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Abstract

Forward simulation-based uncertainty quantification that studies the output distribution of
quantities of interest (QoI) is a crucial component for computationally robust statistics and en-
gineering. There is a large body of literature devoted to accurately assessing statistics of QoI,
and in particular, multilevel or multifidelity approaches are known to be effective, leveraging cost-
accuracy tradeoffs between a given ensemble of models. However, effective algorithms that can
estimate the full distribution of outputs are still under active development. In this paper, we intro-
duce a general multifidelity framework for estimating the cumulative distribution functions (CDFs)
of vector-valued QoI associated with a high-fidelity model under a budget constraint. Given a fam-
ily of appropriate control variates obtained from lower fidelity surrogates, our framework involves
identifying the most cost-effective model subset and then using it to build an approximate control
variates estimator for the target CDF. We instantiate the framework by constructing a family of
control variates using intermediate linear approximators and rigorously analyze the correspond-
ing algorithm. Our analysis reveals that the resulting CDF estimator is uniformly consistent and
budget-asymptotically optimal, with only mild moment and regularity assumptions. The approach
provides a robust multifidelity CDF estimator that is adaptive to the available budget, does not
require a priori knowledge of cross-model statistics or model hierarchy, and is applicable to general
output dimensions. We demonstrate the efficiency and robustness of the approach using several test
examples.

1 Introduction
Physical systems are often modeled with computational simulations or emulators, and as such,

understanding the error in these constructed approximations is of utmost importance. One particular
source of “error” is due to the input uncertainty in these models, either through uncertainty in input
parameters (which can be finite- or infinite-dimensional) or through modeled stochasticity in the system,
e.g., systems driven with white noise processes. To make the resulting models trustworthy, it is crucial to
quantify the resulting uncertainty in QoI; that is, to estimate the QoI’s distribution or some statistical
summary of it. One popular approach for achieving this is through Monte Carlo (MC) simulation,
which is easy to implement and provides robust results but has a slow convergence rate. A typical
MC procedure requires drawing a large number of samples or running repeated experiments, which is
expensive given the increasing complexity of modern problems.

To address this issue, methods based on multilevel/multifidelity modeling have been developed to es-
timate the statistics of QoI associated with the (high-fidelity) model [8, 23, 22, 14, 26, 6, 29, 27, 13, 15, 5,
7]; see [9, 24] for a detailed survey on the related methods. The core idea behind multilevel/multifidelity
methods lies in leveraging models of different accuracies and costs to improve computational efficiency.
However, a major limitation of the existing literature is that it predominantly focuses on the estimation
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of the statistical mean of the QoI (or perhaps some other scalar-valued descriptive statistics), providing
only partial insight into the uncertainty of the model output. A more comprehensive understanding
would require assessing, for example, higher order statistics of the QoI, or even the entire distribution.

Existing methods to estimate CDFs in the multilevel/multifidelity setup have seen notable success [9,
19, 10, 17, 2, 30]. In [9], the authors proposed a multilevel approach to computing the CDFs of univariate
random variables arising from stochastic differential equations (SDEs) and derived an upper bound for
the cost in terms of the error. The methodology in [9] was further developed and applied in a number
of subsequent works [19, 17, 10, 2]. In particular, [19] designed an a posteriori optimization strategy to
calibrate the smoothing function and showed its superiority over MC in oil reservoir simulations; [17]
generalized the ideas in [9] to approximate more general parametric expectations such as characteristic
functions; [10] applied an adaptive approach for parameter selection that yields an improved cost bound;
[2] provides a novel computable error estimator to enhance algorithm tuning. Despite the substantive
contributions of these approaches, nearly all of them make relatively restrictive assumptions regarding
model hierarchy (e.g., the model cost versus accuracy tradeoffs), and do not immediately extend to
the general non-hierarchical multifidelity setup. For this more general multifidelity estimation of CDFs,
the only work we are aware of is the adaptive explore-then-commit algorithm for distribution learning
(AETC-d) [30]. However, the large-budget performance of AETC-d is restricted by its own set of
statistical assumptions that are often too stringent to satisfy in practice. Moreover, the output of the
QoI in all the above references is assumed to be a scalar.

1.1 Contributions of this article
The main goal of this article is to provide novel solutions that mitigate the deficiencies described

above through the development of a workable and efficient algorithm for estimating the CDF in a
general non-hierarchical multifidelity approximation setting under computational budget constraints.
Our aim is to design a method that satisfies the following criteria: 1) it requires as input neither cross-
model statistics nor model hierarchy; 2) it can provide distributional estimates for vector-valued QoI
outputs, and 3) it is empirically robust and enjoys theoretical guarantees. Although our approach uses
a similar meta-algorithm as in [29, 30] (all borrowing ideas from the explore-then-commit algorithm in
bandit learning [18]), it contains a substantial amount of new ingredients that allow for both significant
generalizations of learning scope and improvement of robustness. In more technical language, our
contributions are twofold:

• We propose a control variates-based exploration-exploitation strategy for multifidelity CDF esti-
mation under a budget constraint. The exploration step leverages statistical estimation to select
a subset of low-fidelity models for the control variates construction, followed by the exploitation
step that utilizes the learned information to build an approximate control variates estimator for
the target CDF. Our estimator for the CDF applies to both scalar-valued and vector-valued QoI,
which differentiates it from existing methods that apply only to scalar-valued QoI.

• Through examination of the average weighted-L2 loss that balances errors in exploration and ex-
ploitation, we design a new meta-algorithm, the control variates multifidelity distribution learning
algorithm (cvMDL, Algorithm 1), that accomplishes model (subset) selection and CDF estima-
tion. Using control variates constructed from linear approximators, we establish both uniform
consistency and budget-asymptotic optimality of the estimator produced by cvMDL. Our analysis
illustrates that the proposed procedure is more robust to the restrictive model assumptions from
[30].

A verbatim usage of our approaches produces an estimator of a CDF that itself is not a distribution
function: The estimator is not necessarily monotonic (yet it does enjoy the previously-mentioned theo-
retical guarantees). To mitigate this artifact, we utilize an empirical algorithmic correction that restores
monotonicity of the estimated CDFs, and additionally makes its manipulation more computationally
convenient (e.g. for extraction of quantiles and conditional expectations), and we observe that in some
cases this empirical correction further reduces errors.
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An outline of the paper is as follows. Section 2 gives a brief overview of the control variates method.
Section 3 introduces a multifidelity CDF estimation framework based on approximate control variates
estimators. An explicit formula for the mean weighted-L2 loss that balances exploration and exploitation
is derived and used to obtain a lower bound for the error reduction. Section 4 provides a computa-
tional construction for the control variates through linear approximators. Section 5 develops our new
meta-algorithm (cvMDL) that accomplishes autonomous model selection together with an algorithmic
correction to preserve the monotonicity of the resulting CDF estimators. The meta-algorithm cvMDL
itself does not specify how to compute the control variates: A specialization to using the linear approxi-
mations from Section 4 yields a computationally explicit algorithm that we study in detail, establishing
both uniform consistency and budget-asymptotic optimality. Section 6 contains a detailed simulation
study and Section 7 includes the concluding remarks.

1.2 Notation
For n ∈ N, let [n] := {1, · · · , n}. We use bold upper-class and lower-class letters to denote matrices

and vectors, respectively. The Euclidean (`2) norm on a vector v is denoted ‖v‖2. For a matrix A,
A> is the transpose and A† is the pseudoinverse; A† coincides with the regular inverse A−1 when
A is invertible. The i-th column of A is denoted by A(i). The Frobenius norm of A is denoted by
‖A‖F = (

∑
i ‖A(i)‖22)1/2. For a set T ⊆ Rd, we denote its interior as T ◦, and 1T (x) = 1x∈T as the

indicator function on T . For two vectors x = (x(1), · · · ,x(d)) and y = (y(1), · · · ,y(d)), we use ∨ and ∧
to denote the componentwise max and min operators, respectively, i.e.,

x ∨ y =
(

max{x(1),y(1)}, · · · ,max{x(d),y(d)}
)

x ∧ y =
(

min{x(1),y(1)}, · · · ,min{x(d),y(d)}
)
.

Moreover, we say x ≤ y if x(i) ≤ y(i) for all i ∈ [d]. For a random vector X ∈ Rd, we let FX(x) =
P(X(1) ≤ x(1), · · · , X(d) ≤ x(d)) denote its CDF. For two sequences of random variables {am(ω)} and
{bm(ω)} where ω is a probabilistic event, we write am(ω) . bm(ω) if almost surely (a.s.), am(ω) ≤
C(ω)bm(ω) for all m ∈ N, where the constant C(ω) is independent of m.

We consider the QoI that are output from computational models as random variables that jointly
lie in some common probability space (Ω,F ,P). For convenience, we let

Y = (Y (1), · · · , Y (d))> ∈ Rd Xi = (X
(1)
i , · · · , X(di)

i )> ∈ Rdi i ∈ [n]

denote the high-fidelity and the i-th low-fidelity model output, respectively, where d, di ∈ N are the corre-
sponding output dimensions of Y and Xi, and there are n low-fidelity models in total. E[·],Var[·]/Cov[·],
and Corr[·] are the expectation, variance/covariance, and correlation operators respectively, and ⊥⊥
stands for probabilistic independence.

We assume the sampling costs for Y and X1, · · · , Xn, denoted by positive numbers c0 and c1, · · · , cn,
are deterministic and known. For S ⊆ [n], let cS =

∑
i∈S ci, corresponding to the cost of sampling all

(low-fidelity) models from subset S. We let B > 0 be the total budget, which is deterministic and known.
Moreover, for S ⊆ [n], we let XS = (X>i )>i∈S ∈ R|dS |, where dS =

∑
i∈S di, and XS+ = (1, X>S )>, where

the latter will be used when considering a linear model approximation with the intercept/bias term.
The central goal in the rest of the article is to develop a multifidelity estimator for FY (x) through

drawing samples of (Y,X[n]) and of XS for some adaptively-determined S ⊆ [n], subject to the sam-
pling cost not exceeding the total budget constraint B > 0. No other high-level assumptions are made.
In other words, we assume only that Y is a known high-fidelity model, we do not assume any order-
ing/hierarchy in the models X[n], and we do not assume known statistics (e.g. correlations) between
any models.
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1.3 cvMDL summary
The notation we have introduced is enough to present the overall cvMDL algorithm, although actual

computations that make the algorithm practical require more technical details which will be provided
in Section 2 through Section 5.

The cvMDL (meta-)algorithm is shown in Algorithm 1. The idea is as follows: We first gather m full
joint samples of (Y,X[n]) through exploration to identify (i) how models are related, (ii) which model
subset S optimally balances cost versus accuracy, and (iii) whether more samplesm are needed to certify
a robust exploration or whether the choice of S is statistically robust enough to proceed with exploitation.
All these decisions are made in lines 1 through 13. In the literature on statistical decision-making, the
choice of taking exploration samples from the full set of models (Y,X[n]) is called a uniform exploration
policy. Exploration is followed by exploitation, where we exhaust the remaining computational budget
to sample the optimal model subset XS . The exploitation in line 14 is an application of a particular
approximate control variates estimator for FY . More detailed descriptions of the steps in Algorithm 1
are as follows:

• Collect a minimal amount of data: Line 1 ensures that the number of exploration samples m is
set large enough so that non-degenerate statistics can be computed.

