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Abstract: The use of adjoint error estimation techniques is described for a model 
problem that is a simplified version of an EHL line contact.  Quantities of 
interest, such as friction, may be dependent upon the accuracy of the solution 
in some parts of the domain more than in others.  The use of an inexpensive 
extra solve to calculate an adjoint solution is described for estimating the inter-
grid error in the value of friction calculated, and as a basis for local 
refinement.  It is demonstrated that this enables an accurate estimate for the 
quantity of interest to be obtained from a less accurate solution of the model 
problem. 
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1. INTRODUCTION 

Numerical simulations of lubrication problems are of great benefit to 
industry for the design and evaluation of both oils and contacts since 
laboratory experiments are costly in terms of both time and money.  
Simulations enable a much wider range of cases to be evaluated provided 
that appropriate physical and mathematical models are used, and that the 
software is fast, robust and accurate. 

One potential vehicle for allowing these requirements to be met is the use 
of a posteriori error estimation combined with spatial mesh adaptation, 
where more points are placed in regions where the solution is sensitive to the 
local resolution and fewer points where it is insensitive.  These ideas are not 
new to computational engineering and have been used in problems such as 
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elastohydrodynamic lubrication (EHL) by a number of authors�����������.  In 
this paper we note that, when solving such problems, the goal of the engineer 
may typically be to obtain knowledge about some quantity that may be 
derived from the solution, such as the total friction through the contact for 
example.  For this reason it may not always be most efficient to develop the 
mesh adaptation strategy so as to maximise the overall increase in the 
accuracy of the computed solution, since this may have relatively little effect 
on the quantity of interest. 

In this work we consider an alternative mechanism for controlling mesh 
adaptivity for EHL-like problems, based upon controlling the error in the 
quantity of interest, the calculated friction for example, rather than the 
solution as a whole.  This is achieved at the relatively small expense of 
solving an additional problem which yields an approximation to an adjoint 
solution.  Using an adjoint system to gain extra information about a solution 
has long been exploited in optimal shape design�, and recently these ideas 
have become common in aerospace engineering��	. 

In the case of EHL an additional complicating factor is the presence of 
cavitation which leads to a free boundary in the mathematical model.  An 
initial investigation into the application of adjoints to this type of problem 
has been made by Hart et al�
, where the free boundary problem was 
considered in the context of uniform mesh refinement only.  In this work we 
extend the approach to demonstrate that the adjoint solution can also yield 
local information that may be used to drive non-uniform refinement in an 
effective manner.  Furthermore it is shown how varying the quantity of 
interest results in different local refinement patterns. 

The following section provides an outline of the theory that lies behind 
adjoint error estimation whilst Section 3 describes the nonlinear, free-
boundary, model problem being solved.  Results are then shown in Section 4 
illustrating the accuracy of the error estimator that has been implemented, as 
well as the performance of mesh adaptation based upon this.  The paper 
concludes with a short discussion of the material presented and of the 
directions in which ongoing research is headed. 

2. ADJOINT ERROR ESTIMATION THEORY 

In this section, the abstract background to the adjoint estimation of an 
error is introduced.  The starting point is to define two meshes with spacing 

xh ∆=  and xmXH ∆×=∆=  (m some integer > 1).  The idea is that 
mesh size H is fine enough to capture the features of the problem being 
solved, and coarse enough to be solved in a reasonable time, while the fine 
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mesh size h would give the solution to a greater accuracy but in an 
unacceptable time. 

Consider an arbitrary problem whose discrete form may be represented as 

hhh fuA =  on the finer mesh, and HHH fuA =  on the coarser mesh.  Let 
H
hu  be an approximation to hu  obtained by interpolation of the coarse mesh 

solution: H
H
hh uIu = .  A Taylor series expansion for the fine grid residual 

function hhhhh uAfuR −=)(  as explained by Darmofal and Venditti�, 
shows that 
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Neglecting higher order terms, (1) may be written as 
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Suppose that the quantity of interest for this problem is a functional which 
may be expressed as )( hh uF  on the finer grid.  This can also be expanded 
about the interpolated coarse mesh solution to give 
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Expression (2) may be substituted into this and, again discounting higher 
order terms, this becomes 
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By setting 
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it follows that hΨ  must satisfy 
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Throughout this paper we will refer to (4) as the adjoint system and to hΨ  as 
the adjoint solution.  Note that if hΨ  is known then (3) may be expressed as 

