current heterogeneous task sched-
uler is that it makes use of raw CUDA, which must be replaced
with portable alternatives for forthcoming exascale systems. Specif-
ically, cudaStream, cudaMemcpyAsync, and cudaStreamQuery are
used. Steps (2) and (6) make use of cudaMemcpyAsync for asyn-
chronous host-to-device (H2D) and device-to-host (D2H) transfers.
Steps (3), (5), and (7) make use of cudaStreamQuery to check the
status of transfers. While limited, this use was unavoidable due to
the maturity of Kokkos at the time of early adoption.

5 UINTAH EXASCALE TARGET
BENCHMARKS

The evolution of Uintah’s runtime system for anticipated exascale
systems requires suitable evaluation benchmarks. The benchmarks
described here come from the PSAAP II large-scale simulation
used to predict the performance of a commercial, 1200 MWe ultra-
supercritical clean coal boiler developed by Alstom (GE) Power.
CCMSC predictive boiler simulations have been made possible
through the use of the reacting, large eddy simulation (LES)-based
codes in Uintah and large HPC systems such as the NSF Stampede,
DOE Mira, and DOE Titan systems. Intermediate simulations have
used available HPC systems to simulate computational domains
at lower resolutions for feasibility. Spatial and temporal require-
ments for target simulations produce problems 50 to 1,000 times
larger than solved today and have been considered good exascale

candidates. For example, approximately 9 trillion cells are needed
to simulate such a boiler to 1-millimeter resolution.

However, the full boiler problem is presently challenging given
the sheer complexity of the code, the timescales, and the demanding
nature of the application. For this reason, a representative bench-
mark that exercises the core components of the boiler problem
was constructed. This benchmark consists of two representative
problems. For feasibility, this benchmark does not feature some of
ARCHES most complex loops, such as those in CharOx, which has
been previously evaluated in [10]. Though not included here, we’ve
established how to run well with such loops [10] and can revisit
such analysis when moving to more complex problems.

Strong-scaling studies in Section 6.3 will use the resulting bench-
mark problems to uniquely stress different portions of three in-
dividually ported codes: (1) Uintah’s ARCHES turbulent combus-
tion simulation component, (2) Uintah’s standalone linear solver
using LLNL’s hypre, and (3) Uintah’s standalone reverse Monte-
Carlo tracing (RMCRT) radiation model. These codes are central
to both CCMSC boiler simulations and subsequent combustion
research. Note, demonstrations of weak-scaling for these codes
can be found in past studies [13, 23, 37]. For (2), hypre’s precondi-
tioned conjugate gradient (PCG) solver was used with a parallel
semi-coarsening multigrid solver as the preconditioner. For RMCRT,
weak-scaling is possible through use of aggressive mesh refinement
to reduce communication requirements. For both problems, single-
source implementations with underlying support for legacy serial
loops and Kokkos-based data parallel loops for Kokkos::OpenMP
and Kokkos::CUDA were used. Additionally, a modified version
of Kokkos implementing recently published techniques [31] for
improving GPU-based performance of Kokkos was used.

PASC 22, PASC 22: ACM Symposium on Neural Gaze Detection, June 03-05, 2022, xxxx, YY

5.1 Turbulent Combustion Helium Plume
Problems

The first problem, a helium plume, demonstrates portable interop-
erability of (1) and (2) on a single-level structured grid. For this
problem, the hypre pressure solve consumes 50-70% of execution
time.

Helium plume problems played a key role in CCMSC efforts
for their ability to validate ARCHES using problems with charac-
teristics representative of a real fire but without introducing the
complexities of combustion[37]. The problem used here consists of
125 unique portable loops individually using up to 17 variables with
complex interconnectedness. Underlying Kokkos functionality used
among loops include Kokkos::parallel_for, Kokkos::parallel_reduce,
and Kokkos::View. A key feature making this an important problem
for validating Uintah’s heterogeneous MPI+Kokkos task scheduler
is the large numbers of unique portable loops and variables in flight
during execution. This is helpful for ensuring robustness due to the
long and complex data dependency sequences generated by these
loops (e.g., variables computed on the host, modified on the device,
and later required on the host). Note, there are domain decomposi-
tion and run configuration dependent multipliers on unique loops
not reflected in counts above.

5.2 Radiation Modeling

The second problem, a modified Burns and Christon benchmark,
demonstrates portable interoperability of (1), (2), and (3) on a 2-level
structured adaptive mesh refinement grid. For this problem, the
hypre pressure solve consumes sub-5% of execution time.

