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For practical model-based demands, such as design space exploration and uncertainty 
quantification (UQ), a high-fidelity model that produces accurate outputs often has 
high computational cost, while a low-fidelity model with less accurate outputs has low 
computational cost. It is often possible to construct a bi-fidelity model having accuracy 
comparable with the high-fidelity model and computational cost comparable with the low-
fidelity model. This work presents the construction and analysis of a non-intrusive (i.e., 
sample-based) bi-fidelity model that relies on the low-rank structure of the map between 
model parameters/uncertain inputs and the solution of interest, if exists. Specifically, we 
derive a novel, pragmatic estimate for the error committed by this bi-fidelity model. We 
show that this error bound can be used to determine if a given pair of low- and high-
fidelity models will lead to an accurate bi-fidelity approximation. The cost of this error 
bound is relatively small and depends on the solution rank. The value of this error estimate 
is demonstrated using two example problems in the context of UQ, involving linear and 
non-linear partial differential equations.

Published by Elsevier Inc.

1. Introduction

In many practical contexts, an ideal computational method accurately recovers the physical phenomena that it is tasked 
to model, and does so in a computationally efficient manner that allows repeated calculations of quantities of interest 
(QoI’s) for a large number of different input parameters. When this is possible, the QoI’s may be understood across a 
range of input parameters, or similarly for certain distributions of input parameters. The latter case is connected with the 
field of parametric uncertainty quantification (UQ), and is fundamental for understanding the propagation of uncertainty 
through complex models often via the construction of the map between the inputs and QoI’s. A growing area of interest 
in model-based simulations is a fast construction of such a mapping, which also forms our motivation here. For physical 
systems that are expensive to simulate, such a task may not be straightforward and may provide a significant challenge as 
it often requires a tradeoff between computational cost and accuracy.

In practice, the model which accurately represents the underlying physics – the high-fidelity model – may be expensive, 
and many repeated evaluations are likely computationally infeasible. Alternatively, one may consider the use of a low-fidelity
model: This is a model with lower accuracy which is cheaper to evaluate – relative to the high-fidelity model – but not 
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necessarily as accurate. The topic of this paper is a bi-fidelity approach that leverages both models and inherits the strengths 
of each.

In this work, we assume the existence of a low- and a high-fidelity model that each identify the same QoI in a discrete 
sense, i.e., as a vector, possibly with different sizes and levels of accuracy. For example, a fine spatial discretization of a heat 
equation, while costly, may lead to accurate temperature predictions, but a coarse spatial discretization gives inaccurate 
estimates that are generated more quickly. The notion of accuracy here is contextual, both with respect to the metric and 
the desired quantitative tolerance. Mathematically, we take the high-fidelity model as one that gives an approximation to 
the truth to within a desired accuracy and ideally with smallest possible computational cost. It is critical that we assume 
such a high-fidelity model is still expensive to evaluate, so that methods that would require many simulations from this 
model are impractical. We also assume that it is (much) cheaper to sample from the low-fidelity model so that compiling a 
larger number of samples from the low-fidelity model is possible. The goal of a (non-intrusive) bi-fidelity, or more generally 
multi-fidelity, model is to use relatively few samples from the high-fidelity model and a larger number of samples from the 
low-fidelity model to generate approximations to the QoI – at arbitrary input samples – with accuracies comparable to that 
of the high-fidelity model.

Early work in multi-fidelity methods for parametric problems has a decidedly statistical flavor. Such work emerged in 
the field of geosciences with the application of Gaussian process regression – also known as kriging or co-kriging in the 
multivariate case – in a multi-fidelity setting. In [1], an autoregressive scheme is considered to generate a Gaussian process 
approximation of the output of the most expensive model from nested observations of multiple, less expensive models. In 
this autoregressive scheme, a given model is approximated by the lower-fidelity model through a multiplicative constant and 
an additive Gaussian process correction term. In a related work, [2] creates a Gaussian process surrogate to the low-fidelity 
model, which is subsequently adjusted via samples of the high-fidelity model. The adjustment is done by training a similar 
autoregressive model as in [1], consisting in a linear – in input parameters – mapping of the low-fidelity surrogate and an 
additive discrepancy term modeled as a Gaussian process. The resulting high-fidelity surrogate is also a Gaussian process. 
Extensions of multi-fidelity Gaussian process modeling for applications in optimization are explored in [3,4], and recursive 
methods for improved accuracy or computational complexity are developed in [5–10], among other work.

There has also been significant work over the last several years on reformulating other prominent UQ methods in a 
multi-fidelity (or multi-level) framework. These methods generally rely on a relatively large number of low-fidelity samples 
along with a (much) smaller number of high-fidelity samples to build an additive and/or multiplicative correction of the 
low-fidelity model. The adjusted low-fidelity model will then serve as a multi-fidelity approximation to the high-fidelity 
model. In particular, in multi-fidelity polynomial chaos expansions (PCEs) [11–14], the high-fidelity solution is estimated by 
first determining the PCE of the low-fidelity solution, and subsequently the PCE of a correction term is generated from a 
small set of low-fidelity and high-fidelity samples. In multi-level Monte Carlo (MC) [15–17], a sequence of fine-to-coarse 
level (or grid) models are considered and the expectation of the QoI is estimated via a telescoping summation. These 
methods apply MC to the coarsest level QoI, and then add the MC estimates of the QoI differences, a.k.a. corrections, over 
each pair of consecutive grids. Assuming the corrections over finer grids become smaller, fewer realizations of the finer 
(high-fidelity) grid QoI are needed to compute the correction expectations, thus resulting in a reduced overall cost.

With an aim of constructing a reduced polynomial representation of the high-fidelity solution, the work in [18,19]
builds a small size polynomial basis – in the random inputs – identified by a Karhunen-Loève expansion of the low-fidelity 
solution. The high-fidelity solution is then approximated via Galerkin projection of the governing equations on the span of 
the reduced polynomial basis – as opposed to the standard PCE basis – resulting in a much smaller size system of equations 
to solve. The key assumption in this bi-fidelity construction is that the largest eigenvalues of the covariance matrix of the 
discrete solution decay quickly; that is, the covariance matrix and, therefore, the solution are low-rank. A non-intrusive 
implementation of this work is found in [20].

