
MOG: Mapper on Graphs for Relationship Preserving Clustering

Mustafa Hajij, Bei Wang, Paul Rosen

(a) The mapper graph summary (top) along with the original graph (bottom) (b) Edges in the mapper graph repre-
sent relationships between clusters

Fig. 1: (a) The mapper graph (top) provides a mechanism for extracting a compact and meaningful summary that captures the
”shape” and the main underlying structure of the original graph (bottom). Each node of the mapper graph represents a community
or a cluster in the original graph. (b) In addition to capturing clusters in the original graph, mapper also provides the relationships
among these clusters.

Abstract— The interconnected nature of graphs often results in difficult to interpret clutter. Typically techniques focus on either
decluttering by clustering nodes with similar properties or grouping edges with similar relationship. We propose using mapper, a
powerful topological data analysis tool, to summarize the structure of a graph in a way that both clusters data with similar properties
and preserves relationships. Typically, mapper operates on a given data by utilizing a scalar function defined on every point in the data
and a cover for scalar function codomain. The output of mapper is a graph that summarize the shape of the space. In this paper, we
outline how to use this mapper construction on an input graphs, outline three filter functions that capture important structures of
the input graph, and provide an interface for interactively modifying the cover. To validate our approach, we conduct several case
studies on synthetic and real world data sets and demonstrate how our method can give meaningful summaries for graphs with various
complexities.

Index Terms—Topological data analysis, mapper, graph clustering

1 Introduction

Graphs are a common data type, yet visualizing them remains a chal-
lenging problem. When considering node-link diagrams, the intercon-
nectedness of the nodes causes edges to cross, which leads to visual
clutter that makes understanding the structure difficult. Techniques
such as edge bundling, motifs, and clustering have been proposed to
reduce the visual clutter. In the case of edge bundling, decluttering
occurs by grouping edges with similar relationships. For techniques
such as motifs and clustering, clutter is reduced by grouping nodes with
similar properties.

In this work, we present a new approach to graph decluttering that
clusters nodes based upon certain properties, while maintaining a strong
notion of relationship. Our method relies on a topology-inspired con-
struction called mapper [80]. Mapper is a tool from Topological Data
Analysis (TDA) that provides a topological summary of the data [14].

• Mustafa Hajij is with University of South Florida. E-mail: mhajij@usf.edu.
• Bei Wang is with University of Utah. E-mail: beiwang@sci.utah.edu.
• Paul Rosen is with University of South Florida. E-mail: prosen@usf.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

Thanks to its intuitive construction and its applicability on a wide vari-
ety of data-related problems, the construction of mapper has became
one of the most successful tools in TDA. Mapper has been applied
in many areas including visualization of high dimensional data [58],
pattern recognition of point clouds [15], tracking resilience to infec-
tions [82], and many others [59, 66].

The mapper construction operates as an approximation tool of a
general topological space. The construction operates by mapping the
topological space via a “lens”, or a filter function, to another domain
called the parametrization space. The properties of the filter and the
parameterization space are then utilized to obtain an approximation
of the original space that both clusters and preserves the relationship
between clusters.

Our approach works as follows: Starting with an undirected,
weighted, or unweighted graph, a filter function is calculated per node,
for example average geodesic distance, density, eigenfunctions, etc. A
cover, which describes the cluster construction of mapper is selected.
Finally, the mapper graph is constructed and visualized.

The mapper graph, as seen in Figure 1(a), demonstrates 2 important
properties. First, the nodes of the mapper graph represent clusters
from the graph. Second, the edges of the mapper graph represent
relationships between clusters, specifically which clusters overlap in
the original graph. Furthermore, we provide an interactive mechanism
for modifying the cover, in order to better explore the underlying graph
structure. These features combined provide the capability to more

ar
X

iv
:1

80
4.

11
24

2v
1

 [
cs

.S
I]

 3
 A

pr
 2

01
8

easily understand the structure of a graph under the “lens” of a filter
function.

In summary, the contributions of this paper are:

• Generating a property and relationship preserving summary of
graphs by applying mapper to the graph;

• Enabling exploration of the structure by providing an interactive
cover and mapper graph modification mechanism;

• Demonstrate the capabilities of mapper on graphs using 3 different
filter functions, namely, average geodesic distance, density, and
eigenfunctions of the graph Laplacian; and

• Case studies on synthetic and real graph data showing the ef-
fectiveness of our method at finding meaningful summaries in
graphs.

2 Prior Work

We review prior work in graph visualization, node-link diagrams specifi-
cally, graph clustering, and the application of Topological Data Analysis
to graphs.

2.1 Graph Visualization

For a comprehensive overview of graph visualization techniques,
see [85]. We provide a brief outline of the most relevant methods
for visualizing graphs using drawing node-link diagrams, which are
utilized in many of popular graph visualization software applications,
such as Gephi [5], Graphviz [31], and NodeXL [41].

The problem of visual clutter in graphs has been extensively studied
in the literature of graph visualization [30]. It has been addressed in
3 main ways, improved node layouts, edges bundling, and alternative
visual representations.

