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Abstract

Deep learning using neural networks is an effective technique for generating models of com-
plex data. However, training such models can be expensive when networks have large model
capacity resulting from a large number of layers and nodes. For training in such a computa-
tionally prohibitive regime, dimensionality reduction techniques ease the computational burden,
and allow implementations of more robust networks. We propose a novel type of such dimen-
sionality reduction via a new deep learning architecture based on fast matrix multiplication of
a Kronecker product decomposition; in particular our network construction can be viewed as a
Kronecker product-induced sparsification of an “extended” fully connected network. Analysis
and practical examples show that this architecture allows a neural network to be trained and
implemented with a significant reduction in computational time and resources, while achieving
a similar error level compared to a traditional feedforward neural network.

1. Introduction Statistical learning using deep neural networks has achieved impressive results
in building models for prediction, summarization, and classification of large data sets [7]. The
capacity of such models is dictated by the depth and width (number of layers and nodes, respec-
tively) of the neural network, but such high-capacity networks impose a nontrivial computational
burden during training. In such regimes, dimensionality reduction may be implemented in some
form to reduce the computational burden. While this may take several forms, of particular inter-
est is accelerating training of neural networks. One of the computational burdens that arise for
high-capacity networks during training is the cost of forward- and back-propagation, amounting
to the cost of evaluation of the network and the cost of implementing the computational graph
corresponding to the chain rule for differentiation, respectively. In this paper, we analogize this
problem to that of matrix multiplication: Matrix-vector multiplication for large matrices can be
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expensive, but is much more efficient if certain structural properties of matrices exist that can be
computationally exploited. In particular we exploit the fact that the Kronecker product [18] pro-
vides a low dimensional representation of a large matrix, and use a corresponding implementation
of this dimensionality reduction for deep learning.

Our approach aims to gain computational efficiency by imparting a Kronecker product struc-
ture on the architecture of a neural network. Ultimately we aim to accelerate training of neural
networks without degrading predictive accuracy. We implement a “dual layer” approach that is
inspired by the structure of a Kronecker product and show that this procedure can significantly
reduce computational time for both forward computation and back-propagation, when the network
size/capacity is relatively large, compared to a fully connected feedforward neural network. We
also show in such cases that we can maintain or even improve accuracy when training on several
practical examples.

In short, the contributions of this paper are as follows: (i) We propose a new Kronecker product-
inspired deep learning architecture, the Kronecker Dual Layer (KDL), that exploits simplification
of arithmetic operations in Kronecker products for matrix multiplication to effect acceleration in
both forward- and back-propagation phases of learning; (ii) we provide proof-of-concept theoretical
analysis suggesting when a KDL network can be expected to perform well compared to fully con-
nected networks; (iii) we demonstrate the practical effectiveness of KDL architectures on real-world
datasets through several test examples.

1.1. Related work The Kronecker product has already been incorporated in several areas within
the deep learning framework: (i) In [14, 19] the authors apply a Kronecker product decomposition
(KPD) to decompose weight matrices of a trained network, although this typically requires a large
number of terms for acceptable accuracy and is thus of limited applicability; (ii) a generalized
KPD is extended to multi-dimensional tensors in [8] to reduce the number of weight parameters
and computational complexity in convolutional neural networks; (iii) the Kronecker product has
been shown as a viable method to reduce the computational time for back-propagation via an
approximate inverse of the Fisher information matrix, [13], providing a means to increase decay
rate in the loss; (iv) a “Kronecker neural network” in [10], has been established to implement
adaptive activation functions in order to avoid local minima while training. We emphasize that
our approach is distinct from these methods, as we fundamentally alter network architecture in an
attempt to accelerate training.

In addition to the alternative uses of the Kronecker product mentioned above, there are other
methods that seek to reduce the nodes and/or connections of a trained network in order to reduce
the computational burden of training or prediction. Dropout, see e.g. [9, 11, 16], randomly ignores
nodes or connections with a set probability when training, and has the added benefit of reducing
co-adaptation of features. Pruning, see e.g. [2, 20], on the other hand, seeks to force weights
with a minimal impact to zero, thereby increasing sparsity within the trained network. Although
these methods share the same broad goal as this work, our KDL approach splits layers based on
a Kronecker product to form a new architecture, and is a novel means of reducing the required
computational resources while maintaining accuracy.

1.2. Notation A plain lowercase letter v will denote either a scalar or a function, a bold lowercase
letter v will represent a vector, and a plain uppercase letter V will represent a matrix. Subscripts
will denote indices within a vector or matrix, with a colon denoting Matlab-style slicing of the
full range of indices. Parenthesis in the superscript will denote variations based on layer, terms
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in a summand, and so forth, with multiple such designations separated by commas. In addition,
matrices may be numbered with a single digit in the subscript, in which case indices will be noted
in parenthesis following the single digit in the subscript.

2. Fully Connected Network An artificial neural network is a function defined by a series
of compositions and can be identified by an activation function φ : R → R and a collection of
weight matrices and bias vectors. With n1 and nL the input and output dimensions of the map,
respectively, a fully connected neural network (FNN) mapping input x ∈ Rn1 to y ∈ RnL can be
defined as,

y = a(L), a(`+1) =
(
φ ◦ h̃W (`+1),b(`+1)

)(
a(`)

)
, ` = 1, . . . , L− 1, (1)

where a(1) = x, L ∈ N is the number of layers of the network, and h̃W,b is an affine map defined
through its weight matrix W ∈ Rn`×n`+1 and bias vector b ∈ Rn`+1 ,

h̃W,b : Rn` → Rn`+1 , h̃{W,b}(a) = Wa+ b.

In (1), φ operating on vectors is defined componentwise. With our notation, the L−2 intermediate

stages
{
a(`)

}L−1
`=2

are hidden layers, and each component of a(`) is a node. We let n`, ` ∈ [L], denote

the number of units in layer `, so that a(`) ∈ Rn` . Using the notation,

θ̃ :=
{
W (2), b(2), . . . ,W (L), b(L)

}
with

θ̃(`) :=
{
W (`), b(`)

}
,

the FNN input-to-output map is then,

y = y(x; θ̃) =
(
φ ◦ h̃θ̃(L) ◦ φ ◦ h̃θ̃(L−1) · · ·φ ◦ h̃θ̃(2)

)
(x), h̃θ̃(`) = h̃{W (`),b(`)}. (2)

We will focus on the fixed-model capacity neural network setup where the architectural parameters
L and {n`}`∈[L], along with the activation function φ are fixed before training. Some popular choices
of activation function include the hyperbolic tangent, the sigmoid function, a rectified linear unit,
and a linear map. The choice of weight matrices W (`) and bias vectors b(`) proceeds through
optimization-based training; we seek to choose θ̃ to minimize an `2-type loss function that balances
model complexity R(θ̃) against fidelity to available training data (xm,ym)m∈[M ],

L
(
θ̃
)

=

M∑
m=1

1

2
Lm

(
θ̃
)

+
λ

2
R
(
θ̃
)

=

M∑
m=1

1

2
‖y(xm)− ym‖22 +

λ

2
R
(
θ̃
)

where λ > 0 is a tunable hyperparameter. In this paper, we choose R as a Tikhonov-type regular-
ization,

R
(
θ̃
)

=

L∑
`=2

(∥∥∥W (`)
∥∥∥2
F

+
∥∥∥b(`)∥∥∥2

2

)
. (3)
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Minimization of L over the optimization variables θ̃ proceeds typically with first-order or quasi-
Newton methods, so that computation of ∂L

∂θ̃
is required. Practical algorithms achieve this through

back-propagation, summarized by the iteration,

W (L+1)T δ(L+1)
m := y(xm)− ym, δ(`) = φ′(W (`)a(`−1) + b(`)) ◦W (`+1)T δ(`+1),

for ` = L, . . . , 2, where ◦ between vectors denotes a componentwise (Hadamard) product, φ′ : R→ R
is the derivative of φ, and application to vectors is again defined componentwise. This results in
the relations,

∂Lm
∂W (`)

= δ(`)a(`)T ,
∂Lm
∂b(`)

= δ(`).