Of most relevance to the approach of this study, [21,22] considers the low-rank approximation of the discretized QoI 
v ∈R

M ,

v(μ) ≈
r∑

�=1

v(μ(�))c�(μ). (1)

The approximation above is of the same type constructed in so-called reduced basis representations in the (parametric) 
model reduction literature [23–27]. However, the procedure considered in [21,22] and here is disparate from the algorithmic 
strategies in the reduced basis community. In (1), v at an arbitrary parametric input μ ∈ R

d is represented in a basis 
consisting of r � M realizations of v – corresponding to selected input samples μ(�) – via the coefficients c�(μ). The work 
in [21,22] relies on a greedy procedure applied to low-fidelity realizations of v to identify the set of μ(�) . The coefficients 
c�(μ) are computed via an interpolatory condition on the low-fidelity model. The same interpolation rule, i.e., the same 
coefficients c�(μ), is then used with the high-fidelity counterpart of the reduced basis snapshots and this results in the 
bi-fidelity construction (1). In this manner, the high-fidelity model is evaluated only at a (small) number of input samples 
that is equal to the size r of the reduced basis. Unlike in standard reduced basis techniques this approach does not perform 
Galerkin (or Petrov–Galerkin) projections of the high-fidelity equations, thus allowing the use of legacy codes in a black-box 
fashion.
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With a different algorithm to construct the reduced basis and the interpolation rule, the work in [28] and [29] examines 
a similar bi-fidelity approximation on problems involving heat transfer in a ribbed channel and prediction of pressure 
coefficient over a family of NACA airfoils, respectively. The strategy in [28] was used in [30] to build control variates within 
a multi-level MC framework.

1.1. Contribution of this work

While in practice the above multi-fidelity methods have shown promising results, there is a lack of convenient tools to 
verify the convergence of the multi-fidelity solution and understand the role of key factors affecting the convergence. These 
tools must also enable a practitioner to determine, a priori and with relatively small cost, whether or not a given low-fidelity 
model will result in accurate multi-fidelity approximations. To this end, our primary contribution is the derivation of an er-
ror bound that is appropriate for methods as in [21,22,28,30,29,31] for bi-fidelity approximation, with a particular emphasis 
on the role of the rank of the v ensemble in the approximation error. This bound is derived specifically for the bi-fidelity 
procedure in [28,30,29,31] and relies on quantities that are easily estimated with a number of high-fidelity samples that 
scales favorably with the rank of the v ensemble. As a result, the associated error estimate is efficient, easy to compute, 
and reliably conservative, making it desirable in practical contexts. This method is also presented in its full generality while 
applied to two examples that demonstrate the potential for practical utility of this error estimate.

The remainder of this manuscript is organized into three main sections. Section 2 reviews the mathematical notation and 
procedure for the bi-fidelity approximation. Section 2.4 presents our main result, which focuses on bounding the bi-fidelity 
approximation error. To show the accuracy of this bound, Section 3 provides two numerical experiments and illustrates the 
utility of the error estimate. Finally, Section 4 gives a short summary of the conclusions of this study. In Appendix A, we 
provide the proof of the main error bound introduced in Section 2.4.

2. Method detail

As in [21,22,28,30,29,31], we consider a bi-fidelity construction of a QoI admitting a low-rank representation of the 
form (1). We presume here that these QoI’s are functions defined over the spatial or temporal domain of the problem or 
can be computed from such functions. While the QoI’s could contain the solution over the entire domain of the problem, 
e.g., temperature over the physical domain, this is often unnecessary and a reduction to some summary of the solution, e.g., 
temperature along a boundary, can explain the behavior of interest. In a broad sense, this low-rank heuristic implies the 
existence of a limited number of behaviors for v to exhibit, and that for any particular set of inputs μ, the corresponding 
v is nearly a linear reconstruction of v exhibiting these different traits. In this way, even v for possibly highly non-linear 
problems may be approximated, with some tolerable error, by a linear combination of relatively few basis vectors. This 
low-rank assumption is actually more than a heuristic: It can be codified via the mathematical notion of n-widths [32], and 
QoI ensembles for differential equations can indeed exhibit this low-rank property [33].

This formulation raises two primary concerns: How do we identify the basis vectors, and how do we identify the appro-
priate linear combinations of these basis vectors? For computational feasibility, we require solutions to both these concerns 
that require neither a large number of high-fidelity realizations of v , nor modification to the simulation codes.

To present our approach for addressing these concerns, and without loss of generality, we consider the approximation 
of a collection of N high-fidelity realizations of the QoI, instead of individual realizations as in (1). We denote the kth 
realization of the QoI obtained via the high- and low-fidelity models by v (k)

H ∈ R
M and v(k)

L ∈R
m , respectively. These vectors 

may be of different sizes, but depend on the same parametric input sample μ(k) . For the examples presented in Section 3, 
we consider μ as a random variable, and v(k)

H and v(k)
L are drawn in an MC fashion from the joint probability distribution 

on μ. When no probabilistic information on μ is available, v(k)
H and v(k)

L may be generated, e.g., from uniformly distributed 
samples of μ, over some prescribed region of permissible μ.

Our analysis relies on arranging {v(k)
L } and {v(k)

H } into matrices, denoted H ∈ R
M×N and L ∈ R

m×N , to refer to high-
fidelity and low-fidelity data, respectively, where the corresponding columns of H and L are the QoI realizations at the 
same input samples. That is, H and L have the same number of columns, N , but generally have different numbers of rows 
M and m, respectively. The low-rank assumption on the v H ensemble implies that H admits a low-rank factorization. We 
assume the same for L but do not require the same rank for H and L.

Remark 1. For the interest of presentation and analysis we refer to the full high-fidelity matrix H . However, in practice, 
we require having access to only r � N (r being the rank of v H as in (1)) high-fidelity realizations to generate this bi-
fidelity approximation; see Section 2.2. To evaluate the bound on the resulting approximation error, we require a number of 
high-fidelity realizations that is slightly larger than r, as illustrated in the examples of Section 3.

