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additional consideration for hypre, a parallel third party library. Results are shown for two challenging problems executing workloads
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and the accompanying portable abstractions [15] to port a previously MPI-Only problem to Kokkos::OpenMP and Kokkos::CUDA to
improve multi-socket, multi-device node use. Good strong-scaling to 1,024 NVIDIA V100 GPUs and 512 IBM POWER9 processor are
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1 INTRODUCTION

The complexity of nodes anticipated in exascale systems poses new challenges for codes emphasizing large-scale
simulation. In addition to understanding how to manage the increased concurrency, deep memory hierarchies, and
heterogeneity to make efficient use of these nodes, one must also understand how to manage the increasing architectural
diversity with systems such as the DOE Aurora [1] and DOE Frontier [2] to include Intel- and AMD-based GPUs,
respectively. The latter, however, complicates preparation of such codes for exascale systems as only heterogeneous
IBM- and NVIDIA-based systems, AMD- and NVIDIA-based system, and Intel- and NVIDIA-based systems are available
among current heterogeneous high performance computing (HPC) systems on the Top 10 of November 2020’s Top500
list [5].

Asynchronous many-task runtime systems and MPI+X hybrid parallelism approaches show promise for helping
managing the increased concurrency, deep memory hierarchies, and heterogeneity. For such runtimes, this promise
lies in their ability to increase node-level parallelism by overdecomposing an application into many tasks while also
easing use of such nodes by offloading low-level details for making use of the underlying hardware to the runtime itself.
Examples include Charm++ [22], HPX [21], Legion [7], PaRSEC [9], StarPU [6], and Uintah [8].

Performance portability layers (PPL) show promise for helping managing the architectural diversity. For such layers,
this promise lies in their ability to interact with multiple underlying programming models (e.g., CUDA, HIP, OpenMP,
etc) through a single interface while also easing use of such nodes by offloading low-level details for making efficient
use of the underlying programming models to the layer itself. Examples include Kokkos [11], OCCA [24], RAJA [17],
and SYCL [23].

The combination of these promising solutions, however, pose challenges for asynchronous many-task runtime
systems. This is a result of the rapid and varying rates of development that the other solutions are experiencing while
trying to maintain pace with current and emerging HPC systems. Such challenges are complicated further for runtimes
using third party libraries, whose developers are facing similar interoperability challenges, and large legacy runtimes,
where the combination may require a significant investment.

These challenges are addressed here using a heterogeneous MPI+PPL task scheduling approach for combining
these solutions with additional consideration for parallel third party libraries to help prepare such a runtime for the
diverse heterogeneous systems accompanying exascale computing. The goal of this approach is implementation of
heterogeneous MPI+PPL task scheduler achieving scalable adaptive execution of individually portable tasks making
simultaneous use of both the host and device through a performance portability layer on complex heterogeneous nodes.
For runtime application developers, this scheduler allows for easy means of improving complex heterogeneous node
use without requiring extensive knowledge of low-level details for making efficient use of the underlying hardware and
programming models. For runtime infrastructure developers, this scheduler provides maintaining developers with a
foundation for supporting wholy portable heterogeneous task scheduling in preparation for the diverse heterogeneous
systems accompanying exascale computing.

This paper describes and demonstrates this approach using a heterogeneous MPI+Kokkos task scheduler implemented
in the Uintah Computational Framework, an asynchronous many-task runtime system, with additional consideration
for hypre, a parallel library. This design is informed by a Kokkos adoption effort adding portable support for OpenMP
and CUDA in both (1) a complex real-world application requiring use of a parallel third party library, hypre [12], and (2)
an asynchronous many-task runtime system, Uintah. This ongoing effort has been non-trivial due to the codebase: (1)
consisting of 1-2 million lines of complex code, (2) maintaining a divide between application code, where accompanying
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portable abstractions [15] are used, and infrastructure code, where task scheduling logic is maintained, (3) having 100s
of pre-existing loops to port in application code, (4) being under active development with many contributors, and (5)
having a pre-existing userbase to support. The resulting approach aims to ease scheduler implementation in similar
runtimes while also helping to prepare Uintah for early use of the DOE Aurora system through the Aurora Early Science
Program. Though implementation has been limited to support for NVIDIA GPUs, high-level ideas associated with this
approach are broad enough to apply to other GPUs.

