
1

Portably Improving Uintah’s Readiness for Exascale

Systems Through the Use of Kokkos

John K. Holmen, Brad Peterson, Alan Humphrey, Daniel Sunderland, Oscar H.
Dı́az-Ibarra, Jeremy N. Thornock, Martin Berzins

UUSCI-2019-001

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

May 17, 2019

Abstract:

Uncertainty and diversity in future HPC systems, including those for exascale, makes portable
codebases desirable. To ease future ports, the Uintah Computational Framework has adopted the
Kokkos C++ Performance Portability Library. This paper describes infrastructure advancements
and performance improvements using partitioning functionality recently added to Kokkos within
Uintah’s MPI+Kokkos hybrid parallelism approach. Results are presented for two challenging cal-
culations that have been refactored to support Kokkos::OpenMP and Kokkos::Cuda back-ends.
These results demonstrate performance improvements up to (i) 2.66x when refactoring for porta-
bility, (ii) 81.59x when adding loop-level parallelism via Kokkos back-ends, and (iii) 2.63x when
more efficiently using a node. Good strong-scaling characteristics to 442,368 threads across 1728
Knights Landing processors are also shown. These improvements have been achieved with little
added overhead (sub-millisecond, consuming up to 0.18% of per-timestep time). Kokkos adoption
and refactoring lessons are also discussed.

Portably Improving Uintah’s Readiness for Exascale
Systems Through the Use of Kokkos

John K. Holmena,, Brad Petersona, Alan Humphreya, Daniel Sunderlandb,
Oscar H. Dı́az-Ibarrac, Jeremy N. Thornockc, Martin Berzinsa

aScientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
bSandia National Laboratories, PO Box 5800 / MS 1418, Albuquerque, NM 87175

cInstitute for Clean and Secure Energy, University of Utah, Salt Lake City, UT 84112

Abstract

Uncertainty and diversity in future HPC systems, including those for ex-

ascale, makes portable codebases desirable. To ease future ports, the Uintah

Computational Framework has adopted the Kokkos C++ Performance Porta-

bility Library. This paper describes infrastructure advancements and perfor-

mance improvements using partitioning functionality recently added to Kokkos

within Uintah’s MPI+Kokkos hybrid parallelism approach. Results are pre-

sented for two challenging calculations that have been refactored to support

Kokkos::OpenMP and Kokkos::Cuda back-ends. These results demonstrate

performance improvements up to (i) 2.66x when refactoring for portability,

(ii) 81.59x when adding loop-level parallelism via Kokkos back-ends, and (iii)

2.63x when more efficiently using a node. Good strong-scaling characteristics to

442,368 threads across 1728 Knights Landing processors are also shown. These

improvements have been achieved with little added overhead (sub-millisecond,

consuming up to 0.18% of per-timestep time). Kokkos adoption and refactoring

lessons are also discussed.

Keywords: Char Oxidation Modeling; Hybrid Parallelism; Kokkos;

Portability; Radiation Modeling; Uintah

1. Introduction

This study is motivated by ongoing boiler simulation efforts at the Univer-

sity of Utah’s Carbon Capture Multidisciplinary Simulation Center (CCMSC).

These efforts have used large-scale simulation to support the design and evalu-

ation of an existing 1000 MWe ultra-supercritical clean coal boiler, which has

been developed by Alstom (GE) Power. These simulations use a Large Eddy

Simulation (LES) code within the Uintah Computational Framework [1]. Uin-

tah is an open-source asynchronous many-task (AMT) runtime system that has

been widely ported to a diverse set of leadership-class HPC systems.

Uintah has supported multicore and GPU-based systems via architecture-

specific programming models (e.g., CUDA). The introduction of many-core sys-

tems, such as the Intel Xeon Phi-based DOE Cori system, pose new challenges

for Uintah due to the increase in core/thread counts at the node-level. This

increase makes Uintah’s MPI+PThreads hybrid parallelism approach [2] unde-

sirable at scale. This is due to the forced subdivision of a computational domain

that this approach requires to support each additional thread used within an

MPI process.

Rather than adopt OpenMP directly when extending Uintah to many-core

systems, the Kokkos C++ Performance Portability Library [3] was adopted

to extend the codebase in a portable manner to GPU-based, many-core, and

multicore architectures. Kokkos provides developers with data structures and

architecture-aware parallel algorithms that can be executed across multiple ar-

chitectures. This is accomplished using Kokkos back-ends, which interface to

programming models such as CUDA and OpenMP. This portability eases Uin-

tah’s future ports, including those for exascale systems.

Through the use of Kokkos, challenges pertaining to forced subdivision of

a computational domain have been addressed within [4]. For many-core sys-

tems, [4] marks a departure from Uintah’s parallel execution of existing serial

tasks within an MPI process to serial execution of Kokkos-based data parallel

tasks within an MPI process. However, challenges still remain with this pre-

2

liminary MPI+Kokkos hybrid parallelism approach. Specifically, the use of all

threads within an MPI process for individual task execution poses thread scala-

bility challenges when striving to maintain 1 MPI process per node (or NUMA

region).

This challenge is addressed here by adopting partitioning functionality re-

cently added to Kokkos via partition master within Uintah’s MPI+Kokkos hy-

brid parallelism approach. This functionality makes it possible to improve node

utilization by allowing fewer threads to be used for individual task execution

when tasks do not scale well across large thread counts. The resulting flexibil-

ity in run configuration has allowed us to achieve performance improvements

up to 1.82x, 2.63x, and 1.71x when more efficiently using GPU-, many-core-,

and multicore-based nodes, respectively, for Uintah’s reverse Monte-Carlo ray

tracing-based radiation model. At scale, the resulting MPI+Kokkos hybrid par-

allelism approach has allowed us to achieve good strong-scaling characteristics

to 442,368 threads across 1728 Knights Landing processors for the same model.

These improvements have been achieved with little additional overhead intro-

duced (sub-millisecond, consuming up to 0.18% of per-timestep time).

To demonstrate the capabilities of Kokkos, a key combustion loop that mod-

els the char oxidation of a coal particle has been used as a case study and

refactored to support both the Kokkos::OpenMP and Kokkos::Cuda back-ends.

This refactor has allowed us to achieve serial performance improvements up to

2.66x over the original serial loop on a single core. When adding loop-level

parallelism via Kokkos, the resulting Kokkos-based loop achieved performance

improvements up to 81.59x, 48.05x, and 43.77x using full GPU-, many-core-,

and multicore-based nodes, respectively, over the original serial loop on a single

core. Perhaps more importantly, this refactor has helped establish the founda-

tions for future Kokkos refactoring efforts within Uintah by helping identify a

number of portability barriers encountered during the refactoring process.

The remainder of this paper is structured as follows. Section 2 provides an

overview of the Uintah Computational Framework. Section 3 introduces Uin-

tah’s char oxidation model. Section 4 introduces Uintah’s reverse Monte-Carlo

3

ray tracing-based radiation model, RMCRT. Section 5 presents Uintah-based

interfaces to Kokkos. Section 6 describes Uintah’s task scheduling approaches.

Section 7 introduces Uintah’s use of partition master for task scheduling. Sec-

tion 8 provides a collection of lessons learned when refactoring existing loops for

the Kokkos::OpenMP and Kokkos::Cuda back-ends. Section 9 presents single-

node results for the char oxidation model. Section 10 presents single-node and

multi-node results for the RMCRT-based radiation model. Section 11 outlines

related work and Section 12 concludes this paper.

2. The Uintah Computational Framework

The Uintah Computational Framework is an open-source asynchronous many-

task (AMT) runtime system specializing in large-scale simulation of fluid-structure

interaction problems. These problems are modeled by solving partial differential

equations on structured adaptive mesh refinement grids. Uintah is based upon

novel techniques for understanding a broad set of fluid-structure interaction

problems. [5]

Specializing in large-scale simulation, Uintah has been widely ported across

a diverse set of leadership-class HPC systems. For multicore systems, good

scaling characteristics have been demonstrated to 96K, 262K, and 512K cores

on the NSF Stampede, DOE Titan, and DOE Mira systems, respectively [5,

6, 7]. For GPU-based systems, good strong-scaling characteristics have been

demonstrated to 16K GPUs [8] on the DOE Titan system. For many-core sys-

tems, good strong-scaling characteristics have been demonstrated to 256 Knights

Landing processors on the NSF Stampede system [4] using Uintah’s preliminary

MPI+Kokkos hybrid parallelism approach and 128 core groups on the NRCPC

Sunway TaihuLight system [9]. The work presented here extends this by demon-

strating good strong-scaling characteristics to 1728 Knights Landing processors

on the NSF Stampede 2 system using the refined MPI+Kokkos hybrid paral-

lelism approach presented here.

Uintah release 2.1.0 in 2017 has four simulation components:

4

• ARCHES: Turbulent reacting flows with participating media radiation.

• ICE: Low-speed and high-speed compressible flows.

• MPM: Multi-material, particle-based structured mechanics.

• MPM-ICE: Fluid-structure interactions via MPM and ICE.

For ongoing boiler simulations, the CCMSC uses the ARCHES simulation com-

ponent. ARCHES is a Large Eddy Simulation (LES) code described further

in [10]. This code uses a low-Mach number (M <0.3), variable density formula-

tion to model heat, mass, and momentum transport in turbulent reacting flows.