Uintah’s 2-level reverse Monte-Carlo ray tracing (RMCRT) ra-
diation model [15] also played a key role in CCMSC boiler sim-
ulations, where radiation is the dominant mode of heat transfer.
The problem used here modifies the ARCHES’ Burns and Chris-
ton benchmark problem to incorporate a pressure solve, requir-
ing use of hypre, and consists of 19 unique portable loops indi-
vidually using up to 28 variables with complex interconnected-
ness. Underlying Kokkos functionality used among loops include
Kokkos::parallel_for, Kokkos::parallel_reduce, Kokkos::View, and
Kokkos_Random. A key feature making this an important problem
for validating Uintah’s heterogeneous MPI+Kokkos task scheduler
is the ability to simultaneously stress interoperability of ARCHES,
hypre, and RMCRT while also stressing Uintah’s adaptive mesh
refinement support. This is helpful for ensuring robustness due to
the complex hand-offs that take place between these codes (e.g.,
shared data dependencies). Note, there are domain decomposition
and run configuration dependent multipliers on unique loops not
reflected in counts above.

6 STRONG-SCALING STUDIES

Strong-scaling studies make use of both the DOE Summit and NSF
Frontera systems. Long-term, Uintah also aims to support the exas-
cale DOE Frontier, Aurora, and El Capitan systems. These systems
are similar to Summit in that each is a heterogeneous system with
multiple GPUs per node. The DOE Aurora system features Intel-
based GPUs. The DOE El Capitan and Frontier systems feature
AMD-based GPUs. For this reason, performance portability is im-
portant for easing transitions between systems.

J.K. Holmen et al.

6.1 Summit

The DOE Summit is a 200 petaflop system maintained at Oak Ridge
National Laboratory’s Leadership Computing Facility (OLCF). As of
November 2021, Summit ranks at #2 on the Top500 list [39]. Summit
consists of 4,608 compute nodes featuring two IBM POWERS pro-
cessors with 22 cores each, six NVIDIA Volta V100 GPUs with 80
streaming multiprocessors and 16 GB of HBM2 each, and 512 GB of
DDR4 per node. In total, Summit features 27,648 GPUs and 202,752
CPU cores. The system has a peak power consumption of 13 MW
and is interconnected by a Mellanox Infiniband EDR interconnect.

6.2 Frontera

The NSF Frontera is a 38 petaflop system maintained at the Univer-
sity of Texas at Austin’s Texas Advanced Computing Center (TACC).
As of November 2021, Frontera ranks at #13 on the Top500 list [39].
Frontera consists of 8,008 compute nodes featuring two Intel Xeon
Platinum 8280 processors with 28 cores each and 192 GB of DDR4
per node. In total, Frontera features 448,448 CPU cores. The system
has a peak power consumption of 6 MW and is interconnected by
a Mellanox Infiniband HDR interconnect.

6.3 Scaling Experiments

For the DOE Summit and NSF Frontera systems, these studies ex-
plored varying domain decomposition approaches using problems
sized to fill Summit’s 64 GB per-node memory footprint of HBM2.
Note, additional demonstration of portable capabilities can be found
among MPI+Kokkos::OpenMP results [10] gathered on the NSF
Stampede 2 system and MPI+Kokkos::OpenMP+Kokkos::CUDA re-
sults [11] gathered on the DOE Lassen system.

For Summit, simulations were launched using 6 MPI processes
per node. Within an MPI process, 7 OpenMP threads were used to
simultaneously launch and execute loops across: (1) 7 cores using
1 core and 1 SMT thread per loop for Kokkos::OpenMP and (2)
1 V100 using 1 CUDA stream and 256 CUDA blocks per loop for
Kokkos::CUDA with 256 CUDA threads per block. For Frontera,
simulations were launched using both 1 MPI process per node to
execute loops using 28 cores per loop and 56 MPI processes per
node to execute loops using 1 core per loop.

The simulation domain is decomposed into a collection of patches,
which are distributed across MPI processes. Here, a patch refers to
the collection of cells executed by a loop. The modified Burns and
Chrison benchmark problem also uses adaptive mesh refinement
(AMR) to coarsen/refine patches [16]. Domain decomposition and,
thus, patch size is user-specified at run-time and remains fixed
throughout the simulation.

Problems were sized to provide each MPI process with at least
1 patch in all data points shown. Note, larger patch sizes result in
fewer patches being available to distribute across MPI processes and
results in fewer strong-scaling data points. Reported per-timestep
timings measure the simultaneous execution of all loops in a given
timestep. Results have been averaged over 7 consecutive timesteps.

