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Abstract—The complexity of heterogeneous nodes near and
at exascale has increased the need for “heroic” programming
efforts. To accommodate this complexity, significant investment
is required for codes not yet optimizing for low-level architec-
ture features (e.g., wide vector units) and/or running at large-
scale. This paper describes ongoing efforts to combine two
codes, Hedgehog and Uintah, lying at both extremes to ease
programming efforts. The end goals of this effort are (1) to
combine the two codes to make an asynchronous many-task
runtime system specializing in both node-level and large-scale
performance and (2) to further improve the accessibility of both
with portable abstractions. A prototype adopting Hedgehog in
Uintah and a prototype extending Hedgehog to support MPI+X
hybrid parallelism are discussed. Results achieving ∼60% of
NVIDIA V100 GPU peak performance for a distributed DGEMM
problem are shown for a naive MPI+Hedgehog implementation
before any attempt to optimize for performance.
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I. INTRODUCTION

For codes emphasizing large-scale simulations, “heroic”
programming efforts are unfortunately becoming more neces-
sary for current and emerging high performance computing
(HPC) systems. For example, nodes to appear in exascale
systems pose new challenges relating to increased concurrency,
deep memory hierarchies, and heterogeneity (e.g., accom-
modating large core/thread counts). AI nodes pose similar
challenges with, for example, the NVIDIA DGX A100 system
featuring two 64-core CPUs and 8 GPUs. These challenges are
complicated by the increasing architectural diversity, which
may warrant adoption of new programming models for effi-
cient node use. With limited resources, compromises must be
made as to where to focus programming efforts.

Two examples of such compromises and design decisions
can be seen among Hedgehog and the Uintah Computational
Framework. Hedgehog specializes in node-level performance
and uses C++ threads and NVIDIA CUDA. Uintah specializes
in large-scale simulations and uses an MPI+X hybrid paral-
lelism model supporting a variety of programming models.
Both use asynchronous execution to achieve the performance
that they specialize in. The combination of the two makes it

possible to combine Hedgehog’s node-level performance with
the multi-node scalability of Uintah.

This paper describes ongoing efforts to combine the two
approaches. The end goals of this collaborative effort are (1)
to combine Hedgehog and Uintah to make an asynchronous
many-task runtime system specializing in both node-level and
large-scale performance and (2) further improve the accessi-
bility of both with portable abstractions. Preliminary results
show success adopting Hedgehog in Uintah and extending
Hedgehog to support MPI+X hybrid parallelism.

The remainder of this paper is structured as follows. Section
II provides an overview of Hedgehog. Section III provides an
overview of the Uintah Computational Framework. Section V
describes two prototypes resulting from this effort and Section
VI concludes this paper.

II. HEDGEHOG

Hedgehog is a general-purpose performance-oriented
C++17 headers-only library specializing in maximizing single-
node hardware utilization with emphasis on heterogeneous
nodes. This is accomplished using a scheduler-free task-based
approach that uses data-flow graphs for asynchronous multi-
threaded execution at runtime. Hedgehog starts task execution
as soon as all the input data are available. For performance
portability, Hedgehog implements portable designs for perfor-
mance [1].

Hedgehog emphasizes node-level performance across wide
heterogeneous nodes (e.g., featuring multiple GPUs). For LU
decomposition with partial pivoting, Hedgehog performs on
par with the LAPACK dgetrf routine compiled with Open-
BLAS in multi-threaded mode. For a BLAS-like General
Matrix Multiplication routine, Hedgehog achieves >95% of
theoretical peak across 4 NVIDIA V100 GPUs, outperforming
cuBLASMg and cuBLAS-XT baselines [1]. Unlike Uintah,
however, Hedgehog does not yet support multi-node simula-
tions or distributed memory parallelism.



III. THE UINTAH COMPUTATIONAL FRAMEWORK

The Uintah Computational Framework is an open-source
asynchronous many-task (AMT) runtime system specializ-
ing in large-scale simulations of fluid-structure interaction
problems. These problems are modeled by solving partial
differential equations on Cartesian block-structured adaptive
mesh refinement grids. This is accomplished through a set of
simulation components and libraries based on novel techniques
for understanding a broad set of fluid-structure interaction
problems [2]. For performance portability, Uintah implements
an intermediate performance portability layer that adopts
Kokkos indirectly [3].