Two typical and challenging models used for ARCHES-based boiler simulations

are explored within this paper. The first is a key combustion loop that models

the char oxidation of a coal particle. The second is a ray-tracing algorithm that

models radiation, which is the dominant mode of heat transfer within the boiler.

3. Char Oxidation Modeling Within Uintah

The char oxidation of a coal particle involves a complex set of physics. This

set of physics includes mass transport of oxidizers from the bulk gas phase to

the surface of the particle, diffusion of oxidizers into the pores of the particle,

reaction of solid fuel with local oxidizers, and mass transport of the gas products

back to the gas phase. As implemented within ARCHES, the char rate computes

the rate of chemical conversion of solid carbon to gas products, the rate of heat

produced by the reactions, and the rate of reduction of particle size [11]. These

rates are used in the Direct Quadrature Method of Moments (DQMOM) [12],

which subsequently affect the size, temperature, and fuel content of the particle

field. For each snapshot of time simulated, an assumption of steady-state is

made that produces a non-linear set of coupled equations. This set of coupled

equations is then solved pointwise at each cell within the computational do-

main using a Newton algorithm. The char model is the most expensive model

evaluated during the time integration of physics within ARCHES.

5

Algorithm 1 provides an overview of the char oxidation model loop struc-

ture. The core loop refactored to use the Kokkos::OpenMP and Kokkos::Cuda

Algorithm 1 ARCHES Char Oxidation Model Loop Structure

1: for all mesh patches do

2: for all Gaussian quadrature nodes do

3: for all cells in a mesh patch do

4: loop over reactions with an inner loop over reactions

5: multiple loops over reactions

6: loop over species

7: loop over reactions with an inner loop over species

8: for all Newton iterations do

9: multiple loops over reactions

10: multiple loops over reactions with inner loops over reactions

11: end for

12: loop over reactions

13: end for

14: end for

15: end for

back-ends is the for loop beginning at Line 3 of Algorithm 1. This loop fea-

tures approximately 350 lines of code with a number of interior loops and

Newton iterations within. Outside of the core loop, there is a multiplier in-

curred by the number of Gaussian quadrature nodes, which results from the

DQMOM approximation to the number density function. Inside of the core

loop, there are a variety of multipliers incurred by the number of reactions

and species computed. Additional complexity is introduced among these mul-

tipliers by the per-cell Newton iterations beginning at Line 8 of Algorithm

1. For example, the top bottleneck within the core loop has a multiplier of

GaussianQuadratureNodes ∗ NewtonIterations ∗ Reactions2 per cell. This

algorithm has a theoretical arithmetic intensity of approximately 1.30 FLOPs

per double precision number.

6

4. Radiation Modeling Within Uintah

Parallel reverse Monte-Carlo ray tracing (RMCRT) methods [6, 8] are one

of several methods available within Uintah for solving the radiative transport

equation. RMCRT models radiative heat transfer using random walks across

rays cast throughout the computational domain. These rays are traced in re-

verse, towards their origin, to eliminate the need to trace rays that may never

reach an origin. During ray traversal, the amount of incoming intensity ab-

sorbed by the origin is computed. This incoming intensity is then used to aid

in solving the radiative transport equation.

RMCRT has good parallel scalability as rays can be traced simultaneously

at any given cell and/or timestep [6]. As a result, a stand-alone RMCRT-based

radiation model was developed in Uintah [13]. This model has since been (i)

extended to support adaptive mesh refinement (AMR) [6], (ii) further adapted

to run on GPUs at large-scale with this novel AMR approach [8], (iii) used

to explore performance on the Intel Knights Corner coprocessor [14], (iv) ex-

tended to support the Kokkos::OpenMP back-end and used to explore perfor-

mance of Uintah’s initial MPI+Kokkos hybrid parallelism approach at scale on

the Intel Knights Landing processor [4], and (v) partially extended to support

Kokkos::Cuda for the non-AMR-based model [15].

The work presented here uses Uintah’s 2-Level RMCRT-based radiation

model. The core loop refactored to use the Kokkos::OpenMP and Kokkos::Cuda

back-ends features approximately 500 lines of code with a number of interior

loops. Inside of the core loop, there are a variety of multipliers incurred by

the number of rays cast per cell and the number of cells that each ray is

traced across. For example, the core loop has a multiplier of 100RaysPerCell ∗

CellsTracedAcross for the results presented with this paper. This algorithm

has a theoretical arithmetic intensity of approximately 0.66 FLOPs per double

precision number.

7

5. Uintah-Based Kokkos Interfaces for Application Developers

In a large existing codebase, such as Uintah, Kokkos must be adopted in-

crementally. For example, Arches features approximately 500 loops executing

roughly 10,000 lines of code. These loops range from a single line of code to

roughly 800 lines of code with an average of 20 lines of code per loop. Through-

out our incremental adoption, Uintah’s interfaces to Kokkos have been refined.

This section presents the current state of these interfaces. These interfaces are

a product of the refactoring efforts presented within this paper and Uintah’s

earlier proof-of-concepts, which can be found in [4], [15], and [16].

A key design philosophy maintained within Uintah is that application devel-

opers are isolated from infrastructure details via a task-based approach. This

approach allows application developers to focus on writing loop-based tasks,

leaving details such as task scheduling to infrastructure developers. Such a di-

vide simplifies application development while allowing infrastructure changes

to be made behind-the-scenes with minimal impact on application develop-

ers. Aligning with this philosophy, two new interfaces have been introduced

within Uintah to ease refactoring efforts for application developers: (1) Uin-

tah::KokkosView3 and (2) Uintah::parallel <pattern>.

Uintah::KokkosView3 is a custom data type used to store data warehouse

variables as plain-old-data within unmanaged Kokkos views with 3-dimensional

indexing. Note, more on unmanaged views can be found in 6.5.4 of https:

//github.com/kokkos/kokkos/wiki/View. As currently implemented, these

views use the LayoutStride memory layout to accommodate arbitrarily strided

mapping of indices to a memory location. Though Kokkos offers managed views,

unmanaged views have been chosen as a result of Uintah offering means of

managing memory allocations. Similarly, Uintah offers means of managing data

access patterns through the Uintah::parallel <pattern> interface to be discussed

next.

A Uintah::parallel <pattern> is a loop statement used to execute loop itera-

tions either serially or in parallel using a Kokkos back-end. Currently supported

8

https://github.com/kokkos/kokkos/wiki/View
https://github.com/kokkos/kokkos/wiki/View

Uintah parallel patterns include Uintah::parallel for, Uintah::parallel reduce min,

and Uintah::parallel reduce sum. Uintah::parallel for executes a traditional for

loop. Uintah::parallel reduce min executes a reduction identifying the minimum

of scalar data across loop iterations. Uintah::parallel reduce sum executes a re-

duction identifying the summation of scalar data across loop iterations. These

interfaces have proved invaluable when refactoring Uintah.

Listing 1 depicts an example of how loops were structured prior to adopting

Kokkos. Listing 2 depicts an example of how loops are now structured to enable

support for Kokkos parallel patterns. Comparing Listing 1 and 2, an application

developer need only specify an iteration range (e.g., range in Listing 2), change

the loop statement to use Uintah::parallel for, and use i,j,k -based indexing for

data warehouse variables to enable support for Kokkos parallel patterns. Note,

these changes merely enable support for Kokkos parallel patterns. Additional

loop-level changes may be necessary to ensure that a loop will build and/or

execute properly for a given back-end. A collection of such changes and lessons

from Uintah refactoring efforts can be found in Section 8.

for (CellIterator iter = patch ->getCellIterator (); !iter.done(); iter++) {

IntVector origin = *iter;

char_rate[origin] = 0.0;

// . . .

}

Listing 1: Code listing illustrating how loops were structured prior to adopting Kokkos.

Uintah :: BlockRange range(patch ->getBeginCell (), patch ->getEndCell ());

Uintah :: parallel_for (range , [&](int i, int j, int k) {

char_rate(i,j,k) = 0.0;

// . . .

}

Listing 2: Code listing illustrating how loops are now structured to enable support for Kokkos

parallel patterns.

9

As currently implemented, loop iterations within a Uintah::parallel <pattern>

can be executed serially, in parallel using the Kokkos::OpenMP back-end, or

in parallel using the Kokkos::Cuda back-end. The manner in which a Uin-

tah::parallel <pattern> is executed is based upon whether or not Uintah has

been built with Kokkos and, if so, which back-end(s) the Kokkos build supports.

For example, a Uintah::parallel for is executed using the Kokkos::OpenMP back-

end when Uintah is built with a Kokkos build supporting the Kokkos::OpenMP

back-end.

Listing 3 depicts an example of how loops are executed when Uintah is built

without Kokkos. Listing 4 depicts an example of how loops are executed when

Uintah is built with a Kokkos build supporting the Kokkos::OpenMP back-end.