Figure 3 shows strong-scaling results across DOE Summit nodes
for the helium plume problem on a single-level structured grid. Re-
sults were gathered using MPI+Kokkos::OpenMP+Kokkos::CUDA
for three problem sizes (7683, 15363, and 30723 cells) and two patch
sizes (647, and 128> cells per patch). Note for all problem sizes,

Porting Uintah to Heterogeneous Systems

Helium Plume - Strong Scaling
Arches - Hypre
OLCF - Summit System

MPI+Kokkos: 1 GRU and 7 Threads per MPI Process;

Averaged over 7 Timesteps
\\\ \\
Ideal

768° Cells; 64° Patches
768° Cells; 128° Patches

T~

Mean Time Per Timestep (s)

1536° Cells; 64% Patches —
o1 1536 Cells; 128° Patches ~ —4—
" 3072° Cells; 64° Patches —
| | 3072° Cells; 128° Patches . —4—
48 926 192 384 768 1536 3072 6144 12.2K 24.5K
336 672 1344 2688 5376 10.7K 21.5K 43.0K 86.0K 172K
V100 GPUs

CPU Threads

Figure 3: Helium plume run to 24,576 V100 GPUs and 8,192
POWERS processors using MPI+Kokkos.

individual patches were combined to a single patch when passed

to hypre for execution using CUDA. This is done to allow Uintah

to make performant use of hypre as recently demonstrated in [36].

Figure 4 shows strong-scaling results across DOE Summit nodes

for the modified Burns and Christon benchmark problem on a

2-level structured adaptive mesh refinement grid. Results were
Modified Burns and Christon Benchmark - Strong Scaling

Arches - Hypre - 2-level RMCRT
OLCF - Summit System

MPI+Kokkos: 1 GPU and 7 Threads per MPI Process
1000 |--BR:4...100 Rays per;Cell

Averaged over 7 Timesteps \

AN

S

Ideal
768° Cells; 64° Patches

1536° Cells; 64° Patches = —o—
3072° Cells; 64° Patches —e—

Mean Time Per Timestep (s)

48 96 192 384 768 1536 3072 6144 12.2K 24.5K
336 672 1344 2688 5376 10.7K 21.5K 43.0K 86.0K 172K
V100 GPUs

CPU Threads

Figure 4: Modified Burns and Christon benchmark run to
12,288 V100 GPUs and 4,096 POWER9 processors using
MPI+Kokkos.

gathered using MPI+Kokkos::OpenMP+Kokkos::CUDA for three
problem sizes (7683, 15363, and 30723 cells on the fine mesh with
1923, 3843, and 768> cells on the coarse mesh, respectively) and
one fine mesh patch size (64> cells per fine mesh patch). Note for
all problem sizes, individual patches were combined to a single
patch when passed to hypre for execution using CUDA. This is
done to allow Uintah to make performant use of hypre as recently
demonstrated in [36]. For MPI+CUDA comparisons, see related
MPI+CUDA and MPI+Kokkos::CUDA comparisons [10, 31] gath-
ered on a single node and the DOE Titan system, respectively.
Figure 5 shows strong-scaling results across NSF Frontera nodes
for the helium plume problem on a single-level structured grid. Re-
sults were gathered using MPI+Kokkos::OpenMP for three problem

PASC 22, PASC 22: ACM Symposium on Neural Gaze Detection, June 03-05, 2022, xxxx, YY

4
3.39 Problem sizes:
3 —e— 2563
5123
< —e— 10243
% 2.0
o 2
£ 1.64
= 1.45
w
2
S 07 103
Q1 0.88
n 0.82
0.6
™ ® © Vv > > © 2 D > ©
Mo e 9 g

Number of Nodes

Figure 5: Helium plume run to 8,192 Cascade Lake proces-
sors using MPI+Kokkos.

sizes (2563, 5123, and 10243 cells) and one patch size (32 cells per
patch). It should be noted that the relatively poor scaling perfor-
mance is due to lock contention on shared variable access. This is
attributed to imbalance in the ratio between patch/task count and
simultaneously executing tasks. Specifically, the run configuration
results in too few simultaneously executing tasks.

Figure 6 shows strong-scaling results across NSF Frontera nodes
for the helium plume problem on a single-level structured grid.
Results were gathered using MPI+Only for three problem sizes

1
Problem sizes:
0.64 —e— 2563
0.6 5123
9] —e— 10243
et
w
[0}
£
[
—
3 0.2
c
o
o
()
(%]
0.1
0.06 ™ £ © v > > © 2 ™ > ©
~ > © ~V q‘:’) &Y \'Qﬁ, ’19& b(Qq

Number of Nodes

Figure 6: Helium plume run to 8,192 Cascade Lake proces-
sors using MPI-Only.

(2563, 5123, and 1024° cells) and one patch size (323 cells per patch).
Note, this problem uses Uintah’s dynamic MPI task scheduler and
executes individual task serially. As such, this does not use Uintah’s
Kokkos support.

