
Chapter 1

Exploring Use of the
Reserved Core

John Holmen1, Alan Humphrey2, Martin Berzins3

1SCI Institute & School of Computing, University of Utah

In this chapter, we illustrate benefits of thinking in terms of thread management
techniques when using a centralized scheduler model along with interoperabil-
ity of MPI and PThreads. This is facilitated through an exploration of thread
placement strategies for an algorithm modeling radiative heat transfer with spe-
cial attention to the 61st core. This algorithm plays a key role within the Uintah
Computational Framework (UCF) and current efforts taking place at the Uni-
versity of Utah to model next-generation, large-scale clean coal boilers. In such
simulations, this algorithm models the dominant form of heat transfer and con-
sumes a large portion of compute time. Exemplified by a real-world example,
this chapter presents our early efforts in porting a key portion of a scalability-
centric codebase to the Intel R© Xeon PhiTM coprocessor. Specifically, this chap-
ter presents results from our experiments profiling the native execution of a
reverse Monte-Carlo ray tracing-based radiation model on a single coprocessor.
These results demonstrate that our fastest run configurations utilized the 61st

core and that performance was not profoundly impacted when explicitly over-
subscribing the coprocessor operating system thread. Additionally, this chapter
presents a portion of radiation model source code, a MIC-centric UCF cross-
compilation example, and less conventional thread management techniques for
developers utilizing the PThreads threading model.

The Uintah Computational Framework

Regularly maintained as open-source software (MIT License), the Uintah Com-
putational Framework (UCF) consists of a set of simulation components and li-
braries facilitating the simulation and analysis of complex chemical and physical

1

reactions. These reactions are modeled by solving partial differential equations
on structured adaptive mesh refinement grids. This framework was originally
developed as part of the University of Utah’s Center for the Simulation of Ac-
cidental Fires and Explosions (C-SAFE) initiative in 1997. Since then, it has
been widely ported and used to develop novel techniques for understanding large
pool eddy fires and new methods for simulating fluid-structure interactions.

Released in January of 2015, UCF release 1.6.0 features four primary simu-
lation components:

• ARCHES : This component targets the simulation of turbulent reacting
flows with participating media radiation.

• ICE : This component targets the simulation of both low-speed and high-
speed compressible flows.

• MPM : This component targets the simulation of multi-material, particle-
based structural mechanics.

• MPM-ICE : This component corresponds to the combination of the ICE
and MPM components for the simulation of fluid-structure interactions.

Though small-scale simulations are supported, the UCF emphasizes large-
scale simulations. This in mind, the UCF must be able to leverage the increasing
adoption of the Intel MIC Architecture within current and emerging heteroge-
neous supercomputer architectures. Aligning with this need, our research efforts
have targeted porting the UCF’s reverse Monte-Carlo ray tracing-based radia-
tion model to this architecture. This radiation model has been chosen to support
the University of Utah’s Carbon Capture Multi-Disciplinary Simulation Center’s
(CCMSC) goal of simulating a 350 MWe clean coal boiler being developed by
Alstom Power.

Radiation Modeling with the UCF

ARCHES was initially developed using the parallel discrete ordinates method
and P1 approximation to aid in solving the radiative transport equation. Though
scalable, this approach resulted in solution of the associated linear systems being
the main computational cost of reacting flow simulations.

To reduce this cost, recent attention has been given to exploring more effi-
cient reverse Monte-Carlo ray tracing (RMCRT) methods. These efforts have
resulted in the development of a stand-alone RMCRT model capable of being
used with any of the UCF’s simulation components.

RMCRT leverages reciprocity in radiative transfer and Monte-Carlo meth-
ods. The resulting approach samples a simulation mesh by tracing rays to-
wards their origin. During traversal, the amount of incoming radiative intensity
absorbed by the origin is computed to aid in solving the radiative transport
equation.

This approach creates the potential for scalable parallelism as multiple rays
can be traced simultaneously at any given cell and/or timestep. Additionally, it

2

also eliminates the need to trace rays that may never reach a given origin. Note
however, this is achieved at the expense of an all-to-all communication between
timesteps.

For these experiments, the primary hotspot was a function known as updateSumI().
Critical to RMCRT, this function traverses rays using a ray marching algorithm
while simultaneously computing each ray’s contribution to the incoming radia-
tive intensity. Putting this into perspective, upwards of 200 million rays were
cast at each compute timestep during these experiments.