The earliest graph layout method for node-link diagrams goes back
to Tutte [83]. This was followed later by methods driven by linear
programming [37], force-directed embeddings [34,44], embeddings of
the graph metric [36], and connectivity structures [11, 47, 49, 50]. Later
methods created hybrid layouts driven by graph topology [2].

To reduce visual clutter on dense graphs, edge bundling can be used
by rerouting edges with a common fate to overlap [42]. For massive
graphs, hierarchical edge bundling has been utilized [35] and it scales
to millions of edges, while divided edge bundling [76] tends to produce
higher-quality results.

Other methods such as replacing nodes with an alternative visual
representation has been used in the literature of visual cluster. These
methods range from variations on node-link diagrams, such as replacing
nodes with modules [28] or motifs [27], to more abstract representa-
tions, such as variants of matrix diagrams [25] or the abstract displays
of the graph statistics [46].

2.2 Graph Clustering

Broadly speaking, our approach is closely related to graph clustering
methods. The objective in graph clustering is to group the nodes
of the graph together by taking into consideration the edge structure
[74]. It is important to note that this is a different problem from
clustering a set of graphs, where the structure similarity between a set
of graphs is studied. Graph clustering algorithms are studied extensively.
We only give a brief overview of the literature. See [1, 75] for more
details. The techniques that have been used for graph clustering are
very diverse. These techniques include spectral graph clustering-based
methods [23,33,51,87], similarity-measure based methods [81], global
graph clustering methods [61, 62], random walks models [45, 71], and
hierarchical graph clustering algorithms [10,13]. Some graph clustering
literature is also aimed at directed graphs [12, 84]. Clustering of graph
edges is studied in [20, 32]. Applications of graph clustering include
community detection [38, 63, 64], analyzing the clusters of the global
air transportation network [39], and scientific citation and collaboration
[72].

2.3 Topological Data Analysis of Graphs

Over the last decade many concepts and tools from Topological Data
Analysis have been introduced to the visualization community.

Persistent homology is the most notable tool of TDA that has been
used to study graphs [26, 29, 43, 68, 69]. It has been applied to study
graphs in numerous applications, such as collaboration [3,17] and brain
networks [18, 21, 53–56, 70].

Mapper [80] has been widely utilized in TDA for a number of ap-
plications [15, 58, 59, 66, 82]. Recently Mapper has witnessed major
theoretical development that further adjudicate its use in data analy-
sis [16, 22].

Besides being theoretically justified, mapper generalizes other topo-
logical summaries such as the Reeb graph [60], the contour tree [80],
split, and joint trees. All these construction have found enormous appli-
cations in data visualization and data understanding. Mapper is also the
main software developed by Ayasdi, a company that utilizes methods
inspired by topological construction in applications of data science.

To the best of our knowledge Mapper has not been utilized yet in the
graph visualization.

3 Overview on Mapper Graph Construction

In this section, we apply the mapper algorithm to a graph and construct
a multi-scale abstraction, referred to as a mapper graph, for summa-
rization and exploration. We first introduce the mapper algorithm in its
generality for a real-valued function with necessary but minimal topo-
logical notions. We then give an overview of the mapper construction
pipeline for graphs.

3.1 A General Mapper Construction

Given a compact topological space X that is equipped with a real-valued
function f : X→ R, the mapper construction (or mapper for short)
provides a general framework to study X which is parametrized with
respect to f . The function f , commonly referred to as a filter function,
plays the role of the lens, through which we look at the properties of
the space, and different lenses provide different insights [7]. This is
one of the key ideas behind mapper.

Nerve. An open cover of a topological space X is a collection U =
{Ui}i∈I of open sets for some indexing set I such that

⋃
i∈I Ui = X.

We assume a cover is finite and each Ui is path-connected. Given a
cover U = {Ui}i∈I of X, let Nrv(U) denote the nerve of the cover U ,
defined as Nrv(U) = {σ ⊆ I |

⋂
i∈σ Ui 6= /0} .

In this paper, we are only concerned with the 1-nerve, that is, the
1-dimensional skeleton of the nerve, denoted as Nrv1(U). Nrv1(U)
is a graph with nodes representing the elements of U and edges repre-
senting the pairs (Ui,U j) of U such that Ui∩U j 6= /0.

Mapper. Given a continuous map f : X→ R where f (X) ⊆ [a,b] is
equipped with a cover U = {Ui}i∈I , we write f ∗(U) as the cover of
X obtained by considering the path-connected components of f−1(Ui)
for each i.

Given such a function f , its mapper M is defined to be the nerve of
f ∗(U) [80], M(X, f ,U) := Nrv(f ∗(U)).

In this paper, we start by considering a function f : X→ R and a
cover U of f (X) ⊆ [a,b] consisting of finitely many open intervals
U = {(a1,b1), ...,(an,bn)}. We then use the map f to pull back the
elements of U to obtain a cover of X by consider path-connected
components of f−1(ai,bi) for each i, denoted as f ∗(U).