To demonstrate task scheduling capabilities, strong-scaling studies using this scheduler with accompanying portable
abstractions [15] are examined for two challenging problems executing workloads representative of typical Uintah
applications. These strong-scaling studies show heterogeneous use of OpenMP and CUDA via Kokkos across multi-
socket, multi-device nodes using a single source implementation. The associated refactors have allowed for performance
improvements up to 4.4x to be achieved when using this scheduler and the accompanying portable abstractions [15] to
port a previously MPI-Only problem to MPI+Kokkos::OpenMP+Kokkos::CUDA to improve multi-socket, multi-device
node use. At scale, the use of MPI+Kokkos::OpenMP+Kokkos::CUDA has allowed for good strong-scaling to 1,024
NVIDIA V100 GPUs and 512 IBM POWER9 processors to be achieved.

The remainder of this paper is structured as follows. Section 2 provides an overview of the Uintah Computational
Framework. Section 3 provides an overview of the Kokkos C++ library. Section 4 provides an overview of the resulting
heterogeneous MPI+PPL task scheduling approach in the context of Uintah’s heterogeneous MPI+Kokkos task scheduler
with additional consideration for the parallel library hypre. Section 4.1 describes the large-scale simulations and Uintah
MPI+X task schedulers informing this approach. Section 4.2 describes the algorithm central to this approach and making
these demonstrations possible. Section 4.3 describes the interoperability challenges making these demonstrations
difficult and informing this algorithm. Section 4.4 through 4.8 describe details informed by these demonstrations and
related efforts for easing adoption of a heterogeneous MPI+PPL task scheduling approach in an asynchronous many-task
runtime system. Paired with similar details [15] for easing indirect adoption of a performance portability layer in
an asynchronous many-task runtime system, the two form the foundation for implementing both the scheduler and
the accompanying portable abstractions [15] making these demonstrations possible. Section 5 demonstrates practical
application of this approach through strong-scaling studies for two challenging problems using this scheduler to execute
workloads representative of typical Uintah applications across a large-scale complex heterogeneous system. Section 6
suggests potential challenges moving forward and Section 7 concludes this paper.

2 THE UINTAH COMPUTATIONAL FRAMEWORK

The Uintah Computational Framework is an open-source asynchronous many-task (AMT) runtime system specializing
in large-scale simulation of fluid-structure interaction problems. These problems are modeled by solving partial
differential equations on structured adaptive mesh refinement grids. This is accomplished through a variety of simulation
components based on novel techniques for understanding a broad set of such problems. [8] The work presented here
uses the ARCHES [35] turbulent combustion simulation component, which has been the focus of performance portability
efforts and is a Large Eddy Simulation (LES) code used to model heat, mass, and momentum transport in turbulent
reacting flows with participating media radiation.

Uintah emphasizes broad support for major HPC systems and has been been ported to a diverse set through its
lifetime. Recent examples include the NSF Frontera, DOE Lassen, NSF Stampede 2, DOE Cori, DOE Theta, NRCPC
Sunway TaihuLight, DOE Titan, NSF Stampede, and DOEMira systems. For portable standalone use of Kokkos::OpenMP,
good strong-scaling has been shown to 1,728 Intel Knights Landing processors on the NSF Stampede 2 system [15]. For
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portable standalone use of Kokkos::CUDA, good strong-scaling has been shown to 64 NVIDIA K20X GPUs on the DOE
Titan system [30]. For portable standalone use of underlying third party libraries (i.e., hypre), good scaling has been
shown to 512 Intel Knights Landing processors on the DOE Theta system [33] and NVIDIA V100 GPUs on the DOE
Lassen system [34].

The work presented here extends past efforts by combining use of these individually stressed components to further
inform and demonstrate the portable heterogeneous task scheduling approach described here. This approach has
allowed for good strong-scaling to 1,024 NVIDIA V100 GPUs and 512 IBM POWER9 processors to be achieved using
MPI+Kokkos::OpenMP+Kokkos::CUDA on the DOE Lassen system. This has been achieved while making portable
simultaneous use of (1) the host, (2) the device, and (3) underlying third party libraries (i.e., hypre).