Figure 1.1 and Figure 1.2 present portions of code corresponding to updateSumI().
Referring to the version of Uintah used for this chapter, updateSumI() can
be found in RMCRTCommon.cc. Note that, Figure 1.1 and Figure 1.2 have
been abbreviated so as not to include special scenarios that were not explored
during these experiments.

To learn more about radiative heat transfer and the UCF’s radiation models,
please refer to the For More Information section.

Cross-Compiling the UCF

For this port, cross-compilation and resolution of third party dependencies have
been the primary challenges.

When preparing to build the UCF, a developer must first cross-compile any
required libraries that are unavailable on the coprocessor or feature conflict-
ing versions between architectures. For this work, the UCF required cross-
compilation of libxml2 and zlib as demonstrated in Figure 1.3 and Figure 1.4.

After resolving dependencies, a developer then constructs a configure line
denoting how to build the UCF executable. Figure 1.5 demonstrates how to
cross-compile the UCF with utilities only.

With cross-compilation complete, a developer must then transfer native MIC
executables, UCF problem specifications, and dynamically linked libraries to the
coprocessor.

To learn more about obtaining, installing, and using the UCF, please refer
to the For More Information section.

Towards Demystifying the Reserved Core

On the 61-core coprocessor, the last-most physical core contains logical cores
241, 242, 243, and 0. Though /proc/cpuinfo core id: 60 in practice, this physical
core is commonly referred to as the 61st core. The 61st core is unique in that
logical core 0 is reserved for the Xeon Phi operating system. Additionally, the
61st core is also reserved for the offload daemon. While it is reportedly safe to
use all 244 threads for native execution, this begs the question - How does one
effectively manage the 61st core when executing natively?

To explore this question, we have experimented with a number of thread
placement strategies featuring varying affinity patterns and thread counts. De-

3

RMCRTCommon :: updateSumI (Vector& ray_direction ,
Vector& ray_location ,
const IntVector& origin ,
const Vector& Dx ,
constCCVariable < T >& sigmaT4OverPi ,
constCCVariable < T >& abskg ,
constCCVariable < int >& celltype ,
unsigned long int& nRaySteps ,
double& sumI ,
MTRand& mTwister) {

IntVector cur = origin;
IntVector prevCell = cur;

// Step and sign used for ray marching
int step [3]; // Gives +1 or −1 based on sign
bool sign [3];

// Update step and sign to determine whether dimensions are incremented
// or decremented as cel l boundaries are crossed
Vector inv_ray_direction = Vector(1.0) / ray_direction;
findStepSize(step , sign , inv_ray_direction);
Vector D_DxRatio(1, Dx.y() / Dx.x(), Dx.z() / Dx.x());

// Compute the distance from the ray origin to the nearest cel l boundary
// for a given dimension
Vector tMax;
tMax.x((origin [0] + sign [0] - ray_location [0]) *

inv_ray_direction [0]);
tMax.y((origin [1] + sign [1] * D_DxRatio [1] - ray_location [1]) *

inv_ray_direction [1]);
tMax.z((origin [2] + sign [2] * D_DxRatio [2] - ray_location [2]) *

inv_ray_direction [2]);

// Compute the distance required to traverse a single cel l
Vector tDelta = Abs(inv_ray_direction) * D_DxRatio;

// Intialize per−ray variables
bool in_domain = true;
double tMax_prev = 0;
double intensity = 1.0;
double fs = 1.0;
double optical_thickness = 0;
double expOpticalThick_prev = 1.0;

// Traverse a given ray until the incoming intensity that would arrive
// at the origin fa l l s below a user−defined threshold
while (intensity > d_threshold) {

DIR face = NONE;

// Traverse a given ray until i t leaves the simulation mesh
while (in_domain) {

prevCell = cur;
double disMin = -9; // Represents ray segment length

T abskg_prev = abskg[prevCell];
T sigmaT4OverPi_prev = sigmaT4OverPi[prevCell];

Figure 1.1: RMCRT-based radiation modeling hotspot

4

// Determine which cel l the ray will enter next
i f (tMax [0] < tMax [1]) { // X< Y

i f (tMax [0] < tMax [2]) { // X< Z
face = X;

} else {
face = Z;

}
} else {

i f (tMax [1] < tMax [2]) { // Y< Z
face = Y;

} else {
face = Z;

}
}

// Update ray marching variables
cur[face] = cur[face] + step[face];
disMin = (tMax[face] - tMax_prev);
tMax_prev = tMax[face];
tMax[face] = tMax[face] + tDelta[face];