• Analyze model subsets S: Lines 3 through 6 identify for each model subset S both an estimated
number of optimal exploration samples m̂∗S along with the corresponding loss function L̂(m ∨
m̂∗S ;m). The value L̂(z;m) is an estimator with the currently-available m exploration samples
and measures the estimated loss if we eventually use z exploration samples. We require the input
z ← m ∨ m̂∗S since if m > m̂∗S then the number of exploration samples should be m, and not m̂∗S
(we cannot take fewer exploration samples than already committed and we assume −L̂(z;m) is
unimodal). The definitions of L̂, m̂∗S , and Ŝ

∗ are given in (5.7) and (5.8).

• Decide whether to continue exploring : Lines 7 through 13 decide whether to continue exploring or
to switch to exploitation. First, the estimated optimal model subset Ŝ∗ is computed by choosing
the minimal loss from the previous bullet. If the current number of exploration samples (m) meets
or exceeds the estimated optimal number of samples m̂∗

Ŝ∗
required for the optimal subset Ŝ∗, then

exploration stops and we proceed to exploitation. Otherwise, we continue exploration, with the
precise number of additional exploration samples determined by the function Q(·, ·) that is defined
in (5.13).

• Construct an exploitation estimator : After exploration terminates and an “optimal” model subset
Ŝ∗ has been identified, line 14 expends the remaining computational budget on sampling XŜ∗ to
construct a CDF estimator F̃Ŝ∗ for FY , which is defined in (5.11).

The precise details of how the loss function is computed and the CDF estimator is constructed is the
topic of Section 5, with Sections 2 to 4 serving to make requisite mathematical and statistical definitions.

A more detailed version of the algorithm is given in Algorithm 2 in Section A, which lists more
explicit computational steps that must be taken. The coming sections are devoted to the theoretical
construction of quantities in Algorithm 1; in particular Sections 2 and 3 provide a construction of a loss
function that is the integral part of the exploration decision-making.

2 Control variates
We first introduce the control variates method, which is a standard approach for variance reduction

in MC simulation. For a random variable X with bounded variance σ2
X > 0, the size-m MC estimator

for E[X] based on i.i.d. data X`, x̂ =
∑
`∈[m]X`/m, is unbiased and has variance σ2

X/m. Given a
random vector Z = (Z(1), · · · , Z(d))> ∈ Rd that lives in the same probability space as X, one may
use joint i.i.d samples of (X,Z), i.e., (X`, Z

>
` ) = (X`, Z

(1)
` , · · · , Z(d)

` ), ` ∈ [m], to construct a control

4



Algorithm 1: cvMDL: See Section 1.3 for accompanying discussion.
Input: B: total budget, exploration = TRUE
Output: an estimator for FY (x)

1: Initialize exploration sample size m =
∑
i∈[n] di + 2, generate m samples of (Y,X[n]).

2: while exploration = TRUE do
3: for S ⊆ [n] do
4: Compute m̂∗S and L̂S( · ;m);
5: Compute the minimal expected loss L̂S(m ∨ m̂∗S ;m);
6: end for
7: Choose Ŝ∗ = arg minS⊆[n] L̂S(m ∨ m̂∗S ;m);
8: if m < m̂∗

Ŝ∗
then

9: Increase m: m← Q(m, m̂∗
Ŝ∗

), generate additional samples of (Y,X[n]).
10: else
11: exploration = FALSE
12: end if
13: end while
14: Use remaining budget B − (c0 + c[n])m to generate Ŝ∗ exploitation estimator F̃Ŝ∗ .

variates estimator x̂c for E[X]:

x̂c =
1

m

∑
`∈[m]

X` −
1

m

∑
`∈[m]

(Z>` β − E[Z]>β),

where β ∈ Rd is some appropriately chosen vector and E[Z] is assumed known. The estimator x̂c is also
unbiased and has variance

σ2
c = Var[x̂c] =

Var[X − Z>β]

m
,

which is minimized when β is the least squares coefficient for the centered linear regression (i.e. X −
E[X] ∼ Z − E[Z]):

β = Cov[Z]−1Cov[Z,X], , (2.1)

and the minimal variance value is,

σ2
∗ = min

β∈Rd
σ2
c =

(1− ρ2)σ2
X

m
ρ = Corr(X,Z>Cov[Z]−1Cov[Z,X]).

Hence, when |ρ| ≈ 1, the variance reduction is significant, in which case Z>β accounts for most of the
variance of X.

In our multifidelity setup, we will use XS as our control variate Z, and so in practice, E[Z] may be
unknown. In this case, one may consider the following approximate control variates estimator that uses
an independent size-N MC estimator in place of E[Z] using samples Z̃j :

x̂ac =
1

m

∑
`∈[m]

X` −
1

m

∑
`∈[m]

Z>` β − 1

N

∑
j∈[N ]

Z̃>j β

 Z` ⊥⊥ Z̃j , (`, j) ∈ [m]× [N ], (2.2)

and this has total variance

σ2
? = σ2

∗ +
Var[Z>β]

N
=

(1− ρ2)σ2
X

m
+
ρ2σ2

X

N
. (2.3)

Construction of such approximate control variates estimators has been recently studied in the multifi-
delity estimation of first-order statistics [14, 29, 13].
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Remark 2.1. When Cov[Z]−1 and Cov[Z,X] are unknown, we can use empirical estimators instead,
which will result in higher order trajectory-wise statistical errors in m (which are different from the
mean-squared error that we subsequently consider); see [11, 21] for a detailed discussion.

3 Variance reduction for CDF estimation
Control variates are more general than described in Section 2, and can be applied to CDF estimation

of nonlinear functions of random variables [12, 16]. For example, in risk management applications [12],
the authors considered using the delta-gamma approximation1 (i.e. the second-order Taylor expansion)
of a loss function L at a given position x along random market move direction η as control variates to
compute the value-at-risk (VaR) at a given confidence level. More precisely, note that

−(L(x+ η)− L(x)) =: `(x) ≈ ̂̀(x) := −∇L(x)>η − 1

2
η>∇2L(x)η.

Fixing C, 1̂̀(x)≤C can be used as a control variate for 1`(x)≤C to compute the latter’s expectation,
which in particular provides a way to compute CDF’s (since CDF values are expectations of indicator
functions). More advanced approximation techniques have been introduced in [16] to construct other
control variates in VaR computation.

We apply a similar idea in our multifidelity setup here, but an appropriate replacement for the
delta-gamma approximation must be constructed, and our estimation procedure is subject to a total
budget constraint. In our setup, a specific functional form may be computationally difficult to produce,
and Taylor-like approximations can be inaccurate outside local regions. Our alternative strategy in this
setting is to employ a global emulator for Y based on information of X[n], e.g. linear combinations
of X[n], which can be effective when the correlation between these quantities is large – in practice for
parametric PDE’s, this situation is commonplace. Nonlinear approximations may also be considered
based on appropriate relevant information between the high- and low-fidelity models, although we do
not explore this possibility here.

In the rest of the section, we introduce a general multifidelity approach to estimating FY (x) subject
to a budget constraint.

3.1 Control variates for multifidelity CDF estimation
The following simple observation is crucial:

FY (x) = E[1Y≤x] x ∈ Rd.

If we fix S ⊆ [n], the control variate based on the random variables XS that maximizes variance
reduction (and hence is optimal) is E[1Y≤x|XS ] [25]. Of course, this quantity requires the orthogonal
projection of Y onto the sigma-field generated by XS , which is computationally intractable without
special assumptions (e.g. joint normality). Thus as a matter of practice, we will resort to approximations
of E[1Y≤x|XS ]. For the moment, we use h(XS ;x) to denote a general XS-measurable function that will
serve as the control variates for 1Y≤x. We make a particular choice for h in Section 4.

Analogous to (2.2), we construct an approximate control variates estimator for FY (x), where the
m and N in (2.2) will be related by the budget constraint. Since different S will be considered si-
multaneously, we take a uniform exploration policy that first collects m i.i.d joint samples of the full
models

Exploration samples: {(X>epr,`,1, · · · , X>epr,`,n, Y
>
epr,`)

>}`∈[m] ⊂ Rd+
∑n

i=1 di (3.1)

1Here we refer to the “full” delta-gamma approximation. The more commonly used delta-gamma approximation in
practice does not consider the second-order cross terms.
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for variance reduction and then commits the remainder of the budget to collect NS samples of a selected
model subset (say S) of low-fidelity models

Exploitation samples: {Xept,j,S}j∈[NS ] (3.2)

to compute the mean of control variates, where m and NS are related by the budget constraint:

NS =
B − ceprm

cS
cepr =

n∑
i=0

ci, cS =
∑
i∈S

ci, (3.3)

where we ignore integer rounding effects to simplify the discussion. The control variates estimator for
FY (x) based on h(XS ;x) is,

F̂S(x) =
1

m

∑
`∈[m]

1Yepr,`≤x −
1

m

∑
`∈[m]

α(x)h(Xepr,`,S ;x)− 1

NS

∑
j∈[NS ]

α(x)h(Xept,j,S ;x)

 , (3.4)

where α(x) is the optimal scaling coefficient as (2.1):

α(x) = Cov[h(XS ;x)]−1Cov[1Y≤x, h(XS ;x)]. (3.5)

Note α(x) is undefined if Cov[h(XS ;x)] = 0. In this case, the value of the estimator F̂S(x) does not
depend on α(x), and we set α(x) to 0 for convenience. The quantity F̂S(x) is an unbiased estimator
for FY (x), with variance

Var[F̂S(x)] =
(1− ρ2

S(x))FY (x)(1− FY (x))

m
+
ρ2
S(x)FY (x)(1− FY (x))

NS
,

where

ρS(x) = Corr[1Y≤x, h(XS ;x)]. (3.6)

3.2 A control variates loss function
To measure the overall accuracy of F̂S(x), we introduce the loss LS defined by the average ω(x)-

weighted L2-norm square of F̂S(x)− FY (x):

LS := E
[∫

Rd

ω(x)|F̂S(x)− FY (x)|2dx
]
, (3.7)

where ω(x) : Rd → R≥0 is a weight function. It is worth noting that the w(x)-weighted L2-norm square
is related to other more widely used metrics on distributions. For example, it reduces to the Cramér–von
Mises distance if taking ω(x)dx = dFY (x).

By Tonelli’s theorem,

LS =

∫
Rd

ω(x)Var[F̂S(x)]dx =
k1(S)

m
+

k2(S)

B − ceprm
, (3.8)

where

k1(S) =

∫
Rd

ω(x)(1− ρ2
S(x))FY (x)(1− FY (x))dx

k2(S) = cS

∫
Rd

ω(x)ρ2
S(x)FY (x)(1− FY (x))dx. (3.9)
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Since k1(S) and k2(S) are nonnegative, a sufficient and necessary condition for k1(S) and k2(S) being
well-defined (i.e. finite) is

k1(S) + c−1
S k2(S) =

∫
Rd

ω(x)FY (x)(1− FY (x))dx <∞, (3.10)

which may not be true for arbitrary choice of ω. For instance, when ω(x) ≡ 1, (3.10) is true when d = 1
if E[|Y |1+δ] < ∞ for some δ > 0. However, when d ≥ 2, (3.10) is generally not true when the support
for the distribution of Y is unbounded since F−1

Y ([ε, 1 − ε]) may have infinite Lebesgue measure in Rd
for some ε > 0. For such scenarios, requiring that ω(x) is integrable ensures (3.10), i.e.,∫

Rd

ω(x)FY (x)(1− FY (x))dx <

∫
Rd

ω(x)dx <∞. (3.11)

Some typical choices for integrable ω(x) include ω(x) = 1T where T ⊂ Rd is a bounded domain of
interest or ω(x) with reasonably fast decaying tails as ‖x‖2 → ∞. In the following discussion, we
assume (3.10) holds true. We make different choices for ω in our numerical results of Section 6.

