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Abstract: The topics of verification and validation have increasingly been discussed in the
field of computational biomechanics, and many recent articles have applied these concepts in
an attempt to build credibility for models of complex biological systems. Verification and
validation are evolving techniques that, if used improperly, can lead to false conclusions about
a system under study. In basic science, these erroneous conclusions may lead to failure of a
subsequent hypothesis, but they can have more profound effects if the model is designed to
predict patient outcomes. While several authors have reviewed verification and validation as
they pertain to traditional solid and fluid mechanics, it is the intent of this paper to present
them in the context of computational biomechanics. Specifically, the task of model validation
will be discussed, with a focus on current techniques. It is hoped that this review will encourage
investigators to engage and adopt the verification and validation process in an effort to increase
peer acceptance of computational biomechanics models.
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1 INTRODUCTION

Modelling of biological systems allows simulation of

the mechanical behaviour of tissues to supplement

experimental investigations or when experiment is

not possible. It aids in defining the structure–

function relationship of tissues and their constitu-

ents. Modelling plays a role in basic science as well as

in patient-specific applications such as diagnosis and

evaluation of targeted treatments [1–5]. Regardless of

the use, confidence in computational simulations is

only possible if the investigator has verified the

mathematical foundation of the model and validated

the results against sound experimental data.

Computational biomechanics seeks to apply the

principles of mechanics to living tissues. Beginning

with the introduction of finite element analysis

in the 1950s [6, 7], investigators used numerical

algorithms to simulate structural materials in civil
and aeronautical engineering applications [8, 9].

Beyond the foundation of solid mechanics, these
methods were used extensively in computational
fluid dynamics (CFD) and heat transfer [10–12]. As
the power of the computer grew, so did the ability to
tackle larger and more complex models. In the
1970s, researchers applied the principles of compu-
tational solid and fluid mechanics to biology [13–
18]. Bone, ligament, cartilage, cardiac tissue, and
muscle exhibited complex organization and solid–
fluid interactions that were not adequately described
by traditional paradigms for engineering materials.
Novel constitutive models were developed in an
attempt to describe these materials. Again, leaps in
computing power allowed the solution of more
intricate problems, but adding complexity increased
the potential for errors.

The issues of uncertainty in the ability of a model
to describe the physics of a system did not go
unnoticed. The first cohesive attempts to define
methods of dealing with these problems arose in
CFD [19–21]. Publications dealing with these issues
in solid mechanics soon followed [22, 23]. To date,
no true standard has been written owing to the
constantly evolving state of the art, and as such these
documents are thought of as guidelines.

*Corresponding author: Department of Bioengineering, Univer-

sity of Utah, 50 S. Central Campus Drive, Room 2480, Salt Lake

City, UT 84112, USA.

email: jeff.weiss@utah.edu

REVIEW 801

JEIM649 Proc. IMechE Vol. 224 Part H: J. Engineering in Medicine



The literature refers to the areas of concern as

verification and validation. Verification is defined by

the ASME Committee for Verification and Validation

in Computational Solid Mechanics as ‘the process of

determining that a computational model accurately

represents the underlying mathematical model and

its solution’, whereas validation is defined as ‘the

process of determining the degree to which a model

is an accurate representation of the real world from

the perspective of the intended uses of the model’

[22]. Succinctly, verification is ‘solving the equations

right’ (mathematics) and validation is ‘solving the

right equations’ (physics) [24, 25]. By definition,

verification must precede validation, to separate

errors due to model implementation from uncer-

tainty due to model formulation [19, 20, 22, 26]. The

general flow of the verification and validation

process is illustrated in Fig. 1.

It has been argued that verification and validation

are only applicable for a closed system in which all

variables and their relative influence on the system

are known, but natural systems never obey this

simplification [27]. Oberkampf and collaborators

opined that engineering does not require ‘absolute

truth’ but instead a statistically meaningful compar-

ison of computational and experimental results

designed to assess random (statistical) and bias

(systematic) errors [20]. In order to build practical

confidence in any prediction, the engineering ap-

proach must be used.

For the purposes of this paper, error is defined

as the difference between a simulation, or experi-

mental value, and the truth. Error can arise in a

number of areas, particularly insufficiencies in the

formulation of the model describing the physics

of the real world or inaccurate implementation of

the model into a computational code [19, 20, 22].