// Update ray location
ray_location [0] = ray_location [0] + (disMin * ray_direction [0]);
ray_location [1] = ray_location [1] + (disMin * ray_direction [1]);
ray_location [2] = ray_location [2] + (disMin * ray_direction [2]);

// Check i f the cel l is in the simulation mesh
in_domain = (celltype[cur] == d_flowCell);

optical_thickness += Dx.x() * abskg_prev * disMin;

nRaySteps ++;

double expOpticalThick = exp(-optical_thickness);

sumI += sigmaT4OverPi_prev *
(expOpticalThick_prev - expOpticalThick) *
fs;

expOpticalThick_prev = expOpticalThick;

} // End of in domain while loop

T wallEmissivity = abskg[cur];

// Ensure that wall emissivity does not exceed one
i f (wallEmissivity > 1.0) {

wallEmissivity = 1.0;
}

intensity = exp(-optical_thickness);

sumI += wallEmissivity * sigmaT4OverPi[cur] * intensity;

intensity = intensity * fs;

// Terminate a ray upon reaching mesh boundaries
i f (! d_allowReflect) intensity = 0;

} // End of intensity while loop
} // End of updateSumI function

Figure 1.2: RMCRT-based radiation modeling hotspot (continued)

5

wget http://xmlsoft .org/sources/libxml2−2.7.8.tar .gz
tar xvf libxml2 -2.7.8. tar.gz
cd libxml2 -2.7.8
./ configure \

--prefix=$HOME/installs/mic/libxml2 -2.7.8 \
--host=x86_64 -k1om -linux \
--enable - static \
--without -python \
CC=icc \
CXX=icpc \
CFLAGS="-mmic" \
CXXFLAGS="-mmic" \
LDFLAGS="-mmic"

make -j32 all
make install

Figure 1.3: Cross-compiling libxml2-2.7.8 for the coprocessor

wget http://zlib .net/zlib−1.2.8.tar .gz
tar xvf zlib -1.2.8. tar.gz
cd zlib -1.2.8
CC=icc CXX=icpc CFLAGS="-mmic" CXXFLAGS="-mmic" LDFLAGS="-mmic" \

./ configure \
--prefix=$HOME/installs/mic/zlib -1.2.8 \
--static

make -j32 all
make install

Figure 1.4: Cross-compiling zlib-1.2.8 for the coprocessor

../ src/configure \
--host=x86_64 -k1om -linux \
--enable -64bit \
--enable -optimize="-O2 -mkl=parallel -mmic -mt_mpi" \
--enable -assertion -level=0 \
--enable - static \
--with -libxml2=$HOME/installs/mic/libxml2 -2.7.8 \
--with -mpi=/opt/intel/impi /5.0.1.035/ mic \
--with -zlib=$HOME/installs/mic/zlib -1.2.8 \
CC=mpiicc \
CXX=mpiicpc \
F77=mpiifort

Figure 1.5: Configure line for a MIC-specific UCF build

6

tailed information regarding the parameters explored can be found in the subse-
quent subsections and the Simulation Configuration section. These parameters
have been chosen to examine a multitude of strategies for handling the 61st core.

Exploring Thread Affinity Patterns

Structured around a task-based, MPI+PThreads parallelism model, the UCF
features a task scheduler component. This component is responsible for com-
puting task dependencies, determining task execution order, and ensuring cor-
rectness of inter-process communication.

As of UCF release 1.6.0, the default multi-threaded scheduler is the Threaded
MPI Scheduler. This dynamic scheduler features non-deterministic, out-of-
order task execution at runtime. This is facilitated using a control thread
and nThreads-1 task execution threads, where nThreads equals the number
of threads launched at runtime.

Given this centralized model, we have experimented with the affinity pat-
terns described below. Referring to the version of Uintah used for this chapter,
implementations of these affinity patterns can be found in ThreadedMPIScheduler.cc.
Note that, nt corresponds to the number of threads per physical core.

• Compact : This pattern binds task execution threads incrementally across
logical cores 1 through nt in a given physical core first and then across
physical cores 1 through 61. This pattern is modeled after OpenMP’s
KMP AFFINITY = compact with values of 61c,2t, 61c,3t, and
61c,4t for the KMP PLACE THREADS environment variable.

• None: This pattern allows both the control and task execution threads to
run anywhere among all 244 logical cores.