Gradient descent, applied with learning rate η, proceeds via the update,

W (`) ←W (`) − η
M∑
m=1

∂Lm
∂W (`)

− ηλW (`), b(`) ← b(`) − η
M∑
m=1

∂Lm
∂b(`)

− ηλb(`).

In all the expressions above, application of matrix-vector multiplications involving W (`) can form a
substantial portion of the computational burden, especially if the hidden layers have large dimension
n`. In this manuscript, we seek to alleviate this burden while retaining model capacity.

3. The Kronecker Product As matrix and vector sizes increase, matrix-vector operations re-
quire more computational resources and time; the Kronecker product [18] is one strategy to amelio-
rate this complexity when the matrices involved have a certain type of exploitable structure. Given
L ∈ Rm1×n1 and R ∈ Rm2×n2 , the Kronecker product L⊗R is defined as,

K := L⊗R =

 l11R · · · l1n1
R

...
. . .

...
lm11R · · · lm1n1

R

 ∈ Rm1m2×n1n2 . (4)

Given x ∈ Rn1n2 , computing Kx can be accomplished via the relation,

Kx = RXLT , X = mat(x), (5)

where mat : Rn1n2 → Rn2×n1 is a matricization operation, the inverse of vectorization vec :
Rn2×n1 → Rn1n2 . The major appeal of the above representation is that x 7→ Kx requires
O(m1m2n1n2) operations, whereas X 7→ RXLT requires only O(n2n1m2 + n1n2m1) operations,
which can result in substantial computational acceleration.

While many matrices cannot be represented exactly as a Kronecker product, all matrices whose
row and column dimensions are not prime integers can be approximated by a sum of Kronecker
product matrices. To explain this further, let W ∈ Rm×n be given, with m = m1m2 and n = n1n2
arbitrary integer factorizations of m and n. A rank-k KPD approximation of W is,

W ≈
k∑
j=1

L(j) ⊗R(j), L(j) ∈ Rm1×n1 , R(j) ∈ Rm2×n2 ,

4
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for some choice of matrices L(j), R(j). Note that the phrase rank-k KPD approximation is a slight
abuse of terminology, as L(j) ⊗R(j) is not necessarily a rank-1 matrix. A Frobenius-norm optimal
rank-k KPD approximation can be determined by introducing a rearrangement R of W , identified
through a block partition of W ,

W =

 W1 · · · Wm1(n1−1)+1

...
. . .

...
Wm1

· · · Wm1n1

 , Wj ∈ Rm2×n2
wj=vec(Wj)

=⇒ R(W ) =


wT

1

wT
2
...

wT
m1n1

 .
With l = vec(L) and r = vec(R), then note that R(L ⊗ R) = lrT , and therefore
‖W − L⊗R‖F =

∥∥R(W )− lrT
∥∥
F

. This last relation allows one to leverage the Hilbert-Schmidt-
Eckart-Young theorem on Frobenius-norm optimal low-rank approximations using the singular value
decomposition [6, Theorem 2.4.8]. While this immediately yields an optimal rank-1 KPD approxi-
mation [18, Corrolary 2.2], the result is generalizable to rank-k approximations for k > 1.

Lemma 3.1 ([17]). Given W ∈ Rm1m2×n1n2 , let its rearrangement have singular value decompo-
sition (SVD) Rm1n1×m2n2 3 R(W ) = UΣV T =

∑r
i=1 σiuiv

T
i , with the singular values {σi}i∈[r]

arranged in non-increasing order and r = rank(R(W )). Let Wk denote a rank-k KPD defined by,

Wk :=

k∑
j=1

mat(σiui)⊗mat(vi).

Then Wk is an optimal rank-k KPD approximation to W :

Wk ∈ arg min
L(j)∈Rm1×n1 ,R(j)∈Rm2×n2 ,j∈[k]

∥∥∥∥∥∥W −
k∑
j=1

L(j) ⊗R(j)

∥∥∥∥∥∥
2

F

,

‖W −Wk‖2F =

r∑
i=k+1

σ2
i .

4. KP Dual Layer Networks This section introduces our new neural network architecture.

Given an FNN with layer ` nodal states a(`) defined by (1), a KPD W (`) =
∑r
i=1 L

(`,i)T ⊗ R(`,i),
with r = rank(R(W (`))) could be used to produce a new intermediate layer utilizing KP-based
multiplication. I.e., we have the exact representation,

a(`) = h̃θ̃(`)(a
(`−1)) = vec

(
r∑
i=1

R(`,i)A(`−1)L(`,i)

)
+ b(`),

where A(`−1) = mat
(
a(`−1)) is reshaped to form a matrix with appropriate dimensions. A straight-

forward idea is then to truncate the sum to k < r terms. However, the error incurred by such an
approach is bounded by the truncated singular values of the weight rearrangement, and such sin-
gular values are not guaranteed to decay quickly, in turn requiring large k to accurately represent
W (`). Figure 1 demonstrates this for examples that will be introduced in Table 3. For each of these
examples, a rank close to the full rank of the rearrangement of the weight matrices is needed to
achieve a test error similar to the test error when using the trained weight matrices.
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Figure 1: Figures 1a to 1d show the test errors across choice of KPD rank, k, compared to the full
rank of the rearrangement of each weight matrix for BSD (a and b), BF, and MNIST respectively
as defined in Table 3.