Uintah emphasizes large-scale simulations across major
HPC systems and has been been ported to a diverse set through
its lifetime. Recent examples include the NSF Frontera, DOE
Lassen [4], NSF Stampede 2 [3], DOE Theta [5], NRCPC
Sunway TaihuLight [6], DOE Titan [7], and DOE Mira [2]
systems. Good strong-scaling has been shown to 1,728 Intel
Knights Landing processors on the NSF Stampede 2 system
when using Kokkos::OpenMP [3]. Good strong-scaling has
been shown to 1,024 NVIDIA V100 GPUs and 512 IBM
POWER9 processors on the DOE Lassen system when using
Kokkos::CUDA and Kokkos::OpenMP on the device and host,
respectively [4]. Unlike Hedgehog, however, Uintah places lit-
tle emphasis on optimizing for low-level architecture features
as the sheer size of the codebase requires compromises on
such development efforts.

IV. RELATED APPROACHES

Uintah is one of many asynchronous many-task runtime
systems. Other examples include Charm++ [8], DARMA [9],
HPX [10], Legion [11], OCR [12], PaRSEC [13], STAPL [14],
and StarPU [15]. Hedgehog is one of many options avail-
able for developing parallel applications that aim to maxi-
mize single-node hardware utilization. Other examples include
DPC++ [16], Intel TBB [17], Kokkos [18], OpenACC [19],
OpenMP [20], and RAJA [21], SYCL [22]. A review of
performance portable programming models for productive
exascale computing can be find in a recent survey [23].

Hedgehog is chosen here for the performance of its high
performance data-flow model [1] rather than its loop-level
parallelism capabilities. Hedgehog’s data-flow model is being
explored as an alternative to Uintah’s per-process infrastructure
(e.g., heterogeneous task scheduler [4]). In a similar way to
how Uintah offloaded performance portability to Kokkos [3],
this is an effort to understand if/how task dependency man-
agement can also be offloaded to ease future development
efforts. As a part of this, emphasis is placed on understanding
shared abstractions and identifying whether or not they can be
generalized further (e.g., to help identify key AMT needs).

V. COMBINING UINTAH AND HEDGEHOG

Prototypes discussed here experiment with two commu-
nication patterns. The first targets regular communication
patterns for stencil-like computations, which are supported by
Uintah. The second targets irregular communication patterns

for distributed DGEMM, which are not supported by Uintah
and require standalone prototypes outside of Uintah. Long-
term, the second prototype has the potential to guide the
broadening of Uintah’s distributed memory parallelism model.

A. Uintah+Hedgehog for Regular Communication
For stencil-like computations, Uintah and Hedgehog can

be combined directly. This is made possible by Uintah’s
ability to automatically generate MPI messages and exchange
halo cells surrounding the subdomain for such problems.
Specificially, Uintah can be used to manage message passing
while Hedgehog is used locally within a Uintah task (i.e., a
process).

For its simplicity, Uintah’s Poisson solver was used to
demonstrate how Hedgehog can be integrated into Uintah in
such a manner. The resulting prototype required <100 lines of
code and consists primarily of two components: (1) a coarse-
grained Uintah task and (2) a fine-grained Hedgehog task.

Abbreviated pseudocode for the Uintah task is shown below:
1 // Setup the Hedgehog graph and task
2 hh::Graph<outputVars, inputVars> graph(...);
3 auto task = std::make_shared<fineTask>(...);
4

5 // Connect the task to the graph input and output
6 graph.input(task);
7 graph.output(task);
8

9 // Hedgehog graph awaiting inputs
10 graph.executeGraph();
11

12 /*==== Initialize solve ====*/
13 ...
14

15 // Iterate over blocks of data
16 for (int p = 0; p < patches->size(); p++) {
17

18 /*==== Setup boundaries ====*/
19 /*==== Get Uintah data ====*/
20 ...
21

22 // Assign blocks of data to input
23 auto input = std::make_shared<inputVars>(...);
24

25 // Initiate Hedgehog graph execution
26 graph.pushData(input);
27

28 }
29

30 graph.finishPushingData();
31 graph.waitForTermination();

Abbreviated pseudocode for the Hedgehog task is shown
below:

34 /*==== Poisson solve ====*/
35 ...
36

37 // Assign blocks of data to output
38 auto result = std::make_shared<outputVars>(...);
39

40 this->addResult(result);

Broadly, this prototype translates Uintah’s existing Poisson
solver into a Hedgehog task. More specifically, a coarse-
grained Uintah task is created and used to declare and in-
stantiate the Hedgehog data-flow graph (line 2), which uses



a fine-grained Hedgehog task to implement Uintah’s Poisson
solver. At run-time, the coarse-grained Uintah task is executed
to setup (lines 5-11) and execute (line 14) the Hedgehog data-
flow graph, which will execute the former Uintah Poisson
solver tasks as fine-grained Hedgehog tasks.