• Scatter : This pattern binds task execution threads incrementally across
physical cores 1 through 60 first and then across logical cores 1 through
nt in a given physical core. This pattern is modeled after OpenMP’s
KMP AFFINITY = scatter with values of 60c,2t, 60c,3t, and 60c,4t
for the KMP PLACE THREADS environment variable. Note that,
threads are spread across physical cores 1 through 60 only to support our
exploration of the 61st core.

• Selective: This affinity pattern binds the control thread to either logical
core 240, 241, 242, 243, or 0 depending upon the values of nt and nThreads.
Task execution threads are allowed run anywhere among the logical cores
preceding the control thread.

To facilitate exploration of the 61st core with the Compact, Scatter, and
Selective affinity patterns, multiple values of nThreads are used to increment
the number of logical cores used on the 61st core from 0 to nt. For example, a
run configuration featuring nThreads = 180 and nt = 3 uses 0 logical cores on
the 61st core. This in mind, the control thread is bound to the last logical core

7

used by a given pattern. For example, a run configuration featuring nThreads
= 180 and nt = 3 binds the control thread to logical core 240.

Thread Placement with PThreads

Alluded to in the prior subsection, OpenMP users are provided with environ-
ment variables to specify thread placement. Such environment variables include
KMP AFFINITY and KMP PLACE THREADS. To learn more about
these environment variables, please refer to the OpenMP Support section in
Intel’s User and Reference Guide for the corresponding compiler.

In contrast to OpenMP, PThreads requires that developers manually imple-
ment affinity patterns. This is attainable using the CPU ZERO(), CPU SET(),
and sched setaffinity() functions found within the sched.h header file. Given
these functions, the mask parameter in sched setaffinity() is of key interest.
This bit mask determines which logical core(s) a thread is eligible to run on.
Figure 1.6 demonstrates how to bind a thread (identified by pid) to a single
logical core (identified by logCore). Referring to the version of Uintah used for
this chapter, our use of code in Figure 1.6 can be found in set affinity() in
Thread pthreads.cc.

cpu_set_t mask;
unsigned int len = sizeof(mask);
CPU_ZERO(&mask);
CPU_SET(logCore , &mask);
sched_setaffinity(pid , len , &mask);

Figure 1.6: Specifying one-to-one thread binding

Note however, Figure 1.6 is insufficient for allowing a thread to run among a
subset of logical cores. To accomplish this, CPU SET() may be used repeat-
edly to add additional logical cores to the bit mask. Figure 1.7 demonstrates
how to allow a thread to run among a subset of logical cores (specifically, any-
where among logical cores 1 through nThreads-1). Referring to the version of
Uintah used for this chapter, our use of code in Figure 1.7 can be found in
set affinityMICMainOnly() in Thread pthreads.cc.

cpu_set_t mask;
unsigned int len = sizeof(mask);
CPU_ZERO(&mask);
for (int logCore = 1; logCore < nThreads; logCore ++) {

CPU_SET(logCore , &mask);
}
sched_setaffinity(pid , len , &mask);

Figure 1.7: Specifying one-to-many thread binding

8

NOTE
If not explicitly changed, a user-defined mask persists for subsequently
launched threads. Attention to this detail is critical when implement-
ing affinity patterns with selective thread binding. Such cases require a
combination of the methods described in Figure 1.6 and Figure 1.7.

Implementing Scatter Affinity with PThreads

The scatter affinity pattern requires more effort to implement than other pat-
terns we have discussed. For this reason, Figure 1.8 demonstrates how to im-
plement the scatter affinity pattern with PThreads. This example assumes that
each thread is uniquely identified by a threadID and calls scatterAffinity() to
denote which logical core it is eligible to run on. Note that, Figure 1.8 supports
values of 0 through 243 for threadID, where threadID = 0 is mapped to logical
core 0.

Referring to the version of Uintah used for this chapter, our use of code in
Figure 1.8 can be found in run() in ThreadedMPIScheduler.cc. Note that,
our implementation differs slightly from Figure 1.8. Specifically, our implemen-
tation handles the 61st core as a special case and spreads threads across physical
cores 1 through 60 only. This has been done to support our exploration of the
61st core.

void scatterAffinity(int threadID) {

int scatterPhysCores = 61;
int logCoresPerPhysCore = 4;
int logCoreIndex = 0;
int physCoreIndex = 0;
int overallIndex = 0;

// Determine whether the thread will be bound to the 1st , 2nd,
// 3rd, or 4th logical core in a given physical core
logCoreIndex = floor ((threadID -1) / scatterPhysCores) + 1;