Listing 5 depicts an example of how loops are executed when Uintah is built with

a Kokkos build supporting the Kokkos::Cuda back-end. In practice, a developer

may wish to tune loop execution through aspects such as loop structure (e.g.,

singly-nested vs. triply-nested) or OpenMP loop scheduling parameters (e.g.,

chunk size). When using Kokkos parallel algorithms, care must also be taken

to ensure that there are enough loop iterations to parallelize over. Parameters

such as chunk size make it easy to inadvertently provide fewer iterations than

there are OpenMP threads, leaving threads idle.

for (int k = kBegin; k < kEnd; ++k) {

for (int j = jBegin; j < jEnd; ++j) {

for (int i = iBegin; i < iEnd; ++i) {

functor(i,j,k);

}}}

Listing 3: Code listing illustrating how loops may be executed when Uintah is built without

Kokkos.

For application developers, these interfaces allow for easy adoption of Kokkos

without requiring knowledge of intricacies such as Kokkos execution policies.

For infrastructure developers, these interfaces offer an easy means of fine-tuning

data access patterns and loop execution without requiring code changes across

10

Kokkos :: parallel_for (

Kokkos :: RangePolicy <Kokkos ::OpenMP , int >(0, numItems).set_chunk_size (1),

[&, iSize , jSize , iBegin , jBegin , kBegin](const int& n)

{

const int k = (n / (jSize * iSize)) + kBegin;

const int j = (n / iSize) % jSize + jBegin;

const int i = (n) % iSize + iBegin;

functor(i,j,k);

});

Listing 4: Code listing illustrating how loops may be executed when Uintah is built with a

Kokkos build supporting the Kokkos::OpenMP back-end.

Kokkos ::TeamPolicy <Kokkos ::Cuda > tPolicy(blocksPerLoop , threadsPerBlock);

typedef Kokkos ::TeamPolicy <Kokkos ::Cuda > policyType;

Kokkos :: parallel_for (

tPolicy ,

[=] __device__ (typename policyType :: member_type thread)

{

const unsigned int nBegin = /∗ calculate per−block starting iteration ∗/
const unsigned int numItems = /∗ calculate total iterations ∗/

Kokkos :: parallel_for (

Kokkos :: TeamThreadRange(thread , numItems),

[&, nBegin , iSize , jSize , iBegin , jBegin , kBegin](const int& n)

{

const int k = ((nBegin + n) / (jSize * iSize)) + kBegin;

const int j = ((nBegin + n) / iSize) % jSize + jBegin;

const int i = (nBegin + n) % iSize + iBegin;

functor(i,j,k);

});

});

Listing 5: Code listing illustrating how loops may be executed when Uintah is built with a

Kokkos build supporting the Kokkos::Cuda back-end.

11

loops individually. Perhaps most importantly, these interfaces offer an easy

means of extending support to additional Kokkos back-ends. The aim is for

application developers to, hopefully, only need to refactor loops once to enable

support for current and future Kokkos back-ends.

6. Task Scheduling within Uintah

Uintah’s infrastructure offers a variety of task scheduling options. These

options include an MPI-only task scheduler [17], an MPI+PThreads task sched-

uler [2], and a preliminary MPI+Kokkos task scheduler [4]. The work in [4] used

MPI+Kokkos to overcome a scalability barrier on many-core systems that was

imposed by the forced subdivision of a computational domain required by the

MPI+PThreads task scheduler to support each additional thread used within

an MPI process. In a similar manner, thread scalability barriers within task ex-

ecutors have necessitated the refinement of Uintah’s preliminary MPI+Kokkos

task scheduler.

A key notion in task scheduling is that of a task executor. A task executor

resides within an MPI process and corresponds to the collection of compute

resources used to execute an individual task. These resources may range from

a single core/thread to an entire compute node. Task executors interact with

per-MPI process task queues to select and execute ready tasks (e.g., tasks whose

dependencies have been satisfied). Figure 1 presents an overview of the per-MPI

process infrastructure supporting Uintah’s MPI+PThreads task scheduler. In

Figure 1, centrally-located ovals noted as “Running Data Parallel Task” and

“Running Serial Task” correspond to task executors. Here, for example, CPU-

based task executors are single-threaded with as many task executors as there

are threads within an MPI process.

Across task schedulers, a variety of task executor configurations are sup-

ported within an MPI process. The MPI-only task scheduler uses a single task

executor to support serial execution of serial tasks within an MPI process. The

MPI+PThreads task scheduler uses multiple task executors to support parallel

12

N
e

tw
o

rkCPU

Data

Warehouse

GPU

Data

Warehouse

CPU Task Queues

Task

Graph
GPU Task Queues

H2D

Streams

D2H

Streams

CPU Core
Running Serial Task

CPU Core
Running Serial Task

GPU
Running Data Parallel Task

PUT

GET

PUT

GET

PUT

GET

CPU Core
Running Serial Task

GPU
Running Data Parallel Task

PUT

GET

PUT

GET

GPU Ready Tasks

GPU

Kernels

CPU

Threads

Shared Scheduler Objects (Host Memory)

C
o

m
p

le
te

d

T
a

sk
s

CPU Ready Tasks

MPI Data Ready

GPU-Enabled Tasks

Internal Ready Tasks

MPI Send

MPI Recv

MPI Send

MPI Recv

MPI Send

MPI Recv

Figure 1: Uintah’s multi-threaded MPI scheduler [4].

execution of serial tasks and CUDA-based data parallel tasks within an MPI

process. The preliminary MPI+Kokkos task scheduler uses a single task execu-

tor to support serial execution of Kokkos-based data parallel tasks within an

MPI process.

Though use of a single task executor has eased development of the prelim-

inary MPI+Kokkos task scheduler, this approach is undesirable for many-core

systems. Specifically, the use of all threads within an MPI process for individ-

ual task execution poses thread scalability challenges when striving to maintain

1 MPI process per node (or NUMA region). To utilize fewer threads within a

Kokkos-based data parallel task, Uintah’s preliminary MPI+Kokkos task sched-

uler [4] has been extended to support the parallel execution of Kokkos-based

data parallel tasks with an MPI process.

Figure 2 presents an example of how task execution within an MPI pro-

cess may change as a result of this extension. Note, this figure assumes a run

configuration using 1 MPI process and all available cores on a Knights Landing

processor. Figure 2a shows the preliminary MPI+Kokkos task scheduler using a

single task executor to execute Kokkos-based data parallel tasks using all cores.

Figure 2b shows an example of how the refined MPI+Kokkos task scheduler can

13

KNL Cores

Running Data Parallel Task

16 GB

MCDRAM

O
p

e
n

M
P

 T
h

re
a

d
s

PUT

GET

(a) Serial execution of data parallel tasks.

KNL Cores

Running Data Parallel Tasks

16 GB

MCDRAM

O
p

e
n

M
P

 T
h

re
a

d
s

PUT

GET

(b) Parallel execution of data parallel tasks.

Figure 2: Example of how a Knights Landing processor may be used when executing Kokkos-

based data parallel tasks serially (a) and in parallel (b).

be used to execute 4 Kokkos-based data parallel tasks simultaneously using 4

task executors with each using a subset of available cores.

This refinement of the MPI+Kokkos task scheduler provides users with

means of specifying both how many task executors to use within an MPI pro-

cess and how many compute resources to use for individual task execution. This

flexibility offers greater control over run configuration and task executor gran-

ularity when balancing communication and computation at scale. In doing so,

this approach enables previously unsupported run configurations (e.g., multiple

MPI processes per node in an MPI+X environment). Additionally, the resulting

approach enables easy interoperability with OpenMP-based third party libraries

as we are no longer mixing threading models (e.g., OpenMP and PThreads).

7. Task Executor Partitioning via Kokkos

The refinement of Uintah’s MPI+Kokkos hybrid parallelism model has been

made possible by partitioning functionality recently added to Kokkos via par-

tition master. This functionality allows a Kokkos execution space instance to

be subdivided into multiple instances. In the context of Uintah, an execution

space instance corresponds to a task executor. Similar to newly added CUDA

support presented in [15], the introduction of partition master marks another

instance of Uintah’s needs as an AMT runtime system helping drive Kokkos

development.

14

Uintah’s adoption of partition master was relatively straightforward, requir-

ing only a few lines of new code. Listing 6 depicts how partition master has

been used within Uintah. This code is called on a per-timestep basis and

auto task_worker = [&] (int partition_id , int num_partitions) {

runTasks (); // runTasks is an existing function within Uintah

};

// Each partition executes task worker

Kokkos :: OpenMP :: partition_master(task_worker

, num_partitions

, threads_per_partition);

Listing 6: Code listing illustrating Uintah-based code required to enable parallel execution

of newly-written Kokkos-based data parallel tasks and existing serial tasks within an MPI

process.

has replaced hundreds of lines of thread pool management code within Uintah’s

MPI+PThreads task scheduler [2]. At the start of a timestep, partition master

uses OpenMP to subdivide the original execution space instance into multiple

instances. During a timestep, each instance calls runTasks() to select and exe-

cute all tasks for a given timestep. At the end of a timestep, partition master

restores the original execution space instance. Overheads associated with the

subdivision and restoration of the original execution space instance will be pre-

sented in Section 9.