2.1. Low-rank factorization of low-fidelity data

The method used to identify a reduced basis and an interpolation rule for H (or v H ) relies on identifying the same for 
the low-fidelity data L. For this purpose, we form the rank r interpolative decomposition of L [34–36] using the rank-revealing 
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QR factorization [37]. The revealed rank of this factorization is our reduced rank r, and this provides the rank-r reduced 
decomposition

L P ≈ Q L R L, (2)

for an N × N permutation matrix P . Then Q L has r orthonormal columns, and R L has r rows and is upper triangular. 
A column partitioning of R L into an r × r upper triangular matrix R(11)

L and an r × (N − r) matrix R(12)
L , and replacing R(12)

L

with the approximation R(12)
L ≈ R(11)

L Z for some Z leads to

L P ≈ Q L R(11)
L [I | Z ] , (3)

where I is the r × r identity matrix. When R(11)
L is ill-conditioned, [34] suggests a solution Z with minimum ‖Z‖F , where 

‖ · ‖F denotes the Frobenius norm. The rank r factorization (3) can be rewritten as

L ≈ L(r) [I | Z ] P T ;
= L(r)C L; (4)

:= L̂, (5)

where L(r) = Q L R(11)
L – referred to as the column skeleton of L [34] – contains the first r columns of L P and C L :=

[ I | Z ]P T . In words, (4) identifies a set of r columns of L , i.e., a reduced basis for L, along with a coefficient matrix 
C L specifying the linear combination of the basis vectors to approximate all columns in L . Hence the name interpolative 
decomposition. If we identify the entries of C L with the coefficients c�(μ) in (1), then (4) is the matrix formulation of (1)
for N low-fidelity realizations {v(k)

L }.
For the sake of completeness, we next report some properties of the factorization (4) from [35], which we will use later. 

For detailed analyses of the interpolative decomposition, the interested reader is referred to [34–36].

Lemma 1. (Lemma 3.1 of [35].) Let ‖ · ‖ denote the matrix induced �2 norm. For any positive integer r ≤ min{m, N},

1. ‖C L‖ ≤ √
r(N − r) + 1,

2. L = L̂, when r = m or r = N, and
3. ‖L − L̂‖ ≤ √

r(N − r) + 1 σr+1 when r < min{m, N}, where σr+1 is the (r + 1)st greatest singular value of L.

Remark 2. In practice, the approximation rank r is not known a priori and thus the pivoted Gram–Schmidt step involved in 
the QR factorization (2) is continued with larger ranks until ‖L − L̂‖ reaches a specified accuracy.

Remark 3. Although not investigated here, other factorizations such as those in [38–41] are equally applicable to produce 
an interpolative decomposition of L .

2.2. High-fidelity approximation via basis update and low-fidelity interpolation

In addition to a rank r factorization of L, the permutation matrix P in the interpolative decomposition (4) identifies 
the set of r input samples μ(k) corresponding to the basis vectors in L(r). This identification is one primary reason for 
employing an interpolative decomposition instead of the more widely-used and �2-optimal singular value decomposition 
(SVD) of L. As in [21,22,28,30,29,31], our approach to approximate H is to replace L(r) with H(r), a matrix of vectors from 
the high-fidelity model corresponding to the same input samples μ(k) and with the same arrangement as in L(r). Stated 
differently, we consider the high-fidelity counterpart of L(r) as the reduced basis for H (or v(k)

H ). In this case we set the 
bi-fidelity, rank r approximation of H , denoted by Ĥ , to

Ĥ := H(r)C L, (6)

where C L is the coefficient matrix computed from the low-fidelity approximation (4). In other words, the interpolation 
rule learned from the low-fidelity model is applied to approximate the high-fidelity realizations. In the case that we have 
a construction of this form, where the difference between L̂ and Ĥ is limited to the changes only in the basis vectors 
associated with the low- and high- fidelity models, we say that L̂ is lifted to the approximation Ĥ . For this paper we 
say that L̂ and Ĥ are corresponding estimates (of L and H , respectively). Our analysis presented next applies to any such 
corresponding estimates.

Remark 4 (Utility of Ĥ for UQ). While outside the scope of the present study, the bi-fidelity realizations v̂(k)
H , i.e., the columns 

of Ĥ , may be used in place of v(k)
H in methods such as MC simulation or its variants, sparse grid stochastic collocation [42], 

non-intrusive PCE [43–46], etc., to approximate the statistics of v H or perform sensitivity analysis. The accuracy of such 
estimates, however, depends on the accuracy of the bi-fidelity estimates v̂ (k)

H .
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2.3. Number of low- and high-fidelity samples

Notice that the bi-fidelity construction (6) relies on r high-fidelity samples. Therefore, when v H admits a low-rank repre-
sentation, i.e., r is small, only a small number of high-fidelity samples are needed. To generate a rank-r approximation of L, 
a theoretical lower bound on the number of required low-fidelity model evaluations N (and m) is r. In practice, however, 
a considerably larger number of low-fidelity samples may be needed to identify a representative reduced basis. Finding an 
optimal N to reduce the cost of low-fidelity model evaluations depends on the problem at hand, and on how v L varies 
with respect to μ. For scenarios where the low-fidelity model is not substantially cheaper than its high-fidelity counterpart, 
adaptive sampling strategies – similar to those in [47,48] – can be employed to reduce the number of low-fidelity model 
evaluations. This is, however, outside the scope of this manuscript.

2.4. Convergence analysis and its practical application

We are now prepared to state the main result that bounds the bi-fidelity error, ‖Ĥ − H‖, where ‖ · ‖ is the matrix 
induced �2 norm. However, we first present a high-level discussion on our analysis approach. The core of our convergence 
results rely on the assumption that there exists a matrix T , with ‖T ‖ bounded, so that H ≈ T L. The difference in these 
matrices is denoted E , and we require that ‖E‖ is small. Restated, our bound involves the matrix relation given by

H = T L + E. (7)

The matrix T is essentially a lifting operator from low-fidelity discretization space to high-fidelity discretization space. Our 
theory outlined in Appendix A computes this matrix explicitly, but does not require any knowledge about the discretizations 
or assumptions between the low- and high-fidelity models. We emphasize that T is only needed for theoretical analysis and 
our error bounds do not require its construction.