3.3 Exploration-exploitation trade-off
Equation (3.8) is a similar exploration-exploitation loss trade-off that was originally formulated in

[29], where k1 and k2 measure the errors committed by the exploration and the exploitation, respectively.
LS is a strictly convex function for valid m, i.e., for 0 < m < B/cepr, and achieves its unique minimum
at,

m∗S =
B

cepr +
√

ceprk2(S)

k1(S)

, (3.12)

with the corresponding minimum loss

L∗S := min
0<m<

B−ceprm
cS

LS(m∗S) =
(
√
ceprk1(S) +

√
k2(S))2

B
=:

γS
B

(3.13)

This allow us to identify an optimal subset S as one that minimizes the optimal loss,

S∗ = arg min
S⊆[n]

γS . (3.14)

Our uniform exploration policy can be called optimal if it collects m∗S∗ joint samples for exploration and
uses model S∗ for exploitation. This is, in effect, a model selection procedure, as an optimal exploration
policy selects the model (subset) that yields the smallest error via optimally balancing the trade-off
between exploration and exploitation. In the following discussion, we assume S∗ is unique.

With oracle information, the minimum error achieved by a uniform exploration policy is given by
L∗S∗ = γS∗/B. On the other hand, the error achieved by an empirical CDF (ECDF) estimator for
FY with the same budget is cepr

∫
Rd ω(x)FY (x)(1 − FY (x))dx/B. This ECDF procedure amounts to

devoting the full budget to sampling the high-fidelity model Y , and ignoring the lower fidelity models.
Taking the quotient of the two errors yields a lower bound for the relative efficiency of a uniform
exploration policy compared to the ECDF estimator:

cepr
∫
Rd ω(x)FY (x)(1− FY (x))dx/B

γS∗/B
=
cepr

∫
Rd ω(x)FY (x)(1− FY (x))dx(√
ceprk1(S∗) +

√
k2(S∗)

)2

≥
cepr

∫
Rd ω(x)FY (x)(1− FY (x))dx

2 (ceprk1(S∗) + k2(S∗))

≥ 1

2
(
cS
cepr

+ Ex[(1− ρ2
S∗(x))]

) ≥ 1

4
,
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where the expectation Ex[·] is taken with respect to

x ∼ ω(x)FY (x)(1− FY (x))dx∫
Rd ω(z)FY (z)(1− FY (z))dz

.

Hence, the relative efficiency of a uniform exploration policy compared to the ECDF estimator is un-
conditionally bounded below by 1/4, and hence the uniform exploration policy can at worst realize a
loss value of 4 times a naive ECDF procedure. On the other hand, the relative efficiency is � 1 if both
cS/cepr and Ex[(1− ρ2

S∗(x))] are small. This happens, for instance, if XS∗ has a much smaller sampling
cost than Y and h(XS ;x) are “good” control variates for 1Y≤x uniformly for all x ∈ Rd, both of which
are realistic occurrences in multifidelity applications.

4 Choosing control variates from linear approximations
We now discuss our procedure for selecting the control variate h, which boils down to constructing

approximations of E[1Y≤x|XS ] that both retain high correlation with Y and are budget-friendly. While
one may generate special forms for approximations in particular cases, our goal is a simple and generic
choice that is useful for many practical applications.

Recall that XS+ = (1, X>i )>i∈S ∈ RdS+1. For i ∈ [d], let β(i)
S+ be the optimal linear projection

coefficients for estimating the i-th component of Y using XS+ :

β
(i)
S+ = Cov[XS+ ]−1Cov[XS+ , Y (i)] ∈ RdS+1. (4.1)

Letting

BS+ = [β
(1)
S+ , · · · ,β(d)

S+ ] ∈ R(dS+1)×d, (4.2)

the least squares approximation of Y using linear combinations of XS and 1 is given by

HS(XS) = (X>S+BS+)> =


X>S+β

(1)
S+

...
X>S+β

(d)
S+

 ∈ Rd.

When all quantities are scalars, i.e., d = d1 = · · · = dn = 1, one can directly manipulate HS to estimate
the statistics of Y [29, 30]. Such an approach is easy to implement and enjoys certain robustness for
first-order statistics [13], but is more prone to model misspecification effects (e.g. expressibility of the
linear model, noise assumption, etc.) when the whole distribution of Y is to be learned due to the
limitation of linear approximation [30].

To address the issue, we take an additional nonlinear step beyond HS . In particular, we consider
the following family of control variates that slice the estimator HS :

h(XS ;x) = 1HS≤x. (4.3)

Intuitively, we may expect 1Y≤x and h(XS ;x) to be correlated if E[‖Y −HS‖22] is small. However, this
may not be true for x approaching the tails of Y . For instance, assuming d = 1 and a standard joint
Gaussian random vector (X,Y ) with correlation ρ, it follows from straightforward computation that

lim
x→−∞

Corr(1Y≤x,1X≤x) = lim
x→0

CX,Y (x, x)

x
=

{
1, |ρ| = 1,
0, |ρ| < 1

where CX,Y (x, y) = P
(
Φ−1(X) ≤ x,Φ−1(Y ) ≤ y

)
is the Gaussian copula and Φ−1 is the quantile of

a standard normal distribution; see [20]. Hence, 1X≤x is not a good control variate for 1Y≤x unless
|ρ| = 1, i.e., only if X ∝ Y . Nevertheless, our experiments in Section 6 show that in practice h(XS ;x)
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provides a reasonable control variates choice for many scenarios in multifidelity simulations, and thus
suggests that situations described above are less common for the applications of our interest.

Choosing h as in (4.3), the coefficient α(x) in (3.5) can be explicitly computed as

α(x) =

{
FY∨HS

(x)−FY (x)FHS
(x)

FHS
(x)(1−FHS

(x)) x ∈ supp(FHS
(x))◦

0 otherwise
(4.4)

One useful technical result is that α(x) is bounded.

Lemma 4.1. Let α(x) be given as in (4.4). Then, |α(x)| ≤ 1.

Proof. It suffices to check that for x ∈ supp(FHS
(x))◦, α(x) ≤ 1 and −α(x) ≤ 1 hold simutaneously:

FY ∨HS
(x)− FY (x)FHS

(x)

FHS
(x)(1− FHS

(x))
≤ FY (x) ∧ FHS

(x)− FY (x)FHS
(x)

FHS
(x)(1− FHS

(x))

=
FY (x)

FHS
(x)
∧ 1− FY (x)

1− FHS
(x)
≤ 1,

and

FY (x)FHS
(x)− FY ∨HS

(x)

FHS
(x)(1− FHS

(x))
≤ FY (x)FHS

(x)− FY (x) + 1− FHS
(x)

FHS
(x)(1− FHS

(x))
∧ FY (x)FHS

(x)

FHS
(x)(1− FHS

(x))

≤ 1− FY (x)

FHS
(x)

∧ FY (x)

1− FHS
(x)
≤ 1.

We will discuss computational aspects of using (4.3) as control variates in Section 5.1.

Remark 4.2. As an alternative to our choice (4.3), one may use generalized linear models (GLMs)
to approximate E[1Y≤x|XS ]. With d = 1 and for binary outputs, a frequently used GLM is logistic
regression:

h(XS ;x) =
1

1 + exp(X>S+θS+)
x ∈ R,

where θS+ is some parameter that may depend on x and can be learned in exploration. Theoretically,
different θS+ can be assigned to different x, resulting in formally infinitely many parameters necessitat-
ing estimation, which is challenging from finite exploration data with an appropriate parametrization.
Alternatively, one may first partition R into intervals

R =
⋃
i∈[k]

[yi−1, yi) −∞ = y0 < y1 < · · · < yk−1 < yk = +∞,

and for every x ∈ [yi−1, yi), one uses an appropriately chosen θS+ associated with yi−1. Of course, the
question of how to choose yi requires attention, and good choices are generally problem-dependent. For
simplicity, we do not pursue this approach in this paper.

5 Algorithms
It is useful at this point to revisit the cvMDL algorithm in Algorithm 1: the loss function LS in (3.8)

is the desired loss function to optimize over but requires oracle statistics. Thus, we replace it with an
approximation L̂S that we describe in this section. Additionally, the computations in lines 3 through
6 are now more transparent: The oracle computations are given by (3.14) and (3.12). In a practical
algorithmic setting, we replace these with approximate computations, which is the topic of this section.
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When using approximate quantities to compute LS , the explicit exploration-exploitation loss de-
composition in (3.8) may no longer be true. Nevertheless, if the quantities we estimate are sufficiently
accurate, then such a decomposition is expected to be approximately valid. Thus, in devising practical
algorithms, we will use the oracle loss form (3.8) (with estimated coefficients) instead of (3.7) as the
criteria for model selection. We will present in the numerical section some empirical evidence that such
a replacement has little impact on model selection.

Since our estimators change when new exploration samples are collected, the dependence on this
number of exploration samples must be made explicit. For S ⊆ [n], we let L̂S(m; t) denote an esti-
mator for the loss function LS after having collected t exploration samples. We then let m̂∗S be the
corresponding estimator for the optimal exploration sample size m∗S . Summarizing this: the intuition
behind the cvMDL algorithm is that we use currently collected exploration data (t samples) to find the
estimated optimal model (Ŝ∗) and the corresponding exploration rate (m̂∗

Ŝ∗
). Based on the value of m̂∗

Ŝ∗

relative to t, we decide whether to continue to explore or to switch to exploitation. Although cvMDL
is similar to the AETC and AETC-d algorithms in [29, 30, 13], the process of constructing both the
model selection parameters, k1(S) and k2(S), as well as the exploitation estimator, is distinct. These
distinctions, and in particular their theoretical and practical consequences, will be further explained in
the following sections.

5.1 Estimators for oracle quantities
In this section, we discuss how to estimate LS , m∗S , and α(x) from exploration data when in-

stantiating cvMDL using the linear approximators as introduced in Section 4. The control variates
h(XS ;x) = 1HS≤x belong to a parametric family characterized by β(i)

S+ , i ∈ [d] from (4.1), which can be
estimated from exploration data.

Recall from (3.1) in Section 3.1 that the `-th exploration sample of all low-fidelity models in S

is denoted by Xepr,`,S . Similarly, we define Xepr,`,S+ = (1, X>epr,`,S)>. To estimate β(i)
S+ , we use the

least-squares estimator:

β̂
(i)
S+ = Z†SY

(i) ZS =

X
>
epr,1,S+

...
X>epr,m,S+

 ∈ Rm×(dS+1) Y (i) =


Y

(i)
epr,1
...

Y
(i)
epr,m

 ∈ Rm, (5.1)

where (X>epr,`,1, · · · , Y >epr,`)
>
`∈[m] are joint exploration samples, and the design matrix Z>S ZS is assumed

to have full column rank2.
For x ∈ Rd, h(XS ;x) can in turn be estimated as

ĥ(XS ;x) = 1ĤS(XS)≤x ĤS(XS) = B̂>S+XS+ =


X>S+ β̂

(1)
S+

...
X>S+ β̂

(d)
S+

 , (5.2)

where XS is a general notation for the low-fidelity model output, and

B̂S+ = [β̂
(1)
S+ , · · · , β̂(d)

S+ ]. (5.3)

For ease of notation, we write ĤS(XS) and ĥS(XS ;x) as ĤS and ĥS when XS+ is generic and has
nothing to do with exploration and exploitation data. We introduce some additional notation for

2This explains the minimal exploration size condition in Algorithm 1, which is a neccesary condition for full rank here.
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quantities involving both estimated coefficients and empirical CDFs using exploration data:

F̂Y (x) =
1

m

∑
`∈[m]

1Yepr,`≤x

F̂ĤS
(x) =

1

m

∑
`∈[m]

ĥ(Xepr,`,S ;x) =
1

m

∑
`∈[m]

1ĤS(Xepr,`,S)≤x

F̂Y ∨ĤS
(x) =

1

m

∑
`∈[m]

1Yepr,`∨ĤS(Xepr,`,S)≤x.