When using partition master with multiple execution space instances, care

must be taken to ensure that a node is fully utilized. Specifically, thread

placement becomes critical as it is easy to inadvertently launch overlapping

instances. Three OpenMP environment variables are important for using par-

tition master : OMP NESTED, OMP PLACES, and OMP PROC BIND. The

OMP NESTED environment variable enables nested parallelism and must be

set to true to allow for multiple execution space instances within an MPI pro-

cess. The OMP PLACES and OMP PROC BIND environment variables man-

age thread placement. For best performance, Kokkos recommends use of threads

15

t1 t2

Figure 3: Disjointly placed task executors, fully utilizing a node with OMP PLACES=threads

and OMP PROC BIND=spread.

t1 t2t1 & t2

Figure 4: Oversubscribed task executors, under-utilizing a node with OMP PLACES=threads

and OMP PROC BIND=close.

and spread for OMP PLACES and OMP PROC BIND, respectively. In partic-

ular, spread is critical for ensuring that task executors are placed disjointly

across a node. Figure 3 depicts an example of properly placing task executors

across a node using OMP PLACES=threads and OMP PROC BIND=spread.

Figure 4 depicts an example of improperly placing task executors across a node

using OMP PLACES=threads and OMP PROC BIND=close.

8. Lessons from Refactoring Loops for Kokkos Back-Ends

Uintah parallel patterns provide application developers with easy means of

enabling parallel execution within existing serial loops. However, merely en-

abling support for Kokkos parallel patterns does not ensure that a loop will build

and/or execute properly for a given back-end. Most notably, loops must now

be written in a thread-safe manner. A collection of adoption recommendations

maintained by the Kokkos team can be found in https://github.com/kokkos/

kokkos/wiki/Interoperability. Additional insights gained from Uintah refac-

tors are presented within this section.

Refactoring loops for the Kokkos::OpenMP back-end was straightforward.

Issues encountered were limited to ensuring that thread-local variables were

declared in a thread-safe manner (e.g., inside of parallel patterns). Refactoring

loops for the Kokkos::Cuda back-end was more challenging as loops used C/C++

16

https://github.com/kokkos/kokkos/wiki/Interoperability
https://github.com/kokkos/kokkos/wiki/Interoperability

features that are not supported in CUDA. Below is a collection of lessons from

efforts refactoring loops to support the Kokkos::Cuda back-end:

1. Eliminate use of C++ standard library classes and functions that do not

have CUDA equivalents. Examples encountered include replacing use of

std::cout with printf, replacing use of std::string with null-terminated ar-

rays of characters, and hard-coding std::accumulate. More on C/C++

features supported in CUDA can be found in E and F of https://docs.

nvidia.com/cuda/cuda-c-programming-guide/index.html.

2. Replace use of std::vector with arrays of plain-old-data or Kokkos::vector.

Functors and lambdas are passed into parallel patterns as const objects.

As such, an std::vector is read only within a parallel pattern. More on

std::vector and Kokkos::vector can be found in 12.3.3 of https://github.

com/kokkos/kokkos/wiki/Interoperability.

3. Eliminate allocation of memory within parallel patterns. Memory must be

allocated outside of parallel patterns to enable allocation across multiple

Kokkos memory spaces.

4. Place arrays inside of a struct to pass them into a lambda. Passing an

array itself into a lambda captures the host memory pointer address, which

is not accessible from a GPU.

5. Copy class data members into local variables to pass them into a lambda.

Passing members accessed via a C++ this pointer into a lambda captures

the host memory this pointer address, which is not accessible from a GPU.

Several other insights were gained during these refactoring efforts, for exam-

ple:

1. Use template metaprogramming to reduce code duplication. Examples

encountered include templating data structures on the Kokkos memory

space.

2. Favor using lambdas, instead of functors, for parallel patterns. Functors

require duplication of parameter lists across multiple locations. This can

be problematic for large parameter lists.

17

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://github.com/kokkos/kokkos/wiki/Interoperability
https://github.com/kokkos/kokkos/wiki/Interoperability

3. Favor use of plain-old-data to avoid temporary object construction and

deep object hierarchies.

4. Use the KOKKOS INLINE FUNCTION macro to annotate inlined func-

tions.

5. Use the Kokkos pseudorandom number generator, based on [18], to avoid

having to manage multiple generators.

Expanding on templates, one of the more difficult challenges faced during

these refactoring efforts concerned loop compilation. With hundreds of exist-

ing loops in varying states of refactoring, means of selectively compiling loops

for a target Kokkos back-end(s) is necessary to enable incremental refactoring.

This challenge arises due to the decision to isolate application developers from

Kokkos-specific calls via Uintah::parallel <pattern>. While allowing an appli-

cation developer to write a single loop statement that supports multiple Kokkos

back-ends, this requires knowledge of the Kokkos back-end(s) that a loop sup-

ports to help ensure successful compilation and execution. For example, loops

not yet refactored to support the Kokkos::Cuda back-end must be compiled

for serial execution when Uintah is built with a Kokkos build supporting the

Kokkos::Cuda back-end. To overcome this challenge, template metaprogram-

ming and macros were used to tag tasks featuring Uintah parallel patterns with

the currently supported Kokkos back-end(s).

9. Char Oxidation Modeling Results

This section presents results from experimental studies solving the char ox-

idation model within ARCHES.

9.1. Single-Node Studies

The results presented within this section used the following implementations

of CharOx:

• CharOx:CPU : This is an existing implementation of the char oxidation

model written to use serial tasks.

18

• CharOx:Kokkos: This is a new implementation of the char oxidation model

written to use Kokkos-based data parallel tasks. This implementation has

been refactored to support the Kokkos::OpenMP and Kokkos::Cuda back-

ends as a part of this work.

CPU-based results have been gathered on a node featuring two 2.7 GHz Intel

Xeon E5-2680 Sandy Bridge processors with 8 cores (2 threads per core) per

processor and 64 GB of RAM. GPU-based results have been gathered on a node

featuring a Maxwell-based NVIDIA GeForce GTX Titan X GPU with 12 GB of

RAM. KNL-based results have been gathered on a node featuring one 1.3 GHz

Intel Xeon Phi 7210 Knights Landing processor configured for Flat-Quadrant

mode with 64 cores (4 threads per core) and 96 GB of RAM.

Simulations were launched using 1 MPI process per node. CPU- and KNL-

based problems used 1 patch per core with the exception of results in Table

2. GPU-based problems used 16 patches with the exception of results in Table

2. Note, a patch is the collection of cells assigned to a task executor. Run

configurations were selected to use the extent of each node. Per-loop timings

correspond to timings for the Uintah::parallel for itself. Per-timestep timings

correspond to timings for execution of a timestep as a whole. Results have been

averaged over 7 consecutive timesteps and 80-320 loops per timestep depending

upon patch count.

Table 1 depicts incremental performance improvements achieved when refac-

toring the char oxidation model. This table presents CPU-based results gathered

using the CharOx:CPU implementation for three patch sizes (163, 323, and 643

cells) at various steps of the refactor. Tasks were executed using 16 task execu-

tors with 1 thread per task executor via 16 MPI processes. Step 0 corresponds

to the original serial loop. Step 1 corresponds to refactoring the loop to use the

Uintah::parallel for interface described in Section 5. Step 2 corresponds to re-

placing use of std::vector inside of the loop with 1-dimensional arrays of doubles.

Step 3 corresponds to replacing temporary object construction inside of the loop

with 2-dimensional arrays of doubles. Step 4 corresponds to hard-coding short

19

PER-LOOP TIMINGS - in milliseconds (x speedup) - CPU

CharOx:CPU Refactor Step 163 Patch 323 Patch 643 Patch

0: Original serial loop 17.87 (-) 141.80 (-) 1132.46 (-)

1: Using Uintah::parallel for 19.19 (0.93x) 142.06 (1.00x) 1147.99 (0.99x)

2: No std::vector in loops 11.74 (1.52x) 93.72 (1.51x) 752.62 (1.50x)

3: No temporary object construction in loops 10.96 (1.63x) 88.50 (1.60x) 709.80 (1.60x)

4: No virtual functions in loops 9.75 (1.83x) 78.55 (1.81x) 634.25 (1.79x)

5: Using unmanaged Kokkos views 10.18 (1.76x) 78.61 (1.80x) 633.02 (1.79x)

6: No std::string in loops 9.16 (1.95x) 73.35 (1.93x) 591.37 (1.91x)

7: Improved memory access patterns 6.73 (2.66x) 55.19 (2.57x) 444.64 (2.55x)

Table 1: Dual-socket per-loop timings at various steps of the CharOx:CPU refactor on Intel

Sandy Bridge. Note, refactor steps are cumulative.

virtual functions inside of the loop. Step 5 corresponds to refactoring data ware-

house variables to use the Uintah::KokkosView3 interface described in Section

5. Step 6 corresponds to replacing std::string comparisons inside of the loop

with integer-based comparisons. Step 7 corresponds to restructuring the loop

to improve data warehouse variable access patterns. These results demonstrate

that performance is a by-product of refactoring for portability.

Table 2 depicts cross-architecture comparisons for char oxidation modeling.