The intended use of the model then dictates the

requirements of error analysis. Basic science may

only require cursory examination of errors if the

intention is to gather general information for fur-

ther study. In contrast, clinical application of the

predictions from a simulation necessitates exten-

sive examination of errors, especially if patient

treatment or outcome is directly impacted. The im-

portance of recognizing and accounting for errors

is critical for peer acceptance of the relevance and

applicability of the model. This is apparent in

the growing number of scientific journals requir-

ing some degree of verification and validation of

models presented for consideration (e.g. Annals of

Biomedical Engineering [28], Clinical Biomechanics

[29], etc.).

This paper reviews validation in computational

biomechanics. Validation, as it pertains to the real-

world physics of biological materials, has been an

elusive target owing to the complexity of the tissues.

Existing models provide predictions of stress or

strain in a tissue, but validation may only be

supported by rudimentary experiments with any

level of confidence. It is the ultimate goal of

Fig. 1 Flow of the verification and validation process
in computational biomechanics. Verification
solves the mathematical model and ensures
that it is implemented correctly (code verifi-
cation) and provides acceptable solutions to
benchmark problems (calculation verification).
Initial computational solutions provide indi-
cators of which parameters are critical in the
model formulation (sensitivity analysis), and
these can be used in the design of validation
experiments. Validation is used to quantify the
model’s ability to describe the experimental
outcomes of the physical system given well-
defined boundary conditions. Sensitivity an-
alysis is used again to determine the degree to
which input parameters influence the solution
output. The process is iterative until the model
and validation experiments provide reasonable
agreement within preset acceptance criteria.
Adapted with permission from the ASME
Committee (PT60) on Verification and Vali-
dation in Computational Solid Mechanics (2006)
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validation to provide a physical foundation for

comparison such that problems that are not experi-

mentally feasible can be simulated with the belief

that they provide realistic predictions. Validation is

by nature a collaborative effort between experimen-

talists, code developers, and researchers seeking to

define mathematical descriptors of real-world mat-

erials. It is likely that the future will provide firmer

experimental standards, commonality in reporting,

and continuous improvement strategies, even if the

goal of a ‘gold standard’ testing regimen is never

truly achievable. As this text focuses on validation,

the reader is referred to a number of extensive

reviews of verification and related topics in compu-

tational modelling of traditional solid, fluid, and

biomechanics [19–23, 26, 27, 30–36]. Verification

and sensitivity studies will be covered briefly, as they

are inextricably tied to validation.

2 VERIFICATION AND SENSITIVITY STUDIES

2.1 Verification

Verification is ‘the process of gathering evidence to

establish that the computational implementation of

the mathematical model and its associated solution

are correct’ [22]. A verified code yields the correct

solution to benchmark problems of known solution

(analytic or numeric), but does not necessarily

guarantee that it will accurately represent complex

biomechanical problems (the domain of validation)

[19]. From this definition it is clear that verification

must precede validation. The need for validation is

obviated if the numerical implementation of the

proposed model is not accurate in its own right.

Verification is composed of two categories, code

and calculation verification. Code verification en-

sures that the mathematical model and solution

algorithms are working as intended. Typically, the

numerical algorithms are in the framework of finite

difference or finite element (FE) methods, in which

discretized domains are solved iteratively until

convergence criteria are met. The errors that can

occur include discontinuities, inadequate iterative

convergence, programming errors, incomplete mesh

convergence, lack of ‘conservation’ (mass, energy,

heat, and so on), computer round-off, etc. [21, 23].

The assessment of numerical error has been studied

extensively and is suggested to follow a hierarchy of

test problems [19, 22]. This includes comparison

with exact analytical solutions (most accurate but

least likely to exist for complex problems), semi-

analytic solutions with numerical integration of

ordinary differential equations, and highly accurate

numerical solutions to partial differential equations

describing the problem domain. An example of code

verification is found in Ionescu et al. [37], where a

transversely isotropic hyperelastic constitutive

model implementation was verified against an

analytical solution for the case of equibiaxial stretch.

The code was capable of predicting stresses to within

3 per cent of an analytical solution, thus verifying the

code performance. Note that this was a limited test

of applicability and does not mean the model could

accurately predict other responses that were not

independently verified.