It is straightforward to verify that ‖Ĥ − H‖ can be bounded as

‖H − Ĥ‖ ≤ ‖H − T L‖ + ‖T L − T L̂‖ + ‖T L̂ − Ĥ‖;
≤ ‖H − T L‖ + ‖T ‖‖L − L̂‖ + ‖T L − H‖‖C L‖;
≤ (1 + ‖C L‖)‖E‖ + ‖T ‖‖L − L̂‖. (8)

When ‖T ‖ is bounded and ‖E‖ is small, (8) suggests an accurate bi-fidelity estimate as ‖C L‖ is bounded, and ‖L − L̂‖ is 
small given that L is low-rank; see Lemma 1. In general, there is no guarantee of the existence of a mapping T of L to H
that gives an E with small norm. We therefore seek to establish a condition on L (in relation to H ) to ensure the existence 
of such T and E matrices.

For a finite τ ≥ 0, define

ε(τ ) := λmax(H T H − τ LT L), (9)

where λmax(·) denotes the largest eigenvalue of a matrix, and H T H and LT L are the Gramians of the high- and low-fidelity 
matrices, respectively. We describe in Appendix A that if ε(τ ) is small enough then matrices T and E with our desired 
properties can be constructed.

For a fixed τ , ε(τ ) has various interpretations. It is the smallest ε such that

ε I + τ LT L − H T H (10)

is a positive semi-definite matrix. Second, ε(τ ) has a geometrical interpretation that demonstrates its significance in this 
context of bi-fidelity approximation. The above equation implies that ε(τ ) is the smallest value such that for any x ∈R

N ,

‖H x‖2 ≤ τ‖Lx‖2 + ε(τ )‖x‖2.

This guarantees that for every x, 
√

τ Lx is further from the origin than H x, to within a margin governed by ε(τ ) and ‖x‖. 
This ensures that every realized H x can be reached by rotating Lx through the application of a scaling related to τ , and 
adding a small correction which is bounded based on ε(τ ) and ‖x‖. The relationship between these interpretations is 
further discussed in Appendix A, and we note this rotation, scaling, and additive correction is essentially utilized to prove 
the following theorem completing the bound in (8).

Theorem 1. For any τ ≥ 0, let ε(τ ) be as in (9). Let Ĥ and L̂ be corresponding estimates of rank r with coefficients C L , and let σk
denote the kth largest singular value of L. Then,

‖H − Ĥ‖ ≤ min
τ , k≤rank(L)

ρk(τ ) (11a)

ρk(τ ) :=
[
(1 + ‖C L‖)

√
τσ 2

k+1 + ε(τ ) + ‖L − L̂‖
√

τ + ε(τ )σ−2
k

]
. (11b)

When k = rank(L), we set σk+1 = 0.
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The proof of this theorem is given in Appendix A; here we provide insight and implications of its result.
An actual evaluation of the bound requires estimating τ and ε(τ ), which can be achieved by minimizing the bound over 

a range of k and τ ; see Algorithm 1. A naïve attempt to estimate ε(τ ) from (9) seems to require the entire matrix H . How-
ever, we propose in Section 2.5 a procedure that uses only a relatively small number of high- and low-fidelity realizations. 
Notice that aside from ε(τ ), the bound (11) has no dependence on the high-fidelity model. Let

B1 = (1 + ‖C L‖)
√

τσ 2
k+1 + ε(τ ); (12)

B2 = ‖L − L̂‖
√

τ + ε(τ )σ−2
k . (13)

If the approximation is accurate, the expressions in (12) and (13) will be small. Specifically, observe that B1 is small 
when both τσ 2

k+1 � 1 and the optimal ε(τ ) is small. Recall ‖C L‖ ≤ √
r(N − r) + 1 from Lemma 1. When, for a given k, 

σk+1 is small, i.e., the singular values of L decay quickly, the magnitude of B1 is governed by the optimal ε(τ ). To 
see that B2 is small, note that if the low-rank reconstruction is accurate for the low-fidelity model, then ‖L − L̂‖ ≤√

r(N − r) + 1 σr+1 is small following Lemma 1. Given this, B2 is also small when σk+1/σk � 1, τσ 2
k+1 � 1, and the opti-

mal ε(τ ) is small. We note that the requirements σk+1/σk � 1 and τσ 2
k+1 � 1 highlight the significance of the low-rank 

assumption on L in the success of this bi-fidelity construction. Specifically, a low-rank approximation will have a k such 
that σk+1 is significantly smaller than σk .

Using Lemma 1, the bound (11) can be simplified to

‖H − Ĥ‖ ≤ min
τ , k≤rank(L)

[√
r(N − r) + 1

(
1 + σk+1

σk

)√
τσ 2

k + ε(τ )

]
.

In our numerical experiments, we use the sharper error estimate in (11).
We now address the computation of an optimal ε(τ ), or, more precisely an optimal pair (τ , ε(τ )). Specifically we con-

sider an estimate ε̂(τ ) with relatively few evaluations of the high-fidelity model. Such an estimate allows us to approximate 
the bound (11) on ‖H − Ĥ‖, which measures the quality of the bi-fidelity approximation.

2.5. Estimating ε(τ ) using limited high-fidelity data

The definition of ε(τ ) in (9) depends on full realizations of the high-fidelity model which is untenable in many practical 
situations and its direct computation would significantly detract from the utility of the bi-fidelity error estimate. Consider 
Gramian matrices and an estimate ε̂ defined, for a normalizing constant c, by

G H := H T H; (14)

G L := LT L; (15)

ε̂(τ ) := cλmax(Ĝ H − τ Ĝ L), (16)

for estimates Ĝ H and Ĝ L of G H and G L , respectively. We note the similarity of (9) and (16), where the latter makes use of 
quantities with the hat notation. Of key practical note is that G H inherits the low rank nature of H , so that the estimate of 
ε(τ ) can be accurate with a small number of samples. Recall that the number of columns of H and L is N . Let n denote a 
small number of columns that are sub-sampled from H and L, and Ĝ H and Ĝ L are the Gramian matrices associated with 
these n columns. We set c = N/n as the normalizing constant throughout the remainder of this work. With these Gramian 
estimates, we can construct ε̂(τ ) for any τ using (16). To approximate the bound in (11), we may replace ε(τ ) with ε̂(τ ), 
and then identify the minimum achieved value over a range of k and τ values, noting that the search over k requires 
only additionally knowing the appropriate singular values of L . This requires n high-fidelity samples (to form the Gramian 
matrix Ĝ H ). Our numerical results in Section 3 show empirically that n slightly larger than r is sufficient to estimate the 
optimal pair (τ , ε(τ )). Notice, however, that the low-fidelity error ‖L − L̂‖ in (11) is calculated using all N low-fidelity 
samples.