This table presents CPU-, GPU-, and KNL-based results gathered using the

CharOx:Kokkos implementation with the Kokkos::OpenMP, Kokkos::Cuda, and

Kokkos::OpenMP back-ends, respectively. For CPU-based results, tasks were

executed using 16 task executors with 1 thread per task executor via 1 MPI

process and 16 OpenMP threads. For GPU-based results, tasks were executed

using 1 CUDA stream and 16 CUDA blocks per loop with 256 CUDA threads per

block and 255 registers per thread. For KNL-based results, tasks were executed

using 64 task executors with 4 threads per task executor via 1 MPI process and

256 OpenMP threads. Results are presented for nine patch counts (16, 32, 64,

128, 256, 512, 1024, 2048, and 4096 patches with 163 cells per patch). These

results demonstrate portability of a single codebase across CPU-, GPU-, and

KNL-based architectures. While the GPU outperforms both CPU and KNL,

20

PER-TIMESTEP LOOP THROUGHPUT - in milliseconds - CPU/GPU/KNL

163 Patches per Node CPU - Kokkos::OpenMP GPU - Kokkos::Cuda KNL - Kokkos::OpenMP

16 34.60 9.76 X

32 69.29 20.71 X

64 138.49 41.79 117.41

128 277.08 76.69 230.96

256 554.89 150.93 461.85

512 1108.88 - 915.99

1024 2219.71 - 1878.02

2048 4444.84 - 3706.70

4096 - - 7356.10

Table 2: Single-node per-timestep loop throughput timings comparing CharOx:Kokkos per-

formance across Intel Sandy Bridge, NVIDIA GTX Titan X, and Intel Knights Landing. (X)

indicates an impractical patch count for a run configuration using the full node. (-) indicates

a problem size that does not fit on the node.

this is achieved at the expense of problem size restrictions.

Table 3 depicts partition master overheads incurred at the start of a timestep.

Table 4 depicts partition master overheads incurred at the end of a timestep.

START-OF-TIMESTEP PARTITION MASTER OVERHEAD - in microseconds (% of execution) - CPU

OMP WAIT POLICY KMP BLOCKTIME 16 - 163 Patches 16 - 323 Patches 16 - 643 Patches

unspecified unspecified 117.19 (0.0202%) 122.48 (0.0138%) 135.05 (0.0026%)

passive 0 103.27 (0.0190%) 98.05 (0.0117%) 102.14 (0.0020%)

passive infinite 112.69 (0.0182%) 123.02 (0.0132%) 95.57 (0.0017%)

active infinite 108.12 (0.0173%) 100.46 (0.0108%) 105.94 (0.0019%)

Table 3: Dual-socket start-of-timestep partition master overheads across OpenMP wait poli-

cies for CharOx:Kokkos on Intel Sandy Bridge.

These tables present CPU-based results gathered using the CharOx:Kokkos im-

plementation with the Kokkos::OpenMP back-end for three patch sizes (163,

323, and 643 cells) and various combinations of OpenMP wait policies. Tasks

were executed using 16 task executors with 2 threads per task executor via 1

MPI process and 32 OpenMP threads. The OMP WAIT POLICY environ-

ment variable decides whether threads spin (active) or yield (passive) while

21

END-OF-TIMESTEP PARTITION MASTER OVERHEAD - in microseconds (% of execution) - CPU

OMP WAIT POLICY KMP BLOCKTIME 16 - 163 Patches 16 - 323 Patches 16 - 643 Patches

unspecified unspecified 900.88 (0.1555%) 900.55 (0.1016%) 34.44 (0.0007%)

passive 0 59.38 (0.0109%) 55.33 (0.0066%) 113.98 (0.0022%)

passive infinite 38.73 (0.0063%) 41.10 (0.0044%) 1197.01 (0.0216%)

active infinite 9342.95 (1.4979%) 10190.70 (1.0974%) 7555.71 (0.1328%)

Table 4: Dual-socket end-of-timestep partition master overheads across OpenMP wait policies

for CharOx:Kokkos on Intel Sandy Bridge.

they are waiting. OMP WAIT POLICY defaults to yielding (passive). The

KMP BLOCKTIME environment variable sets the time, in milliseconds, that

a thread should wait, after completing the execution of a parallel region, be-

fore sleeping. KMP BLOCKTIME defaults to 200 milliseconds. These results

demonstrate that the overheads incurred when using partition master are negli-

gible in the context of this problem. Further, the default OpenMP wait policies

are sensible for Uintah’s MPI+Kokkos hybrid parallelism approach. For the

default OpenMP wait policies, start-of-timestep partition master overheads ac-

count for 0.0202%, 0.0138%, and 0.0026% of the elapsed time per timestep for

163, 323, and 643 patches, respectively. For the default OpenMP wait poli-

cies, end-of-timestep partition master overheads account for 0.1555%, 0.1016%,

and 0.0007% of the elapsed time per timestep for 163, 323, and 643 patches,

respectively. Together, these partition master overheads account for 0.1757%,

0.1154%, and 0.0033% of the elapsed time per timestep for 163, 323, and 643

patches, respectively, for default OpenMP wait policies.

Table 5 depicts CPU-based OpenMP thread scalability within a task execu-

tor for char oxidation modeling. This table presents CPU-based results gathered

using the CharOx:Kokkos implementation with the Kokkos::OpenMP back-end

for three patch sizes (163, 323, and 643 cells). For 1 thread per core runs, tasks

were executed using 1, 2, 4, 8, and 16 task executor(s) with 16, 8, 4, 2, and 1

thread(s) per task executor, respectively, via 1 MPI process and 16 OpenMP

threads. For 2 threads per core runs, tasks were executed using 1 and 16 task

22

PER-LOOP SCALABILITY - in milliseconds (x speedup) - CPU

Total Threads Cores per Loop Threads per Loop 163 Patch 323 Patch 643 Patch

32* 1 2 7.36 (0.94x) 50.38 (1.11x) 426.66 (1.10x)

16 1 1 6.90 (-) 55.88 (-) 469.20 (-)

16 2 2 4.38 (1.58x) 29.34 (1.90x) 239.76 (1.96x)

16 4 4 2.54 (2.72x) 15.13 (3.69x) 120.42 (3.90x)

16 8 8 1.54 (4.48x) 7.51 (7.44x) 60.28 (7.78x)

16 16** 16 0.48 (14.38x) 3.72 (15.02x) 30.62 (15.32x)

32* 16** 32 0.41 (16.83x) 3.24 (17.25x) 26.66 (17.60x)

Table 5: Dual-socket per-loop thread scalability within a task executor for CharOx:Kokkos

on Intel Sandy Bridge. All speedups are referenced against 1 core per loop, 1 thread per loop

timings. (*) indicates use of 2 threads per core for an individual loop. (**) indicates use of 2

sockets for an individual loop.

executor(s) with 32 and 2 threads per task executor, respectively, via 1 MPI

process and 32 OpenMP threads. These results demonstrate that it is possible

to achieve good loop-level scalability across dual-socket Sandy Bridge. When

identifying optimal run configurations, this suggests that task execution times

may vary little across variations of task executor counts and sizes. Comparing

1 core per loop, 1 thread per loop timings to Step 7 timings in Table 1 suggests

that no performance has been lost when moving to CharOx:Kokkos. The use

of additional OpenMP threads within a task executor has allowed for speedups

up to 16.83x, 17.25x, and 17.60x to be achieved for 163, 323, and 643 cells,

respectively, when using 16 cores with 2 threads per core over use of 1 core and

1 thread per loop. These results suggest that 2 threads per core can be used

when enough per-core work is provided. Best per-loop timings achieve 43.59x,

43.77x, and 42.48x speedups for 163, 323, and 643 cells, respectively, over use of

1 Sandy Bridge core and 1 thread per loop for the original serial loop without

Kokkos (Step 0 in Table 1).

Table 6 depicts KNL-based OpenMP thread scalability within a task execu-

tor for char oxidation modeling. This table presents KNL-based results gathered

using the CharOx:Kokkos implementation with the Kokkos::OpenMP back-end

for three patch sizes (163, 323, and 643 cells). For 1 thread per core runs, tasks

23

PER-LOOP SCALABILITY - in milliseconds (x speedup) - KNL

Total Threads Cores per Loop Threads per Loop 163 Patch 323 Patch 643 Patch

256** 1 4 23.44 (1.17x) 150.83 (1.44x) 1232.83 (1.47x)

128* 1 2 23.48 (1.17x) 160.96 (1.35x) 1343.58 (1.35x)

64 1 1 27.36 (-) 216.79 (-) 1812.62 (-)

64 2 2 18.02 (1.52x) 114.52 (1.89x) 903.23 (2.01x)

64 4 4 9.55 (2.86x) 59.26 (3.66x) 459.39 (3.95x)

64 8 8 4.84 (5.65x) 31.18 (6.95x) 232.40 (7.80x)

64 16 16 2.62 (10.44x) 17.76 (12.21x) 122.78 (14.76x)

64 32 32 1.64 (16.68x) 10.55 (20.55x) 62.99 (28.78x)

64 64 64 0.63 (43.43x) 4.63 (46.82x) 30.79 (58.87x)

128* 64 128 0.59 (46.37x) 3.31 (65.50x) 23.57 (76.90x)

256** 64 256 1.59 (17.21x) 5.08 (42.68x) 27.19 (66.66x)