Calculation verification focuses on errors arising

from discretization of the problem domain. Errors

can arise from discretization of both the geometry

and analysis time and should be verified indepen-

dently. A common way to characterize discretization

error in the FE method is via a mesh convergence

study. A mesh is considered too coarse if subsequent

refinement of the mesh results in predictions that

are substantially different (i.e. solution does not

asymptote). The consequence of incomplete mesh

convergence is that the problem will generally be too

‘stiff’ in comparison with an analytical solution, and

increasing the number of elements will ‘soften’ the

FE solution [1, 35]. Studies of spinal segments have

suggested that a change of , 5 per cent in the

solution output is adequate to ensure that mesh

convergence is complete [31]. Mesh convergence is

documented in the literature owing to the preva-

lence in finite element studies, and it is recom-

mended for all discretized analyses [38–43].

Although verification is absolutely required for

user-developed codes to ensure that the model is

delivering the expected outputs to benchmark

problems [26], use of a commercial code does not

relieve the user of the need for verification. Given

every conceivable problem, teams of commercial

software engineers cannot ensure that all possible

combinations of boundary conditions and material

constraints yield accurate results [20]. Therefore, the

user is tasked with verification prior to the use of a

given model implementation.

2.2 Sensitivity studies

Many mathematical models of biological tissues are

formulated on the basis of fundamental consider-

ations such as material symmetry, stiffness, static

versus dynamic response, etc. All material para-

meters, whether adopted from the literature or

derived from experiments, include some degree of
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error [35]. This can result from the incomplete

characterization of a new material in the laboratory,

differences between protocols, or inherent specimen-

to-specimen variability. Errors are exacerbated in the

case of patient-specific models where unique combi-

nations of material properties and specimen geome-

try are coupled [38]. Sensitivity studies are common

in computational analyses, usually focusing on the

influence of experimentally derived material coeffi-

cients on the model predictions [1, 38, 39, 42, 44–49].

Multiple sources have identified the resolution of

medical image data as a source of error in computa-

tional models, owing to deviations in the reconstruc-

tion of three-dimensional (3D) geometry from two-

dimensional (2D) images [1, 31, 50].

Sensitivity studies are an important part of any

computational study, especially those utilizing mod-

els that are previously untested [19, 20, 22, 23, 26,

30, 31, 35]. Sensitivity analysis can be performed

before or after validation experiments, and some

argue that both are appropriate. If undertaken prior

to validation, sensitivity studies can help the in-

vestigator target critical parameters [20, 30, 35].

Validation experiments can then be designed to

tightly control the quantities of interest. After vali-

dation, sensitivity analyses provide assurance that

the experimental results are within initial estimates,

and they can determine if they still have a significant

impact on model outputs.

Sensitivity studies provide the investigator with a

measure of how error in a particular model input will

impact upon the results of a simulation, scaling the

relative importance of the inputs [23, 35]. The

general procedure is to alter a single material

parameter, by orders of magnitude or multiples of

the standard deviation about the mean, while

holding the others constant. For large-scale para-

metric numerical analysis, Monte Carlo simulations

can be used to evaluate combinations of parameters

[32]. Simulations that are not altered significantly

with variations in an input parameter are said to be

insensitive to changes in the given input. By

contrast, a parameter that dramatically influences

the output should be investigated to ensure proper

characterization.

3 VALIDATION

3.1 Validation

Validation is the process of ensuring that a compu-

tational model accurately represents the physics of

the real-world system [19, 22]. While some consider

validation of natural systems to be impossible [27],

the engineering viewpoint suggests that the ‘truth’

about the system is a statistically meaningful pre-

diction that can be made for a specific set of

boundary conditions [20, 26, 29]. This does not

suggest that in vitro experimental validation (in a

controlled laboratory environment) represents the in

vivo case (within the living system), as the boundary

conditions are likely impossible to mimic. It means

that, if a simplified model cannot predict the

outcome of a basic experiment, it is probably not

suited to simulating a more complex system.

Validation is often the most laborious and re-

source-dependent aspect of computational analysis,

but if done properly it can ensure that the model

predictions are robust [20, 21, 26]. These costs may

pale in comparison to the repercussions of a false

prediction if the intended use of the model is critical.

The level of validation required is directly tied to the

intended use of the model, and the supporting

experiments should be tailored accordingly.

A general validation methodology is to determine

the outcome variables of interest and prioritize them

according to their relative importance. Oberkampf

suggests using the phenomenon identification and

ranking table (PIRT) [20, 51]. The PIRT guidelines

scale each variable according to its impact within the

system and determine if the model adequately

represents the phenomena in question. It then

identifies if existing experimental data are able to

validate the model or if additional experiments are

required. Finally, PIRT provides a framework to

assess validation metrics, which quantify the pre-

dictive capability of the model for the desired

outcome variable.