3 THE KOKKOS C++ LIBRARY

The Kokkos C++ library [11] is an open-source C++ programming model for writing single source performance portable
code optimized for a diverse set of major HPC systems. Core abstractions include parallel execution patterns (e.g.
parallel_for, parallel_reduce, parallel_scan) and data structures (e.g., Kokkos Views). This effort has since expanded into
the Kokkos C++ Performance Portability Programming EcoSystem, which additionally offers a broad set of solutions
for science and engineering applications (e.g., Kokkos-aware math kernels). Originally developed at Sandia National
Laboratories, the team has also expanded with dedicated developers additionally at Argonne National Laboratory,
Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory, and the
Swiss National Supercomputing Centre. More details on Kokkos can be found on the Kokkos GitHub [3, 4].

Uintah is an early adopter of Kokkos with developers of each collaborating directly as a part of the University
of Utah’s participation in the DOE/NNSA’s Predictive Science Academic Alliance Program (PSAAP) II initiative. In
recent years, this adoption has proven worthwhile in easing Uintah’s transition from many-core systems (e.g., the
NSF Stampede 2 system) to multi-socket, multi-device heterogeneous systems (e.g., the DOE Lassen system) given the
already familiar programming model. Uintah’s Kokkos-related activities prior to the work presented here have been
itemized in a recently published list [15]. Note, Kokkos back-ends to OpenMP and CUDA are referred to throughout
this paper as Kokkos::OpenMP and Kokkos::CUDA, respectively.

The work presented here extends past efforts by (1) completing implementation of a new task scheduler supporting
simultaneous use of nested Kokkos::OpenMP and Kokkos::CUDA and (2) continuing to incrementally refactor loops in
ARCHES to additionally support use of Kokkos::CUDA. Unique loops refactored to date total in the 100s and range in
size from single-digit lines of code to 100s of lines of code. This progress has allowed for individual ARCHES problems
to offload up to two orders of magnitude more unique portable loops to the device using Kokkos::CUDA. This is a
notable first among Uintah’s Kokkos-related activities as ARCHES previously lacked GPU support with recent case
studies [15] limited to a single unique portable loop. Note, there is a domain decomposition dependent multiplier on
unique loops not reflected in counts above.

4 UINTAH’S HETEROGENEOUS MPI+KOKKOS TASK SCHEDULER

This section provides an overview of the resulting heterogeneous MPI+PPL task scheduling approach in the context of
Uintah’s heterogeneous MPI+Kokkos task scheduler with additional consideration for the parallel library hypre.
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4.1 History

The heterogeneous MPI+PPL task scheduling approach described throughout this work is informed through application
in practice across some of the world’s largest of HPC systems through the years. In addition to examples in Section 2,
other examples of large-scale demonstrations of Uintah’s task scheduling capabilities include runs achieving good
scaling to 16,384 GPUs, 700K cores, and 700K cores on the DOE Titan, DOE Mira, and NSF Blue Waters systems [8, 20].
For these capabilities, we’ve also been fortunate to have the opportunity to participate in early user access periods to
help stress early-life and rapidly maturing major HPC systems such as through the Stampede Knights Landings Early
Science Program and Aurora Early Science Program. For these reasons, the task executor logic forming the core of
Uintah’s heterogeneous MPI+Kokkos task scheduler has come about naturally through the years.

Uintah adopted an MPI+X hybrid parallelism approach using the foundational MPI+PThreads task scheduler [25]
to overcome memory footprint limitations on the NSF Kraken and DOE Jaguar systems. Iterative efforts since have
targeted extensions in four key areas: (1) support for heterogeneous systems [19, 20, 26, 28, 29, 31] (2) support for
many-core systems [13, 27], (3) portability of (1) and (2) [14, 15, 30, 32, 36], and (4) support for third party libraries
using their own hybrid parallelism approaches [33, 34]. The scope and non-trivial nature of this collective effort has
resulted in implementation of several standalone task schedulers through the years.

The standalone task schedulers arrived at as a result of these extensions and available in Uintah today include: (1)
a production-grade heterogeneousMPI+PThreads+CUDA task scheduler, (2) an intermediate MPI+Kokkos::OpenMP task
scheduler, (3) an intermediateMPI+PThreads+Kokkos::CUDA task scheduler, and (4) the heterogeneousMPI+Kokkos::OpenMP+Kokkos::CUDA
task scheduler demonstrated here. For (2), (3), and (4), the production-grade task executor logic in (1) has been extended
to support use of Kokkos::parallel_for, Kokkos::parallel_reduce, Kokkos::View, Kokkos::Experimental::MasterLock, and
Kokkos_Random using the respective back-ends. Note, (2) and (3) have been strategically maintained, despite existence
of (4), for their invaluable ability to reduce complexity for development and debugging effort.