Table 6: Single-socket per-loop thread scalability within a task executor for CharOx:Kokkos

on Intel Knights Landing. All speedups are referenced against 1 core per loop, 1 thread per

loop timings. (*) indicates use of 2 threads per core for an individual loop. (**) indicates use

of 4 threads per core for an individual loop.

were executed using 1, 2, 4, 8, 16, 32, and 64 task executor(s) with 64, 32, 16, 8,

4, 2, and 1 thread(s) per task executor(s), respectively, via 1 MPI process and

64 OpenMP threads. For 2 threads per core runs, tasks were executed using 1

and 64 task executor(s) with 128 and 2 threads per task executor, respectively,

via 1 MPI process and 128 OpenMP threads. For 4 threads per core runs,

tasks were executed using 1 and 64 task executor(s) with 256 and 4 threads per

task executor, respectively, via 1 MPI process and 256 OpenMP threads. These

results demonstrate that it can be difficult to achieve good loop-level scalabil-

ity across Knights Landing. When identifying optimal run configurations, this

suggests that task execution times may vary across variations of task executor

counts and sizes. As a result, the use of more, yet smaller, task executors have

potential to improve node utilization. The use of additional OpenMP threads

within a task executor has allowed for speedups up to 46.37x, 65.50x, and 76.90x

to be achieved for 163, 323, and 643 cells, respectively, when using 64 cores with

2 threads per core over use of 1 core and 1 thread per loop. These results sug-

gest that up to 4 threads per core can be used when enough per-core work is

24

provided. Best per-loop timings achieve 30.29x, 42.84x, and 48.05x speedups

for 163, 323, and 643 cells, respectively, over use of 1 Sandy Bridge core and 1

thread per loop for the original serial loop without Kokkos (Step 0 in Table 1).

Table 7 depicts GPU-based performance when varying the number of CUDA

blocks used per loop for char oxidation modeling. Table 8 depicts GPU-based

PER-LOOP SCALABILITY - in milliseconds (x speedup) - GPU

CUDA Blocks per Loop 163 Patch 323 Patch 643 Patch

1 2.80 (-) 18.57 (-) 147.59 (-)

2 1.47 (1.90x) 9.59 (1.94x) 77.58 (1.90x)

4 0.80 (3.50x) 5.50 (3.38x) 43.99 (3.36x)

8 0.48 (5.83x) 3.17 (5.86x) 25.57 (5.77x)

16 0.36 (7.78x) 2.29 (8.11x) 18.99 (7.77x)

24 0.28 (10.00x) 1.92 (9.67x) 13.88 (10.63x)

Table 7: Single-GPU performance for varying quantities of CUDA blocks per loop for

CharOx:Kokkos on NVIDIA GTX Titan X using 256 CUDA threads per block. All speedups

are referenced against 1 block per loop timings.

performance when varying the number of CUDA threads used per CUDA block

for char oxidation modeling. These tables present GPU-based results gathered

PER-LOOP SCALABILITY - in milliseconds (x speedup) - GPU

CUDA Threads per CUDA Block 163 Patch 323 Patch 643 Patch

128 1.35 (-) 9.09 (-) 71.91 (-)

192 1.14 (1.18x) 7.12 (1.28x) 55.24 (1.30x)

256 0.80 (1.69x) 5.50 (1.65x) 43.99 (1.63x)

Table 8: Single-GPU performance for varying quantities of CUDA threads per CUDA block

for CharOx:Kokkos on NVIDIA GTX Titan X using 4 blocks per loop. All speedups are

referenced against 128 threads per block timings.

using the CharOx:Kokkos implementation with the Kokkos::Cuda back-end for

three patch sizes (163, 323, and 643 cells). For Table 7, tasks were executed

using 1 CUDA stream and 1, 2, 4, 8, 16, and 24 CUDA block(s) per loop with

256 CUDA threads per block and 255 registers per thread. For Table 8, tasks

were executed using 1 CUDA stream and 4 CUDA blocks per loop with 128,

25

192, and 256 CUDA threads per block and 255 registers per thread. The use of

additional CUDA blocks per loop has allowed for speedups up to 10.00x, 9.67x,

and 10.63x to be achieved for 163, 323, and 643 cells, respectively, when using up

to 24 blocks per loop over use of 1 block per loop. The use of additional CUDA

threads per CUDA block has allowed for speedups up to 1.69x, 1.65x, and 1.63x

to be achieved for 163, 323, and 643 cells, respectively, when using 256 threads

per block over use of 128 threads per block. Best per-loop timings achieve

63.82x, 73.85x, and 81.59x speedups for 163, 323, and 643 cells, respectively,

over use of 1 Sandy Bridge core and 1 thread per loop for the original serial

loop without Kokkos (Step 0 in Table 1).

Revisiting performance, the measured L1 arithmetic intensity for this algo-

rithm is 0.67 FLOPs per double precision number. This value is approximately

1.93 times lower than the algorithm’s estimated value of 1.30 FLOPs per double

precision number given in Section 3. This is attributed to poor utilization of the

memory hierarchy. Specifically, this algorithm needs further tuning to improve

cache utilization. In terms of GFLOPS, a 323 patch achieves approximately

40 GFLOPS, 104 GFLOPS, and 39 GFLOPS for CPU, GPU, and KNL nodes,

respectively. These values represent approximately 18.22%, 1.64%, and 1.74%

of peak performance for CPU, GPU, and KNL, respectively. These percentages

are not unexpected given the low arithmetic intensity of the algorithm.

10. Radiation Modeling Results

This section presents results from experimental studies solving the Burns

and Christon benchmark problem described in [19]. Past Uintah-based studies

solving this problem on CPU-, GPU-, and KNL-based systems can be found

in [4], [6], [8], and [15]. The studies presented here have been run as in past

studies.

10.1. Single-Node Studies

The results presented within this section used the following implementations

of 2-level RMCRT:

26

• 2-Level RMCRT:CPU : This is an existing implementation of 2-level RM-

CRT written to use serial tasks.

• 2-Level RMCRT:GPU : This is an existing implementation of 2-level RM-

CRT written to use CUDA-based data parallel tasks.

• 2-Level RMCRT:Kokkos: This is an existing implementation of 2-level

RMCRT written to use Kokkos-based data parallel tasks. This implemen-

tation previously supported the Kokkos::OpenMP back-end and has been

refactored to support the Kokkos::Cuda back-end as a part of this work.

Results have been gathered on the same nodes used for char oxidation mod-

eling and described in Section 9.1. Simulations were launched using 1 MPI

process per node. Run configurations were selected to use the extent of each

node. Per-timestep timings correspond to timings for execution of a timestep

as a whole. Results have been averaged over 7 consecutive timesteps.

Table 9 depicts cross-architecture comparisons for 2-level RMCRT. This ta-

PER-TIMESTEP TIMINGS - in seconds (x speedup) - CPU/GPU/KNL

Architecture Implementation 512 - 163 Patches 64 - 323 Patches 8 - 643 Patches

CPU 2L-RMCRT:CPU 51.57* (-) 71.69 (-) X (-)

Same Configuration 2L-RMCRT:Kokkos 36.30* (1.42x) 55.49 (1.29x) X (-)

Best Configuration 2L-RMCRT:Kokkos 34.96* (1.48x) 42.03* (1.71x) 60.55* (-)

GPU 2L-RMCRT:GPU 32.08 (-) 46.58 (-) X (-)

Same Configuration 2L-RMCRT:Kokkos 25.88 (1.24x) 36.66 (1.27x) X (-)

Best Configuration 2L-RMCRT:Kokkos 19.96 (1.61x) 25.60 (1.82x) 43.63 (-)

KNL 2L-RMCRT:CPU 57.93** (-) 102.11 (-) X (-)

Same Configuration 2L-RMCRT:Kokkos 43.82** (1.32x) 80.99 (1.26x) X (-)

Best Configuration 2L-RMCRT:Kokkos 29.17** (1.99x) 38.78** (2.63x) 60.45** (-)

Table 9: Single-node per-timestep timings comparing 2-level RMCRT performance across In-

tel Sandy Bridge, NVIDIA GTX Titan X, and Intel Knights Landing. Same Configuration

indicates use of the same run configuration as the existing non-Kokkos implementation. Best

Configuration indicates use of the best run configuration enabled by additional flexibility

introduced when adopting Kokkos. (X) indicates an impractical patch count for a run con-

figuration using the full node. (*) indicates use of 2 threads per core. (**) indicates use of 4

threads per core.

27

ble presents CPU-, GPU-, and KNL-based results for three 2-level RMCRT

implementations using a problem featuring 1283 cells on the fine mesh and 323

cells on the coarse mesh. Results are presented for three fine mesh configurations

(512, 64, and 8 patches with 163, 323, and 643 cells per patch, respectively).

These results demonstrate portability of a single codebase across CPU-, GPU-,

and KNL-based architectures. Further, these results suggest that no perfor-

mance has been lost when moving to 2-Level RMCRT:Kokkos. For CPU-based

results, optimal run configurations with 2L-RMCRT:Kokkos have allowed for

speedup up to 1.48x and 1.71x to be achieved for 163 and 323 patches, re-

spectively, over previously supported run configurations using the existing non-

Kokkos implementation. For GPU-based results, optimal run configurations

with 2L-RMCRT:Kokkos have allowed for speedup up to 1.61x and 1.82x to be

achieved for 163 and 323 patches, respectively, over previously supported run

configurations using the existing non-Kokkos implementation. For KNL-based

results, optimal run configurations with 2L-RMCRT:Kokkos have allowed for

speedup up to 1.99x and 2.63x to be achieved for 163 and 323 patches, re-

spectively, over previously supported run configurations using the existing non-

Kokkos implementation. For CPU and KNL, these results suggest that it is

advantageous to use all threads within a core.