// Determine which physical core the thread will be bound to
physCoreIndex = (threadID - ((logCoreIndex -1) * scatterPhysCores));

// Determine the specific logical core the thread will be bound to
overallIndex = logCoreIndex + (physCoreIndex -1) * logCoresPerPhysCore;

// Bind the thread to its corresponding logical core
cpu_set_t mask;
unsigned int len = sizeof(mask);
CPU_ZERO(&mask);
CPU_SET(overallIndex , &mask);
sched_setaffinity(0, len , &mask);

}

Figure 1.8: PThreads-based implementation of the scatter affinity pattern

9

Experimental Discussion

This section describes our experimental setup and concludes with discussion of
our experimental results.

Machine Configuration

These experiments were performed on a single-node machine using one MPI
process and double-precision floating point numbers.

Host-side simulations were launched with 32 threads distributed among 16
physical cores. This was accomplished using two Intel Xeon E5-2680 processors
in a dual-socket configuration.

Coprocessor-side simulations were launched with as many as 244 threads
distributed among 61 physical cores. This was accomplished using one 16 GB
Intel Xeon Phi 7110P coprocessor.

Simulation Configuration

Below are key parameters explored on the coprocessor-side:

• 3 physical core usage levels (2, 3, and 4 hardware threads per physical
core)

– For 2 hardware threads per physical core, 3 thread counts were used
to allot 0-2 threads for the 61st core (120-122 threads).

– For 3 hardware threads per physical core, 4 thread counts were used
to allot 0-3 threads for the 61st core (180-183 threads).

– For 4 hardware threads per physical core, 5 thread counts were used
to allot 0-4 threads for the 61st core (240-44 threads).

• 4 affinity patterns (Compact, None, Scatter, and Selective affinity)

• 4 mesh patch counts (facilitating ratios of 1, 2, 4, and 8 patches per thread)

Below are notes regarding simulation configuration:

• Simulation meshes are decomposed into mesh patches consisting of indi-
vidual cells.

• Tasks are executed by threads, which are bound to logical cores.

• Tasks reside on mesh patches, which are computed serially using a single
thread.

• Different threads may be used to compute tasks resident to a particular
mesh patch.

• Tasks are assigned to idle threads without regard to spatial locality of the
mesh patch data that they access.

10

• Simulations were performed using a single-level 1283 simulation mesh as
this was the largest supported by the coprocessor.

• Radiation modeling calculations were performed over 10 consecutive timesteps.

• At each compute timestep, the simulation mesh was sampled using 100
rays per cell.

• Host-side simulations explored the use of 32 threads with the aforemen-
tioned affinity patterns and mesh patch counts.

Coprocessor-Side Results

Figure 1.9 through Figure 1.12 visualize results from the 192 simulations per-
formed on the coprocessor-side. Below are notes regarding coprocessor-side
results:

• Marks correspond to the average elapsed execution time per compute
timestep (in seconds).

• Threads per physical core (TPPC) corresponds to the number of hardware
threads utilized per physical core.

• Reserved core usage (RCU) corresponds to number of hardware threads
utilized on the reserved core. For clarity, each value of RCU has been
enumerated below:

– RCU = 0 corresponds to use of 120, 180, and 240 threads facilitating
2, 3, and 4 hardware threads per physical core, respectively.

– RCU = 1 corresponds to use of 121, 181, and 241 threads facilitating
2, 3, and 4 hardware threads per physical core, respectively.

– RCU = 2 corresponds to use of 122, 182, and 242 threads facilitating
2, 3, and 4 hardware threads per physical core, respectively.

– RCU = 3 corresponds to use of 183 and 243 threads facilitating 3
and 4 hardware threads per physical core, respectively.

– RCU = 4 corresponds to use of 244 threads facilitating 4 hardware
threads per physical core.

• Patches per thread (PPT) corresponds to the ratio of mesh patches to
threads. Note that, each thread is not guaranteed to compute this number
of mesh patches.

• Over 10 identical coprocessor-side simulations, there existed not more than
a 4.29% difference in performance between two identical runs.

• At 2, 3, and 4 hardware threads per physical core, there existed 30.14%,
42.60%, and 149.33% differences in performance, respectively, between the
fastest and slowest run configurations.