)()()()( H
hhh

T
h

H
hhhh uAfuFuF −Ψ−=  and a value for )( hh uF  may be 

found without having calculated hu  explicitly.  Of course solving (4) exactly 
to obtain hΨ  is likely to be as expensive as obtaining hu  exactly.  Hence, 
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(5) 

(6) 

(7) 

(8) 

instead of solving the adjoint system on this fine mesh, an approximation to 
it is solved for on the coarse mesh.  This is given by 
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This coarse grid adjoint solution is then interpolated onto the fine grid to 

give H
H
h

H
h I Ψ=Ψ .  The correction operation for the functional is given by 
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An estimation of the error in the functional between the two grids has now 
been obtained simply by solving an additional (adjoint) problem on the 
coarser grid.  Note that we will refer to the expression )()( H

hh
TH

h uRΨ  in (6) 
as the “correction” to the functional )( H

hh uF .  A summary of this error 
estimation procedure is presented in Figure 1. 

 

3. MODEL PROBLEM 

In order to help understand how the above adjoint theory may be applied 
to a full EHL problem, in this work we focus on a slightly simplified model 
problem.  This is designed to capture the key nonlinear features of the force 
balance equation and the free boundary for the cavitation position.  The 
elastic deformation is therefore neglected at this stage. 

Pressure is solved from a hydrodynamic “Reynolds” equation 
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with the film thickness given by 
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1. Solve the system of equations HHH fuA =  on the coarser grid 
2. Solve the adjoint system (5) on the coarser grid 
3. Interpolate Hu  and HΨ  onto the finer grid 
4. Calculate the functional )( H

hh uF  using the interpolated solution  
5. Calculate the fine grid residuals )( H

hh uR  using the interpolated solution  
6. Calculate the correction (product of adjoint and residuals) 

 
      Figure 1. Summary of the adjoint error estimation procedure 
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(10) 

(9) 

(11) 

The deformation term is omitted, leaving the separation to be governed only 
by 0H .  The values of 0H  and the cavitation position cX  must be found 
such that both the force balance equation 
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and the cavitation condition 
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are satisfied.  In equation (9) ∞−X  is defined to be equal to cX  minus a 
given, constant, domain size (chosen to be sufficiently large as to not 
influence the solution in the contact region significantly). 

3.1 Solution Procedure 

For a given value of cX  the Reynolds equation, (7), may be discretized 
using a second order finite order finite difference scheme, as previously 
described��, for example.  For simplicity the mesh spacing may be 
considered to be fixed, at X∆  say, although in practice it will be allowed to 
adapt in different regions of the domain.  In order to satisfy (10) it is 
necessary to allow cX  to vary until both the discrete forms of (7) and (10) 
are satisfied together (achieved via an iterative procedure).  Other 
approaches to dealing with the cavitation region may be found 
elsewhere��������, however it is important for this work that the cavitation 
position, cX , be treated as a continuous variable, and as such the region 
beyond cX  need not be considered.  This allows it to fit more naturally into 
the theoretical framework introduced above.  Finally note that by defining 

∞−X  to be cX  minus some fixed value, as cX  varies within the solution 
procedure ∞−X  varies too, so that the size of the computational domain 
remains fixed.  This removes the problem of having X∆  depend on cX  
(which would make the sparsity pattern of the Jacobian matrix in (5) dense) 
and also, with the extension to deforming contacts in mind, eliminates the 
need to recompute the kernel function.  The fact that the left-hand boundary 
moves is countered by the fact that it is chosen to be sufficiently far to the 
left to make no significant difference to the calculated value of the friction.  
In summary, the discrete problem that must be solved is to find 1P  to 1−nP , 

0H  and cX  such that the following residuals are zero: 
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Having fully specified the model problem, attention can be turned to the 
discrete adjoint formulation. 

3.2 Adjoint Problem 

As stated in (5) the adjoint system is based upon the transpose of the 
Jacobian of the residual equations.  The Jacobian entries are defined by 
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Based on (11) - (13), the sparsity pattern of the Jacobian can be easily 
obtained and is shown in Figure 2. 