Revisiting performance, the measured L1 arithmetic intensity for this algo-

rithm is 0.21 FLOPs per double precision number. This value is approximately

3.19 times lower than the algorithm’s estimated value of 0.66 FLOPs per double

precision number given in Section 4. This is attributed in part to the random

nature of this algorithm. This randomization requires irregular data access pat-

terns that result in poor cache utilization. These data access patterns led to

a greater difference between measured arithmetic intensity and theoretical for

2-level RMCRT than for the char oxidation model, which features more regular

data access patterns.

28

 10

 100

 1000

 10000

27
6912

54
13.8K

108
27.6K

216
55.2K

432
110K

864
221K

1728
442K

MPI+Kokkos Task Scheduler
1 MPI Process and 256 Threads per Knights Landing
7683 Cells, RR:4, 163 Patches
100 Rays per Cell
Averaged over 7 Timesteps

M
e
a
n
 T

im
e
 P

e
r

T
im

e
st

e
p
 (

s)

Knights Landings
Threads

2-Level RMCRT:Kokkos - Strong Scaling
 Burns and Christon Benchmark

TACC - Stampede 2 System

Ideal

1 Task Executor(s) with 256 Threads per Executor

4 Task Executor(s) with 64 Threads per Executor

32 Task Executor(s) with 8 Threads per Executor

Figure 5: Strong-scaling results to 1728 nodes for 2-level RMCRT:Kokkos on Stampede 2’s

Knights Landing processors.

10.2. Strong-Scaling Studies

While single-node studies help understand how to efficiently use a node, it

is also important to conduct multi-node studies to ensure that results apply at

scale. To demonstrate scalability of the resulting MPI+Kokkos hybrid paral-

lelism approach, such studies were conducted on the Knights Landing portion of

the NSF Stampede 2 system. This portion of Stampede 2 features the Intel Xeon

Phi 7250 Knights Landing processor and offers a variety of memory and cluster

mode configurations. These studies explored various task executor counts and

sizes across nodes configured for Cache-Quadrant mode with a problem that fit

within the 16 GB memory footprint of MCDRAM.

Figure 5 depicts strong-scaling of 2-level RMCRT:Kokkos. This figure presents

KNL-based results gathered using the 2-Level RMCRT:Kokkos implementation

with the Kokkos::OpenMP back-end for a problem featuring 7683 cells on the

fine mesh and 1923 cells on the coarse mesh. For this problem, the fine mesh was

decomposed into 110,592 patches with 163 cells per patch. Results are presented

for three run configurations (1, 4, and 32 task executor(s) with 256, 64, and 8

29

threads per task executor, respectively, via 1 MPI process and 256 OpenMP

threads).

These results demonstrate that as more, yet smaller, task executors were

used per node, node-level performance increased at the expense of reductions

in strong-scaling efficiency. This is attributed to thread scalability within in-

dividual task executors. For 163 patches, individual tasks are executed more

efficiently when using fewer threads per task executor, resulting in more quickly

executing tasks. This expedited the breakdown of scalability, which is attributed

to computation no longer sufficing to hide communication. More efficient use of

a node has allowed to speedups up to 1.62x and 1.40x to be achieved at 27 and

1728 nodes, respectively, over use of 1 task executor with 256 threads per task

executor within an MPI process.

Further, these results demonstrate that it is possible to achieve good strong-

scaling characteristics to 442,368 threads across 1728 Knights Landing proces-

sors using this MPI+Kokkos hybrid parallelism approach. This is encouraging

as it suggests a potential for reducing the number of per-node MPI processes by

a factor of up to the number of cores/threads per node in comparison to an MPI-

only approach. This is advantageous for many-core systems where the number

of MPI processes required to utilize increasingly larger per-node core/thread

counts becomes intractable.

11. Related Work

MPI+X hybrid parallelism approaches are commonly used by codebases em-

phasizing large-scale simulation. A variety of programming models are available

for use as the X within MPI+X. For many-core and multicore systems, OpenMP

and PThreads are often used. For GPU-based systems, combinations of Open-

MP/PThreads and CUDA/OpenMP are often used. An evaluation of these and

other programming models can be found in [3] and [20].

Diversity among current and emerging HPC systems has increased the de-

sirability of portable programming models over architecture-specific program-

30

ming models. Uintah has adopted MPI+Kokkos to extend the codebase in a

portable manner to GPU-based, many-core, and multicore systems. Kokkos is

one of several programming models that enable interoperability among program-

ming models such as CUDA and OpenMP. At Sandia National Labs, Kokkos

has been integrated within Trilinos [21] and used in codes such as Albany [22]

and LAMMPS [23]. Examples of similar portable programming models include

HEMI [24], OCCA [25], and RAJA [26].

Uintah is one of many asynchronous many-task (AMT) runtime systems and

block-structured adaptive mesh refinement (SAMR) frameworks. Examples of

similar AMT runtime systems include Charm++ [27], HPX [28], Legion [29],

PaRSEC [30], and StarPU [31]. Examples of similar SAMR frameworks in-

clude BoxLib [32] (superseded by AMReX [33]) and Cactus [34]. An analysis

of performance portability for representative AMT runtime systems, including

Uintah, can be found in [35]. A survey of representative SAMR frameworks,

including Uintah, can be found in [36].

12. Conclusions and Future Work

This work has helped improve Uintah’s portability to future architectures

and readiness for exascale systems. Specifically, it has shown performance im-

provements and portability of a single codebase across GPU-based, many-core,

and multicore architectures for two key models within Uintah, char oxidation

and RMCRT-based radiation. When refactoring for portability, serial perfor-

mance improvements up to 2.66x have been achieved over the original serial

loop on a single core. When adding loop-level parallelism via Kokkos, perfor-

mance improvements up to 81.59x have been achieved using a full node over

the original serial loop on a single core. Perhaps more importantly, this work

has also helped establish the foundations for future Kokkos refactoring efforts

within Uintah.

Infrastructure advancements have been made possible by the adoption of par-

titioning functionality recently added to Kokkos within Uintah’s MPI+Kokkos

31

hybrid parallelism approach. This functionality makes it possible to improve

node utilization by allowing fewer threads to be used for individual task execu-

tion when tasks do not scale well across large thread counts. When more effi-

ciently using a node, performance improvements up to 2.63x have been achieved

using newly supported run configurations over previously supported run config-

urations on a full node. The resulting flexibility in run configuration also offers

greater control over the balance between communication and computation at

scale. These improvements have been achieved with little additional overhead

introduced (sub-millisecond, consuming up to 0.18% of per-timestep time).

The performance improvements and portability demonstrated here offer en-

couragement as we prepare to extend more of Uintah to GPU-based HPC sys-

tems via the Kokkos::Cuda back-end. In particular, performance improvements

suggest a potential to improve boiler simulations through the use of finer mesh

resolutions and/or more simulated time. Next steps include furthering our un-

derstanding of loop-level tuning parameters. For Kokkos::OpenMP, this includes

OpenMP loop scheduling parameters such as scheduling kind (e.g., dynamic,

static, etc) and chunk size. For Kokkos::Cuda, this includes architecture-specific

parameters such as the number of registers per CUDA thread.

13. Acknowledgements

This material is based upon work supported by the Department of En-

ergy, National Nuclear Security Administration, under Award Number(s) DE-

NA0002375. An award of computing time was provided by the NSF Extreme

Science and Engineering Discovery Environment (XSEDE) program. This re-

search used resources of the Texas Advanced Computing Center, under Award

Number(s) MCA08X004 - “Resilience and Scalability of the Uintah Software”.

This research also used resources donated to the University of Utah Intel Par-

allel Computing Center (IPCC) at the SCI Institute. Support for J. K. Holmen

comes from the Intel Parallel Computing Centers Program. Additionally, we

would like to thank all of those involved with the CCMSC and Uintah past and

32

present.

References

[1] M. Berzins, J. Luitjens, Q. Meng, T. Harman, C. Wight, J. Peterson, Uin-

tah: A scalable framework for hazard analysis, in: Proceedings of the 2010

TeraGrid Conference, ACM, 2010, p. 3.

[2] Q. Meng, M. Berzins, J. Schmidt, Using hybrid parallelism to improve

memory use in uintah, in: Proceedings of the TeraGrid 2011 Conference,

ACM, 2011.

[3] H. C. Edwards, C. R. Trott, D. Sunderland, Kokkos: Enabling many-

core performance portability through polymorphic memory access patterns,

Journal of Parallel and Distributed Computing 74 (12) (2014) 3202 – 3216.