11

Figure 1.9: Coprocessor-side results for the Compact affinity pattern

Figure 1.10: Coprocessor-side results for the None affinity pattern

12

Figure 1.11: Coprocessor-side results for the Scatter affinity pattern

Figure 1.12: Coprocessor-side results for the Selective affinity pattern

13

Figure 1.13: Host-side results

Host-Side Results

Figure 1.13 visualizes results from the 16 simulations performed on the host-side.
Below are notes regarding host-side results:

• Marks correspond to the average elapsed execution time per compute
timestep (in seconds).

• Patches per thread (PPT) corresponds to the ratio of mesh patches to
threads. Note that, each thread is not guaranteed to compute this number
of mesh patches.

• Over 10 identical host-side simulations, there existed not more than a
3.35% difference in performance between two identical runs.

• There existed a 10.14% difference in performance between the fastest and
slowest run configurations.

Further Analysis

Addressing comparisons between architectures first, the two Xeon processors
outperformed the single Xeon Phi coprocessor. Specifically, there existed a
39.43% difference in performance between the fastest run configurations for
each architecture. Regarding accuracy, simulation results computed by each
architecture were identical to one another up to a relative tolerance of 1E-15
digits.

Given this has been a naive port of our CPU-based algorithm, these results
are encouraging as they leave ample opportunity to shift performance in favor

14

of the coprocessor. Having not yet adequately pursued such optimizations, ef-
fective memory management and vectorization are believed to be the factors
attributing to these differences. Supporting this conclusion, version 15.0 com-
piler optimization reports and experimentation with simpler vectorization ap-
proaches (e.g. SIMD directives) suggest that little, if any, vectorization is being
achieved. Further, predominantly 100% core usage during compute timesteps
suggests that thread-level parallelism is sufficient.

Turning to observations, performance disparities among coprocessor-based
results deserve attention. As more hardware threads per physical core we uti-
lized, the difference in performance between fastest and slowest run configura-
tions increased. This is likely attributed to the sharing of the 512 KB per core
L2 cache among four hardware threads. Though it offered better run times,
use of more hardware threads per physical core further divided the amount of
L2 cache available to a given thread. This resulted in increased sensitivity to
simulation mesh decomposition.

Moving forward, the overarching takeaway from these native execution-based
experiments is that no one thread placement strategy dominated performance.
For similar algorithms, this suggests that time may be best spent by first pur-
suing more favorable areas of optimization.

Returning to the question motivating this work, our fastest run configura-
tions utilized the 61st core. Further, performance was not profoundly impacted
when explicitly oversubscribing the coprocessor operating system thread. For
similar algorithms, this suggests that use of the 61st core may be both forgiving
and capable of offering modest performance improvements.

Summary

These experiments have helped establish valuable baselines for our future efforts
addressing both single-node performance and scalability. Perhaps more impor-
tant, they have also provided valuable insight regarding potential challenges and
areas to address as we strive to achieve performance with the Xeon Phi. When
considering these results, it is important to remember that we have examined
native execution exclusively. When operating in offload mode, Intel guidance is
to refrain from using the reserved core as it actively supports offloading.

Acknowledgements

These research efforts have been supported by the National Nuclear Security
Administration’s PSAAP II project. This work utilized equipment donations to
the University of Utah’s Intel Parallel Computing Center (IPCC) at the SCI In-
stitute. We would also like to thank Aaron Knoll, IPCC Principal Investigator,
for his assistance along the way.

15

For More Information

To learn more about the Uintah Computational Framework, please refer to the
link below:

• http://www.uintah.utah.edu/

To explore Uintah and C-SAFE-related publications, please refer to the link
below:

• http://www.uintah.utah.edu/pubs/pubs.html

To learn more about radiative heat transfer and the discrete ordinates method-
based radiation model, please refer to the publication referenced below:

• Spinti, J.P., Thornock, J.N., Eddings, E.G., Smith, P.J., and Sarofim,
A.F. “Heat transfer to objects in pool fires.” In Transport Phenomena in
Fires, WIT Press, Southampton, UK (2008).

To learn more about the reverse Monte-Carlo ray tracing-based radiation model,
please refer to the publication referenced below:

• Humphrey, A., Meng, Q., Berzins, M., and Harman, T. “Radiation mod-
eling using the Uintah heterogeneous CPU/GPU runtime system.” In
Proceedings of the 1st Conference of the Extreme Science and Engineering
Discovery Environment (XSEDE12). ACM, 2012.

To download the version of Uintah used for this chapter, please refer to the link
below:

• http://lotsofcores.com/downloads

To learn more about installing and using the Uintah Computational Framework,
please refer to the link below:

• http://uintah-build.sci.utah.edu/trac/wiki

16