Figure 7 shows strong-scaling results across NSF Frontera nodes
for the modified Burns and Christon benchmark problem on a
2-level structured adaptive mesh refinement grid. Results were
gathered using MPI+Kokkos::OpenMP for three problem sizes (256,
5123, and 10243 cells on the fine mesh with 643, 1283, and 2563 cells
on the coarse mesh, respectively) and one fine mesh patch sizes
(323 cells per fine mesh patch).

PASC 22, PASC 22: ACM Symposium on Neural Gaze Detection, June 03-05, 2022, xxxx, YY

500
269.8
200 139.6
a 109
%100 722
] 53.9
£ 50
(= 26.9
3 20 14.9
s 10
193
3 10 Problem sizes:
4.5 —e— 2563
5 31 5122
—e— 10243
2
™ E) © 4% > > © 2 ™ Q ©
R AR A N

Number of Nodes

Figure 7: Modified Burns and Christon benchmark run to
8,192 Cascade Lake processors using MPI+Kokkos.

Results presented in Figure 3 show that good strong-scaling to
24,576 GPUs is possible using MPI+Kokkos at scale. This quantity
is 24x greater than past results [11] gathered on the DOE Lassen
system, which demonstrated good strong-scaling with MPI+Kokkos
to 1,024 GPUs. This capability increase has been achieved using
a single-source implementation and changing only the size of the
simulation domain (i.e., to provide more patches to accommodate
more GPUs). This is encouraging as it demonstrates the ease with
which the asynchronous many-task model can be used to scale out
across larger systems. This suggests that Uintah is well-prepared for
forthcoming exascale systems as the increase in GPU quantities is
anticipated to be on the order of a single-digit multiplier. However,
a substantial effort is needed to port Uintah to other underlying
programming models supported by exascale systems.

Results presented in Figure 4 show that for a compute-dominant
problem it is possible to achieve good strong-scaling across hetero-
geneous nodes using an asynchronous many-task model. Results
presented in Figure 3 show that for a communication-dominant
problem it can be difficult to achieve performance across heteroge-
neous nodes using an asynchronous many-task model. This is not
unexpected given the additional overheads (i.e., for data movement)
incurred between the host and device on such nodes. As shown
in Figure 3, offloading fewer, yet larger, patches to the device can
be used to improve node-level performance at the expense of re-
ductions in strong-scaling efficiency for communication-dominant
problems. These results suggests that care must be taken when
using an asynchronous many-task model on heterogeneous nodes.
Though performance improvements are achievable when using the
full node, performance reductions are also possible when overde-
composing a simulation domain too far.

Comparing results in Figure 5 to Figure 6 shows that it’s possible
for an MPI-only approach to outperform MPI+Kokkos. This is not
unexpected given the nature of the loops in the helium plume
problem. This is attributed to the run configuration used with
the MPI+Kokkos scheduler and individual tasks being run across
multiple cores. Specifically, the many lightweight tasks forming
the helium plume problem scale poorly across cores as similarly
seen in [10]. Though a poor run configuration was selected for

J.K. Holmen et al.

MPI+Kokkos runs, this result is encouraging as the runs were per-
formed by a new user who was able to make quick use of the new
scheduler. This outcome reinforces that care must be taken when
selecting a task scheduler and run configuration to ensure that effi-
cient use of a node is made. For example, earlier experiments [36]
showed that the larger patches (e.g., 64° or 128%) are required to
provide enough GPU workload to justify data transfer between
CPU and GPU. However, larger patches result in fewer patches to
distribute across MPI processes. For this reason, CPU-based simu-
lations, especially those using the MPI-only approach, are run with
smaller patches (e.g.,16% or 32°) to provide enough work for cores.
Comparing 8 node runs in Figure 3 to Figure 6, Summit nodes
perform approximately 11.5x faster for the helium plume problem
when accounting for the larger problem size on Summit. Compar-
ing 8 node runs in Figure 4 to Figure 7, Summit nodes performance
approximately 7.5x faster for the modified Burns and Christon
benchmark when accounting for the larger problem size on Sum-
mit. This is in line with theoretical peak performance across sys-
tems. Note, care must be taken when selecting a scheduler and run
configuration to ensure that efficient use of a node is made.

7 MOVING UINTAH TO EXASCALE

A key limitation of Uintah’s current exascale preparation is that its
portable GPU infrastructure depends on use of the Kokkos::CUDA
back-end. This is a result of incrementally porting Uintah’s exten-
sive pre-existing CUDA-based infrastructure to Kokkos rather than
designing new infrastructure with other back-ends in mind. Im-
mediate next steps for continuing Uintah’s exascale preparation
are in three areas: (1) updating Uintah’s use of hypre and Kokkos,
(2) improving portability of Uintah’s heterogeneous MPI+PPL task
scheduling approach, and (3) generalizing Uintah’s intermediate
portability layer.