To balance this potential loss of accuracy caused by reducing the Kronecker rank, we augment
model capacity via inclusion of an extra activation function and bias vector at the new intermediate

layer. With A
(`)
R the new matrix-valued intermediate state, and with φ1 and φ2 activation functions,

then we define a rank-k KP dual layer (KDL) as the operation,

A
(`)
R =

(
φ1 ◦ hθ(`)R

◦ φ2 ◦ h̃θ(`)L

)(
A

(`−1)
R

)
,

where we have introduced new layer-` parameters θ
(`)
L and θ

(`)
R ,

θ
(`)
L :=

{
W

(`,1)
L , B

(`,1)
L , · · · ,W (`,k)

L , B
(`,k)
L

}
,

θ
(`)
R :=

{
W

(`,1)
R , B

(`,1)
R , · · · ,W (`,k)

R , B
(`,k)
R

}
,

θ :=
{
θ
(2)
L , θ

(2)
R , · · · , θ(L)L , θ

(L)
R

}
. (6)

The function h̃
θ
(`)
L

is an extension of the affine function introduced in (2)∗, and the newly introduced

functions hθ, with a slight abuse in notation, are k-fold sums / collections of FNN affine maps h̃,

h̃
θ
(`,i)
L

(
A

(`−1)
R

)
= A

(`−1)
R W

(`,i)
L +B

(`,i)
L ,

h
θ
(`)
L

(
A

(`−1)
R

)
=
(
h̃
θ
(`,1)
L

(
A

(`−1)
R

)
, . . . , h̃

θ
(`,k)
L

(
A

(`−1)
R

))
A

(`,i)
L =

(
φ2 ◦ h̃θ(`,i)L

)(
A

(`−1)
R

)
, (7)

h
θ
(`)
R

({
A

(`,i)
L

}k
i=1

)
=

k∑
i=1

h̃
θ
(`,i)
R

(
A

(`,i)
L

)
=

k∑
i=1

(
W

(`,i)
R A

(`,i)
L +B

(`,i)
R

)
,

A
(`)
R =

(
φ1 ◦ hθ(`)R

◦ φ2 ◦ hθ(`)L

)(
A

(`−1)
R

)
, (8)

∗h̃ in (2) takes a single weight matrix and bias vector as parameters, but h̃ here takes k weight matrices and bias
vectors as parameters.
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effectively splitting the layer into two intermediate states A
(`,i)
L , i ∈ [k], and A

(`)
R .

In what follows, we will use the notation,

f`(A) =
(
φ1 ◦ hθ(`)R

◦ φ2 ◦ h̃θ(`)L

)
(A), (9a)

to denote the function that transitions the nodes at layer `− 1 to those at layer ` for ` ≥ 2. Note
that reshaping between layers is only necessary if the output dimensions from one layer do not
match the input dimensions from the next layer. For notational convenience in our analysis, we
define,

f1(·) = X, (9b)

and in particular we have f1(0) = X. A higher order splitting into Kronecker multi-layers (KML)
is discussed in supplementary materials, and is hierarchical in nature. While KDLs may be applied
only to a subset of layers in an FNN, of interest here is a neural network based solely on KDLs, i.e.,
a KDL-NN, where intermediate layers are left in matrix form (instead of vectorizing), with input
mat(x) denoted by X. The KDL-NN is now given by

Y κk (X) = Y κk (X; θ) = (fL ◦ fL−1 · · · ◦ f2) (X). (10)

The associated regularized loss for training a rank-k KDL-NN over all data points (xm,ym) for
m = 1, . . . ,M , is given by,

L(θ) =

M∑
m=1

1

2
Lκm(θ) +

λ

2
Rκ(θ) =

M∑
m=1

‖mat(ym)− Y κk (mat(xm))‖2F +
λ

2
Rκ(θ),

where Rκ is the same Tikhonov-type regularizer as in (3), but sums the squared Frobenius norms
for all weights and bias matrices contained in θ.

4.1. KDL-NN architecture In what follows, we use notation that describes node configuration
as a sequence of numbers that count nodes in each layer, e.g., the FNN in Figure 2a corresponds to
4|9|9|4, describing a fully connected network with 4 input nodes, 2 hidden layers with 9 nodes each,
and an output layer with 4 nodes. A rank-1 KDL-NN may be described by using pairs of values
for each layer corresponding to the matricized shape of the nodes, such as (2, 2)|(3, 3)|(3, 3)|(2, 2),
where the input and output layers with 4 nodes are shaped as 2 × 2 matrices and the two hidden
layers with 9 nodes each are shaped as 3× 3 matrices; the layers added by the KDL-NN compared
to the FNN architecture correspond to matrices of size 2 × 3, 3 × 3 and 3 × 2, respectively. We
denote a rank-k KDL-NN with similar notation, (2, 2)|k(3, 3)|k(3, 3)|k(2, 2), indicating that k factors
of each of the 2 × 3, 3 × 3, and 3 × 2 added intermediate layers are present. (A bar | without a
superscript indicates k = 1.) In our numerical examples, we provide comparison against a third
type of network, an “extended” FNN, E-FNN, corresponding to the same number of nodes as the
KDL-NN, but with full connections between nodes in sequential layers. An E-FNN corresponding
to the same number of nodes as the KPD-NN architecture (2, 2)|(3, 3)|(3, 3)|(2, 2) then corresponds
to 4|6|9|9|9|6|4.

We visually compare the architecture of the above FNN, KDL-NN, and E-FNN examples in
Figure 2 for ranks k = 1 and k = 2. The KDL-NN sparsifies some connections of the FNN
while adding more nodes. Alternatively, the KDL-NN is a connection sparsification of the E-FNN.

7
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Note that we provide comparisons against E-FNN’s as a baseline for model capacity; our goal is
not to computationally sparsify E-FNN’s, but rather to build new architectures based on simpler
FNN’s. Table 1 summarizes architectures described above and reports the total number of trainable
parmeters for the networks shown in Figure 2. Note that KDL-NN’s are fully connected across each
set of dual layers.

(a) FNN (175 parameters) (b) KDL-NN (157 parameters) (c) E-FNN (361 parameters)

(d) KDL-NN, k = 2 (292 parameters) (e) E-FNN, k = 2 (700 parameters)

Figure 2: Top row: A fully connected FNN is shown in Figure 2a, and Figure 2b shows the resulting
connections for reshaping the input and output into 2 × 2 blocks and the hidden layers into 3 × 3
blocks with intermediate layers added corresponding to a KDL-NN rank 1 formulation , where the
alternating pattern represents multiplying from the right shown with blue connections and from
the left with maroon connections. The same nodes from the KDL-NN are then used to show the
resulting E-FNN in Figure 2c. The bottom row corresponding to a KPD-NN rank 2 formulation
(Figure 2d), and are plotted with the additional nodes and connections plotted in green. The same
nodes are then used to show the resulting E-FNN in Figure 2e. The architecture and total number
of parameters for all networks pictured here are given in Table 1.

4.2. Truncation error analysis for KDL-NN architectures In this section, we analyze the-
oretical performance of simplified KDL-NN architectures based on the Kronecker product approxi-
mation error estimate in Lemma 3.1. Because we use these estimates that are based on a truncated
SVD, we expect the performance of a trained KDL-NN to perform much better. In addition, the
simplified networks have smaller model capacity than the practical networks we use (as described
next). Nevertheless, these results show that KDL-NN’s can inherit accuracy from the approxima-

8
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Network type Architecture Number of parameters

FNN 4|9|9|4 175

KDL-NN (2, 2)|(3, 3)|(3, 3)|(2, 2) 157

corresponding E-FNN 4|6|9|9|9|6|4 361

KDL-NN (k = 2) (2, 2)|2(3, 3)|2(3, 3)|2(2, 2) 292

corresponding E-FNN 4|12|9|18|9|12|4 700

Table 1: Architectures and parameter counts for networks shown in Figure 2.

bility of fully connected weight matrices by Kronecker sums.
We recall that our KDL-NN architectures involve two activation functions φ1 and φ2 in (8). The

simplified networks we analyze below take φ2 as the identity (linear) function, which allows us to
directly tie approximation error to Kronecker sum truncation errors of matrices. In practice (i.e.,
in our numerical results) we use non-identity activation functions.