The central question is one of time, cost, and the

complexity of the experiments needed to validate the

simulation and the ramifications of erroneous con-

clusions. Is the model the most appropriate repre-

sentation of the physical system? Will a simpler

model be adequate, or will it be unable to capture

details only available in more sophisticated formu-

lations? Can experiments provide realistic data for

the critical outcome variables, or are the intended

uses of the model incapable of laboratory examina-

tion?

3.2 Types of validation

The two predominant types of validation are direct

and indirect [31]. Direct validation performs exp-

eriments on the quantities of interest, from basic

material characterizations to hierarchical systems
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analysis. Although they may seem trivial, the most

basic validation experiments are often the most

beneficial, as they provide fundamental confidence

in the model’s ability to represent constituents of the

system [30]. The goal is to produce an experiment

that closely matches a desired simulation so that

each material property and boundary condition can

be incorporated. Limitations include reproduction of

the physical scale or an inability to generate data for

the specific model output that is most desired.

Typically, these relate to the regeneration of the

complex boundary conditions associated with in

vivo systems as quantified by in vitro experiments.

Indirect validation utilizes experimental results

that cannot be controlled by the user, such as from

the literature or results of clinical studies. Experi-

mental quality control, sources of error, and the

degree of variability are typically not known if the

data are not collected by the analyst. Indirect

validation is clearly less favoured than direct valid-

ation, but may be unavoidable. The required experi-

ments may be cost prohibitive, difficult to perform,

or may simply be unable to quantify the value that is

sought by the model.

3.3 Experimental design considerations

The investigator should consider how the model will

be tested directly. Does it include one constituent or

many, what quantities are being measured, and can

individual components be tested independently

from one another as well as in their combined state?

The governing committees both suggest building the

testing protocol through three general stages: (1)

finite benchmark problems of the constituents, (2)

subsystems, and (3) complete system analysis [19,

22]. Often only the first stage is possible, but the

others may be used to guide further analysis, even if

direct experimental validation is not possible. When

reporting experimental data, the results should be

presented as means and standard deviations along

with the number of independent measures collected

[19, 20, 22, 23].

A significant consideration in computational bio-

mechanics is how well in vitro testing can mimic the

in vivo environment. Boundary conditions may be

manipulated easily on the laboratory bench, but data

may not represent conditions within the living

system. This can negatively affect computational

predictions, as isolated tissues may behave differently

to when they are part of the composite biological

system. An example is found in the work of Gardiner

and Weiss [45], where in situ ligament strains were

determined on a subject-specific basis. Finite element

predictions of strain using averaged data fit the

experimental data poorly compared with the sub-

ject-specific models, emphasizing the need for well-

defined boundary conditions.

As computing power increases, subject-specific

simulations will become more commonplace. Ex-

perimental validation needs to account for the in-

fluence of geometric and parameterized simplifica-

tions (generic population versus subject specific).

The analysis of individual models may not provide

better results given the time and effort required to

formulate all different test cases. Validation also may

not be possible in the clinical setting, where

researchers and clinicians seek to predict the out-

comes of diagnosis and treatment. This is a trade-off

of model generation versus the confidence that can

result from direct experimentation. Again, what is

the desired outcome of validation, and is it achiev-

able with available tools?

3.4 Validation metrics

Validation metrics quantify the differences between

the experimental results and the simulation and can

include all assumptions and estimates of errors [20,

22, 30]. Qualitative observations require user inter-

pretation and provide no universal scale for compar-

ison. Graphical comparisons such as scaled fringe

plots are quasi-quantitative, as they find a basis in

human interpretation. Metrics must be quantitative

in nature and are suggested to follow the design flow

of the PIRT in order to scale and capture the most

relevant parameters [20].

Metrics can be deterministic, using graphical

comparisons to relate the model to experiments

[20]. Deterministic metrics rely on graphs and plots,

which are inherently qualitative. Statistical analysis

such as regression and correlation can strengthen

quantitative conclusions [20, 30] but must be

thoroughly examined, as variation in the data dir-

ectly affects the strength of their relationships [52].

Alone, these are not complete, so experimental

uncertainty metrics and numerical error metrics are

employed [20]. Experimental uncertainty metrics

quantify the inaccuracies built into the experimental

apparatus and their impact on experimental data.