7.1 Updating Third Party Library Use

Uintah relies on dated hypre and Kokkos releases. Use of fixed stable
releases has helped keep Uintah’s Kokkos::CUDA-related research
moving quickly and made easy preserving custom modifications to
both libraries. An example of such modifications are Uintah’s up-
dates to Kokkos for GPU asynchrony [31], which pre-dated Kokkos
instances. Reliance on dated releases, however, has been problem-
atic when attempting to move to other Kokkos back-ends as updates
are now non-trivial. This effort aims to update Uintah’s use of hypre
and Kokkos to the latest releases and removing reliance on custom
modifications where possible.

7.2 Portable Task Scheduling

Uintah’s heterogeneous MPI+Kokkos task scheduler is not wholly
portable. While individual tasks themselves are portable, task ex-
ecutor logic used to schedule and execute tasks makes use of
raw CUDA (e.g., cudaStream, cudaMemcpyAsync, and cudaStream-
Query). While limited, this use was unavoidable due to the func-
tionality used and maturity of Kokkos at the time of early adoption.

This effort aims to generalize task executor logic in Uintah’s
heterogeneous MPI+Kokkos task scheduler to allow other back-
ends to be used on the device (e.g., Kokkos::OpenMPTarget). This
may be achievable using Kokkos instance functionality to replace

Porting Uintah to Heterogeneous Systems

the use of cudaStream objects. As a part of this, portable alternatives
for initiating asynchronous host-to-device transfers and checking
if a transfer is complete are also needed. Such generalization has
the potential to improve the speed with which Uintah can run on
new systems requiring different underlying programming models
(e.g., Kokkos::OpenMPTarget for the Intel-based GPUs to appear in
the DOE Aurora system).

The key challenge for this effort will be identifying portable
abstractions suitable for scheduling and executing portable tasks
across a diverse set of underlying programming models. This adds
new complexity for scenarios where underlying programming mod-
els offer unique abstractions not found in others. A risk associated
with this effort is that underlying programming models are too
dissimilar and portable abstractions are not feasible. Accomplishing
this will pave the way for defining AMT-related portable abstrac-
tions for task scheduling and execution (e.g., to help refine Kokkos’
HPX functionality).

7.3 Generalizing Uintah’s Portability Layer

Uintah’s intermediate portability layer is limited to the use of
Kokkos::OpenMP and Kokkos::CUDA back-ends for the host and de-
vice, respectively. While this eased rapid development, hard-coded
use of Kokkos back-ends hindered Uintah’s long-term portability
to exascale systems requiring different back-ends for the device
(e.g., Kokkos::OpenMPTarget). This hard coding was unavoidable
due to the complexity of Uintah’s infrastructure, use of raw CUDA
for GPU-specific paths of execution, and maturity of Kokkos at the
time of early adoption.

This effort aims to extend Uintah’s intermediate portability layer
to additionally support Kokkos’ default host and device execution
spaces. This may be achievable by extending Uintah’s task tagging
system to support two new tags for default spaces and porting both
application code and infrastructure code using tags to support the
newly added tags. As a part of this, Uintah’s support for multiple
build configurations would also need to be extended to ensure that
standardized preprocessor macros used throughout Uintah to man-
age back-end specific paths of execution are managed correctly.
Such an extension has the potential to improve the speed with
which Uintah can run on new systems requiring different under-
lying programming models (e.g., Kokkos::OpenMPTarget for the
Intel-based GPUs to appear in the DOE Aurora system).

The key challenge for this effort will be understanding how to
generalize Uintah’s data structures and related infrastructure to
support arbitrary memory spaces. This adds new complexity due
to Uintah’s many convenience mechanisms for managing data (e.g.,
specialized data types) and use of raw CUDA for GPU support. A
risk associated with this effort is that mixing hard-coded use of back-
ends and default back-ends makes specialized paths of execution
unintuitive for the user (i.e., application developers). Accomplishing
this will pave the way for faster prototyping when new underlying
programming models are available for use in Kokkos (e.g., to help
stress test Kokkos itself).

7.4 Task Granularity

In Uintah, task granularity is left to the discretion of the applica-
tion developer, who typically comes from a non-CS background.

PASC 22, PASC 22: ACM Symposium on Neural Gaze Detection, June 03-05, 2022, xxxx, YY

Tasks are often written to cater to the science rather than the un-
derlying hardware. ARCHES, for example, consists primarily of low
arithmetic intensity loops featuring single-digit lines of code. It is
difficult to make good use of OpenMP with such such low intensity
loops and this calls for a refactoring of application code.

8 CONCLUSIONS

This study has helped demonstrate Uintah’s preparedness for the
diverse heterogeneous systems accompanying exascale comput-
ing. In summary, the work described here provides a foundation
for Uintah’s portable exascale use. While exascale ports will be
lengthy and challenging for such a large code, subsequent ports
will hopefully be easier long-term.