To state our results we require a norm on the KDL-NN parameters (6). Consider θ(`), the
KDL-NN parameters associated to layer `,

θ(`) =
{
θ
(`)
L , θ

(`)
R

}
,

and introduce a particular function | · |κ operating on such layer-` parameters,

∣∣∣θ(`)∣∣∣2
κ

:=

k∑
q=1

∥∥∥W (`,q)
L

∥∥∥
F

∥∥∥W (`,q)
R

∥∥∥
F
.

It is straightforward to show that this function is non-negative but dominated by the function
θ(`) 7→

∥∥vec(θ(`))
∥∥
2
, so that | · |κ is weaker than a corresponding standard `2 norm on the vectorized

parameters.
We assume that an FNN architecture is given, and that an associated KDL-NN architecture is

prescribed (e.g., so that we have a well-defined matricization of input/output vectors). Our results
are relative to a trained FNN y in (2), which we express in matricized form:

Y = Y (X), Y = mat(y), X = mat(x).

This trained FNN has weight matrices W (`). By constructing a KDL-NN whose parameters corre-
spond to approximating W (`) via Kronecker product sums, one expects that the classical Kronecker
sum bounds in Lemma 3.1 can be leveraged for error estimates in the KDL-NN case. Our results
appear in terms of `2 norms of truncated singular values from a Kronecker product rearrangement:

ε(`,k) :=

√√√√ r(`)∑
i=k+1

(σ
(`)
i )2

Lemma 3.1
= min

L(j)∈Rm1×n1 ,R(j)∈Rm2×n2 ,j∈[k]

∥∥∥∥∥∥W (`) −
k∑
j=1

L(`,j) ⊗R(`,j)

∥∥∥∥∥∥
2

F

(11)

where
{
σ
(`)
i

}
i∈r(`)

are the ordered singular values of the rank-r(`) rearrangement of FNN weight

matrix W (`). Our main technical result characterizes errors for a simplified KDL-NN relative to an
FNN using the “norms”

∣∣θ(`)∣∣
κ

and the Kronecker rank truncation parameters ε(`).

9
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Theorem 4.1. Suppose a trained FNN Y is given, and consider a rank-k KDL-NN network Y κk
in (10) where we choose the inner activation function φ2(x) ≡ x. Then given a data pair (xm,ym)
with corresponding matricization (Xm, Ym), training Y κk over the KDL-NN parameters θ yields,

arg min
θ
‖Y (X)− Y κk (X; θ)‖F ≤

L∑
i=2

ε(i,k)

 L∏
j=i+1

∣∣∣θ(j)∣∣∣2
κ

 i−1∑
k=1

cL−k1 ‖fk(0)‖F . (12)

where the parameters θ(`) are defined by setting W
(`,i)
L = L(`,i) and W

(`,i)
R = R(`,i), with L(`,i) and

R(`,i) defined as in (11) and f1 is as defined in (9b).

Under some additional assumptions, the above can be simplified to more clearly reveal the
components of the bound.

Corollary 4.1.1. Suppose f`(0) = 0 for ` = 2, . . . , L and the activation function φ1(x) = φ(x) is
1-Lipschitz (ReLu, Tanh, and Sigmoid are such examples [15]), then Theorem 4.1 holds with

arg min
θ
‖Y (X)− Y κk (X; θ)‖F ≤

 L∑
i=2

ε(i,k)
L∏

j=i+1

∣∣∣θ(j)∣∣∣2
κ

 ‖X‖F .
We provide the proof of Theorem 4.1 in Appendix B. This theorem provides a theoretical

connection between the size of the KPD truncation errors ε(i,k) of a trained FNN and predictive
performance of a KDL-NN relative to this FNN. This result does not immediately translate into a
practical error estimate since (a) we have made the simplifying assumption that φ2 is the identity,
and (b) training a KDL-NN does not involve KPD truncations from weights of an FNN. We also do
not expect this bound to be sharp since its proof (see Appendix B) invokes the triangle inequality
several times.

Nevertheless, the components of the estimate in (12) give insight into when we expect KDL-NN
approaches to work well: First, if all the ε(i,k), i = 2, . . . , L are small, then we expect that a KDL-
NN can perform at least as well as a corresponding FNN. I.e., when trained weight matrices of an
FNN have “small” Kronecker rank, we expect KDL-NN’s to perform well. The remaining terms can
be interpreted as quantities that measure how well-behaved a KDL-NN is. For example, appearance
of the |θ(j)|κ functions indicates that the size of the weight matrices affects performance, and fk(0)
is the output of a layer-k KDL function with zero input. Note in particular that f1(0) = X, so that
the norm of the input X to the KDL-NN affects the bound, as expected.

4.3. Numerical Cost of Forward Operations and Back-Propagation We now discuss the
computational cost of a KDL-NN and give a broad technical explanation of why we expect the
KDL-NN to be more efficient in practice. Given a KDL-NN defined by (10), gradient descent
updates are performed on layer ` from L to 2 via the relations,

W
(`,i)
R ← (1− λη)W

(`,i)
R − η∆

(`,i)
1 A

(`,i)T
L

W
(`,i)
L ← (1− λη)W

(`,i)
L − ηA(`−1)T

R ∆
(`,i)
2

B
(`,i)
R ← (1− λη)B

(`,i)
R − η∆

(`,i)
1

B
(`,i)
L ← (1− λη)B

(`,i)
L − η∆

(`,i)
2 ,

10
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where the intermediate matrices ∆
(`,i)
1 , ∆

(`,i)
2 and Γ(`) are defined in Appendix A. A simple imple-

mentation of back-propagation with learning rate η for KDL pair ` from layer pairs L to 2 is given
in Algorithm 1.

1: Initialize Γ(`−1) = 0
2: for i = 1 to k do
3: ∆

(`,i)
1 = φ′1(Z

(`,i)
R ) ◦ Γ(`)

4: ∆2 = ((W
(`,i)
R )T∆

(`,i)
1 ) ◦ φ′2(Z

(`,i)
L )

5: Γ(`−1) ← Γ(`−1) + ∆
(`,i)
2 (W

(`,i)
L )T

6: W
(`,i)
R ← (1− λ)W

(`,i)
R − η∆

(`,i)
1 (A

(`,i)
L )T

7: W
(`,i)
L ← (1− λ)W

(`,i)
L − η(A

(`−1)T
R ∆

(`,i)
2 )

8: B
(`,i)
R ← (1− λ)B

(`,i)
R − η∆

(`,i)
1

9: B
(`,i)
L ← (1− λ)B

(`,i)
L − η∆

(`,i)
2

10: end for

Algorithm 1: KDL Back-Propagation

The cost of forward operations for an FNN layer (1) with W ∈ Rm1m2×n1n2 is dominated by
O(m1m2n1n2) flops and the cost of the activation function operating on m1m2 values. In addition,
back-propagation requires action by φ′ on m1m2 values, and is then dominated by O(m1m2n1n2)
flops for the update.