4.2 Core Algorithm

Algorithm 1 provides an overview of the task executor logic forming the core of the heterogeneous MPI+Kokkos task
scheduler. Task executor logic is executed by task executors, which correspond to the specific compute resources (e.g.,
cores) used to process actions itemized in Algorithm 1. Task executors are exclusive to MPI process and operate largely
independent of one another aside from coordination for data integrity. Execution begins serially at Line 1. Execution
is passed to Kokkos at Line 2 to launch multiple disjoint task executors using Kokkos::OpenMP::partition_master to
achieve 2 levels of portable parallelism within an MPI process. The top level (i.e., task scheduling level) of parallelism
determines how many simultaneously executing task executors are used in an MPI process (i.e., 1 to many). The bottom
level (i.e., individual task execution level) of parallelism determines how many compute resources are used by a given
task executor (i.e., 1 to many). Together, the two dictate how many tasks are capable of been executed across compute
resources at a given time (e.g., 1 task across 10 cores vs. 10 tasks across 1 core each). This is a key detail for improving
node use as it provides means of controlling granularity on not only task execution itself but the action forming the
state machine in Lines 3 to 15 (e.g., to determine how many or few task executors are, say, initiating host-device data
transfers). In practice, these values are specified using OpenMP environment variables (e.g., OMP_NUM_THREADS)
with care taken to ensure that task executors are distributed across a node in a disjoint manner (e.g., using OMP

PLACES=threads and OMP PROC BIND=spread). More details on Uintah’s use of Kokkos::OpenMP::partition_master be
found in a recent technical report [16].
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Algorithm 1 Task Executor Logic.

1: while tasks to compute do
2: launch multiple disjoint task executors
3: while tasks to compute do
4: // TASK QUEUE STATE MACHINE
5: mark tasks with MPI complete as “pending ghosts”
6: initiate H2D/D2H transfers for “pending ghosts”
7: query pending H2D/D2H transfers
8: decrement dependency count for complete transfers
9: mark tasks with all dependencies complete as “ready”
10: break for “ready” hypre task
11: mark W and R/W dependencies as “invalid“
12: launch “ready” task on host or device
13: mark W and R/W dependencies as “valid”
14: initiate MPI sends for completed tasks
15: process pending MPI receives
16: end while
17: exit multiple disjoint task executors
18: launch hypre task using single task executor
19: end while

The logic in Lines 3 to 15 corresponds to a task queue-based state machine used to coordinate the non-trivial
interactions taking place while tasks are in flight. In practice, this state machine consists of a series of individual task
queues specific to each action itemized in Line 4 through 14. For example, Line 4 corresponds to a task queue collecting
all tasks that have been identified as having MPI complete and are awaiting ghost cells to arrive from another task.
After an individual task has been processed for a given state’s action it is pushed to the next queue. For example at Line
4, after a given task has been identified as having MPI complete and awaiting ghost cells it is pushed to the next queue,
Line 5, where there host-device data movement coordinating the gathering of these ghost cells is initiated. In practice,
an individual task executor repeatedly iterates over this state machine looking for work to process.

4.3 Interoperability Challenges

Figure 1 shows the basic interactions that this state machine coordinates at the per-MPI process level immediately
surrounding the centrally locally “CPU Core” and “GPU” ovals, which correspond conceptually to individual task
executors. Additional complexity not shown in Figure 1 include hand-offs between Uintah infrastructure and: (1)
simulation components (e.g., the ARCHES turbulent combustion simulation component used here), (2) standalone
models supporting (1) (e.g., a standalone reverseMonte-Carlo tracing (RMCRT) radiationmodel used here), (3) standalone
third party libraries supporting (1) (e.g., a standalone linear solver using LLNL’s hypre used here), and (4) third party
libraries used inside (1), and (5) structured adaptive mesh refinement grid support (e.g., single-level and 2-level used
here).