To compute the loss function approximation, we build approximations to k1 and k2 in (3.9), which
in turn requires us to compute ρ2

S in (3.6). For this purpose, observe that

(1− ρ2
S(x))FY (x)(1− FY (x)) = E[(1Y≤x − FY (x))− α(x)(1HS≤x − FHS

(x))]2,

where α(x) is defined in (4.4). The quantity in the expectation is the mean squared regression residual
between two (centered) Bernoulli random variables 1Y≤x and 1HS≤x. Thus, a natural estimator for
(1− ρ2

S(x))FY (x)(1−FY (x)) is to compute an empirical mean-squared difference between 1Y≤x and a
regressor with covariates 1ĤS≤x, which requires data for Y . Since we have (uncentered) data for Y on the
exploration samples Yepr,j , j ∈ [m], then we need only evaluate a regressor for Y with covariates ĤS and 1
on the exploration data sites. This results in the following estimator K1 for (1−ρ2

S(x))FY (x)(1−FY (x))

K1(x) =
1

m

∑
`∈[m]

(1Yepr,`≤x − r`(x))2

 r1(x)
...

rm(x)

 = WSW
†
S

1Yepr,1≤x
...

1Yepr,m≤x

 , (5.4)

where

WS =

1 ĥS(Xepr,1,S ;x)
...

...
1 ĥS(Xepr,m,S ;x)

 .
This in turn allows us to estimate ρ2

S(x)FY (x)(1− FY (x)) as

K2(x) = F̂Y (x)(1− F̂Y (x))−K1(x). (5.5)

Consequently, we can estimate k1(S) and k2(S) as

k̂1(S) =

∫
Rd

ω(x)K1(x)dx k̂2(S) = cS

∫
Rd

ω(x)K2(x)dx. (5.6)

The above estimators for k1(S) and k2(S) are positive and actually coincide with empirical estimators
for these quantities whenever defined (see Section B.3), which is a crucial realization for our consistency
results later. Plugging the above estimates into (3.8) and (3.12) yields estimates for LS and m∗S :

L̂S(z;m) =
k̂1(S)

z
+

k̂2(S)

B − ceprz
m̂∗S =

B

cepr +

√
ceprk̂2(S)

k̂1(S)

. (5.7)

Note L̂S(z;m) has two parameters, where the second indicates the number of exploration samples used
to compute k̂1(S) and k̂2(S), and the first is the variable of L̂S . We define Ŝ∗ as the optimal model
selected by this estimator,

Ŝ∗ = arg min
S⊆[n]

L̂S(m̂∗S ;m), (5.8)
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which parallels the oracle choice (3.14). We have now described all quantities needed to complete the
exploration phase of Algorithm 1, i.e., lines 1 - 13. What remains is to describe how the CDF estimator
F̃Ŝ∗ in line 14 is generated.

Our exploitation goal is to generate an estimator for (3.4), and so we also need to estimate α(x):

α̂(x) =
F̂Y ∨ĤS

(x)− F̂Y (x)F̂ĤS
(x)

F̂ĤS
(x)(1− F̂ĤS

(x))
x ∈ supp(F̂ĤS

(x))◦, (5.9)

and 0 otherwise. By similar reasoning as in Lemma 4.1, one has

|α̂(x)| ≤ 1. (5.10)

Finally, the exploitation estimator F̃S(x) for FY (x) based on estimated parameters, utilizes NS
exploitation samples (i.e., exhausts the remaining budget B) and is given by,

F̃S(x) := F̂Y (x)− 1

m

∑
`∈[m]

α̂(x)ĥS(Xepr,`,S ;x)− 1

NS

∑
j∈[NS ]

α̂(x)ĥS(Xept,`,S ;x)

 , (5.11)

where S = Ŝ∗ is the selected model based on k̂1(S) and k̂2(S). By inspection, we observe that F̃S(x) is
a piecewise affine correction of F̂Y , where the correction is based on the control variates ĥS .

Remark 5.1. The estimator α̂(x) is undefined and manually set to 0 for x outside the support of
F̂ĤS

, as in that case the denominator vanishes. To circumvent this, one can assign values of α̂(x)

for x outside the support of F̂ĤS
to values slightly within the support. To be more precise, consider

d = 1, and write x in place of x. Assuming α(x) is a continuous function of x in supp(FHS
) and

supp(F̂ĤS
(x)) = [xmin, xmax], for x ∈ supp(F̂ĤS

(x))c, we may estimate α(x) outside [xmin, xmax] as

α̂(x) =


F̂

Y∨ĤS
(x(τ))−F̂Y (x(τ))τ

τ(1−τ) x ≤ xmin

F̂
Y∨ĤS

(x(1−τ))−F̂Y (x(1−τ))(1−τ)

τ(1−τ) x ≥ xmax,
(5.12)

where x(τ) and x(1− τ) are the τ and 1− τ quantiles of F̂ĤS
for some small τ ∈ (0, 1):

x(τ) = F̂−1

ĤS
(τ) x(1− τ) = F̂−1

ĤS
(1− τ).

This allows us to get nontrivial and more accurate estimates of FY outside [xmin, xmax] (i.e. in the tail
regime). When d ≥ 2, one may generalize the ideas above by projecting the points in the tail regime
to some bounded set in Rd that contains most of the measure in the domain, which we do not pursue
further here.

This completes a comprehensive description of how all quantities in Algorithm 1 are computed.

5.2 Monotonicity of the exploitation CDF estimator

By construction, F̃S(x) is a piecewise constant function on some d-dimensional rectangular partition
of Rd, but not necessarily a monotone nondecreasing function in each direction due to the fluctuations
of estimators used in the construction. To address this issue, we introduce a dimension-wise recursive-
sorting post-processing procedure on values in the range of F̃S to recover the desired monotonicity.
Represent F̃S(x) as a d-dimensional tensor, T ∈ R⊗i∈[d]Mi , i.e., with index set I = ⊗i∈[d](zi,1, · · · , zi,Mi

),
where −∞ = zi,1 ≤ · · · ≤ zi,Mi

= +∞, such that

F̃S(x) = Tz1,s1 ,··· ,zd,sd x ∈
∏
i∈[d]

[zi,si , zi,si+1).
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The desired monotonicity in each dimension can be recovered by alternatingly sorting values in T in
each dimension until converging. An example when d = 2 is given below:0.7 0.4 0

0.3 0.5 0.2
1 0.8 0.6

 sort rows−−−−−−→

 0 0.4 0.7
0.2 0.3 0.5
0.6 0.8 1

 sort columns−−−−−−−−→

 0 0.3 0.5
0.2 0.4 0.7
0.6 0.8 1


0.7 0.4 0

0.3 0.5 0.2
1 0.8 0.6

 sort columns−−−−−−−−→

0.3 0.4 0
0.7 0.5 0.2
1 0.8 0.6

 sort rows−−−−−−→

 0 0.3 0.4
0.2 0.5 0.7
0.6 0.8 1


As shown above, sorting will finally end up in some stationary point with desired monotonicity (see
Theorem 5.2), but different orders of sorting may lead to different sorted CDF representations when
d ≥ 2. However, in our case, F̃S(x) is itself a perturbation of the CDF of Y , so the sorting procedure
is often beneficial for stabilizing the algorithm. A more detailed empirical study on this will be given
in Section 6. The sorting procedure described converges (i.e., achieves monotonicity in the values of T )
in a finite number of iterations:

Theorem 5.2. Assume that all the entries in T are distinct. Fixing the orders of sorting, the alternating
sorting algorithm described above will converge to a stationary point with desired monotonicity within a
finite number of iterations.

Proof. Sort the entries in increasing order: z(1) < · · · < z(M), where M = M1 · · ·Md. It is easy to see
that at the beginning of the algorithm, the index of z(1) is strictly decreasing in each direction. As a
result, z(1) will arrive at the entry of T with index (1, · · · , 1) after finite steps of iteration, and after that,
it remains unchanged in the subsequent iteration. In fact, for every s < M , assuming z(1), · · · , z(s) have
reached their final positions after which no change will occur, the index of z(s+1) with be decreasing in
each direction if the algorithm has not converged yet. The result follows by noting that M is finite, and
a stationary point must possess desired monotonicity.

5.3 Exploration sampling
One final technical detail we must describe is the precise action taken when we decide to continue

exploring. I.e., we must define the function Q(m, m̂Ŝ∗) in line 9 of Algorithm 1. When the current
number m of exploration samples is smaller than the estimated optimal number of samples m̂∗

Ŝ∗
, the

function Q determines how to increase m.
A natural choice for Q is Q(m, m̂∗

Ŝ∗
) = m+ 1, i.e., simply increase by a single additional exploration

sample. In practice, we observe that this behavior can be overly conservative and time-consuming when
B is large. As an alternative, one could use a more aggressive strategy, say Q(m, m̂∗

Ŝ∗
) = 1

2

(
m+ m̂∗

Ŝ∗

)
,

which more quickly closes the gap between m and m̂Ŝ∗ . However, there are situations when this is too
aggressive. For example, if m is very small (such as at initialization) then estimated quantities can be
poor approximations, and in some cases m̂Ŝ∗ is signficantly overestimated, and thus increasing m to
1
2

(
m+ m̂∗

Ŝ∗

)
can actually result in substantially overshooting the oracle value of m∗S∗ . The probability

of such an event is often positive and does not vanish as B increases.
As a compromise between these conservative and aggressive behaviors, we choose the following form:

Q(m, m̂∗
Ŝ∗

) =

 2m, m <
m̂∗

Ŝ∗
2

1
2

(
m+ m̂∗

Ŝ∗

)
,

m̂∗
Ŝ∗
2 ≤ m < m̂∗

Ŝ∗

(5.13)

Since m̂∗
Ŝ∗

is proportional to B, the above choice ensures that there is a sufficient amount of time for
the algorithm to take exponential exploration whose growth manner is independent of the value of m̂∗

Ŝ∗
,

which ensures both efficiency and accuracy of the algorithm. We note that our particular choice of
Q is not theoretically special, and serves only as a convenient practical choice that we have identified
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through empirical testing. Our theoretical conclusions will assume that Q has the form above. However,
since our theory is budget-asymptotic, reasonable alternative choices to the expression above would not
change the theoretical conclusions.

We have completed all technical descriptions of Algorithm 1. A more fleshed-out pseudocode version
is given in Section A that details every step that must be taken. Next, we establish that Algorithm 1
enjoys optimality guarantees relative to model selection and budget allocation strategies produced by
an oracle.

5.4 Model consistency and optimality
We now provide theoretical guarantees for Algorithm 1. In summary, we will show that as the budget

B tends to infinity, the model subset Ŝ∗ chosen along with the number of exploration samples m taken
by Algorithm 1, both converge to the oracle optimal model S∗ and the optimal number of exploration
samples m∗S∗ , respectively.