Algorithm 1 summarizes our proposed approach to evaluate the bound (11) as an estimate for the bi-fidelity error 
‖H − Ĥ‖.

Algorithm 1 Algorithm for estimating the error bound (11).
1: Initialize a vector of values for τ ≥ 0.
2: Use n high- and low-fidelity realizations to set the Gramian matrices Ĝ L and Ĝ H as explained in Section 2.5.
3: For all values of τ evaluate the corresponding ε̂(τ ) using (16).
4: For each k ∈ {0, · · · , rank(L)} evaluate (11) for all pairs (τ , ̂ε(τ )) computed in Step 3 above.
5: Choose the minimum value achieved by (11) over all k and (τ , ̂ε(τ )) as an estimate for ‖H − Ĥ‖.
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Fig. 1. Schematic of the heat driven cavity flow problem, reproduced from Fig. 5 of [30].

3. Numerical examples

To investigate various aspects of the proposed bi-fidelity approximation and the associated error estimate, we consider 
two practically motivated problems.

3.1. Test case 1: heat driven cavity flow

A practical case for consideration comes from temperature-driven fluid flow in a cavity [49–54,30,55], where the QoI is 
the steady state heat flux along the hot wall; see Fig. 1. The left vertical wall has a random temperature Th , referred to as 
the hot wall, while the right vertical wall, referred to as the cold wall, has a spatially varying stochastic temperature Tc <

Th with constant mean T̄c . Both horizontal walls are adiabatic. The reference temperature and the reference temperature 
difference are defined as Tref = T̄c and �Tref = Th − T̄c , respectively. Under small temperature difference assumption, i.e., 
the Boussinesq approximation, the normalized governing equations are given by, [49],

∂u

∂t
+ u · ∇u = −∇p + Pr√

Ra
∇2u + Pr
e y,

∇ · u = 0,

∂


∂t
+ ∇ · (u
) = 1√

Ra
∇2
,

(17)

where e y is the unit vector (0, 1), u = (u, v) is velocity vector field, 
 = (T − Tref )/�Tref is normalized temperature, p is 
pressure, and t is time. Zero velocity boundary conditions on all walls (in both directions) are assumed. For more details 
on the normalization of the variables in (17), we refer the interested reader to [51,49]. Prandtl and Rayleigh numbers are 
defined, respectively, as Pr = ν/α and Ra = gτ�Tref L3/(να). Specifically, L is the length of the cavity, g is gravitational 
acceleration, ν is kinematic viscosity, α is thermal diffusivity, and the coefficient of thermal expansion is given by τ . In this 
example, we set g = 10, L = 1, τ = 0.5, and Pr = 0.71. We use a finite volume method for the discretization of (17).

3.1.1. Sources of uncertainty
On the cold wall, a temperature distribution with stochastic fluctuations is applied as

T (x = 1, y) = T̄c + T ′(y), (18)

where T̄c = 100 is a constant expected temperature. The fluctuation T ′(y) is given by the truncated Karhunen-Loève-like 
expansion

T ′(y) = σT

dT∑
i=1

√
λiϕi(y)μi, (19)

where dT = 50 and σT = 2. Here, each μi is assumed to be an independent and identically distributed uniform random 
variable on [−1, 1], and {λi}dT

i=1 and {φi(y)}dT
i=1 are the dT largest eigenvalues and the corresponding eigenfunctions of the 

exponential covariance kernel

CT T (y1, y2) = exp

(
−|y1 − y2|)

, (20)

lT
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Fig. 2. Realizations of heat flux along the hot wall for a randomly selected input μ. Shown are the low-fidelity, high-fidelity, and rank r = 10 bi-fidelity 
estimates for the various low-fidelity models.

with correlation length lT = 0.15. An example of the cold boundary condition is shown in Fig. 1. The temperature on the 
hot wall Th is also assumed to be random and uniformly distributed over [105, 109]. Finally, we consider the viscosity ν
to be uniformly distributed over [0.004, 0.01]. In total, the dimension of the random input μ = (μ1, . . . , μ50, Th, ν) is 52. 
The QoI, heat flux along the hot wall, is represented by a vector of heat flux values at the grid points (along the hot wall) 
corresponding the high- or low-fidelity meshes.

3.1.2. Bi-fidelity approximation and error bound estimate
To compute realizations of the QoI, we use finite volume discretizations of various resolutions to solve (17), where the 

highest resolution, a 256 × 256 grid point mesh, is used as the high-fidelity model, while relatively coarse meshes of 128 ×
128, 64 × 64, 32 × 32, and 16 × 16 grid points are used for the corresponding low-fidelity model. All meshes are spatially 
uniform. We consider bi-fidelity approximations of various ranks r, corresponding to the number of basis vectors in the 
column skeleton matrices H(r) and L(r) introduced in Section 2.4. We also consider bounds derived from computations 
of optimal pair (τ , ̂ε(τ )) as explained in Section 2.5. These estimates are drawn from n randomly generated high-fidelity 
samples, i.e., n randomly selected columns of H , and we consider estimates computed from various sample sizes n.

Fig. 2 displays realizations of heat flux along the hot wall for a random sample of μ, obtained by the high-fidelity, 
low-fidelity, and rank r = 10 bi-fidelity models. We observe the close agreement between the bi- and high-fidelity solutions 
even when the 16 × 16 mesh is used as the low-fidelity model. Fig. 3 provides four histograms of the low- and bi-fidelity 
error to gauge the performance of all 100 QoI realizations. For (a)–(d), which use increasingly refined meshes for the 
low-fidelity model, we see an improvement of the bi-fidelity performance over that of the associated low-fidelity model.