In comparison, the KDL-NN formulation in (10) is dominated by O(m2n1(n2 + m1)) in total,
with activation function operating on m1n2 and m1m2 elements respectively. Back-propagation
then requires action by φ′ on m1n2 and m1m2 values respectively. Updates on the KDL weight
matrices are dominated by O(m1n2(m2 + n1)) flops. The dominant cost for the KDL-NN’s is
minimized when m2 ≈ n1 ≈ m1 ≈ n2, reflecting the same savings that one achieves in matrix
multiplication involving reshaping of Kronecker product matrices. We show in our results that
these savings are considerable in practice.

5. Numerical Results We compare our deep learning performance (training cost and test data
accuracy) for our novel KDL-NN architecture against FNN’s and E-FNN’s. The networks are
trained first on the function

f(x) =

( ∏dn1/2e
k=1

(
1 + 4kx2k

)∏n1

k=dn1/2e+1 (100 + 5xk)

) 1
d

evaluted for normal random xk ∈ (−1, 1) for k = 1, · · · , n1, similar to [1, 4], and then on the Bike
Sharing Dataset (BSD), [5], the BlogFeedback data set (BF), [3], and the MNIST data set, [12].
We summarize the sizes of these data sets and the number of inputs/outputs in Table 2.

While M data points are used to train the networks, M̃ points (x̃m, ỹm)
m∈[M̃ ]

used as test data

to determine performance on unseen inputs. We report standard `2 test losses,

L =
1

M̃

M̃∑
m=1

‖ỹm − ỹ∗(x̃m)‖22 ,

11
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Data set Inputs n1 Outputs nL (M, M̃)

f(x) [1, 4] 8 1 (10000, 1000)

BSD [5] 14 1 (13903, 3476)

BF [3] 280 1 (41918, 10479)

MNIST [12] 784 10 (60000, 10000)

Table 2: Available data and input/output sizes n1/nL for the examples in this paper. Also shown

are the number of training/test points M/M̃ .

where ỹ∗ is the (vectorized) output of an FNN, E-FNN, or KDL-NN architecture. All tests are run
on a system with a 2.10GHz ×64 processor with 125.5 GiB memory using Matlab R2021a.

In all examples, we prescribe an FNN architecture, make choices for integer factorizations of
input and hidden layer sizes (e.g., 9 = 3 × 3), and derive a corresponding KDL-NN and subse-
quently E-FNN architecture. The discussion in subsection 4.3 motivates that the choice of integer
factorization should maximize the geometric mean of the factors. The ReLu activation function is
used for training f(x), and tanh is used for all other examples.

5.1. Fixed-rank KDL-NN performance We demonstrate the efficacy of KDL-NN architec-
tures with fixed Kronecker rank k. Errors and timing are shown for f(x) with rank 1 KDL-NN in
Figure 3, and for BSD, BF, and MNIST in Figure 4 with ranks 1 and 2 KDL-NN’s. All data is
summarized in Table 3.

For matrix-vector multiplication, the Kronecker product operations (5) significantly improve
practical efficiency when the matrices L and R are large, but not when they are small. This
property extends to our KDL-NN architecture. We demonstrate this by prescribing two different
FNN architectures for the BSD dataset: BSD(a) corresponds to an FNN where the L and R matrices
have “small” sizes, and BSD(b) to one where they have large sizes. The results in Figure 4 show
that for the BSD(a) architecture, the FNN is more efficient to train than the KDL-NN network due
to the small sizes of the factorized matrices. However, for BSD(b), we increase the network size
and observe that KDL-NN training is much faster. These observations are consistent with what
one would expect for Kronecker product-based matrix multiplication.

In terms of accuracy, we see that the KDL-NN architecture tends to maintain or improve model
capacity compared to FNN architectures, even for rank 1 KDL-NN’s.

5.2. Adaptive Choice of Rank In general, the rank needed to optimize the KDL-NN is un-
known. Since the KDL summands use separate weight matrices, it is straightforward to add new
pairs of weight matrices during training to increase the rank.

To check the decay of the errors, a validation set is pulled from the training set based on 10%
of the total set size. New pairs of weight matrices are initialized to normal random matrices, scaled
to machine epsilon, and added when the decay of a range in the validation error levels off. In order
to achieve a reduction in error when adding matrices, the learning rate may need to be adjusted.
Factors are chosen in a range from 1

n to 2. A learning rate based on each factor is then used for
a set number of epochs, and the learning rate that produces the smallest error is selected moving
forward. Figure 5 shows training errors and timing using this procedure with a range of 4 learning
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Figure 3: Figures 3a and 3b show the test errors and timing, broken down by forward operations
and back-propagations, for f(x) using networks defined in Table 3 with Kronecker rank 1.
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Figure 4: Figures 4a to 4d show the test errors and timing, broken down by forward operations and
back-propagations, for FNN, KDL-NN, and E-FNN for BSD (a and b), BF, and MNIST respectively
as defined in Table 3 with Kronecker ranks k = 1 and k = 2.
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Data set Network Architecture # Parameters → ← Total time Test error (%)