We need some technical assumptions in order to proceed with our results. Since we estimate quadratic
moments, we require quadratic moments to exist, and we also require that there are no linear combi-
nations of low-fidelity model outputs that are perfectly correlated with any other low-fidelity model
output. These are codified in the following two assumptions.

Assumption 5.3. The models X[n] and Y have bounded second moments:

E[‖X[n]‖22 + E‖Y ‖22] <∞. (5.14)

Assumption 5.4. The uncentered second moment matrix E[X[n]+X
>
[n]+] is invertible, where X[n]+ =

(1, X>[n])
>.

Assumption 5.3 is the minimal moment condition on model outputs that we require to make ora-
cle quantities well-defined. In practice, random variables that violate Assumption 5.4 exhibit perfect
multicollinearity and are relatively rare. Assumption 5.4 being violated does not cause any conceptual
breakdown of our procedure; the only consequence is that all the linear regression procedures suffer
from a lack of identifiability of optimal covariates. While there are numerous standard procedures to
remedy multicollinearity, such as covariate removal or regularization, violation of this assumption did
not surface in our experiments, so we do not utilize any of these remedies.

The model selection procedure requires estimating the average ω-weighted L2 norm. This requires
us to make certain assumptions about ω.

Assumption 5.5. The weight ω(x) is chosen so that either of the following conditions is true:

(a) ‖ω‖L∞(Rd) <∞ (e.g. ω(x) ≡ 1) and d = 1; or

(b) ‖ω‖L1(Rd) <∞.

The final more technical assumption we require involves some regularity on distribution functions.
In particular, we will show x-pointwise convergence of the estimator α̂(x) to the oracle parameter α(x),
and to accomplish this we require bounds on the local variations of FHS

and FHS∨Y constructed in
the model selection procedure. More technically, a sufficient assumption is a bounded local variations
condition involving CDFs of certain d-dimensional sketches of X[n] and Y .

Assumption 5.6. Define

V (A) = (X>S+A)> ∈ Rd A = [A(1), · · · ,A(d)] ∈ RdS×d,

and recall the optimal coefficient matrix BS+ in (4.2). We assume the CDFs of V (A) and V (A) ∨ Y ,
denoted by FV (A) and FV (A)∨Y , are globally Lipschitz near BS+ for all S. In particular, there exists
ε > 0 such that

max
S⊆[n]

sup
A:‖A−BS+‖F≤ε

{
‖FV (A)‖Lip + ‖FV (A)∨Y ‖Lip

}
= C <∞,
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where ‖ · ‖Lip is the Lipschitz constant defined as

‖f‖Lip = sup
x6=x′

|f(x)− f(x′)|
‖x− x′‖2

f : Rd → R.

This final assumption is less transparent than our previous ones but is true in every experiment we
have run. For example, a(n unnecessarily strong) sufficient condition to ensure that Assumption 5.6
holds would be to assume that both Y and all linear combinations of X[n] have bounded densities,
and that every high-fidelity covariate Y (i) is correlated with every low-fidelity covariate X

(r)
j , i.e.,

mini,j,r |Corr(Y (i), X
(r)
j )| > 0. Alternatively, one could only assume that the same bounded density

condition, and the rather reasonable condition that the oracle regression coefficients BS+ select at least
one non-deterministic covariate for every S.

We can now present our main results regarding applying the cvMDL algorithm with h(XS ;x) con-
structed using linear approximations, with the corresponding loss function parameters estimated from
(5.6) and (5.7). In particular, we have that the adaptive exploration rate m(B) asymptotically matches
the optimal (oracle) exploration rate m∗S∗ defined in Section 3.3, and the selected model S(B) converges
to the optimal (oracle) model S∗ as B →∞:

Theorem 5.7 (Uniform consistency and asymptotic optimality of Algorithm 1). Let h(XS ;x) be de-
fined in (4.3), i.e., we use the linear approximation estimators from Section 4, and assume the model
parameters are estimated via (5.6) and (5.7). Then consider Algorithm 1 with an input budget B, and
let

• m(B) = m̂Ŝ∗ be the number of exploration samples chosen by Algorithm 1,

• S(B) = Ŝ∗ be the model selected for exploitation,

• F̃ (x;B) = F̃Ŝ∗(x) be the output CDF estimator for FY .

Under Assumptions 5.3, 5.4, 5.5, and 5.6, then with probability 1,

lim
B→∞

m(B)

m∗S∗
= 1, (5.15a)

lim
B→∞

S(B) = S∗, (5.15b)

lim
B→∞

sup
x∈Rd

|F̃ (x;B)− FY (x)| = 0. (5.15c)

where S∗ and m∗S∗ are the unique optimal (oracle) model choice and exploration sample size defined in
Section 3.3.

The proof is given in Section D. The result (5.15c) should not come as a surprise since uniform
consistency is generally true for empirical CDF estimators. Therefore, while (5.15a) and (5.15b) show
that Algorithm 1 exhibits optimality (relative to an oracle) for the choice of exploration samples and
sample allocation across models, (5.15c) is not evidence that the multifidelity estimator F̃ (x;B) is
superior to the empirical CDF estimator that uses only the high-fidelity samples, although it confirms
that F̃ (x;B) behaves as expected. The major difference that distinguishes F̃ (x;B) from a standard
empirical CDF estimator is a constant term resulting from the mean ω-weighted L2 convergence rate;
see the discussion near the end of Section 3.3.

The statements in Theorem 5.7 and [30, Theorem 5.2] are similar, but in the former the requisite
assumptions are much weaker and the guarantees are stronger. In fact, for [30, Theorem 5.2] to hold,
one must assume that E[Y |XS ] is a linear function of XS and (Y − E[Y |XS ]) ⊥⊥ XS for all S ⊆ [n],
which can be challenging to verify in practice and in some practical cases does not hold. However, none
of these assumptions is needed in Theorem 5.7. Additionally, Theorem 5.7 ensures convergence for a
multivariate distribution function instead of the univariate convergence statements in [30, Theorem 5.2].
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5.5 A brief view into proving Theorem 5.7
While we leave the technical parts of proving Theorem 5.7 to the appendix, we can summarize the

crucial intermediate results that allow the proof to succeed. The major results we need revolve around
consistency of various estimators as m and/or NS approach infinity. The following two sets of results
leverage the assumptions to conclude consistency of intermediate computations in the algorithm.

The first collection of results shows that the finite-sample estimators for quantities computed in the
exploration phase are consistent as the number of exploration samples m tends to infinity.

Lemma 5.8 (Asymptotic consistency of exploration estimators). We have the following technical esti-
mates and consistency results for all S ⊆ [n]:

(i) Under Assumptions 5.3 and 5.6, then with probability 1,

sup
‖A−BS+‖F<ε

sup
x∈Rd

|FV (A)(x)− FV (BS+ )(x)| . ‖A−BS+‖2/3F (5.16a)

sup
‖A−BS+‖F<ε

sup
x∈Rd

|FV (A)∨Y (x)− FV (BS+ )∨Y (x)| . ‖A−BS+‖2/3F (5.16b)

where the implied constant in . is absolute.

(ii) Under Assumptions 5.3 and 5.4, then with probability 1,

lim
m→∞

B̂S+ = BS+ (5.17)

(iii) Under Assumptions 5.3, 5.4, and 5.6, then with probability 1,

lim
m→∞

sup
x∈Rd

|F̂ĤS
(x)− FHS

(x)| = 0 lim
m→∞

sup
x∈Rd

|F̂Y ∨ĤS
(x)− FY ∨HS

(x)| = 0.

(iv) Under Assumptions 5.3, 5.4, and 5.6, then almost surely as m→∞ we have that,

K1(x)→ (1− ρ2
S(x))FY (x)(1− FY (x)) K2(x)→ ρ2

S(x)FY (x)(1− FY (x)) (5.18)

for all x ∈ Rd.

(v) Under Assumptions 5.3, 5.4, 5.5, and 5.6, then with probability 1, limm→∞ k̂1(S) = k1(S) and
limm→∞ k̂2(S) = k2(S).

(vi) Under Assumptions 5.3, 5.4, and 5.6, for x ∈ (supp(FHS
))◦, α̂(x) is a consistent estimator of

α(x) almost surely, i.e., limm→∞ α̂(x) = α(x) for every x ∈ (supp(FHS
))◦.

The proof is given in Section B.

Remark 5.9. Note α̂(x) may not be consistent outside (supp(FHS
))◦, where the value of α(x) is set

to be zero in the definition for convenience; see (4.4). However, this has no impact on the accuracy of
the exploitation estimator as 1HS≤x is constant.

Our second intermediate result shows then that the exploitation estimator for the CDF of Y is
consistent asymptotically in both the exploration sample count m and the exploitation sample count
NS .

Lemma 5.10 (Uniform asymptotic consistency of the exploitation CDF estimator). Under Assumptions
5.3, 5.4, and 5.6, then with probability 1,

sup
x∈Rd

|F̃S(x)− FY (x)| → 0 m,NS →∞. (5.19)

See Section C for the proof.
Again, the proof of our main result, Theorem 5.7, is in Section D, which leverages the results in

Lemma 5.8 and Lemma 5.10. One additional high-level step needed to prove Theorem 5.7 is to show
that Algorithm 1 for asymptotically large budget B results in both m and NS going to infinity. This is
the first part of the proof presented in Section D.
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6 Numerical simulations
In this section, we compare cvMDL and its variants with other algorithms including ECDF and

AETC-d on several forward uncertainty quantification scenarios, including a single-output parametric
PDE problem and a multi-output SDE problem. We label algorithms under consideration as follows:

(ECDF) The empirical CDF estimator for FY using the high-fidelity samples only;

(AETC-d) The AETC-d algorithm from [30];

(cvMDL) Algorithm 1 with h(XS ;x) constructed using the linear approximations of Sec-
tion 4;

(cvMDL-sorted) cvMDL with the exploitation CDF monotonicity fix in Section 5.2;

(cvMDL*) cvMDL that estimates α̂(x) in the tail regime using (5.12) with τ = 0.05 when
d = 1;

(cvMDL*-sorted) cvMDL* with the CDF monotonicity fix.

For the weight function in the cvMDL algorithm and its variants, we choose ω(x) ≡ 1 for all x ∈ R
when Y is scalar-valued, but in a case-dependent manner when Y is vector-valued. Since the estimators
produced by the cvMDL-type and AETC-d algorithms are random (depending on the exploration data),
for every budget value B, we repeat the experiment 100 times and report both the average of the mean
ω-weighted L2 error and the corresponding 5%-95% quantiles to measure the uncertainty.