We next consider the error bound efficacy of using ε̂(τ ) from (16), in place of ε(τ ) from (9), in Theorem 1. This efficacy 
is defined as the ratio of the error estimate over the actual error in the approximation of H so that an efficacy of 1 implies 
the error estimate is exact, and an efficacy greater than 1 implies that the computed error estimate is in fact a bound. Fig. 4
shows this error efficacy for various low-fidelity models, approximation ranks r, and sample sizes n. For each pair (n, r) the 
reported error ratio is the average of 30 error ratios, each computed from independent sets of n high-fidelity samples. We 
note that the error efficacy is greater than one whenever the sample size n is greater than the approximation rank r, and 
that, as long as this condition holds, the error efficacy is less than ten, implying that the error bound is off by less than 
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Fig. 3. Histograms of low-fidelity and rank r = 10 bi-fidelity errors normalized by ‖H‖ for various low-fidelity models from 100 data samples.

one order of magnitude. This is of great utility in determining either a sample size n for a given approximation rank r or, 
conversely, determining an admissible rank of approximation for a given sample size for which the computed error estimate 
is still valid. These estimates indicate that the error bounds are generally conservative with relatively few samples.

To address the estimation of (11) numerically, we consider in Fig. 5 how ε̂(τ ) in (16) behaves as a function of τ for four 
combinations of rank r and sample size n. We mark points that optimize (11) with the corresponding bi-fidelity rank r, and 
note the reduction in the optimal values of τ and ε̂(τ ) as the mesh of the low-fidelity model is refined. Fig. 5 (a) and (b), 
which provide values of ε̂(τ ) for r = 5, show that while estimates of ε̂(τ ) differ for the two values of n, points of (τ , ̂ε(τ ))

that optimize (11) are close. In contrast, Fig. 5 (c) and (d), which provide the same set of results but for r = 10, show 
dissimilar optimal points. These differences correspond to the ability to describe points of (τ , ε(τ )). Recall, from the results 
of Fig. 4 that small values of n can result in underestimating the bound. For the scenario with r = 10 and n = 10, these 
error bound estimates are not reliable, which is further highlighted by optimal values occurring at ε̂(τ ) = 0 in Fig. 5 (c).

We can also explore the behavior of ρk(τ ) as a function of τ in (11b), noting that minimizing over τ and k yields 
our main estimate (11a). This function is seen for different low-fidelity model meshes in Fig. 6. We observe that as the 
low-fidelity meshes are refined, τ converges to 1, corresponding to a broadly defined convergence of low-fidelity models to 
the high-fidelity model. We also note, that there is not a high level of sensitivity with regards to τ , and that a large range 
of τ produces comparable bounds. Fig. 6 also illustrates the benefit that the optimization of τ need not be particularly 
accurate, and that the general shape of these curves is smooth enough that derivative-based optimization can be employed, 
limiting the number of τ for which ε̂(τ ) needs to be evaluated.

It is worth highlighting that the heuristic employed here is that the size of the matrices used in ε̂(τ ) need only de-
pend on the approximation rank r and scale nearly as such. As a result, the cost of evaluating ε̂(τ ) will typically not be 
prohibitively large, as illustrated in Fig. 7 by the rapid convergence of the optimal ε̂(τ ) with respect to n. Similar to Fig. 4, 
this figure also shows that when the sample size is too small (relative to r), e.g., n = 8, the error estimate is below the 
actual error. Finally, Fig. 8 shows the convergence of the r = 10 bi-fidelity solution as a function of the low-fidelity mesh 
size. The error bound estimate – relative to H – is displayed for two sample sizes of n, and the low-fidelity error – also 
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Fig. 4. Identification of error bound efficacy, i.e., the (average) ratio between the error estimated from (11) and the true error, for various low-fidelity 
meshes, approximation ranks r, and sample sizes n. For each pair (n, r) the reported error ratio is the average of 30 ratios, each computed from an 
independent set of n high- and low-fidelity samples via Algorithm 1. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Table 1
Description of the parameters of the composite cantilever beam model. The center of the holes are at x = {5, 15, 25, 35, 45}.

L h1 h2 h3 w r q E1 E2 E3

50 0.1 0.1 5 1 1.5 U [9,11] U [0.9e6,1.1e6] U [0.9e6,1.1e6] U [0.9e4,1.1e4]

relative to H – is provided for comparison. Notice that, aside for a single point from the coarsest low-fidelity model, all 
the estimated errors are below the corresponding low-fidelity errors. In addition, the error bound estimate decays with the 
bi-fidelity error, as the mesh is refined.

3.2. Test case 2: composite beam

For the second test case, we consider the deformation of a plane-stress, cantilever beam with composite cross section 
and hollow web, as shown in Fig. 9. The Young’s moduli of the three components of the cross section as well as the intensity 
of the applied distributed force on the beam are assumed to be uncertain, and are modeled by independent uniform random 
variables. Table 1 provides a summary of the parameters of this model along with the description of the uncertain inputs. 
Here, the QoI is the vertical displacement of the top cord and, in particular, its maximum occurring at the free end. To 
construct the bi-fidelity approximation, we use realizations of the vertical displacement over the entire top cord given by 
the low- and high-fidelity models.

Unlike in the previous test case where the low-fidelity model simulated the same physical problem but on a coarser 
mesh, here the low-fidelity model solves a simpler physical model. Specifically, the high-fidelity model is based on a finite 
element (FE) discretization of the beam using a triangular mesh with linear elements; see Fig. 10. The mesh is fine enough 
to describe the web’s hollow geometry and achieve mesh independent predictions of the vertical displacement at the free 
end. The FE simulations are performed using FEniCS [56]. The low-fidelity model is based on Euler–Bernoulli beam theory, 
where vertical cross sections are assumed to remain planes throughout the deformation and, thus, the shear deformation of 
the web is ignored. Additionally, we simplify the geometry of the beam by ignoring the circular holes. These simplifications, 
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Fig. 5. ε̂(τ ) from (16) as a function of τ for different low-fidelity model meshes with four combinations of bi-fidelity ranks r = 5, 10 and sample sizes 
n = 10, 20. Values which optimize (11) for a rank r bi-fidelity approximation are marked by black circles. Curves without optimal value markers displayed 
identify optimal bounds at ε̂(τ ) = 0.