FNN 8|64|64|1 4,801 1.2 3.7 4.8 6.53

f(x) KDL-NN (2, 4)|(8, 8)|(8, 8)|(1, 1) 409 2.0 3.9 5.9 6.47

E-FNN 8|16|64|64|64|8|1 10,081 2.2 8.3 10.5 6.47

FNN 14|64|64|1 5,185 1.6 4.8 6.4 12.45

KDL-NN (2, 7)|(8, 8)|(8, 8)|(1, 1) 433 2.7 4.2 6.9 7.68

BSD (a) E-FNN 14|16|64|64|64|8|1 10,177 3.1 10.4 13.6 6.87

KDL-NN (2, 7)|2(8, 8)|2(8, 8)|2(1, 1) 866 4.6 7.8 12.4 2.91

E-FNN 14|32|64|128|64|16|1 20,225 10.2 50.3 60.5 9.96

FNN 14|400|400|1 166,801 45.1 264.7 309.8 29.03

KDL-NN (2, 7)|(20, 20)|(20, 20)|(1, 1) 2,281 14.9 19.0 33.9 5.79

BSD (b) E-FNN 14|40|400|400|400|20|1 345,841 94.6 502.6 597.2 11.67

KDL-NN (2, 7)|2(20, 20)|2(20, 20)|2(1, 1) 4,562 27.1 35.6 62.7 2.54

E-FNN 14|80|400|800|400|40|1 690,881 118.1 860.7 978.8 17.36

FNN 280|400|400|1 273,201 153.7 782.3 935.9 0.97

KDL-NN (20, 14)|(20, 20)|(20, 20)|(1, 1) 3,141 54.1 66.9 121.0 0.80

BF E-FNN 280|400|400|400|400|20|1 601,641 318.6 2,121.1 2,439.7 0.76

KDL-NN (20, 14)|2(20, 20)|2(20, 20)|2(1, 1) 6,282 99.7 129.8 229.4 0.88

E-FNN 280|800|400|800|400|40|1 1,202,481 449.8 3,627.6 4,077.4 1.25

FNN 784|784|784|10 1,238,730 486.5 3,112.8 3,599.4 4.75

KDL-NN (28, 28)|(28, 28)|(28, 28)|(5, 2) 6,534 140.1 134.3 274.3 4.70

MNIST E-FNN 784|784|784|784|784|56|10 2,506,290 1,004.9 8,799.6 9,804.5 5.18

KDL-NN (28, 28)|2(28, 28)|2(28, 28)|2(5, 2) 13,068 236.6 288.0 524.5 4.04

E-FNN 784|1568|784|1568|784|112|10 5,011,002 1,627.1 17,137.8 18,764.8 4.76

Table 3: Network architectures for each example, including total number of trainable parameters,
20-Epoch training time (s) divided into forward propagation (→), back-propagation (←), and total
training time, and test data loss. The optimal result for each category is boldfaced without regard
to rounding.
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rates running for 10 epochs when increasing rank, in comparison to preset ranks ranging form 1 to
3. Results are shown for an average over 10 runs to promote smoothness.
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Figure 5: Figures 5a to 5d show the average test errors and timing breakdown for KDL-NNs with
ranks k = 1, k = 2, k = 3, and adaptive rank for BSD (a and b), BF, and MNIST respectively over
10 trials.

6. Conclusions We have introduced a new neural network architecture, the KDL-NN, for use in
deep learning. The architecture has been developed to exploit computational acceleration afforded
by a Kronecker product representation of matrix multiplication when multiplying by large weight
matrices during training. For an m×n matrix that is represent as the Kronecker product of m1×n1
and m2 × n2 matrices (m1m2 = m, n1n2 = n), then analysis and practical evaluations have shown
that when moderately large factors m1 ≈ m2 ≈ n1 ≈ n2 are available for numbers of nodes, training
a KDL-NN requires significantly less time compared to an FNN. In addition, we have shown on
several examples that the resulting accuracy of using a KDL-NN is generally improved compared to
a FNN, and seems to be comparable to essentially doubling the number of layers. However, further
analysis is required to determine the extent to which this holds. In particular, our analysis does
not reveal precisely what properties of the data suggest that a KDL-NN approach is effective.

Further, adding weight matrices to a KDL-NN is straightforward, but practical examples have
shown that altering the learning rate when increasing the representative rank may be necessary.
Since KDL-NN’s provide a new framework for deep learning, there are many avenues of research
that are yet to be pursued. However, this work has shown the potential benefits of adopting KDLs
and provided impetus to further establish the extent to which they may prove relevant. In the
supplementary documentation of this paper, we show that a higher order Kronecker Multi-Layer
NN (KML-NN) is feasible, but examples we have investigated suggest that such a generalization
may be less effective than the simpler KDL-NN approach.
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A. KDL Back-Propagation Derivation Given a KDL-NN with L−1 KDL pairs andA
(1)
R = X,

define

Z
(`,i)
L = A

(`−1)
R W

(`,i)
L +B

(`,i)
L , A

(`,i)
L = φ2(Z

(`,i)
L ),

Z
(`,i)
R = W

(`,i)
R A

(`,i)
L +B

(`,i)
R , A

(`)
R =

∑
i

φ1(Z
(`,i)
R ).

Differentiation from layer L to 2, splitting the loss function L = L1+L2 with L1 = 1
2

∥∥∥Y −A(L)
R

∥∥∥2
F

,

and using ◦ to represent element-wise multiplication produces,

∂L
∂W

(`,i)
R

=
∂L1

∂Z
(`,i)
R

∂Z
(`,i)
R

∂W
(`,i)
R

+
∂L2

∂W
(`,i)
R

= ∆
(`,i)
1 A

(`,i)T
L + λW

(`,i)
R

∂L
∂B

(`,i)
R

=
∂L1

∂Z
(`,i)
R

∂Z
(`,i)
R

∂B
(`,i)
R

+
∂L2

∂B
(`,i)
R

= ∆
(`,i)
1 + λB

(`,i)
R

∂L
∂W

(`,i)
L

=
∂L1

∂Z
(`,i)
L

∂Z
(`,i)
L

∂W
(`,i)
L

= A
(`−1)T
R ∆

(`,i)
2 +

∂L2

∂W
(`,i)
L

+ λW
(`,i)
L

∂L
∂B

(`,i)
L

=
∂L1

∂Z
(`,i)
L

∂Z
(`,i)
L

∂B
(`,i)
L

+
∂L2

∂B
(`,i)
L

= ∆
(`,i)
2 + λB

(`,i)
L ,

where we have introduced the following notation for ` = L− 1, . . . , 2:

Γ(L+1) := (Y −A(L)
R ), Γ(`+1) :=

∂L1

∂A
(`)
R

=
∑
i

∆
(`+1,i)
2 W

(`+1,i)T
L ,

∆
(`,i)
1 :=

∂L1

∂A
(`)
R

, ∆
(`,i)
2 :=

∂L1

∂Z
(`,i)
R

∂Z
(`,i)
R

∂Z
(`,i)
L

= ((W
(`,i)
R )T∆

(`,i)
1 ) ◦ φ′2(Z

(`,i)
L ),

∂A
(`)
R

∂Z
(`,i)
R

= Γ(`+1) ◦ φ′1(Z
(`,i)
R )

B. Proof of Theorem 4.1 The proof of Theorem 4.1 relies on some lemmas. Lemma B.1 below
computes Lipschitz constants for the individual functions f` defined in (9). Lemmas B.2 and B.3
compute error estimates associated with KPD truncations of weight matrices, and hence leverage the
foundational Kronecker product rearrangement result, Lemma 3.1. The final intermediate result,
Lemma B.4, computes an error estimate for a single layer of the KPD-NN versus a corresponding
FNN. Following this, the proof of Theorem 4.1 is furnished.

Lemma B.1. Given KDL forward operation f` from (9) with c1- and c2-Lipschitz activation func-
tions φ1 and φ2 respectively, then f` is C(`)-Lipschitz, where

C(`) = c1c2

∣∣∣θ(`)∣∣∣2
k
.
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Proof. Since φ1 and φ2 are Lipschitz, given inputs X1 and X2,

‖f` (X1)− f` (X2)‖F

≤ c1

∥∥∥∥∥
k∑
i=1

W
(`,i)
R φ2

(
X1W

(`,i)
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(`,i)
L
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W
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F
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Lemma B.2. Suppose fully connected FNN output y with matrix reshaping Y has L layers and
output at layer ` ∈ (2, L) with parameters θ̃, activation function φ = φ1, layer input a(n−1) with
a(1) = xm for training pair (xm,ym) with matrix reshapings Xm and Ym, then there exists θ, and
activation function φ2 such that for full-rank KDL-NN output Y κr with L layer pairs and layer pair
` ∈ (2, L) given by (??),

arg min
θ,φ2

‖Ym − Y κr (Xm)‖2F ≤ ‖Ym − Y (Xm)‖2F (13)

Proof. First note that for KPD W (`) =
∑r
i=1 L

(`,i)T ⊗R(`,i), setting W
(`,i)
L = L(`,i), W

(`,i)
R = R(`,i),

B
(`,i)
L = 0, vec

(∑r
i=1B

(`,i)
R

)
= b, and using φ2 as the linear activation function, then A

(`)
R is a

reshaping of a(`) for ` ∈ (2, L), and Y κr (Xm) = Y (Xm). Thus, the general result holds.