The tolerances of the devices should be provided,

and accuracy should be determined by the user as a

secondary check that the devices are within speci-

fication. Accuracy of any device should be reported

as the mean ¡ 1.96 standard deviations, as this is

the statistically relevant confidence interval within
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which specifications should fall [20, 22]. Numerical

error metrics include the influence of computational

error on the model domain. Numerical error is

quantified by manipulating the solution strategy or

input parameters to test the impact on the solution.

These may include the use of implicit versus explicit

time integration or altered convergence criteria [30].

Metrics may also be non-deterministic. These are

the most comprehensive, as they include the

deterministic quantifications as well as estimates of

all input parameters as probability distributions [20].

Material properties derived from experiments in-

clude error. The probability distribution is the

statistical definition of the material properties as a

function of that error, factoring in the variance and

number of samples tested. This allows the metric

to be truly quantitative, as it builds in the effects

of experimental uncertainty and numerical error

simultaneously. Oberkampf provides an excellent

illustration of this phenomenon in section 2.4.4 of

his text [20].

3.5 Examples of validation in computational
biomechanics

Many studies provide examples of validation, but

few encompass the fully scaled approach of non-

deterministic metrics. This is likely due to the time

and cost constraints that come with experimental

validation, but also the relative infancy of the field of

computational biomechanics. As a rapidly growing

field, many studies validate models with the inten-

tion that predictions are for use in subsequent

analysis and experimentation. Direct applicability

on patient outcome is often an extended goal [2–5].

Given the disparity in intended use of models, the

level of validation varies greatly. It is the intention to

provide the reader with examples of validation in

computational biomechanics, although no ‘gold

standard’ currently exists. The following discussion

samples computational biomechanics papers from

various disciplines including cell, cardiovascular,

soft tissue, bone, and implant mechanics.

In most cases, validation was performed by

comparison with commercially available software,

typically finite element solvers such as ABAQUS

(Dassault Systems, SIMULIA, Warwick, RI, USA) or

NIKE3D (Lawrence Livermore National Laboratory,

Livermore, CA, USA). Some conducted their work

using custom computational frameworks, but no

study explicitly called out code verification. The

development and use of the code begets confidence,

as simple problems are solved successfully. Unfortu-

nately, when code verification is not confirmed, the

reader is left to assume that the author has

performed due diligence in ensuring proper code

functionality. No matter how trivial, it is recom-

mended that every author provide documented

assurance that the code has been verified.

As for numerical verification, most studies per-

formed mesh convergence analysis. The typical men-

tion of convergence analysis concluded with the

number of elements and nodes, as well as element

types used [42, 43, 46, 53], while others added the

refined mesh quality as an iterative percentage change

in a solution parameter [1, 38, 39, 54]. The presen-

tation of mesh quality as a metric provides the reader

with a baseline discretization error and is recom-

mended for future studies.

Ideally, validation experiments target critical para-

meters to provide confidence that the inputs to and

outputs from a model accurately define the physics

of the system. Almost universally, the input para-

meters were derived in previous studies. Commonly

accepted material properties were used in the case of

well-characterized structural materials like metals

and polymers [40, 43, 54]. For biological tissues,

mean values were used as inputs, and sensitivity

analysis tested the influence of their variance on the

system. The most basic exploratory models of cell

and vascular response contained one or two materi-

als, so sensitivity analysis was simplified consider-

ably [47, 53, 55, 56]. Complex computational stud-

ies of bone, cartilage, and ligament deformation

involving multiple materials, loading scenarios,

and geometries scaled up the degree of sensitivity

analysis [1, 38, 39, 42]. Analyses of meniscus and

intervertebral disc performed stochastic and para-

metric optimizations to determine the influential

parameters as well as scaling them relative to one

another [46, 57]. While these reports used sensitivity

analysis a posteriori, it should not be overlooked as a

building block to aid in the design of validation

experiments.

Validation primarily tested the composite systems,

regardless of the level of complexity. The boundary

conditions generally agreed well between experi-

ment and simulation, as extension of model applic-

ability was not of immediate concern in the basic

system validation. A few models were tested with the

intention of future clinical use in patient diagnostics,

implantation, and outcome [1, 42, 46, 47, 54, 55, 58],

but require further analysis before extension into the

clinical environment.