6.1 Parametric PDEs
We consider a multifidelity model associated with a parametric elliptic equation, where lower fidelity

models are identified through mesh coarsening. The setup is taken from [29, Section 7.1]. The elliptic
PDE is over a square spatial domain D = [0, 1]2 that governs displacement in linear elasticity; see Figure
1. The parametric version of this problem equation seeks the displacement field u = (u, v)> that is the
solution to the PDE system,

−∇ · (κ(p,x) σ(x,p)) = F (x), ∀(p,x) ∈ P ×D

σ =

[
σ1 σ12

σ12 σ2

]
,

 σ1

σ2

σ12

 =
1

1− ν2

 ∂u
∂x1

+ ∂v
∂x2

∂v
∂x2

+ ν ∂u
∂x1

1−ν
2 ( ∂u∂x1

+ ∂v
∂x2

)


where p ∈ R4 is a random vector with independent components uniformly distributed on [−1, 1]. We
have fixed-displacement boundary conditions on the left wall, with the forcing F being nonzero only on
the right edge of the structure and equal to the constant 1. We set the Poisson ratio to ν = 0.3, and
κ(p,x) is a scalar modeled as a truncated Karhunen-Loève expansion, given by

κ(p,x) = 1 + 0.5

4∑
i=1

√
λiφi(x)pi,

where (λi, φi) are ordered eigenpairs of the exponential covariance kernel K on D, i.e.,

K(x,y) = exp(−‖x− y‖1/a),

where ‖ · ‖1 is the `1-norm on vectors, and we choose a = 0.7. The displacement u is used to compute
a scalar QoI, the structural compliance or energy norm of the solution, which is the measure of elastic
energy absorbed in the structure as a result of loading:

E :=

∫
D

(u · F )dx. (6.1)
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F

1

Model S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3}
γS 123.8 149.3 203.9 304.8 25.2 48.6 93.7 62.2
m∗S when B = 107 1998 2231 2337 2390 1253 1657 1909 2054

Model S {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1,2,3,4}
γS 107.6 129.7 11.8 11.7 14.3 11.9 11.5
m∗S when B = 107 2175 2292 669 734 976 1540 638

Figure 1: Left: Geometry and boundary conditions for the linear elastic structure. Right: Oracle scaled loss
γS (3.13) and optimal exploration sample count m∗

S (3.12) for different choices of S. The optimal model S is
typed in boldface. Oracle statistics are computed with 50000 samples.

We solve the above system for each fixed p via the finite element method with standard bilinear square
isotropic finite elements on a rectangular mesh [1].

In this example, we form a multifidelity hierarchy through mesh coarsening via the mesh parameter
h. The elastic energy E computed with mesh size h = 2−7 is the high-fidelity model (i.e., a scalar-
valued Y ). We create four low-fidelity models X1, · · · , X4 based on more economical discretizations:
h = 2−4, 2−3, 2−2, 2−1. The outputs of these models are the energy E computed from the respective
approximate solutions, all scalars. Hence, in this example d = di = 1 for i ∈ [4].

The cost for each model is the computational time, which we take to be inversely proportional to
the mesh size squared, i.e., h2. This corresponds to using a linear solver of optimal linear complexity.
We normalize cost so that the model with the lowest fidelity has unit cost, i.e., (c0, c1, c2, c3, c4) =
(4096, 64, 16, 4, 1). The correlations between the outputs of Y and X1, X2, X3, X4 are 0.976, 0.940,
0.841, −0.146, respectively. The total budget B is taken on the interval [105, 107].
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Figure 2: Mean ω(x)-weighted L2 error between FY and the estimated CDFs given by ECDF, AETC-d, cvMDL, and its
variants, with the 5%-95% quantiles (for ease of visualization, we only plot the quantiles for AETC-d and cvMDL*-sorted)
to measure the uncertainty (a). Frequency of different models selected by cvMDL (b). Scatter plot of the estimated α(x)
and ρ(x) when S = {1, 2, 3, 4} using 50000 i.i.d. samples in the 1%-99%-quantile regime of Y . Gaussian kernel smoothing
is applied to both data Gaussian kernel with bandwidth h = 0.0358 chosen using 5-fold cross validation (c).
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6.1.1 Results for estimating the distribution

In Figure 2(a), we see that AETC-d has the smallest error for smaller budgets but its asymptotic
convergence is constrained by the model misspecification effects (associated with theoretical assumptions
on the applicability of AETC-d), i.e., the error curve starts to plateau when B exceeds 106. Although
this can be mitigated by including additional nonlinear (e.g. polynomial) terms as additional covariates,
trustworthy practical guidance is still lacking for this approach. On the other hand, both cvMDL and
its variants demonstrate superior performance over ECDF, with cvMDL*-sorted achieving a result
competitive AETC-d without the plateau effect.

In Figure 2(b), we note that as the budget increases, the model Ŝ∗ selected by cvMDL converges
to {1, 2, 3, 4}, which is the same as the optimal model computed under oracle statistics in Figure 1
(right). We note that the suboptimal model S = {2, 3, 4} is selected often by cvMDL, but not other
models whose γS is close to that of {1, 2, 3, 4} (i.e. models {1, 2, 3}, {1, 2, 4}, {1, 3, 4}). We believe
this occurrence is due to the aggressive exploration steps taken by Algorithm 1, in particular when we
double exploration sample counts (m ← 2m) and then suboptimal models S with large values of m∗S
(e.g., S = {2, 3, 4}) become the preferred computational model.

The significance error reduction accomplished by cvMDL is indicated in Figure 2(c) by the values of
ρS(x) = Corr[1Y≤x, h(XS ;x)] where S = {1, 2, 3, 4}, which are close to 1. For cvMDL variants, either
estimating α(x) in the tail regime through continuity extension (5.9) (cvMDL*) or sorting CDF values
to ensure monotonicity (cvMDL/cvMDL*-sorted) can help further reduce the errors. The former is
particularly helpful in the small-budget regime where exploration data are not sufficient to estimate the
full support of the output.

The weight function ω(x) in this scenario is constant on R thus the estimators produced by cvMDL-
type estimators are expected to capture the global structure of FY (e.g. bulk and tails). To inspect
this, we fix B = 107 and plot the estimated CDFs by ECDF, AETC-d, and cvMDL*-sorted in the tail
and bulk regimes separately. The CDFs of the pointwise errors (at 1000 discretization points) in the
three regimes are shown in Figure 3. It can be seen that cvMDL*-sorted has the smallest errors in all
three regimes.
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Figure 3: One realization of how CDF errors given by cvMDL*-sorted, AETC-d, and ECDF are distributed when
B = 107. We plot CDF errors in three different regimes: (a) the lower tail of Y defined by the 0 − 0.05 quantile region,
(b) the bulk defined by the 0.05− 0.95 quantile region, (c) the upper tail defined by the 0.95− 1.00 quantile region.

6.1.2 Risk metrics

To further compare the estimated distributions in the tail regime, we compare some risk metrics
of the estimated CDFs. For example, one frequently used metric is the conditional VaR (CVaR), also
called the expected shortfall, which is defined as the conditional expectation of Y in a tail regime (here,
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Y being large):

C(a) = E[Y |FY (Y ) ≥ a] =
1

1− a

∫ 1

a

F−1
Y (x)dx 0 < a < 1.

Assuming FY is known, C(a) can be numerically computed using root-finding algorithms. Fixing
B = 107 as before, we use the estimated CDFs by ECDF, AETC-d, and cvMDL*-sorted to compute
the CVaR of Y for a = 0.95 and 0.99, respectively. The experiment is repeated 50 times, and the
corresponding statistics are summarized using boxplots in Figure 4 (a)-(b). For both choices of a,
cvMDL*-sorted outperforms the other methods by a noticeable margin. It is worth noting that although
AETC-d and cvMDL*-sorted have similar errors under the tested budget globally (Figure 2 (a)), the
model misspecification effects result in the former estimates being systematically biased upward. The
cvMDL*-sorted estimates, on the other hand, remain unbiased.
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Figure 4: (a): Boxplots of the CVaR (0.95) computed using the estimated CDFs given by ECDF, AETC-d, and cvMDL*-
sorted when B = 107 with 50 experiments. (b): Same but for CVaR (0.99). (c): Inspection of how well the estimated loss
L̂S mimics and oracle loss curve as a function of m. The discrete data are fitted using a function f(m; a, b) of the form
a
m

+ b
B−ceprm

, with fitted values for a and b given by 2.64× 10−4 and 5.57, respectively.

6.1.3 Oracle versus estimated loss

Finally, we investigate the model selection criteria used in cvMDL. Note for each S ⊆ [n], there
is a discrepancy between the exact loss function versus the estimator L̂S constructed with empirical
data. We now inspect if this approximation is reasonable. To numerically determine if the exploration-
exploitation trade-off is optimal, we fix B = 107 and S = {1, 2, 3, 4}. For a given value of m, we first
take m exploration samples to estimate the control variates parameters and then use them to build an
estimator F̃S for FY as in (5.11). We then compute the (exact) mean weighted L2 loss associated with
this value of m. We repeat the experiment 10 times and compute the average loss value. We compile
results of the above for m in the range from 200 to 1800. The results are reported in Figure 4 (c). It
can be seen that the optimal exploration rate under oracle loss LS , 638 (see Figure 1, right), almost
matches the empirically identified optimal exploration rate, which is around 736. The small gap can be
attributed to the underestimation of exploration error committed due to the finite-sample estimation of
parameters.

6.2 Extrema of Geometric Brownian Motion (GBM)
GBM is a continuous-time stochastic process that is widely used in financial modeling. In a simple

setting, GBM St is a random process with initial state s0 > 0 whose evolution is described using the
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stochastic differential equation (SDE),

dSt = µStdt+ σStdWt t ≥ 0

S0 = s0,

where both µ and σ > 0 are constants, and Wt is a standard Brownian Motion process. A unique
explicit solution for St exists and can be written as

St = s0 exp

((
µ− σ2

2

)
t+ σWt

)
.

Set µ = 0.05, σ = 0.2, s0 = 1. We are interested in estimating the joint distribution of the extreme
values of St over the time interval [0, 1]:

(Smin, Smax) ∈ R2 Smin := min
0≤t≤1

St, Smax := max
0≤t≤1

St.

I.e., our output quantity of interest is the vector (Smin, Smax). We evaluate these quantities by dis-
cretizing the SDE in time with time step ∆t and computing the discrete extrema. The computational
complexity (cost) of the corresponding procedure is proportional to the number of grid points used for
discretization.

We construct a multifidelity model for this problem based on time discretization. In particular, we
consider four different time scales ∆t ∈ {2−4, 2−6, 2−8, 2−14}, where the pair of extreme values computed
using the smallest mesh size (2−14) is treated as the high-fidelity model, and the three low-fidelity models
X1, X2, X3 are the pairs computed under mesh size 2−8, 2−6, 2−4, respectively, where for joint samples
the randomness of Wt is simulated from the same realization of GBM used in the high-fidelity model.
The oracle CDF of the high-fidelity model is computed using MC with 105 samples and its shape is
visualized in Figure 5 (left, middle). We also provide oracle model loss and exploration sample count
in Figure 5 (right), and oracle correlations between the outputs of the high- and low-fidelity models in
Table 1, and
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Model S γS m∗S
{1} 11.3 613
{2} 13.7 23.2
{3} 23.2 902
{1, 2} 12.2 596
{1, 3} 11.6 606
{2, 3} 14.2 790
{1, 2, 3} 12.4 581

Figure 5: Left and Middle: Oracle CDF of (Smin, Smax) in the high-fidelity model computed using 105 Monte Carlo
samples. Right: Oracle scaled loss γS (3.13) and m∗

S (3.12) for budget B = 106, computed using 50000 samples.

Model outputs Smin(2
−8) Smax(2

−8) Smin(2
−6) Smax(2

−6) Smin(2
−4) Smax(2

−4)

Smin(2
−14) 0.999 0.682 0.997 0.682 0.984 0.680

Smax(2
−14) 0.681 0.999 0.681 0.998 0.674 0.988

Table 1: Oracle correlations between the high-fidelity and low-fidelity model outputs computed using 50000 samples.