Lemma B.3. Under assumptions of Lemma B.2, setting k < r, and for KPD at layer `
∑r
i=1 L

(`,i)T⊗
R(`,i) = W (`), then∥∥∥∥∥

(
k∑
i=1

L(`,i)T ⊗R(`,i)

)
a(`−1) −W (`)a(`−1)

∥∥∥∥∥
2

≤ ε(`,k)
∥∥∥a(`−1)

∥∥∥
2
,

where ε(`,k) =
(∑r

i=k+1 σ
(`)2
i

) 1
2

for σ
(`)
i as the ith singular value of R(W (`)).
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Proof. ∥∥∥∥∥
(

k∑
i=1

L(`,i)T ⊗R(`,i)

)
a(`−1) −W (`)a(`−1)

∥∥∥∥∥
2

2

=

∥∥∥∥∥
(

k∑
i=1

L(`,i)T ⊗R(`,i) −W (`)

)
a(`−1)

∥∥∥∥∥
2

2

≤

∥∥∥∥∥
(

k∑
i=1

L(`,i)T ⊗R(`,i) −W (`)

)∥∥∥∥∥
2

2

∥∥∥a(`−1)
∥∥∥2
2

=

r∑
i=k+1

σ
(`)2
i

∥∥∥a(`−1)
∥∥∥2
2
,

where the final equality holds by Lemma 3.1.

Lemma B.4. Under assumptions of Lemma B.3, and for c1-Lipschitz activation functions φ and

φ1, and layer operator f` =
(
φ1 ◦ hθ(`)R

◦ φ2 ◦ hθ(`)L

)
, then there exists θ, and activation function φ2

such that
arg min
θ,φ2

∥∥∥f` (A(`−1)
)
−A(`)

∥∥∥
F
≤ c1ε(`,k)

∥∥∥A(`−1)
∥∥∥
F
,

where ε(`,k) =
(∑r

i=k+1 σ
(`)2
i

) 1
2

for σ
(`)
i as the ith singular value of R(W (`)).

Proof. Setting B
(`,i)
L = 0,

∑k
i=1 vec(B

(`,i)
R ) = b(`), W

(`,i)
L = L(`,i), W

(`,i)
R = R(`,i), and choosing φ2

as the linear activation function yields

vec

(
k∑
i=1

W
(`,i)
R

(
A(`−1)W

(`,i)
L +B

(`,i)
L

)
+B

(`,i)
R

)
=

(
k∑
i=1

L(`,i)T ⊗R(`,i)

)
a(`−1) + b(`),

and∥∥∥∥∥φ
((

k∑
i=1

L(`,i)T ⊗R(`,i)

)
a(`−1) + b(`)

)
− φ

(
W (`)a(`−1) + b(`)

)∥∥∥∥∥
2

≤ c1

∥∥∥∥∥
(

k∑
i=1

L(`,i)T ⊗R(`,i)

)
a(`−1) −W (`)a(`−1)

∥∥∥∥∥
2

,

since φ is c1-Lipschitz. Now applying Lemma B.3 and reshaping into matrix format, the general
result holds.

Proof of Theorem 4.1. Define the error at layer ` by E(`) =
∥∥∥A(`)

R −A(`)
∥∥∥
F

, and error from applying

KDL forward operator f` by e(`) =
∥∥f` (A(`−1))−A(`)

∥∥
F

. Then by Lemma B.4 and by definition
of f1(0),

E(2) = e(2) ≤ c1ε(2,k) ‖X‖F = c1ε
(2,k) ‖f1(0)‖F ,
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since A(1) = A
(1)
R = X, and

e(`) ≤ c1ε(`,k)
∥∥∥A(`−1)

∥∥∥
F
,

= c1ε
(`,k)

∥∥∥f`−1 (A(`−2)
)
− f`−1(0) + f`−1(0)

∥∥∥
F

≤ c21ε(`,k)
∥∥∥A(`−2) − 0

∥∥∥
F

+ c1ε
(`,k) ‖f`−1(0)‖F

= c21ε
(`,k)

∥∥∥f`−2 (A(`−3)
)
− f`−2(0) + f`−2(0)

∥∥∥
F

+ c1ε
(`,k) ‖f`−1(0)‖F

...

≤
n−1∑
i=1

cn−i1 ‖fi(0)‖F .

Further,

E(`) =
∥∥∥A(`)

R − f`
(
A(`−1)

)
+ f`

(
A(`−1)

)
−A(`)

∥∥∥
F

≤
∥∥∥A(`)

R − f`
(
A(`−1)

)∥∥∥
F

+ e(`).

By Lemma B.1, ∥∥∥f` (A(`−1)
R

)
− f`

(
A(`−1)

)∥∥∥
F
≤ C(`)

∥∥∥A(`−1)
R −A(`−1)

∥∥∥
F

= C(`)E(`−1)

Thus,

E(`) ≤ C(`)E(`−1) + ε(`,k)
`−1∑
i=1

c`−i1 ‖fi(0)‖F ,
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and

E(L) ≤ C(L)
(
C(L−1)

(
· · ·
(
c1ε

(2,k)C(3) ‖f1(0)‖F + · · ·
)
· · ·
)

+ · · ·
)

+ ε(L,k)
L−1∑
i=1

cL−i1 ‖fi(0)‖F

=

L∑
i=2

ε(i,k)

 L∏
j=i+1

C(j)

 i−1∑
k=1

ci−k1 ‖fk(0)‖F

=

L∑
i=2

ε(i,k)

 L∏
j=i+1

c1c2

∣∣∣θ(j)∣∣∣2
k

 i−1∑
k=1

ci−k1 ‖fk(0)‖F

=

L∑
i=2

ε(i,k)

 L∏
j=i+1

c2

∣∣∣θ(j)∣∣∣2
k

 c
(L−i)
1

i−1∑
k=1

ci−k1 ‖fk(0)‖F

=

L∑
i=2

ε(i,k)

 L∏
j=i+1

c2

∣∣∣θ(j)∣∣∣2
k

 i−1∑
k=1

cL−k1 ‖fk(0)‖F .

Finally, given φ2(X) = X, then c2 = 1.
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S. High Order Kronecker Multi-Layer A Kronecker multi-layer (KML) approach is

explained here. Given a KDL, consider the refinements W
(`,i)
L =

∑r
j=1W

(`,j)T
2 ⊗W (`,j)

1 and

W
(`,i)
R =

∑r
j=1W

(`,j)
3 ⊗W (`,j)T

4 . Then for column ai of A,

(ATW
(`,i)
L )T =

∑r
j=1

[
(W

(`,j)T
1 ⊗W (`,j)

2 )a1 · · · (W
(`,j)T
1 ⊗W (`,j)

2 )ap

]
, and with a slight

abuse of notation, W
(`,i)
R A =

∑r
j=1

[
(W

(`,j)T
3 ⊗W (`,j)

4 )a1 · · · (W
(`,j)T
3 ⊗W (`,j)

4 )ap

]
. KP

multiplication operations with Ai = (mat)(ai are then implemented as W
(`,j)
2 )AiW

(`,j)
1 and

W
(`,j)
2 )AiW

(`,j)
1 . This even split into 4 multi-layers will be referred to in the node configuration

by a refinement using parenthesis. i.e. a KDL given by (28, 28) could be refined into a
configuration given by ((7, 4), (7, 4)).