Fig. 6. Minimum (over k) of error function ρk(τ ) in (11b) for various low-fidelity models using an approximation rank r = 10. In (a), minimizations occur 
(from coarsest to finest mesh) at k = 13, 8, 9, and 85. In (b), minimizations occur (from coarsest to finest mesh) at k = 7, 8, 9, and 9. Errors are normalized 
by ‖H‖.

while making the calculations straightforward, lead to inaccurate low-fidelity predictions of the displacement (Fig. 11), as 
the web experiences considerable shear deformation due to the presence of the circular holes.

Following the Euler–Bernoulli theorem, the vertical displacement of the beam u(x) is given by

E I
d4u(x)

4
= −q, (21)
dx
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Fig. 7. Minimum (over k) of error function ρk(τ ) in (11b) for different low-fidelity models using different sample sizes n. All bi-fidelity solutions are of rank 
r = 10. In (a), minimizations occur (in ascending order of n) at k = 13, 13, 7, and 7. In (b), minimizations occur (in ascending order of n) at k = 85, 85, 9, 
and 9. Errors are normalized by ‖H‖.

Fig. 8. Estimate of (11) for various low-fidelity models and using different sample sizes n. Errors are normalized by ‖H‖.

Fig. 9. Schematic of the cantilever beam (left) and its composite cross section (right).

Fig. 10. Finite element mesh used for high-fidelity simulation of the vertical displacement.

where E and I are, respectively, the Young’s modulus and the moment of inertia of an equivalent cross section (about its 
centroid axis) consisting of a single material. Specifically, we let E = E3 and consider an equivalent cross section in which 
the width of the top and bottom sections are set to w1 = (E1/E3)w and w2 = (E2/E3)w , respectively, while all other 
dimensions remain as before; see Fig. 9 and Table 1. The solution to (21) for the considered beam is then given by

u(x) = − qL4

24E I

(( x

L

)4 − 4
( x

L

)3 + 6
( x

L

)2
)

. (22)

We note that the form of the function u(x) depends only weakly on the uncertain parameters; in particular the param-
eters only influence the magnitude of u(x) via the multiplicative coefficient qL4/24E I . This implies that the low-fidelity 
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Fig. 11. Realizations of vertical displacement for two randomly selected input parameters μ. Shown are the low-fidelity, high-fidelity, and rank r = 1
bi-fidelity estimates.

Fig. 12. ε̂(τ ) from (16) as a function of τ for different sample sizes n. Values which optimize (11) for a rank r = 1 approximation are marked.

solution is theoretically of rank r = 1 and that only one high-fidelity realization of u(x) is needed to generate the bi-fidelity 
approximation. Stated differently, the bi-fidelity approximation cannot be improved by increasing the rank beyond r = 1. 
This has significant implications for ε(τ ) in (9) and the corresponding interpretation of Theorem 1. Specifically, with re-
gards to (11) we note that the only valid choice of r is r = 1; therefore, both σr+1 and ‖L − L̂‖ are precisely zero so 
that

‖H − Ĥ‖ ≤ min
τ

(1 + ‖C L‖)
√

ε(τ ).

As ε is a decreasing function of τ , we note that the minimizing value of τ occurs in the limit as τ → ∞. This can be 
numerically observed from Fig. 12. Even though the low-fidelity model is of a minimal rank, the high-fidelity model is itself 
reasonably well approximated by a representation of rank r = 1. This is seen in Fig. 11 for two randomly selected choices of 
input parameters, illustrating a considerably closer agreement between the bi- and high-fidelity samples relative to the low-
and high-fidelity samples. Fig. 13 shows histograms of the relative errors of the maximum displacement predictions given 
by the low- and bi-fidelity models. The histograms are based on 100 random realizations of the maximum displacement. 
The average error achieved by the bi-fidelity model is roughly an order of magnitude smaller, illustrating that the bi-fidelity 
approximation is indeed considerably more accurate, in spite of using only one high-fidelity sample (as r = 1). In Fig. 14
we see that the error bound stabilizes by around 7 samples and overestimates the true error by a factor 9, which again 
verifies that a small number of high-fidelity model samples can reliably generate a conservative bound on the error. With 
regards to the efficacy of the bound (11) and its dependency on τ as a function of the sample size n used to determine an 
optimal ε̂(τ ), we see in Fig. 15 that the bound estimate, and specifically its dependence on τ , is robust to n, converging 
quickly with respect to n.

4. Conclusions

This work is concerned with the error analysis of a bi-fidelity, low-rank approximation technique for a reduced order 
solution of problems with stochastic or parametric inputs. The bi-fidelity method relies on the solution to a cheaper, lower-
fidelity model of the intended expensive, high-fidelity model of the problem, in order to identify a reduced basis and an 
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Fig. 13. Histogram count for the relative error in the maximum displacement for low- and bi-fidelity models from 100 random realizations of the displace-
ment.

Fig. 14. Identification of error bound efficacy, i.e., the (average) ratio between the error estimated from (11) and the true error, for various sample sizes n. 
For each n the reported error ratio is the average of 30 ratios, each computed from an independent set of n high- and low-fidelity samples via Algorithm 1.

Fig. 15. Minimum (over k) of error function ρk(τ ) in (11b) using different sample sizes n. Minimization occurs at k = 1 for all four estimates. Errors are 
normalized by ‖H‖.

interpolation rule for approximating the high-fidelity solution in its inputs. A novel and practical error bound is presented 
for this bi-fidelity approximation that is shown to not require many high-fidelity samples beyond the rank of the approxi-
mation. This makes the bound an effective tool for practical application of this approximation when a limited computational 
budget is available. In particular, the error bound allows a practitioner to determine if a given pair of low- and high-fidelity 
models will lead to an accurate bi-fidelity approximation before investing too many computational resources. The bi-fidelity 
estimate and the associated error bound are by construction non-intrusive, i.e., sample-based, and thus can use legacy 
solvers in a black box fashion.
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Some aspects of the bi-fidelity approximation, and specifically the efficacy of the derived error bound, are demonstrated 
on two numerical examples from fluid (non-linear) and solid (linear) mechanics. The numerical results suggest that the 
proposed error bound achieves a conservative estimate of the true error, while using a number of high-fidelity samples 
that is slightly larger than the rank of approximation. A precise estimate of the minimum number of high-fidelity samples 
needed to generate a conservative error bound, however, remains an open problem and requires further research.