The combinatorially increasing nature of these interactions and others is the key factor increasing the complexity of
these interoperability demonstrations. This is attributed to the coordination of (1) host-device data movement and (2)
task granularity taking place both between and among hand-offs. This is complicated further by additional multipliers
that are incurred based upon how (1) a domain is decomposed and (2) a task is written. That is, 1 to many tasks
coordinating data for 1 to many variables used among 1 to many portable loops in a given task.
Manuscript submitted to ACM
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Fig. 1. Uintah’s multi-threaded MPI scheduler [14].

For coordinating host-device data movement, the key challenge lies in data integrity. That is, the need to identify
both (1) where data resides and (2) when that data can be used. For example, is data computed by an RMCRT task on a
given simulation grid mesh level on the device side ready to be handed off to ARCHES to be modified on a different
simulation grid mesh level. This is further complicated by data required across tasks having potentially different ghost
cell quantities. This results in scenarios where, for example, data residing on the device-side may require re-allocation
to accommodate data being transferred from the host-side but with more ghost cells required.

For coordinating task granularity, the key challenge lies in the sizing and re-sizing of simulation mesh patches at
hand-off boundaries. This is done to, for example, cater domain decomposition approaches favored by an interconnected
third party library. For example, the ability to combine simulation mesh patches into a single larger mesh patch as a
part of the hand-off used here and captured in Line 10 and 18 to achieve performance with hypre on the device-side.

For these reasons, this coordination required a non-trivial effort to refine and inform the resulting task executor logic
described here and necessary for these interoperablity demonstrations. Challenges hidden among the complexity of this
interoperability are discussed in Sections [? ] though 4.8. These sections offer suggestions of things to consider when
addressing these challenges with Uintah-specific examples provided to ease adoption of a heterogeneous MPI+PPL
task scheduling approach in an asynchronous many-task runtime system. Paired with similar details [15] for easing
indirect adoption of a performance portability layer in an asynchronous many-task runtime system, the two form
the foundation for implementing both the scheduler and the accompanying portable abstractions [15] making these
demonstrations possible.
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4.4 Support for Tasks Using Third Party Libraries

Third party libraries pose interoperability challenges when used in a parallel codebase. This is a result of each supporting
parallelism in potentially different capacities (e.g., MPI-Only vs. MPI+X hybrid parallelism). This is complicated by
differing rates of development and preferred models of execution (e.g., MPI+X to improve node use for a global, all-
to all algorithm). Thinking through how to accommodate tasks using third party libraries is important for avoiding
performance and thread-safety issues. Examples found helpful when adopting a heterogeneous MPI+PPL task scheduling
approach in Uintah include: (1) implementing individual interfaces to underlying programming models used by third
party libraries, (2) modifying third party libraries to more closely align parallelism approaches, (3) separating execution
of tasks using third party libraries from other tasks, and (4) using MPI endpoints [10] to accommodate third party
libraries performing best with an MPI-only parallelism approach.

4.5 Granularity of Host-Device Data Movement

A key benefit of the asynchronous many-task model is adaptive execution of tasks. Limitless adaptive execution, however,
does not guarantee performance on heterogeneous systems where data movement between the host and device must
be considered. This is complicated by lightweight tasks whose running time may not justify associated overheads.
Thinking through mechanisms for managing the granularity of data movement is helpful for ensuring performance
across broad applications. Examples found helpful when adopting a heterogeneous MPI+PPL task scheduling approach
in Uintah include supporting the ability to: (1) group individual patches into a single larger patch, (2) group individual
tasks into a single larger task, (3) specify the number of task executors used on the host to launch kernels on the
device, and (4) restrict portable tasks from being able to execute on the device (i.e., to avoid host-device data movement
altogether).

4.6 Coordination of Host-Device Data Movement

Heterogeneous systems pose thread-safety challenges when using both the host and the device. This is a result of
data associated with an individual task being able to reside on (1) the host, (2) the device, or (3) both the host and the
device. This is complicated by the asynchronous many-task model where data dependencies and tasks are in abundance
with potentially long and complex data dependency sequences. Looking for opportunities to ease the coordination of
data movement (e.g., identifying where data resides, whether data is ready to use, etc) is important for avoiding data
integrity issues. Examples found helpful when adopting a heterogeneous MPI+PPL task scheduling approach in Uintah
include supporting the ability to: (1) using bit sets and boolean logic to monitor data movement status (e.g., valid on the
host, invalid on the device, awaiting ghost cell data, etc), (2) allocating memory to accommodate the largest number of
ghost cells used across tasks for a given variable, (3) restricting use of underlying programming models to one per task
(i.e., to avoid data residing in multiple locations for tasks using multiple parallel patterns), and (4) enforcing persistent
use of either the host or device for a given task.