This preparedness has been made possible by use of the asyn-
chronous many-task model, our integration of Kokkos within Uin-
tah, and use of MPI endpoints for third party libraries. Scaling
capabilities have been shown for two benchmarks using Uintah’s
MPI+Kokkos scheduler [11] and the accompanying portable abstrac-
tions [10] to execute workloads representative of typical Uintah
applications. At scale, good strong-scaling to 24,576 NVIDIA V100
GPUs and 8,192 IBM POWER9 processors has been achieved using
MPI+Kokkos::OpenMP+Kokkos::CUDA.

The portability shown here offers encouragement as we prepare
to make portable use of the DOE Aurora system. Next steps include
generalizing CUDA-specific code used in Uintah’s heterogeneous
MPI+Kokkos task scheduler to achieve more portable task schedul-
ing for the Intel- and AMD-based GPUs anticipated in forthcoming
exascale systems. As a part of this, emphasis will be placed on
extending Uintah’s intermediate portability layer [10] to support
Kokkos’ default host and device spaces to make quicker use of un-
derlying programming models. Another important step will be to
refactor ARCHES loops in the helium plume code and elsewhere to
increase their computational intensity.

ACKNOWLEDGMENTS

This material is based upon work originally supported by the De-
partment of Energy, National Nuclear Security Administration,
under Award Number(s) DE-NA0002375. This research used re-
sources of the Oak Ridge National Laboratory through support of
the DOE Aurora project and the NSF Texas Advanced Comput-
ing Center. Support for J. K. Holmen and D. Sahasrabudhe comes
from the University of Texas at Austin under Award Number(s)
UTA19-001215 and a gift from the Intel Parallel Computing Centers
Program. We would like to thank all involved with the CCMSC
and Uintah, past and present, with special thanks to Brad Peter-
son, Jeremy Thornock, Derek Harris, Oscar Diaz-Ibarra, and Todd
Harman for Kokkos-related ARCHES efforts.

REFERENCES

[1] Argonne Leadership
https://aurora.alcf.anl.gov/.

[2] C. Augonnet, S. Thibault, R. Namyst, and P. A. Wacrenier. 2011. StarPU: a
unified platform for task scheduling on heterogeneous multicore architectures.
Concurrency and Computation: Practice and Experience 23, 2 (2011), 187-198.

[3] M Bauer, S Treichler, E Slaughter, and A. Aiken. 2012. Legion: Expressing locality
and independence with logical regions. In Proceedings of the international con-
ference on high performance computing, networking, storage and analysis. IEEE
Computer Society Press, 66.

Computing Facility. ~ 2019. Aurora.

PASC 22, PASC 22: ACM Symposium on Neural Gaze Detection, June 03-05, 2022, xxxx, YY

(4]

[10]

[11]

[12]

[13]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

M. Berzins, J. Beckvermit, T. Harman, A. Bezdjian, A. Humphrey, Q. Meng, J.
Schmidt, and C. Wight. 2016. Extending the Uintah Framework through the
Petascale Modeling of Detonation in Arrays of High Explosive Devices. SIAM
Journal on Scientific Computing 38, 5 (2016), 101-122.

G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J. Dongarra.
2013. PaRSEC: Exploiting Heterogeneity to Enhance Scalability. Computing in
Science Engineering 15, 6 (Nov 2013), 36-45.

H. C. Edwards, C. R. Trott, and D. Sunderland. 2014. Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns. . Parallel
and Distrib. Comput. 74, 12 (2014), 3202 - 3216.

J. E. Guilkey, T. Harman, A. Xia, B. Kashiwa, and P. McMurtry. 2003. An Eulerian-
Lagrangian approach for large deformation fluid structure interaction problems,
Part 1: algorithm development. WIT Transactions on The Built Environment 71
(2003).

T. Harman, J. E. Guilkey, B. Kashiwa, J. Schmidt, and P. McMurtry. 2003. An
Eulerian-Lagrangian Approach For Large Deformation Fluid Structure Interaction
Problems, Part 2: Multi-physics Simulations Within A Modem Computational
Framework. WIT Transactions on The Built Environment 71 (2003).

JKHolmen, A Humphrey, D Sunderland, and M Berzins. 2017. Improving Uintah’s
Scalability Through the Use of Portable Kokkos-Based Data Parallel Tasks. In
Proceedings of the Practice and Experience in Advanced Research Computing 2017
on Sustainability, Success and Impact (New Orleans, LA, USA) (PEARC17). ACM,
New York, NY, USA, Article 27, 27:1-27:8 pages.