We define the cost for each model as their theoretical computational complexity which is inversely
proportional to the time scale. With the cost of the cheapest model normalized to 1, we have (c0, c1, c2, c3) =
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(1024, 16, 4, 1). The total budget B takes values in [104, 106]. In this example, all models are two-
dimensional random vectors so AETC-d cannot be directly applied. For cvMDL and its variants,
setting ω(x) ≡ 1 violates Assumption 5.5. Instead, since Smin ≤ s0 = 1 ≤ Smax, we choose ω(x) = 1T
as an indicator function on a two-dimensional bounded region T ⊂ R2 where the most likely outcomes
reside. For instance, here we take T = [0.5, 1] × [1, 3]. The statistics of the estimation errors and the
selected models by cvMDL are reported in Figure 6(a),(b). Panel (c) shows that the correlation coef-
ficient ρS(x), is close to unity over the entire domain, suggesting that our chosen control variate (3.6)
is a good choice. For better comparison, we also provide in Figure 7 an instance of a heatmap of the
absolute estimation errors of ECDF, cvMDL, and cvMDL-sorted when B = 106.
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Figure 6: (a): Mean ω(x)-weighted L2 error between FY and the estimated CDFs given by ECDF, cvMDL, and cvMDL-
sorted, with the 5%-50%-95% quantiles to measure the uncertainty. (b): Frequency of different models selected by cvMDL.
(c) Estimated ρS(x) from (3.6) when S = {1} using 50000 i.i.d. samples for x ∈ T .
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Figure 7: An instance of absolute pointwise estimation errors of (a) ECDF, (b) cvMDL, and (c) cvMDL-sorted for
budget B = 106.

Figures 6 and 7 show that cvMDL is consistent on the region T and substantially outperforms ECDF
on average. As the budget goes to infinity, the model selected by cvMDL converges to the single low-
fidelity model {1}, which coincides with the optimal model computed using oracle statistics in Figure 5
(right). With additional sorting to stabilize the algorithm, cvMDL-sorted further reduces the errors of
cvMDL, which is consistent with the observations in the 1d case. In the pre-asymptotic regime when
the budget is small, the models selected by cvMDL have relatively large fluctuations, but these stabilize
for larger budgets.
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7 Conclusions
We developed a versatile framework for efficiently estimating the CDFs of QoI subject to a budget

constraint. To implement this framework, we constructed a set of binary control variables based on linear
surrogates and integrated them into an adaptive meta-algorithm (cvMDL) that estimates the CDFs. We
were able to establish both uniform consistency and trade-off optimality for the corresponding algorithm
as the budget tends to infinity.

Although our framework is built upon an existing bandit-learning paradigm, our treatment of ex-
ploration and exploitation distinguishes itself from the previous works. In particular, the new approach
employed in our framework leads to innovative estimators that dramatically lessen the reliance on un-
derlying model assumptions. Furthermore, the approach allows for the treatment of different types of
model outputs. To the best of our knowledge, our framework provides the first robust multifidelity CDF
estimator under a budget constraint that can deal with both heterogeneous model sets and multi-valued
outputs at the same time, meanwhile requiring no a priori cross-model statistics.
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A Detailed cvMDL pseudocode
We provide here a more detailed version of the cvMDL summary routine in Algorithm 1. The

main additions here are that we explicitly point to equations that must be utilized to implement the
algorithm.

Algorithm 2: The detailed cvMDL algorithm.
Input: B: total budget, model costs c0, c1, . . . , cn
Output: an estimator for FY (x)

1: Initialize exploration = TRUE
2: Initialize m =

∑
i∈[n] di + 2

3: Generate m exploration samples of (Y,X[n])
4: while exploration = TRUE do
5: for S ⊆ [n] do
6: Compute regression coefficients β̂(i)

S+ , i ∈ [d] from (5.1)
7: Construct ĤS(XS) and ĥ(XS ;x) from (5.2)
8: Compute regression coefficients rj(x), j ∈ [m] from (5.4)
9: Construct K1 and K2 from (5.4) and (5.5), respectively

10: Evaluate k̂1(S) and k̂2(S) using (5.6) and a quadrature rule on Rd

11: Compute m̂∗S and L̂S( · ;m) from (5.7)
12: Compute the minimal expected loss L̂S(m ∨ m̂∗S ;m) from (5.7)
13: end for
14: Choose Ŝ∗ = arg minS⊆[n] L̂S(m ∨ m̂∗S ;m);
15: if m < m̂∗

Ŝ∗
then

16: Generate Q(m, m̂∗
Ŝ∗

)−m additional samples of (Y,X[n]), where Q is given in (5.13)
17: Increase m: m← Q(m, m̂∗

Ŝ∗
)

18: else
19: exploration = FALSE
20: end if
21: end while
22: Generate NŜ∗ samples of XŜ∗ , with NS given in (3.3)
23: Construct α̂(x) for S ← Ŝ∗ using (5.9)
24: Generate Ŝ∗ exploitation estimator F̃Ŝ∗ using (5.11).

B Proof of Lemma 5.8
This section contains the proofs of statements (i) through (vi) in Lemma 5.8. The proof of statement

(ii), the asymptotic consistency of B̂S+ , is a direct result of the strong law of large numbers (SLLN),
so we omit this proof.

B.1 Proof of Statement (i)
We only prove (5.16b) as the proof for (5.16a) is similar. Denote by ei the i-th unit vector in Rd,

i.e., e(j)
d = δij , j ∈ [d], where δ is the Kronecker notation, and e =

∑
i∈[d] ei is the all-one vector in Rd.

For fixed x ∈ Rd, without loss of generality, we assume FV (A)∨Y (x) ≤ FV (BS+ )∨Y (x), as the other case
is similar by changing the roles of FV (A)∨Y (x) and FV (BS+ )∨Y (x). In this case, note

V (BS+) ∨ Y ≤ x⇒ V (A) ∨ Y ≤ x+ ∆x⇒ V (A) ∨ Y − ‖∆x‖∞e ≤ x,
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where

∆x =
∑
i∈[d]

‖X>S+(A(i) −B(i)
S+)‖2ei.

Hence, under Assumptions 5.3 and 5.6, for t > 0,

|FV (A)∨Y (x)− FV (BS+ )∨Y (x)| = FV (BS+ )∨Y (x)− FV (A)∨Y (x)

≤ FV (A)∨Y−‖∆x‖∞e(x)− FV (A)∨Y (x)

≤ FV (A)∨Y−te(x)− FV (A)∨Y (x) + P (‖∆x‖∞ ≥ t)
= FV (A)∨Y (x+ te)− FV (A)∨Y (x) + P (‖∆x‖∞ ≥ t)

. C
√
dt+

∑
i∈[d]

P
(
‖X>S+(A(i) −B(i)

S+)‖2 ≥ t
)

(5.14)
. C

√
dt+

1

t2

∑
i∈[d]

‖A(i) −B(i)
S+‖22,

where the penultimate inequality follows from the Lipschitz condition on FV (A)∨Y and a union bound,
and the last inequality follows from the Markov inequality. Taking t = ‖A−BS+‖2/3F yields the desired
result.

B.2 Proof of Statement (iii)
We only prove the first statement; the second can be proved similarly. Recall that

F̂ĤS
(x) = G(B̂S+) G(A) :=

1

m

∑
`∈[m]

1(X>
epr,`,S+A)>≤x A ∈ R(dS+1)×d,

where Xepr,`,S+ denotes the `-th exploration sample of XS with intercept. It follows from the direct
computation that

sup
x∈Rd

|F̂ĤS
(x)− FHS

(x)|

≤ sup
x∈Rd

∣∣∣∣G(B̂S+)− P((X>S+B̂S+)> ≤ x)

∣∣∣∣+ sup
x∈Rd

∣∣∣∣P((X>S+B̂S+)> ≤ x)− P((X>S+BS+)> ≤ x)

∣∣∣∣
≤ sup

A∈R(dS+1)×d

sup
x∈Rd

∣∣∣∣G(A)− P((X>S+A)> ≤ x)

∣∣∣∣+ sup
x∈Rd

∣∣∣∣P((X>S+B̂S+)> ≤ x)− P((X>S+BS+)> ≤ x)

∣∣∣∣
= sup

A∈R(dS+1)×d

∣∣∣∣G(A)− E[G(A)]

∣∣∣∣︸ ︷︷ ︸
Λm,1

+ sup
x∈Rd

∣∣∣∣P((X>S+B̂S+)> ≤ x)− P((X>S+BS+)> ≤ x)

∣∣∣∣︸ ︷︷ ︸
Λm,2

where XS+ a general notation that is independent of B̂S+ , and Λm,1 has no supremum over x (i.e. x
is treated as fixed) since one is able to alter the intercept coefficients in A to yield different values of
x ∈ Rd without changing the coefficients of XS . In what follows, we show that both Λm,1 and Λm,2
converge to 0 a.s.

To bound Λm,1, we appeal to the empirical process theory. For any A ∈ R(dS+1)×d, the indicator
function 1(X>

`,S+A)>≤x ≤ 1. According to Massart concentration inequality [4, Theorem 14.2], we have
for any t > 0 such that

P(Λm,1 > E[Λm,1] + t) ≤ exp(−mt2/8).
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We take t = 4
√

log(m)/m, which leads to

P

(
Λm,1 > E[Λm,1] + 4

√
logm

m

)
≤ m−2. (B.1)

Since
∑∞
m=1m

−2 <∞, by the Borel-Cantelli lemma, we conclude that

Λm,1 ≤ E[Λm,1] + 4

√
logm

m
(B.2)

for all sufficiently large m a.s. To bound E[Λm,1], note that the supremum in E[Λm,1] is taken over
all indicator functions defined on half-planes in RdS×d (the constant dimension is only a shift), which
has Vapnik–Chervonenkis (VC) dimension (dSd + 1); see [28, Section 8.3]. According to [28, Theorem
8.3.23], there exists a universal constant C ′ such that E[Λm,1] ≤ C ′

√
(dSd+ 1)/m. This combined with

(B.2) shows that Λm,1 → 0 a.s.
To bound Λm,2, note that by Statement (ii) in Lemma 5.8, a.s. for all sufficiently large m, ‖B̂S+ −

BS+‖F < ε where ε is the same as in Assumption 5.6. Since XS+ is independent of B̂S+ , conditioning
on ‖B̂S+−BS+‖F < ε and applying Statement (i) of Lemma 5.8, Λm,2 . ‖B̂S+−BS+‖2/3F . Now taking
m→∞ shows that Λm,2 → 0 a.s.

B.3 Proof of Statement (iv)

Note K1(x) +K2(x) = F̂Y (x)(1− F̂Y (x)), which is a consistent estimator for FY (x)(1−FY (x)) for
all x ∈ Rd a.s. as a result of SLLN. Therefore, it suffices to prove the consistency for K2(x) only.

Note K2(x) in (5.4) can be rewritten as

K2(x) = ρ̂2
S(x)F̂Y (x)(1− F̂Y (x)) =


(F̂

Y∨ĤS
(x)−F̂Y (x)F̂

ĤS
(x))2

F̂
ĤS

(x)(1−F̂
ĤS

(x))
x ∈ (supp(F̂ĤS

))◦

0 otherwise
(B.3)

where

ρ̂2
S(x) =


(F̂

Y∨ĤS
(x)−F̂Y (x)F̂

ĤS
(x))2

F̂
ĤS

(x)(1−F̂
ĤS

(x))F̂Y (x)(1−F̂Y (x))
x ∈ (supp(F̂Y ))◦ ∩ (supp(F̂ĤS

))◦

0 otherwise

is the empirical estimator for ρ2
S(x). On the other hand,

ρ2
S(x)FY (x)(1− FY (x)) =

{
(FY∨HS

(x)−FY (x)FHS
(x))2

FHS
(x)(1−FHS

(x)) x ∈ (supp(FHS
))◦

0 otherwise
(B.4)

Comparing (B.3) and (B.4), the desired result follows from statement (iii) in Lemma 5.8.