4.7 Run Configuration Parameters

The asynchronous many-task model requires careful consideration of run configuration parameters. This is a result
of applications being decomposed into a number of individual tasks that is typically much larger than the number
of compute resources (e.g., cores). This is complicated by combinatorially increasing configurations to consider as
MPI processes span more hardware and individual tasks having different arithmetic intensities, running times, and
Manuscript submitted to ACM
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scalability. Thinking through where and how to manage run configuration parameters is important for ease of use and
code maintainability. An example found helpful when adopting a heterogeneous MPI+PPL task scheduling approach in
Uintah has been to apply a global run configuration across tasks based on user-defined run configuration parameters
with defaults applied when not provided.

4.8 Debugging Output

Debugging output is critical for improving productivity when implementing portable heterogeneous tasks. This is a
result of the inherent interconnectedness of data dependencies and tasks when using an asynchronous many-task model.
This is complicated by combinatorially increasing data dependency sequences to consider as task graphs grow and
flexibility in where and how tasks may execute. Offering debugging output to monitor the flow of data movement and
task execution is helpful for improving productivity. Examples found helpful when adopting a heterogeneous MPI+PPL
task scheduling approach in Uintah include output identifying: (1) the underlying programming model used by each
task, (2) variables computed, modified, and/or required by each task, (3) ghost cell and neighboring data requirements
for each variable, (4) data movement status for each task, and (5) task execution order.

5 STRONG-SCALING STUDIES

The results presented in this section used two problems to uniquely stress different portions of three individually ported
codes key to CCMSC combustion simulations: (1) Uintah’s ARCHES turbulent combustion simulation component,
(2) Uintah’s standalone linear solver using LLNL’s hypre, and (3) Uintah’s standalone reverse Monte-Carlo tracing
(RMCRT) radiation model. The first, a helium plume problem, demonstrates newly portable interoperability of (1) and
(2) on a single-level structured grid. The second, a modified Burns and Christon benchmark problem, demonstrates
newly portable interoperability of (1), (2), and (3) on a 2-level structured adaptive mesh refinement grid. For both
problems, newly ported single source implementations with underlying support for legacy serial loops and Kokkos-
based data parallel loops for Kokkos::OpenMP and Kokkos::CUDA were used. Note for (2), a modified version of hypre
implementing recently published techniques [34] for improving GPU-based performance of hypre was used. Note
for both, a modified version of Kokkos implementing recently published techniques [30] for improving GPU-based
performance of Kokkos was used.

Helium plume problems play a key role in CCMSC efforts for their ability to validate ARCHES using problems with
characteristics representative of a real fire but without introducing the complexities of combustion[? ]. This complex
problem consists of 125 unique portable loops individually using up to 10s of variables with complex interconnected-
ness. Underlying Kokkos functionality used among loops include Kokkos::parallel_for, Kokkos::parallel_reduce, and
Kokkos::View. A key feature making this an important problem for validating Uintah’s heterogeneous MPI+Kokkos
task scheduler is the large numbers of unique portable loops and variables in flight during execution. This is helpful for
ensuring robustness due to the long and complex data dependency sequences generated by these loops (e.g., variables
computed on the host, modified on the device, and later required on the host). Note, there are domain decomposition
and run configuration dependent multipliers on unique loops not reflected in counts above.

Uintah’s 2-level reverse Monte-Carlo ray tracing (RMCRT) radiation model [18] plays a key role in CCMSC boiler
simulations, where radiation is the dominant mode of heat transfer. The problem used here modifies the ARCHES’ Burns
and Christon benchmark problem to incorporate a pressure solve, requiring use of hypre. This complex problem consists
of 19 unique portable loops individually using up to 10s of variables with complex interconnectedness. Underlying
Kokkos functionality used among loops include Kokkos::parallel_for, Kokkos::parallel_reduce, Kokkos::View, and
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Kokkos_Random. A key feature making this an important problem for validating Uintah’s heterogeneous MPI+Kokkos
task scheduler is the ability to simultaneously stress interoperability of ARCHES, hypre, and RMCRT while also stressing
Uintah’s adaptive mesh refinement support. This is helpful for ensuring robustness due to the complex hand-offs
that take place between these codes (e.g., shared data dependencies). Note, there are domain decomposition and run
configuration dependent multipliers on unique loops not reflected in counts above.