[4] J. K. Holmen, A. Humphrey, D. Sunderland, M. Berzins, Improving Uin-

tah’s Scalability Through the Use of Portable Kokkos-Based Data Parallel

Tasks, in: Proceedings of the Practice and Experience in Advanced Re-

search Computing 2017 on Sustainability, Success and Impact, PEARC17,

ACM, New York, NY, USA, 2017, pp. 27:1–27:8.

[5] M. Berzins, J. Beckvermit, T. Harman, A. Bezdjian, A. Humphrey,

Q. Meng, J. Schmidt, , C. Wight, Extending the uintah framework through

the petascale modeling of detonation in arrays of high explosive devices,

SIAM Journal on Scientific Computing 38 (5) (2016) 101–122.

[6] A. Humphrey, T. Harman, M. Berzins, P. Smith, A scalable algorithm

for radiative heat transfer using reverse monte carlo ray tracing, in: J. M.

Kunkel, T. Ludwig (Eds.), High Performance Computing, Vol. 9137 of Lec-

ture Notes in Computer Science, Springer International Publishing, 2015,

pp. 212–230.

[7] Q. Meng, A. Humphrey, J. Schmidt, M. Berzins, Investigating applica-

tions portability with the uintah DAG-based runtime system on PetaScale

33

supercomputers, in: Proceedings of SC13: International Conference for

High Performance Computing, Networking, Storage and Analysis, 2013,

pp. 96:1–96:12.

[8] A. Humphrey, D. Sunderland, T. Harman, M. Berzins, Radiative heat

transfer calculation on 16384 gpus using a reverse monte carlo ray trac-

ing approach with adaptive mesh refinement, in: 2016 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW),

2016, pp. 1222–1231.

[9] Z. Yang, D. Sahasrabudhe, A. Humphrey, M. Berzins, A preliminary port

and evaluation of the uintah amt runtime on sunway taihulight, in: 9th

IEEE International Workshop on Parallel and Distributed Scientific and

Engineering Computing (PDSEC 2018), IEEE, 2018.

[10] P. J. Smith, R.Rawat, J. Spinti, S. Kumar, S. Borodai, A. Violi, Large eddy

simulations of accidental fires using massively parallel computers, in: 16th

AIAA Computational Fluid Dynamics Conference, 2003, p. 3697.

[11] W. P. Adamczyk, B. Isaac, J. Parra-Alvarez, S. T. Smith, D. Harris, J. N. T.

amd Minmin Zhoub, P. J. Smith, R. Zmuda, Application of les-cfd for pre-

dicting pulverized-coal working conditions after installation of nox control

system, Energy 693–709.

[12] J. Pedel, J. N. Thornock, S. T. Smith, P. J. Smith, Large eddy simulation of

polydisperse particles in turbulent coaxial jets using the direct quadrature

method of moments, International Journal of Multiphase Flow 63 (2014)

23–38.

[13] A. Humphrey, Q. Meng, M. Berzins, T. Harman, Radiation modeling us-

ing the uintah heterogeneous cpu/gpu runtime system, in: Proceedings

of the first conference of the Extreme Science and Engineering Discovery

Environment (XSEDE’12), Association for Computing Machinery, 2012.

34

[14] J. K. Holmen, A. Humphrey, M. Berzins, Chapter 13 - exploring use of

the reserved core, in: J. Reinders, J. Jeffers (Eds.), High Performance

Parallelism Pearls Volume Two: Multicore and Many-core Programming

Approaches, Vol. 2, Morgan Kaufmann, Boston, MA, USA, 2015, pp. 229

– 242.

[15] B. Peterson, A. Humphrey, J. K. Holmen, T. Harman, M. Berzins, D. Sun-

derland, H. C. Edwards, Demonstrating GPU code portability and scala-

bility for radiative heat transfer computations, Journal of Computational

Science.

[16] D. Sunderland, B. Peterson, J. Schmidt, A. Humphrey, J. Thornock,

M. Berzins, An overview of performance portability in the uintah runtime

system through the use of kokkos, in: Proceedings of the Second Interna-

tionsl Workshop on Extreme Scale Programming Models and Middleware,

ESPM2, IEEE Press, Piscataway, NJ, USA, 2016, pp. 44–47.

[17] Q. Meng, J. Luitjens, M. Berzins, Dynamic task scheduling for the uin-

tah framework, in: Proceedings of the 3rd IEEE Workshop on Many-Task

Computing on Grids and Supercomputers (MTAGS10), 2010, pp. 1–10.

[18] S. Vigna, An experimental exploration of marsaglia’s xorshift generators,

scrambled, ACM Trans. Math. Softw. 42 (4) (2016) 30:1–30:23.

[19] S. Burns, M. Christon, Spatial domain-based parallelism in large-scale,

participating-media, radiative transport applications, Numerical Heat

Transfer 31 (4) (1997) 401–421.

[20] M. Martineau, S. McIntosh-Smith, M. Boulton, W. Gaudin, An evaluation

of emerging many-core parallel programming models, in: Proceedings of

the 7th International Workshop on Programming Models and Applications

for Multicores and Manycores, PMAM’16, ACM, New York, NY, USA,

2016, pp. 1–10.

35

[21] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu,

T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps,

A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring,

A. Williams, K. S. Stanley, An overview of the trilinos project, ACM Trans.

Math. Softw. 31 (3) (2005) 397–423.

[22] A. G. Salinger, R. A. Bartett, Q. Chen, X. Gao, G. Hansen, I. Kalashnikova,

A. Mota, R. P. Muller, E. Nielsen, J. Ostien, et al., Albany: A component-

based partial differential equation code built on trilinos., ACM Transaction

on Mathematical Software.

[23] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics,

Journal of Computational Physics 117 (1) (1995) 1 – 19.

[24] M. Harris, Hemi: Simpler, More Portable CUDA C++,

http://harrism.github.io/hemi/ (2017).

[25] D. S. Medina, A. St-Cyr, T. Warburton, Occa: A unified approach to

multi-threading languages, arXiv preprint arXiv:1403.0968.

[26] R. D. Hornung, J. A. Keasler, The raja portability layer: overview and

status, Tech. rep., Lawrence Livermore National Laboratory (LLNL), Liv-

ermore, CA (2014).

[27] L. V. Kale, S. Krishnan, Charm++: A portable concurrent object oriented

system based on c++, in: Proceedings of the Eighth Annual Conference

on Object-oriented Programming Systems, Languages, and Applications,

OOPSLA ’93, ACM, New York, NY, USA, 1993, pp. 91–108.

[28] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, D. Fey, Hpx: A task

based programming model in a global address space, in: Proceedings of

the 8th International Conference on Partitioned Global Address Space Pro-

gramming Models, PGAS ’14, ACM, New York, NY, USA, 2014, pp. 6:1–

6:11.

36

[29] M. Bauer, S. Treichler, E. Slaughter, A. Aiken, Legion: Expressing locality

and independence with logical regions, in: Proceedings of the international

conference on high performance computing, networking, storage and anal-

ysis, IEEE Computer Society Press, 2012, p. 66.

[30] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, J. J. Don-

garra, Parsec: Exploiting heterogeneity to enhance scalability, Computing

in Science Engineering 15 (6) (2013) 36–45.

[31] C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier, Starpu: a uni-

fied platform for task scheduling on heterogeneous multicore architectures,

Concurrency and Computation: Practice and Experience 23 (2) (2011)

187–198.

[32] W. Zhang, A. S. Almgren, M. Day, T. Nguyen, J. Shalf, D. Unat, Boxlib

with tiling: An AMR software framework, CoRR abs/1604.03570.

[33] M. Zingale, A. S. Almgren, M. G. B. Sazo, V. E. Beckner, J. B. Bell,

B. Friesen, A. M. Jacobs, M. P. Katz, C. M. Malone, A. J. Nonaka, D. E.

Willcox, W. Zhang, Meeting the challenges of modeling astrophysical ther-

monuclear explosions: Castro, maestro, and the AMReX astrophysics suite,

Journal of Physics: Conference Series 1031 (2018) 012024.

[34] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel,

J. Shalf, The Cactus Framework and Toolkit: Design and Applications,

Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 197–227.

[35] J. Bennett, R. Clay, G. Baker, M. Gamell, D. Hollman, S. Knight, H. Kolla,

G. Sjaardema, N. Slattengren, K. Teranishi, J. Wilke, M. Bettencourt,

S. Bova, K. Franko, P. Lin, R. Grant, S. Hammond, S. Olivier, L. Kale,

N. Jain, E. Mikida, A. Aiken, M. Bauer, W. Lee, E. Slaughter, S. Tre-

ichler, M. Berzins, T. Harman, A. Humphrey, J. Schmidt, D. Sunderland,

P. McCormick, S. Gutierrez, M. Schulz, A. Bhatele, D. Boehme, P. Bremer,

37

T. Gamblin, ASC ATDM level 2 milestone #5325: Asynchronous many-

task runtime system analysis and assessment for next generation platforms,

Tech. rep., Sandia National Laboratories (2015).

[36] A. Dubey, A. Almgren, J. Bell, M. Berzins, S. Brandt, G. Bryan, P. Colella,

D. Graves, M. Lijewski, F. Löffler, B. OShea, E. Schnetter, B. V. Straalen,

K. Weide, A survey of high level frameworks in block-structured adaptive

mesh refinement packages, Journal of Parallel and Distributed Computing.

38