J. K. Holmen, B. Peterson, and M. Berzins. 2019. An Approach for Indirectly Adopt-
ing a Performance Portability Layer in Large Legacy Codes. In 2019 IEEE/ACM In-
ternational Workshop on Performance, Portability and Productivity in HPC (P3HPC)
(Denver, CO, USA). 36-49. https://doi.org/10.1109/P3HPC49587.2019.00009

J. K. Holmen, D. Sahasrabudhe, and M. Berzins. 2021. A Heterogeneous MPI+PPL
Task Scheduling Approach for Asynchronous Many-Task Runtime Systems. In
Proceedings of the Practice and Experience in Advanced Research Computing 2021
on Sustainability, Success and Impact (PEARC21). ACM.

R. D Hornung and J. A. Keasler. 2014. The RAJA portability layer: overview
and status. Technical Report. Lawrence Livermore National Laboratory (LLNL),
Livermore, CA.

A. Humphrey. 2019. Scalable Asynchronous Many-Task Runtime Solutions to
Globally Coupled Problems. Ph.D. Dissertation. School of Computing, University
of Utah. http://www.sci.utah.edu/publications/Hum2019a/AlanHumphrey_phd_
thesis_FINAL_2019.pdf

A. Humphrey and M. Berzins. 2019. An Evaluation of An Asynchronous Task
Based Dataflow Approach For Uintah. In 2019 IEEE 43rd Annual Computer Software
and Applications Conference (COMPSAC), Vol. 2. 652-657.

A. Humpbhrey, T. Harman, M. Berzins, and P. Smith. 2015. A Scalable Algorithm
for Radiative Heat Transfer Using Reverse Monte Carlo Ray Tracing. In High
Performance Computing, Julian M. Kunkel and Thomas Ludwig (Eds.). Lecture
Notes in Computer Science, Vol. 9137. Springer International Publishing, 212—
230.

A. Humphrey, Q. Meng, M. Berzins, and T. Harman. 2012. Radiation Modeling
Using the Uintah Heterogeneous CPU/GPU Runtime System. In Proceedings of
the first conference of the Extreme Science and Engineering Discovery Environment
(XSEDE’12). Association for Computing Machinery.

A. Humphrey, D. Sunderland, T. Harman, and M. Berzins. 2016. Radiative Heat
Transfer Calculation on 16384 GPUs Using a Reverse Monte Carlo Ray Tracing
Approach with Adaptive Mesh Refinement. In 2016 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). 1222-1231.

C. Lochbaum J. L. Kelly Jr. and V. A. Vyssotsky. 1961. A block diagram compiler.
Bell System Tech. J. 40, 3 (1961), 669-678.

A. Johnson. 2020. Area Exam: General-Purpose Performance Portable Program-
ming Models for Productive Exascale Computing. (2020).

H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey. 2014. HPX: A Task
Based Programming Model in a Global Address Space. In Proceedings of the 8th
International Conference on Partitioned Global Address Space Programming Models
(Eugene, OR, USA) (PGAS ’14). ACM, New York, NY, USA, Article 6, 11 pages.
L. V Kale and S. Krishnan. 1993. CHARM++: A Portable Concurrent Object
Oriented System Based on C++. In Proceedings of the Eighth Annual Conference on
Object-oriented Programming Systems, Languages, and Applications (Washington,
D.C., USA) (OOPSLA ’93). ACM, New York, NY, USA, 91-108.

B Kashiwa and E Gaffney. 2003. Design Basis for CFDLIB, Tech. Rep. LA-UR-03-
1295. (2003).

S.Kumar, A. Humphrey, W. Usher, S. Petruzza, B. Peterson, J. A. Schmidt, D. Harris,
B. Isaac, J. Thornock, T. Harman, V. Pascucci, , and M. Berzins. 2018. Scalable
Data Management of the Uintah Simulation Framework for Next-Generation
Engineering Problems with Radiation. In Supercomputing Frontiers, Rio Yokota
and Weigang Wu (Eds.). Springer International Publishing, 219-240. https:
//doi.org/10.1007/978-3-319-69953-0_13

J.P. Luitjens. 2011. The Scalability of Parallel Adaptive Mesh Refinement Within
Uintah. Ph.D. Dissertation. School of Computing, University of Utah. http://
www.sci.utah.edu/publications/Lui2011b/JLuitjens_PhDThesis2011.pdf Advisor:
Martin Berzins.

[25]

[26

[27]

(28]

(30]

(31]

(32]

[34

(35]

[36]

[38

[39

[40

(41

[42

[43

[44

[46]

J.K. Holmen et al.

D. S. Medina, A. St-Cyr, and T. Warburton. 2014. OCCA: A unified approach to
multi-threading languages. arXiv preprint arXiv:1403.0968 (2014).

Q. Meng. 2014. Large-Scale Distributed Runtime System for DAG-Based Compu-
tational Framework. Ph.D. Dissertation. University of Utah, Salt Lake City, UT,
USA.