To demonstrate scalability of the resuling heterogeneous MPI+Kokkos task scheduler, strong-scaling studies were
performed on the DOE Lassen system. This system features two IBM POWER9 processors with 22 cores (4 SMT threads
per core) per processor, four Volta-based NVIDIA Tesla V100 GPUs with 5,120 CUDA cores and 16 GB of HBM2 per GPU,
and 256 GB of DDR4 per node. For both problems, these studies explored varying domain decomposition approaches
using problems that fit in the 64 GB per-node memory footprint of HBM2. Note, demonstration of host-only capabilities
related to this approach are left to recently published results [15] gathered on the NSF Stampede 2 system.

For MPI+Kokkos, simulations were launched using 4 MPI processes per node. Within an MPI process, 10 OpenMP
threads were used to simultaneously launch and execute loops across: (1) 10 cores using 1 core and 1 SMT thread per
loop for Kokkos::OpenMP and (2) 1 V100 using 1 CUDA stream and 256 CUDA blocks per loop for Kokkos::CUDA with
256 CUDA threads per block. For MPI-Only, simulations were launched using 40 MPI processes per node to execute
loops using 1 core and 1 SMT thread per loop.

Problems were sized to provide each MPI process with at least 1 patch in all data points shown. Note, a patch is the
collection of cells executed by a loop. Reported per-timestep timings measure the simultaneous execution of all loops
across both the host and device in a given timestep. Results have been averaged over 7 consecutive timesteps.

Figure 2 shows strong-scaling results across DOE Lassen nodes for the helium plume problem on a single-level
structured grid. Results were gathered using MPI+Kokkos::OpenMP+Kokkos::CUDA for a problem featuring 5123 cells
for three patch sizes (323, 643, and 1283 cells per patch). Note for all patches sizes, individual patches were combined to
a single patch when passed to hypre for execution using CUDA. This is done to allow Uintah to make performant use of
hypre as recently demonstrated in [34]. To enable comparisons to how this problem would traditionally have been run
using ARCHES, results were also gathered using Uintah’s MPI-Only task scheduler for a problem featuring 5123 cells
for one patch size (323 cells per patch). Note, a single patch size is used here as larger patch sizes do not provide enough
patches for scaling across nodes. Use of MPI+Kokkos::OpenMP+Kokkos::CUDA to improve multi-socket, multi-device
node use has allowed for speedups up to 2.3x and 4.4x to be achieved for 643 and 1283 cells, respectively, over MPI-Only.

Figure 3 shows strong-scaling results across DOE Lassen nodes for the modified Burns and Christon benchmark prob-
lem on a 2-level structured adaptivemesh refinement grid. Results were gathered usingMPI+Kokkos::OpenMP+Kokkos::CUDA
for a problem featuring 5123 cells on the fine mesh and 1283 cells on the coarse mesh for three fine mesh patch sizes
(323, 643, and 1283 cells per fine mesh patch). Note for all patches sizes, individual patches were combined to a single
patch when passed to hypre for execution using CUDA. This is done to allow Uintah to make performant use of hypre
as recently demonstrated in [34]. Note, MPI-Only comparisons are not made here as the global, all-to-all nature of the
radiation model used by this problem necessitates use of MPI+X hybrid parallelism [18].

Results presented in Figure 2 and 3 show that it is possible to achieve good strong-scaling to 1,024 NVIDIA V100 GPUs
and 512 IBM POWER9 processors using MPI+Kokkos::OpenMP+Kokkos::CUDA. This is encouraging as it suggests a
potential for this heterogeneous MPI+Kokkos task scheduler to reduce the gap between development time and our ability
to run on heterogeneous systems requiring other underlying programming models. This is advantageous for expediting
Uintah’s ability to support forthcoming exascale systems such as the Intel-based DOE Aurora and AMD-based DOE
Frontier.
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Fig. 2. Helium plume run to 1,024 V100 GPUs and 512 POWER9 processors.