When a low-fidelity model is not considerably cheaper than its high-fidelity counterpart, adaptive strategies for sampling 
the low-fidelity model are needed to identify the reduced basis and the interpolation rule with a minimal number of 
low-fidelity model evaluations. Additionally, deriving sharper error bounds and extending this work to include data from 
multiple low-fidelity models are interesting future research directions.
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Appendix A. Theoretical exposition

This section is devoted to proving our main theoretical result, Theorem 1. Recall that H represents the QoI realization 
matrix for the high-fidelity model, and L the corresponding matrix for the low-fidelity model. Our analysis assumes that 
these matrices are related through matrices T and E according to (7). Following the discussions of Section 2.4 and, in 
particular, the bound in (8), we seek to identify conditions implying that ‖T ‖ is bounded and ‖E‖ is small.

For τ ≥ 0, define

ε(τ ) := arg min
ε

{
∀x ∈R

N : ‖H x‖2 ≤ τ‖Lx‖2 + ε‖x‖2
}

. (A.1)

Note that ε(τ ) is well-defined, is a non-increasing function of τ and, satisfies ε(τ ) ≤ ‖H‖2. Defining ε and τ this way is 
equivalent to the definition (9) used in Theorem 1. We present this equivalence here as a lemma.

Lemma 2. For any τ , for ε(τ ) defined as in (A.1), it follows that

ε(τ ) = λmax(H T H − τ LT L), (A.2)

i.e., ε(τ ) is the smallest ε such that τ LT L + ε I − H T H is a semi-positive-definite (SPD) matrix.

Proof. For a given τ , and ε(τ ) as from (A.1), it follows that for all nontrivial x,

‖H x‖2 ≤ τ‖Lx‖2 + ε(τ )‖x‖2;
τ‖Lx‖2 + ε(τ )‖x‖2 − ‖H x‖2

‖x‖2
≥ 0.

By the definition in (A.1), ε(τ ) is the smallest such number making this inequality hold for all x, meaning that the inequality 
is equality for some x, implying

λmin(τ LT L + ε(τ )I − H T H) = 0;
λmin(τ LT L − H T H) = −ε(τ );
λmax(H T H − τ LT L) = ε(τ ),

completing the proof. �
We now identify the specific matrices T which we consider for our analysis of (7).

Lemma 3. Let the SVD of L be given by

L = U�V T .
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Let Vk be the linear subspace spanned by the first k singular vectors in v , i.e., the right singular vectors associated with the k largest 
singular values, and let V k be the matrix of those singular vectors. Let

PVk = V k V T
k ;

T := H PVk L+, (A.3)

where PS denotes the orthogonal projection matrix onto S , and + denotes the Moore–Penrose pseudo-inverse. Then for k ≤ rank(L),

H − T L = H PV⊥
k
. (A.4)

Proof. Let N (L) denote the nullspace of L . Note that

L+L = PN (L)⊥ .

Since k ≤ rank(L), then Vk ⊂N (L)⊥ . Then from (A.3), it follows that

H − T L = H − H PVk L+L,

= H(I − PVk PN (L)⊥)

= H(I − PVk ),

= H PV⊥
k
. �

This result allows us to bound the two key quantities, ‖E‖ = ‖H − T L‖ and ‖T ‖ in terms of ε(τ ).

Lemma 4. Let τ and ε(τ ) satisfy (A.1), and let T be as defined in (A.3). Then, for σk, the kth largest singular value of L,

‖E‖2 = ‖H − T L‖2 ≤ τσ 2
k+1 + ε(τ ), (A.5)

‖T ‖2 ≤ τ + ε(τ )σ−2
k . (A.6)

Proof. For any x ∈R
N with ‖x‖ ≤ 1,

‖(H − T L)x‖2 = ‖H PV⊥
r

x‖2,

≤ τ‖L PV⊥
k

x‖2 + ε(τ )‖PV⊥
k

x‖2,

≤ τσ 2
k+1 + ε(τ ),

which proves (A.5). We have constructed T so that

T y = 0, y ∈ R(L)⊥; (A.7)

T L y = 0, y ∈ V⊥
k , (A.8)

where R(L) is the range of L . It follows that

‖T ‖2 = max‖x‖≤1
‖T x‖2,

(A.7)= max‖L y‖≤1
‖T L y‖2,

(A.8)= max‖L y‖≤1,y∈Vk

‖H y‖2,

≤ τ‖L y‖2 + ε(τ )‖y‖2,

for some y achieving the maximum, and the last inequality uses the definition of ε(τ ). Note that ‖L y‖ ≤ 1, and for y ∈ Vk , 
‖y‖ ≤ σ−1

k ‖L y‖ ≤ σ−1
k . Therefore,

‖T ‖2 ≤ τ + εσ−2
k ,

which proves (A.6). �
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The proof of Theorem 1 follows from the combination of the bound provided in (8) and the results of Lemma 4. To 
explain the minimization of (11) over k, we note that the matrix T in (3) can be constructed for any rank k not larger than 
the rank of the low-fidelity data matrix L .

As a brief remark we note that (11) may instead be taken as

‖H − Ĥ‖ ≤ min
τ1,τ2,k≤rank(L)

(1 + ‖C L‖)
√

τ1σ
2
k+1 + ε(τ1) + ‖L − L̂‖

√
τ2 + ε(τ2)σ

−2
k , (A.9)

where the choices (τ1, ε1(τ1)) and (τ2, ε2(τ2)) both satisfy (A.1). Choosing different values may produce more effective val-
ues depending on σk , σk+1, ‖C L‖, and ‖L − L̂‖. For simplicity, we have restricted the results of this work to the optimization 
over a single point (τ , ε(τ )).
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