An example of the flow of validation and sensitiv-

ity analysis can be found in a study of cortical bone
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strains in the human pelvis (Fig. 2) [38]. This work

used direct mechanical testing to simulate body

weight loading through the hip joint while measur-

ing deformation on the cortical bone with strain

gauges. The target parameters and metrics were

defined a priori, and a dual computational and

experimental approach allowed the influence of the

unknown material properties to be evaluated with

sensitivity analysis, identifying critical parameters

for investigation in the experiments.

Given the diversity and complexity of the systems,

validation experiments were well suited for the

intended use of the models. The investigators took

precautions to apply the models to well-defined

experimental methods, employing techniques like

atomic force microscopy [56], magnetic resonance

imaging [47], and traditional mechanical testing

batteries [1, 38, 40, 59, 60]. The techniques were

capable of providing the defined measure that was

sought as the model output, and errors associated

with data collection were minimized where possible.

Where errors could not be reduced, metrics were

employed to capture their impact on the simu-

lations.

The use of metrics was as varied as the models

that employed them. Most studies used graphical

comparison such as fringe plots and line graphs [1,

38, 42, 43, 47, 53, 55, 56, 58, 60, 61]. These

assessments illustrated agreement of model predic-

tions with experiments, using quantities such as

stress or strain. As discussed earlier, they are

subjective. This is generally acceptable in explora-

tory studies but should be supported by non-

deterministic metrics if conclusions are to be drawn

from the simulation.

Traditional forms of metrics were used in the

majority of the studies that were sampled. These

included change as a percentage of nominal [43, 47],

root-mean-square error [1, 40, 46], and correlation

coefficients and coefficients of determination [38,

42, 58, 60–62]. Each of these may be deterministic or

non-deterministic, depending on the inclusion of

sampling error into the calculation.

Correlation coefficients, R, and coefficients of

determination, R2, are often shown on a scatter plot

comparing simulation versus experimental values.

While ideal comparison yields a regression line with

a slope of 1, it does not capture the variance of the

respective datasets. This means that high variation

between individual data compared with the mea-

surement error within the experiment begets artifi-

cially high correlation. Altman and Bland [52] note

that ‘the correlation coefficient is not a measure of

agreement; it is a measure of association’. They

suggest an alternative form of analysis that accounts

for repeatability (the difference between two mea-

surements on a single subject) and reproducibility

(the difference between two measurements on a

single subject after a change in set-up). The typical

experimental (E) versus simulation (S) scatter plot is

the starting point. Data are then plotted as the

average of the methods ((E + S)/2) on the x axis and

the difference between the methods (E 2 S) on the y

axis. A new regression line is then tested against a

Fig. 2 Validation of pelvic cortical bone strains by Anderson et al. [38], a well-defined validation
plan where the model use, parameters, and metrics were defined a priori and provided
the initial problem statement. A computational model was constructed to assist the
development of the experimental model. Sensitivity tests were performed on the
computational models in parallel with the experimental testing. Comparisons and
conclusions were based on both qualitative and quantitative assessments of measured
cortical bone strains and simulated pelvic loading

Validation of computational models in biomechanics 807

JEIM649 Proc. IMechE Vol. 224 Part H: J. Engineering in Medicine



null hypothesis that the difference (E 2 S) is zero,

capturing variation that inflates traditional correl-

ation. The approach is illustrated in Fig. 3.

3.6 Examples of validation with clinical
implications

A recent push has generated models with increased

clinical significance. This is typically performed by

use of patient-specific geometric and material data

that can be extracted from imaging data (e.g. CT,

MRI) to create a patient-specific biomechanical

model. An example of this application was given by

Anderson et al., where the contact pressure in

acetabular hip cartilage was simulated using finite

element models, and experimentally validated using

a cadaveric human pelvis [1]. One stated intent was

to provide a model for obtaining ‘clinically mean-

ingful data in terms of improving the diagnosis and

treatment of hip OA …’ [1]. Likewise, Fernandez and

Hunter generated knee models for the purpose of

pathologic diagnosis and surgical planning [63].

Finite element models of the knee were generated

from patient-specific data and were used to perform

two different surgical simulations, but no validation

was reported.

As patient-specific models become more com-

mon, it will be a fundamental requirement that they

are validated in light of their intended clinical

impact. If medical professionals cannot be con-

vinced of the predictive capabilities, the models will

not be applied. Therefore, validation should be

provided with future studies aimed at direct clinical

application. This should include experimental vali-

dation of individual tissues and the composite

system, sensitivity analyses of the intended para-

meters, and thorough statistical evaluation of the

predictive nature of the model.