The functional that we are interested in for this work is the friction, 
which for this model problem is given by 
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Figure 2. Sparsity pattern for the Jacobian of the residuals 
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This may be calculated using a simple quadrature scheme, such as the 
compound midpoint rule, whereby the integrand (by physical analogy we 
refer to this as the shear stress) is estimated on each cell of the mesh using 
the pointwise values of P .  To form the right-hand side of the adjoint  
system (5) the derivative of this quadrature expression with respect to each 
P , along with 0H  and cX  must be obtained: these are easily calculated 
analytically.  Once a solution has been found, the right-hand side of (5) may 
then be evaluated and HΨ  may be obtained. 

The solution HΨ  of the adjoint system represents the sensitivity of the 
friction to each of the residuals.  Hence multiplying each of these adjoint 
variables by the corresponding residual and taking the sum allows an 
estimate to be obtained of the error in the friction between the two grids.  
Note that although HΨ  and Hu  are found on the coarser grid the best 
approximation to the error is obtained by interpolating these to the finer grid 
before finding the residual )( H

hh uR  and its product with H
hΨ .  This is the 

last expression of equation (6). 

4. RESULTS 

In this section a small number of sample results are presented.  In all 
cases, unless stated otherwise, the value of L  in (9) is taken as 5.0 and the 
value of η  in (14) is taken as 20.0. 

4.1 Uniform Mesh Results 

Before considering a sequence of locally refined meshes, we begin by 
presenting results on uniform meshes.  Table 1 shows the performance of the 
predicted error in the friction, as calculated using the adjoint approach, by 
comparing it with the true error when solving on the next mesh.  Note that in 
this context we use the term error to mean )()( h

H
h uFuF −  (as opposed to 

)()( uFuF H
h −  where u  is the exact solution of the continuous problem). 

The first column of the table shows the grid level for the coarser of the 
two grids, and has a number of points equal to 12 1 ++g .  Using the solution 
from this grid, interpolated onto grid 1+g , a friction value is calculated 
which is shown in the second column.  Column three shows the correction to 
this friction, as calculated using the adjoint system solved on the coarse grid 
g .  The corrected friction is shown in column 4, with the “true” friction 
value for grid 1+g  shown in column 5.  The measured error between 
columns 2 and 5 is shown in column 6.  The final column shows the ratio of 
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the measured error to the estimated error (known as the Effectivity Index) 
and can be seen to approach unity with increasing mesh resolution, which 
indicates that for uniform grids the friction error estimate is remarkably 
accurate.  If the adjoint solution were not available, it would be necessary to 
keep computing on finer and finer grids until the friction changed by less 
than ε , at which point the last (and most expensive) solution does not yield 
a friction value that is significantly more accurate than the previous.  By 
using this strategy but based upon the adjoint estimate the same accuracy 
will be achieved but we will have saved the cost of computing a solution on 
the finest mesh in this sequence. 

4.2 Adaptive Mesh Results 

Table 2 shows that with non-uniform meshes the adjoint error estimation 
approach is still reliable, in the sense that the ratio of the predicted correction 
to the actual difference in friction on consecutive meshes still tends to one as 
the meshes are refined.  Note that in order to obtain these results global mesh 
refinement, based upon element bisection, has still been used, but now the 
initial mesh (and hence all subsequent meshes) is non-uniform.  Clearly the 
residual equation (7) has to be modified to reflect this non-uniformity in 

X∆  and the grid level referred to in the first column of the table indicates 
the finest level that is present in the mesh. 

Having demonstrated that the predicted error is still reliable on non-
uniform meshes it is now possible to use these values as the basis for local, 
rather than global, mesh refinement.  It should be noted, however, that the 
correction value given by the last term in equation (6) is just a single number 
indicating the current error in the friction and so further information is 
required in order to determine where the contribution to this error is the 
greatest.  In the following example we base the local refinement on the 
magnitude of i

H
h )(Ψ × i

H
hh uR ))((  locally, and refer to this as the correction 

component of mesh point i .  Figure 3 shows the computed correction 
components across the domain after a number of local refinements have been 
undertaken.  Starting from the left it may be seen that the contribution to the 
estimated friction error gradually increases until the first region of local 
refinement is reached, whereupon it drops suddenly.  The contribution to the 
error then grows again until the next region of local refinement is reached, 
and so on.  The contribution to the error is always kept below 710−  in this 
particular example. 
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Table 1. Adjoint based inter-grid friction error on non-uniform meshes, each with the same 
refinement 
Grid 
(g) 

Interpolated 
Friction (g) 

Calculated 
Correction 

Corrected 
Friction (g) 