Results presented in Figure 3 show that for a computation-dominant problem it is possible to achieve good strong-
scaling across multi-socket, multi-device nodes using an asynchronous many-task model. Results presented in Figure
2 show that for a communication-dominant problem it can be difficult to achieve performance across multi-socket,
multi-device nodes using an asynchronous many-task model. This is not unexpected given the additional overheads
(i.e., for data movement) incurred between the host and device on such nodes. As shown in Figure 2, offloading fewer,
yet larger, patches to the device can be used to improve node-level performance at the expense of reductions in
strong-scaling efficiency for communication-dominant problems. These results suggests that care must be taken when
using an asynchronous many-task model on multi-socket, multi-device nodes. Though performance improvements are
achievable when using the full node, performance reductions are also possible when overdecomposing a simulation
domain too far.

Comparing 323 patch MPI-Only results in Figure 2 to 643 patch and 1283 patch MPI+Kokkos results in Figure 2 shows
that it is possible for Uintah application developers to improve node-level performance with relative ease using this
scheduler and the accompanying portable abstractions [15] to port legacy serial loops to OpenMP and CUDA via Kokkos.
This is encouraging as the wholesale refactoring of ARCHES loops to additionally support use of Kokkos::OpenMP and
Kokkos::CUDA has been largely naive with ample opportunity to improve performance. The ease with which this has
been achieved is attributed to Kokkos abstractions aligning well with Uintah’s loop-based asynchronous many-task
model. For ARCHES, this has spared application developers having to, for example, learn CUDA and write individual
kernels for the 100s of files comprising this simulation component. This is advantageous as it allows application
developers to expedite scientific efforts.
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6 FORESEEABLE CHALLENGES

The approach presented here is a starting point for achieving portable heterogeneous MPI+PPL task scheduling in
an asynchronous many-task runtime system. Foreseeable challenges include understanding how to: (1) coordinate
host-device data movement in a portable manner, (2) efficiently coordinate host-device data movement in the context of
an asynchronous many-task model, (3) execute tasks using parallel third party libraries among tasks using a performance
portability layer, and (4) automate placement of portable tasks in host and device task queues (e.g., to make informed
use of the device).

7 CONCLUSIONS AND FUTUREWORK

This work has helped improve Uintah’s portability to complex heterogeneous systems. Specifically, it has shown an
approach for heterogeneous MPI+PPL task scheduling to help prepare an asynchronous many-task runtime system
for the diverse heterogeneous systems accompanying exascale computing. This approach combines three individual
solutions offering promise for making efficient use of the complex nodes anticipated in these systems: (1) asynchronous
many-task runtime systems, (2) MPI+X hybrid parallelism approaches, and (3) performance portability layers. This is
done with additional consideration for parallel third party libraries facing similar challenges related to (2) and (3).

This approach has been demonstrated using a heterogeneous MPI+Kokkos task scheduler implemented in the Uintah
Computational Framework, an asynchronous many-task runtime system, with additional consideration for hypre, a
parallel third party library. Kokkos capabilities have been shown for two challenging problems using this scheduler and
the accompanying portable abstractions [15] to execute workloads representative of typical Uintah applications across
Manuscript submitted to ACM
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complex multi-socket, multi-device nodes while making heterogeneous use of OpenMP and CUDA via Kokkos with a
single source implementation. Performance improvements up to 4.4x have been achieved when using this scheduler
and the accompanying portable abstractions [15] to port a previously MPI-Only problem to Kokkos::OpenMP and
Kokkos::CUDA to improve multi-socket, multi-device node use. At scale, good strong-scaling to 1,024 NVIDIA V100
GPUs and 512 IBM POWER9 processors has been achieved using MPI+Kokkos::OpenMP+Kokkos::CUDA.

The portability and performance improvements shown here offer encouragement as we prepare Uintah for the
diverse heterogeneous systems accompanying exascale computing. Next steps include extending Uintah’s intermediate
portability layer [15] to support Kokkos’ default host and device spaces to make quicker use of underlying programming
models. For Uintah’s Aurora Early Science Program efforts, this will improve the speed with which we can support
Kokkos::OpenMPTarget for running on the Intel GPUs anticipated in the DOE Aurora system. For Uintah’s emphasis
on maintaining broad support for major HPC systems, this will allow the speed with which we can implement, refine,
and extend Uintah’s more formal support for future major HPC systems. As a part of this, emphasis will be placed on
generalizing CUDA-specific code used in Uintah’s heterogeneous MPI+Kokkos task scheduler to achieve more portable
heterogenerous MPI+Kokkos task scheduling.
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