Adding activation functions and bias terms, the multi-layers can be written as

Z
(`,i,j)
1 = A

(`−1)
4(j,:)W

(`,i)
1 +B

(`,i)
1 , A

(`,i,j)
1 = φ(Z

(`,i,j)
1 ),

Z
(`,i,j)
2 = W

(`,i)
2 A

(`,i,j)
1 +B

(`,i)
2 , A

(`,i)
2(j,:) = φ(vec(Z

(`,i,j)
2 )T ),

Z
(`,i,j)
3 = A

(`,i)
2(:,j)W

(`,i)
3 +B

(`,i)
3 , A

(`,i,j)
3 = φ(Z

(`,i,j)
3 ),

Z
(`,i,j)
4 = W

(`,i)
4 A

(`,i,j)
3 +B

(`,i)
4 , A

(`)
4(:,j) =

∑
i

φ(vec(Z
(`,i,j)
4 )),

where Matlab style notation is used in subscripts to differentiate between rows or columns being
reshaped into matrix form.
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Back-propagation follows with

Γ(L+1,j) := (Y −A(L)
4 )

Γ(`+1,j) :=
∂L1

∂A
(`)
4(:,j)

=
∑
i

∆
(`+1,i,j)
1 W

(`+1,i)T
1 , ` = L− 1, · · · 2

∆
(`,i,j)
4 :=

∂L1

∂A
(`)
4(:,j)

∂A
(`)
4(:,j)

∂Z
(`,i,j)
4

=
∑
j

Γ(`+1,j) ◦ φ′(Z(`,i,j)
4 )

∂L
∂W

(`,i)
4

=
∑
j

∂L1

∂Z
(`,i,j)
4

∂Z
(`,i,j)
4

∂W
(`,i)
4

+
∂L2

∂W
(`,i)
4

=
∑
j

∆
(`,i,j)
4 A

(`,i,j)T
3 + λW

(`,i)
4

∂L
∂B

(`,i)
4

=
∑
j

∂L1

∂Z
(`,i,j)
4

∂Z
(`,i,j)
4

∂B
(`,i)
4

+
∂L2

∂B
(`,i)
4

=
∑
j

∆
(`,i,j)
4 + λB

(`,i)
4

∆
(`,i,j)
3 :=

∂L1

∂Z
(`,i,j)
4

∂Z
(`,i,j)
4

∂Z
(`,i,j)
3

= ((W
(`,i)
4 )T∆

(`,i,j)
4 ) ◦ φ′(Z(`,i,j)

3 )

∂L
∂W

(`,i)
3

=
∑
j

∂L1

∂Z
(`,i,j)
3

∂Z
(`,i,j)
3

∂W
(`,i)
3

+
∂L2

∂W
(`,i)
3

=
∑
j

A
(`,i,j)T
2 ∆

(`,i,j)
3 + λW

(`,i)
3

∂L
∂B

(`,i)
3

=
∑
j

∂L1

∂Z
(`,i,j)
3

∂Z
(`,i,j)
3

∂B
(`,i)
3

+
∂L2

∂B
(`,i)
3

=
∑
j

∆
(`,i,j)
3 + λB

(`,i)
3

∆
(`,i,j)
2(p,q) :=

∂L1

∂Z
(`,i,p)
3(j,q)

∂Z
(`,i,p)
3(j,q)

∂Z
(`,i,j)
2(p,q)

= (∆
(`,i,p)
3(j,q)W

(`,i)T
3(p,q) ) ◦ φ′(Z(`,i,j)

2(p,q) )

∂L
∂W

(`,i)
2

=
∑
j

∂L1

∂Z
(`,i,j)
2

∂Z
(`,i,j)
2

∂W
(`,i)
2

+
∂L2

∂W
(`,i)
2

=
∑
j

∆
(`,i,j)
2 A

(`,i,j)T
1 + λW

(`,i)
2

∂L
∂B

(`,i)
2

=
∑
j

∂L1

∂Z
(`,i,j)
2

∂Z
(`,i,j)
2

∂B
(`,i)
2

+
∂L2

∂B
(`,i)
4

=
∑
j

∆
(`,i,j)
2 + λB

(`,i)
2

∆
(`,i,j)
1 :=

∂L1

∂Z
(`,i,j)
2

∂Z
(`,i,j)
2

∂Z
(`,i,j)
1

=
∑
j

((W
(`,i)
2 )T∆

(`,i,j)
2 ) ◦ φ′(Z(`,i,j)

1 )

∂L
∂W

(`,i)
1

=
∑
j

∂L1

∂Z
(`,i,j)
1

∂Z
(`,i,j)
1

∂W
(`,i)
1

+
∂L2

∂W
(`,i)
1

=
∑
j

A
(`,i,j)T
2 ∆

(`,i,j)
1 + λW

(`,i)
1

∂L
∂B

(`,i)
1

=
∑
j

∂L1

∂Z
(`,i,j)
1

∂Z
(`,i,j)
1

∂B
(`,i)
1

+
∂L2

∂B
(`,i)
1

=
∑
j

∆
(`,i,j)
1 + λB

(`,i)
1
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In practice, viable training has required separate weights and biases for each layer of the split, i.e.

Z
(`,i,j)
1 = A

(`−1)
4(j,:)W

(`,i,j)
1 +B

(`,i,j)
1 , A

(`,i,j)
1 = φ(Z

(`,i,j)
1 ),

Z
(`,i,j)
2 = W

(`,i,j)
2 A

(`,i,j)
1 +B

(`,i,j)
2 , A

(`,i)
2(j,:) = φ(vec(Z

(`,i,j)
2 )T ),

Z
(`,i,j)
3 = A

(`,i)
2(:,j)W

(`,i,j)
3 +B

(`,i,j)
3 , A

(`,i,j)
3 = φ(Z

(`,i,j)
3 ),

Z
(`,i,j)
4 = W

(`,i,j)
4 A

(`,i,j)
3 +B

(`,i,j)
4 , A

(`)
4(:,j) =

∑
i

φ(vec(Z
(`,i,j)
4 )).

Results are shown in Figure 6 using an even 4-split KML-NN on MNIST with node configuration
N = {((7, 4), (7, 4)), ((7, 4), (7, 4)), ((7, 4), (7, 4)), ((5, 1), (2, 1))}. Similar to using KDL-NN on BSD
(a), using this KML-NN on MNIST with these small values results in an overall increase in time,
and further analysis on larger sets is still required to determine the benefits of adopting higher

order KMLs.
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Figure 6: Figures 6a and 6b show the test errors and timing breakdowns for a KML-NN with 4
multi-layers with Kronecker ranks 1 and 2 for MNIST.
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