Friction 
(g+1) 

Measured 
Error 

Effectivity 
Index 

5 87.95668 15.27956 72.67711 68.02241 19.93427 1.304 
6 68.67781 2.64095 66.03686 66.37680 2.30101 0.871 
7 66.52919 0.31057 66.21862 66.31442 0.21477 0.691 
8 66.35216 0.01504 66.33712 66.34818 0.00398 0.264 
9 66.35761 -0.00255 66.36015 66.36125 -0.00365 1.432 

10 66.36361 -0.00124 66.36484 66.36496 -0.00135 1.094 
11 66.36555 -0.00037 66.36592 66.36593 -0.00038 1.035 
12 66.36608 -0.00010 66.36618 66.36618 -0.00010 1.016 

 

Table 2. Adjoint based inter-grid friction error on non-uniform meshes, each with the same 
refinement 
Grid 
(g) 

Interpolated 
Friction (g) 

Calculated 
Correction 

Corrected 
Friction (g) 

Friction 
(g+1) 

Measured 
Error 

Effectivity 
Index 

5 87.66173 -4.56301 92.22474 67.98769 19.67404 -4.311 
6 68.65988 2.62800 66.03187 66.36806 2.29181 0.872 
7 66.52502 0.30892 66.21611 66.31220 0.21282 0.688 
8 66.35111 0.01462 66.33649 66.34762 0.00348 0.238 
9 66.35734 -0.00266 66.36000 66.36111 -0.00377 1.417 
10 66.36354 -0.00127 66.36481 66.36492 -0.00138 1.093 
11 66.36553 -0.00038 66.36591 66.36592 -0.00039 1.035 
12 66.36608 -0.00010 66.36618 66.36618 -0.00010 1.016 
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Figure 3. Plot showing the absolute value of the correction vector, and how it is distributed 
through local mesh refinement 
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Figure 4. Plot showing error reduction for uniform and adaptive grids 

 
Figure 4 shows the overall effectiveness of this strategy compared to the 

use of uniform mesh refinement. In this case the plot is of the error in the 
friction (as compared against a friction value calculated on a so-called “truth 
mesh” containing approximately 250,000 equally spaced points) versus the 
total number of nodes present in the mesh.  Unsurprisingly the uniform 
refinement strategy converges most slowly, the next curve shows the error in 
the friction on the locally refined (adapted) mesh, whilst the final curve 
shows the error in the corrected friction value on the adapted mesh. 

5. DISCUSSION 

Results have been presented which show that the adjoint error estimation 
approach may be used effectively for a non-linear EHL-like model problem 
containing a free boundary due to the cavitation condition.  The effectivity of 
this estimate on uniformly refined meshes may be used to provide a reliable 
stopping criterion without the need to solve on the finest mesh.  
Furthermore, the components of the correction term are shown to provide an 
appropriate basis for determining where to refine locally.  The resulting 
meshes can yield solutions of a considerably greater accuracy (in terms of 
friction, for example) than obtained on correspondingly sized uniform grids.                                                                             
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Figure 5. Plot showing the absolute value of the correction vector, and how it is distributed 
through local mesh refinement 

 

It should be noted that the adjoint procedure provides an estimate that 
may be used to control mesh adaptivity based upon a particular quantity of 
interest.  When this quantity is altered (changing the value of η  in (14) for 
example) then the resulting refinement of the mesh will be altered 
accordingly.  This behaviour is illustrated in Figure 5 which shows the 
equivalent plot to that of Figure 3 but for the case 0.0=η .  Again a 
sequence of local refinements have been undertaken so as to keep the local 
contribution to the error below 710−  everywhere but the resulting grid is 
very different (the regions of change in refinement level can clearly be seen 
to differ between Figures 3 and 5.                                                                                                                                                 

The next stage in this work is to move on to a true EHL line contact 
problem by introducing elastic deformation and more realistic viscosity and 
density models.  Being highly localised computations, neither of the 
rheological equations should adversely affect the sparsity of the Jacobian.  
However, the introduction of the deflection calculation will clearly make the 
Jacobian dense.  One possible solution may be to use the differential 
deflection method proposed by Evans and Hughes�� to compute the elastic 
deformation of the solid.  One of the longer term goals of this work is to 
solve problems with real surface roughness, where it is hoped that adaptation 
can take place to resolve only those features of most importance to the 
friction calculation. 
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