Q. Meng, A. Humphrey, J. Schmidt, and M. Berzins. 2013. Investigating Appli-
cations Portability with the Uintah DAG-based Runtime System on PetaScale
Supercomputers. In Proceedings of SC13: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. 96:1-96:12.
Oak Ridge Leadership Computing Facility. 2019.
https://www.olcf.ornl.gov/frontier/.

S.G. Parker. 2006. A Component-Based Architecture for Parallel Multi-physics
PDE Simulation. Future Generation Computer Systems (FGCS) 22, 1-2 (2006),
204-216.

B. Peterson. 2019. Portable and Performant GPU/Heterogeneous Asynchronous
Many-task Runtime System. Ph.D. Dissertation. University of Utah, School
of Computing. http://www.sci.utah.edu/publications/Pet2019a/bradpeterson-
thesis.pdf

B. Peterson, A. Humphrey, J. K. Holmen, T. Harman, M. Berzins, D. Sunderland,
and H. C. Edwards. 2018. Demonstrating GPU Code Portability and Scalability
for Radiative Heat Transfer Computations. Journal of Computational Science 27
(2018), 303-319

J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner, J. Pennycook, and X. Tian.
2021. Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous
Systems using C++ and SYCL. Springer Nature.

M. Rovatsou, L. Howes, and R. Keryell. 2019. Khronos Group SYCL 2020 Specifica-
tion. https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf.
D. Sahasrabudhe. 2021. ENHANCING ASYNCHRONOUS MANY-TASK RUNTIME
SYSTEMS FOR NEXT-GENERATION ARCHITECTURES AND EXASCALE SUPER-
COMPUTERS. Ph.D. Dissertation. University of Utah, Salt Lake City, UT, USA,
School of Computing.

D. Sahasrabudhe and M. Berzins. 2020. Improving Performance of the Hypre
Iterative Solver for Uintah Combustion Codes on Manycore Architectures Using
MPI Endpoints and Kernel Consolidation. In Computational Science — ICCS 2020.
Springer International Publishing, Cham, 175-190.

D. Sahasrabudhe, R. Zambre, A. Chandramowlishwaran, and M. Berzins. 2021.
Optimizing the hypre solver for manycore and GPU architectures. Journal of
Computational Science 49 (2021), 101279. https://doi.org/10.1016/j.jocs.2020.
101279

J. Schmidt, M. Berzins, J. Thornock, T. Saad, and J. Sutherland. 2013. Large Scale
Parallel Solution of Incompressible Flow Problems using Uintah and hypre. In 2013
13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid). 458-465. https://doi.org/10.1109/CCGrid.2013.10

P.J. Smith, R.Rawat, J. Spinti, S. Kumar, S. Borodai, and A. Violi. 2003. Large eddy
simulations of accidental fires using massively parallel computers. In 16th AIAA
Computational Fluid Dynamics Conference. 3697.

E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer. 2021. November 2021 | TOP
500. https://top500.org/lists/top500/2021/11/.

D. Sulsky, Z. Chen, and H. L. Schreyer. 1994. A particle method for history-
dependent materials. Computer methods in applied mechanics and engineering
118, 1-2 (1994), 179-196.

D. Sunderland, B. Peterson, J. Schmidt, A. Humphrey, J. Thornock, and M. Berzins.
2016. An Overview of Performance Portability in the Uintah Runtime System
Through the Use of Kokkos. In Proceedings of the Second Internationsl Workshop
on Extreme Scale Programming Models and Middleware (Salt Lake City, Utah)
(ESPM2). IEEE Press, Piscataway, NJ, USA, 44-47.

W. R. Sutherlandr. 1966. The On-line Graphical Specification of Computer Proce-
dures. Ph.D. Dissertation. MIT.

R. L. Rivest T.H. Cormen, C. E. Leiserson and C. Stein. 2009. Introduction to
Algorithms, Third Edition. MIT Press, Boston Mass.

C. Trott. 2018. Apps Using Kokkos. https://github.com/kokkos/kokkos/issues/1950.
Z.Yang, D. Sahasrabudhe, A. Humphrey, and M. Berzins. 2018. A Preliminary
Port and Evaluation of the Uintah AMT Runtime on Sunway TaihuLight. In 9th
IEEE International Workshop on Parallel and Distributed Scientific and Engineering
Computing (PDSEC 2018). IEEE.

R. Zambre, D. Sahasrabudhe, H. Zhou, M. Berzins, A. Chandramowlishwaran,
and P. Balaji. 2021. Logically Parallel Communication for Fast MPI+Threads
Communication. In Proceedings of the Transactions on Parallel and Distributed
Computing. IEEE.

Frontier.