There is a growing interest in the development of

surgical planning software. For instance, the soft-

ware suite MedEdit uses patient-specific data in the

planning of bone fixation after traumatic fracture

[64]. It allows the surgeon to interactively add, edit,

and remove bone fixation hardware from patient-

specific bone models, and then to perform FE

simulations in the hope of finding an optimal

surgical procedure. If there is intent for the software

to obtain FDA approval, the need for detailed

validation becomes especially important.

There is additional interest in using patient-

specific models to aid in the design of medical

implants. Vartziotiz et al. [65] used FE simulations to

aid the design of custom hip implants based on

patient-specific geometry, while Ridzwan et al. [66]

and Ruben et al. [67] used FE models coupled with

topology optimization algorithms to generate an

optimal hip implant shape. Similar efforts have

sought to use computational modelling in the design

of knee and spinal implants [43, 68]. Ideally, each

patient could be analysed and fitted with custom

hardware based on model predictions of their speci-

fic morphology and gait patterns, improving the

success rate of surgical intervention.

Although the prospect of using simulations in

clinical applications is exciting, caution must be

exercised. Many studies that use finite element

analysis have done little to establish the validity of

their methods via thorough experimentation. If it

cannot be established that these new methods can

increase the level of care that clinicians are able to

provide, then their usefulness will be limited.

Fig. 3 Scatter plot regression versus Bland–Altman
plots. Top panes (A, B) show typical scatter
plots of experimental versus simulation data.
Although both show a regression line of
slope 5 1, they are derived from populations
with higher (A) and lower (B) variance. Pane C
shows a Bland–Altman plot where the dif-
ference between experiment and simulation
(E 2 S) is plotted versus the average range
(E + S/2). Deviation above or below the line
(E 2 S 5 0) indicates the relative scale of agree-
ment between experiment and simulation.
Pane D illustrates how the difference (E 2 S)
may vary as a function of their average, indi-
cating bias towards a given range of experi-
mental and simulation conditions
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A study on a subject-specific tibia model provides

a useful example [40]: the purpose of the model was

to ‘evaluate new and modified designs of joint

prostheses and fixation devices’. The models and

experimental validations were performed for both

a normal and a knee-prosthesis-implanted tibia.

Numerous loading conditions were applied, making

the validation more comprehensive. Additionally,

important model assumptions (such as selection

of material properties) were clearly stated. These

practices facilitate the transition from research-

based modelling to clinical application.

As computational models become more complex,

a consistent methodology for model validation is

desirable. Oberkampf suggests a validation hierarchy

to describe the levels of model construction [20]

(Fig. 4). The first step is the need to validate a

specific constitutive model for each unique tissue.

Validation at this level typically involves material

testing and extraction of material coefficients from

experimental data. The next level involves validating

the model of an entire structure (articular cartilage

and bone). This includes assessing the assignment of

material properties and validating the model geo-

metry. At the subsystem level, two or more struc-

tures are combined into a single model (bone-

to-bone contact, ligament, and bone). Finally, the

combination of two or more subsystems (articular

cartilage–bone–ligament) results in a system-level

model. These are the most challenging to validate,

but also the most clinically relevant.

Patient-specific models for use in diagnosis,

surgical simulation, and implant design are expected

to provide useful tools for clinicians. However, like

any tool, each model must come with a well-defined

set of criteria that defines the model’s scope, predictive

capability, strengths, weaknesses, and intended uses.

Good validation practices, clearly defined scope and

model assumptions, and predictive capability are im-

portant for acceptance of biomechanical models in the

clinic.

4 CONCLUSIONS

This review has discussed the verification and valid-

ation used in computational biomechanics. The

inclusion of verification and validation is required

for credibility of a proposed model, and there will no

doubt be continued improvement in the methodol-

ogies used. Given the diversity of applications in this

small sampling of the literature, it is no wonder that

a standard for verification and validation is an elu-

sive goal. Provided that investigators continue to

Fig. 4 Oberkampf’s validation hierarchy [20], illustrated for use in computational biomechanics.
The hierarchy starts at the tissue level and progresses to the structural, subsystem, and
system levels. The validation hierarchy is illustrated here with a knee model including
bone, articular cartilage, and the medial collateral ligament. Suggested validation
requirements are shown for each level of model complexity
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apply critical scientific reasoning and sound experi-

mental practice to these problems, computational

models will become fundamental tools to address

future research questions and clinical applications.
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