This approach is currently limited to using Uintah’s MPI-
only task schedulers. As a result, use of per MPI process re-
sources (e.g., cores, threads) is managed by Hedgehog. Long-
term, Uintah’s heterogeneous MPI+PPL task scheduler [4]
could be used as a starting point for further improving node
performance. Such a scheduler would allow for a balance
to be struck between Uintah’s overdecomposition of tasks
and Hedgehog’s overdecomposition of data when optimizing
run configurations. Note, performance comparisons are not
included here as the API is subject to change as part of long-
term goals aiming to generalize both Uintah and Hedgehog
API. In general, Hedgehog overheads are on the order of
microseconds [1].

B. MPI+Hedgehog for Irregular Communication

The second prototype is for problems where the commu-
nication pattern is not supported by Uintah. To support such
patterns, separate Hedgehog tasks are created to handle com-
munication and Hedgehog is extended to support MPI+X hy-
brid parallelism. Use of Hedgehog’s data-flow execution model
ensures that communication is completed before computation
and allows for communication tasks to overlap computation
tasks.

The resulting prototype uses Cannon’s algorithm [24] for
distributed double-precision general matrix-matrix multipli-
cation (distributed DGEMM) C = A × B on GPUs. This
algorithm arranges MPI processes in a two-dimensional grid,
decomposes matrices A and B among MPI processes, and
rotates blocks horizontally/vertically in each iteration. Each
process multiplies the blocks it owns and accumulates results
into a destination block of C, which remains constant for each
rank. The communication pattern is designed such that each
rank gets blocks of A and B corresponding to the destination
block of C for each iteration of the algorithm. Such a circular
communication pattern of passing entire blocks is not yet
supported by Uintah and requires a standalone prototype.
Long-term, the aim is to integrate Hedgehog “communication
tasks” in Uintah’s task scheduler to accomodate irregular
commmunication patterns.

This prototype is based on Hedgehog’s Tutorial 4 [25],
which implements DGEMM on a single GPU using a sin-
gle process. Tutorial 4 is extended to support “distributed
DGEMM” using Cannon’s algorithm with key changes in-
cluding: (1) newly implemented InitComm and FinalizeComm
tasks to send and receive blocks needed for the next iteration
of Cannon’s algorithm, (2) updates to the cudaAdditionTask
to accumulate the result matrix on GPUs instead of CPUs as
done in Tutorial 4, and (3) all the CUDA tasks are executed
asynchronously.

Preliminary experiments show distributed DGEMM perfor-
mance of 18.8 TFLOPS across four NVIDIA V100 GPUs for

matrices of size 32,768 x 32,768. These numbers translate into
4.7 TFLOPS per GPU which is ∼60% of the theoretical peak
performance for double-precision. This result is encouraging
as this was a naive MPI+Hedgehog implementation before any
attempt to optimize for performance. Experiments were run
using 1 MPI process per GPU with each MPI process using 8
threads for the product tasks and 1 thread for all other tasks.

C. Moving Forward

Aside from communication patterns, the key difference be-
tween prototypes is timestepping, which is a key characteristic
of typical Uintah problems. For this reason, Uintah’s task
schedulers have been designed for timestepped problems that
communicate halo data. Implementation of a more general
Uintah task scheduler is another long-term goal of this effort.
Such a scheduler would allow Uintah to support a wider range
of problems and more general communication patterns. A
natural next step for accomplishing this is to implement the
distributed DGEMM problem in Uintah and use it to guide
scheduler developments.

VI. CONCLUSIONS AND FUTURE WORK

This work has helped improve our understanding of how
Hedgehog’s shared memory parallelism model interoperates
with Uintah’s MPI+X hybrid parallelism model. Perhaps more
important, successful prototypes suggest a potential to success-
fully combine Hedgehog’s node-level performance with the
multi-node scalability of Uintah. Such a combination promotes
more productive use of current and emering HPC systems.

The Uintah+Hedgehog and MPI+Hedgehog prototypes dis-
cussed here offer encouragement as we prepare to more tightly
couple Hedgehog and Uintah. Immediate next steps include
further optimization of the distributed DGEMM prototype.
Long-term next steps include implementing a Uintah task
scheduler supporting Hedgehog tasks. As part of this effort,
emphasis will be placed on generalizing portable abstractions
used by each to simplify API for end users.
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