B.4 Proof of statement (v)

We prove the consistency of k̂2(S); the consistency of k̂1(S) can be proved similarly. By statement
(iv) in Lemma 5.8, K2(x) converges to ρ2

S(x)FY (x)(1− FY (x)) for all x ∈ Rd as m→∞ a.s.
We first prove the first case where d = 1 and ‖ω‖L∞(R) = C <∞, and we change the notation x to

the lowercase x. Under the moment condition in Assumption 5.3, according to [3, Theorem 2.13],

W1

(
FY , F̂Y

)
=

∫
R
|F̂Y (x)− FY (x)|dx→ 0 m→∞,
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where W1 is the Wasserstein-1 metric. Fix an arbitrary trajectory in the sample space such that
K2(x)→ ρ2

S(x)FY (x)(1−FY (x)) and
∫
R |F̂Y (x)−FY (x)|dx→ 0. In the following, we shall treat K2(x)

as a deterministic sequence.
To show the consistency of k̂2(S), it remains to justify the change of order of taking limit and

integration:

lim
m→∞

k̂2(S) = lim
m→∞

cS

∫
R
ω(x)K2(x)dx = cS

∫
R

lim
m→∞

ω(x)K2(x)dx

= cS

∫
R
ω(x)ρ2

S(x)FY (x)(1− FY (x))dx = k2(S),

for which we appeal to the Vitali convergence theorem. To apply the Vitali convergence theorem,
we need to verify that the sequence ω(x)K2(x) is uniformly integrable and has absolutely continuous
integrals. To this end, recall the representation K2(x) in (B.3). Since the square of the empirical
correlation estimator is bounded by 1, a.s.,

ω(x)K2(x) ≤ ω(x)F̂Y (x)(1− F̂Y (x)) ≤ C

4
< C.

The absolutely continuous integrals part follows immediately from the uniform boundedness. For uni-
form integrability, we first observe for every measurable I ⊆ R,∫

I

|ω(x)FY (x)(1− FY (x))− ω(x)F̂Y (x)(1− F̂Y (x))|dx ≤
∫
I

ω(x)|F̂Y (x)− FY (x)|dx

≤ C
∫
I

|F̂Y (x)− FY (x)|dx→ 0.

Thus, ∫
|x|>M

ω(x)K2(x)dx ≤
∫
|x|>M

ω(x)F̂Y (x)(1− F̂Y (x))dx

≤
∫
|x|>M

ω(x)FY (x)(1− FY (x))dx+ C

∫
|x|>M

|F̂Y (x)− FY (x)|dx

.
∫
|x|>M

C

x2
dx+ C

∫
R
|F̂Y (x)− FY (x)|dx,

where the last step follows from Assumption 5.3 and the Chebyshev inequality. For every ε > 0, we
can choose m and M sufficiently large so the right-hand side is less than ε. The uniform integrability
follows by enlarging M to accommodate the first m terms.

The proof for (b) is similar. It suffices to verify the change of order for the sequence ω(x)K2(x).
Since ω(x)K2(x) ≤ ω(x) and the latter is integrable and independent of m, the dominated convergence
does the rest.

B.5 Proof of statement (vi)

For x ∈ (supp(FHS
))◦, it is easy to show via a contradiction argument that x ∈ supp(F̂ĤS

) for all
sufficiently large m a.s. By statement (iii) in Lemma 5.8, F̂Y ∨ĤS

and F̂ĤS
are consistent estimators.

Meanwhile, F̂Y (x) is a consistent estimator for FY (x) due to SLLN. Therefore, we obtain

α̂(x) =
F̂Y ∨ĤS

(x)− F̂Y (x)F̂ĤS
(x)

F̂ĤS
(x)(1− F̂ĤS

(x))
→ α(x) =

FY ∨HS
(x)− FY (x)FHS

(x)

FHS
(x)(1− FHS

(x))

as m→∞ almost surely.
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C Proof of Lemma 5.10
Recall in (5.11) that

F̃S(x) = F̂Y (x)− 1

m

∑
`∈[m]

α̂(x)ĥS(Xepr,`,S ;x)− 1

NS

∑
j∈[NS ]

α̂(x)ĥS(Xept,`,S ;x)


= F̂Y (x)− α̂(x)F̂ĤS

(x) + α̂(x)

 1

NS

∑
j∈[NS ]

1(X>
ept,j,S+B̂S+ )>≤x

 .

Thus,

sup
x∈Rd

|F̃S(x)− FY (x)| ≤ sup
x∈Rd

|F̂Y (x)− FY (x)|+ sup
x∈Rd

|α̂(x)(F̂ĤS
(x)− FHS

(x))|

+ sup
x∈Rd

∣∣∣∣∣∣α̂(x)

 1

NS

∑
j∈[NS ]

1(X>
ept,j,S+B̂S+ )>≤x − FHS

(x)

∣∣∣∣∣∣
(5.10)
≤ sup

x∈Rd

|F̂Y (x)− FY (x)|︸ ︷︷ ︸
(i)

+ sup
x∈Rd

|F̂ĤS
(x)− FHS

(x)|︸ ︷︷ ︸
(ii)

+ sup
x∈Rd

∣∣∣∣∣∣
 1

NS

∑
j∈[NS ]

1(X>
ept,j,S+B̂S+ )>≤x − FHS

(x)

∣∣∣∣∣∣︸ ︷︷ ︸
(iii)

.

Note (i) converges to 0 as m→∞ due to the multivariate Glivenko-Cantelli theorem. (ii) converges to
0 as m→∞ due to statement (iii) in Lemma 5.8. A similar argument as in the proof of statement (iii)
of Lemma 5.8 can be used to prove that (iii) converges to 0 as NS →∞, which we do not repeat here.

D Proof of Theorem 5.7
To reduce notational confusion with m, we use t to denote the number of exploration samples. The

exploration rate grows nonlinearly with respect to an index that counts the iterations of the while loop
in Algorithm 1. We let q denote the loop iteration index, and tq the corresponding exploration rate,
i.e., t1 = n+ 2. Let q(B) be the total iteration steps in Algorithm 1, which is random. It follows from
the definition that tq(B) = m(B) and

n+ 1 ≤ tq ≤ tq+1 ≤ 2tq 1 ≤ q < q(B). (D.1)

We first show that m(B) diverges as B → ∞ a.s. According to statement (v) in Lemma 5.8,
k̂1(S)→ k1(S), k̂2(S)→ k2(S) for S ⊆ [n] a.s. As a result, for almost every realization ω ∈ Ω (where Ω
denotes the product space of exploration samples), there exists an 0 < L(ω), L′(ω) <∞,

sup
t>n+1

max
S⊆[n]

k̂1(S;ω) < L(ω) <∞ inf
t>n+1

min
S⊆[n]

k̂2(S;ω) > L′(ω) > 0 (D.2)

The exploration stopping criterion of Algorithm 1 requires that

m(B;ω) ≥ m̂∗S(B;ω) ≥
B

cepr +
√

ceprL(ω)
L′(ω)

→∞ B →∞. (D.3)
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Thus,

lim
B→∞

m(B;ω) =∞. (D.4)

We now work with a fixed realization ω along which m(B;ω) → ∞ as B → ∞, and k̂1(S), k̂2(S)
converge to the true parameters as t → ∞. We will prove that both (5.15a) and (5.15b) hold for such
an ω. Fix δ < 1/2 sufficiently small. Since S∗ is assumed unique, a continuity argument implies that,
there exists a sufficiently large T (δ;ω), such that for all t ≥ T (δ;ω),

max
(1−δ)m∗

S∗≤m≤(1+δ)m∗
S∗
L̂S∗(m; t) < min

S⊆[n],S 6=S∗
L̂∗S(t). (D.5)

1− δ ≤ m̂∗S(t;ω)

m∗S
≤ 1 + δ ∀S ⊆ [n], (D.6)

where L̂S∗(·; t) is the estimated loss function for S∗ using t exploration samples, and L̂∗S(t) is the
estimated L∗S in (3.13) using t exploration samples.

Since m∗S scales linearly in B and m(B;ω) diverges as B → ∞, there exists a sufficiently large
B(δ;ω) such that for B > B(δ;ω),

min
S⊆[n]

m∗S > 4T (δ;ω) (D.7)

tq(B) = m(B;ω) > 4T (δ;ω). (D.8)

Consider q′ < q(B) that satisfies tq′−1 < T (δ;ω) ≤ tq′ . Such a q′ always exists due to (D.8), and satisfies

tq′
(D.1)
≤ 2tq′−1 < 2T (δ;ω)

(D.7)
≤ 1

2
min
S⊆[n]

m∗S
(D.6),δ<1/2

≤ m̂∗S(tq′ ;ω).

This inequality tells us that in the q′-th loop iteration, for all S ⊆ [n], the corresponding estimated
optimal exploration rate is larger than the current exploration rate. In this case,

L̂S(tq′ ∨ m̂∗S(tq′ ;ω); tq′) = L̂S(m̂∗S(tq′ ;ω); tq′) = L̂∗S(tq′) S ⊆ [n].

This, along with (D.5) and (D.6), tells us that S∗ is the estimated optimal model in the current step,
and more exploration is needed.

To see what tq′+1 should be, we consider two separate cases. If 2tq′ ≤ m̂∗S∗(tq′ ;ω), then

T (δ;ω) < tq′+1 = 2tq′ ≤ m̂∗S∗(tq′ ;ω) ≤ (1 + δ)m∗S∗ ,

which implies

(1− δ)m∗S∗
(D.6)
≤ tq′+1 ∨ m̂∗S∗(tq′+1;ω) ≤ (1 + δ)m∗S∗ . (D.9)

If tq′ ≤ m̂∗S∗(tq′ ;ω) < 2tq′ , then

tq′+1 =

⌈
tq′ + m̂∗S∗(tq′ ;ω)

2

⌉
≤ m̂∗S∗(tq′ ;ω)

(D.6)
≤ (1 + δ)m∗S∗ ,

which also implies (D.9). But (D.9) combined with (D.5) and (D.6) implies that S∗ is again the
estimated optimal model in the (q′ + 1)-th loop iteration. Applying the above argument inductively
proves S(B) = S∗, i.e. (5.15b). Note (D.9) holds true until the algorithm terminates, which combined
with the termination criteria tq(B) ≥ m̂∗S∗(tq(B);ω) ≥ (1− δ)m∗S∗ implies

1− δ ≤ m(B;ω)

m∗S∗
=
tq(B)

m∗S∗
≤ 1 + δ.
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(5.15a) now follows by noting that δ can be set arbitrarily small.
Finally, let F̃ ′(x;B) be chosen as in (5.11) with S = S∗, m = m∗S∗ and NS = (B − ceprm

∗
S∗)/cS∗ .

Note both m,NS are deterministic and diverge as B →∞. By the triangle inequality,

sup
x∈Rd

|F̃ (x;B)− FY (x)| ≤ sup
x∈Rd

|F̃ (x;B)− F̃ ′(x;B)|+ sup
x∈Rd

|F̃ ′(x;B)− FY (x)|.

As B →∞, the first term on the right-hand side converges to 0 due to (5.15a) and (5.15b) in Theorem
5.7, and the second term on the right-hand side converges to 0 due to Theorem 5.10. This proves (5.15c).
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