We are interested in the 1-nerve of such a cover on X, denoted
as M(X, f ,U) for the remaining of the paper, when its dimension is
implied.

There is a lot of flexibility in the construction of mapper. Fixing a
space X, there are two primary parameters: a filter function f , and a
cover U of its range space. Different filter functions can be used to
capture different properties of the space X. That is why f is thought of
as a lens from which we view the space X.

On the other hand, fixing the map f and choosing different covers
for its range space can be used to obtain mappers at multiple resolutions.

(a)

G

(b)

b

a

(c)

Uβ

Uα

Uγ

b

a

(d)

γ

α

β1 β2

(e)

γ

α

β1 β2

Fig. 2: The pipeline for a mapper construction on a graph. (1) A weighted graph G(V,E). (2) A filter function f : V → R with a range space
f (V) = [a,b]. (3) A cover U of the range space is given by intervals Uα , Uβ and Uγ . (4) The connected components of the subgraphs induced
by the node sets f−1(Uα), f−1(Uβ) and f−1(Uγ) form a cover of G, f ∗(U) = {α,β1,β2,γ}. (5) The 1-nerve of f ∗(U) is the mapper graph,
whose nodes represent the connected components and edges represent the non-empty intersections between the connected components.

In practice, the choice of a filter function and a cover depends highly
on the space X and the property of interest.

3.2 Mapper Construction on Graphs

We now extend the general mapper construction by specifying the
topological space X as a graph G.

We start our pipeline with a graph G = (V,E) with positive edge
weights. In the case when the graph G is unweighted we will assume
that the edges are given the uniform weight equal to 1. The mapper con-
struction on G takes as input a real-valued filter function defined on the
nodes of the graph f : V → R, and a cover U = {(a1,b1), ...,(an,bn)}
of the range space f (V) = [a,b]. The output is a summary, referred to
as a mapper graph and denoted as M(G, f ,U).

Computing a mapper on a graph is similar to the general algorithm
with the following modifications. Given a graph G and an open interval
Ui = (ai,bi) that is part of the cover U , we define a subgraph Gi
in G as the one induced by the node set f−1(Ui). Specifically, let
Vi = {v ∈V | f (v) ∈ (ai,bi)}, and Gi is a subgraph in G induced by the
node set Vi. The connected components of Gi form a cover f ∗(U) of
G, and its 1-nerve is denoted as M(G, f ,U).

We explain this pipeline on Figure 2. We start with the input graph
G given in Figure 2 (1). We define a scalar function f : V −→ [a,b] on
every node of G as illustrated in Figure 2 (2). We then choose a cover
U for [a,b]. In this case the choice of U consists of three intervals
Uα , Uβ and Uγ as shown in Figure 2 (c). By a cover here we mean
[a,b]⊂Uα ∪Uβ ∪Uγ . We then extract the connected subgraphs from
G that corresponds to each interval Uα , Uβ and Uγ . Specifically, the
connected subgraph that corresponds to the interval Uα is the graph
labeled α in Figure 2 (d). The interval Uβ corresponds to two connected
subgraphs β1 and β2. Finally, the interval Uγ corresponds the connected
subgraph β . The final mapper graph M(G, f ,U) is shown in Figure 2
(e). Each connected component corresponds to a node in mapper graph.
We found 4 connected components in step (d) and so there are 4 nodes
in the mapper graph. Edges in the final mapper graph are determined
by the non-trivial intersection between the node sets of the connected
components we found in step (d). For instance the subgraph γ shares
a node with the subgraph β1 which corresponds to inserting an edge
in the mapper graph between the nodes γ and β1. Note here that the
overlap between the cover elements in necessary to have edges in the
final mapper graph.

4 Parameter Exploration for Mapper Graphs

The mapper graph construction relies on the choice of two parameters:
a filter function and a cover. We can also treat the exploration and
manipulation of these parameters as a vehicle to study and summarize
the intrinsic structure of data.

4.1 Filter Functions

An interesting open research problem is how to formulate filter func-
tions beyond a best practice or a rule of thumb [7,8]. In practice, height

functions, distances from the barycentre of the space, surface curvature,
integral geodesic distances and geodesic distances from a source point
in the space have all been proposed as reasonable choices for filter
functions [7].

In this section, we discuss three types of filter functions defined on
the node set of a graph, as illustrated in Fig. 3. Each function is chosen
to reflect specific property of interest that is intrinsic to the structure of
a graph. These choices are well-justified in a sense that they have been
shown successful in a wide variety of applications beyond graphs.

(a) (b) (c)

Fig. 3: Examples of filter functions defined on the node set of a graph.
(a) AGD (orange). (b) Density estimation (green) with δ = 2. (c) The
Fiedler vector (purple) of the graph Laplacian. Darker colors represent
lower function values.

Average Geodesic Distance. Suppose a weighted graph G = (V,E) is
equipped with a geodesic distance metric d, that is, d(u,v) measures
the geodesic/graph distance between two nodes u,v ∈ V . d can be
computed by utilizing Dijkstra’s shortest path algorithm. The average
geodesic distance, AGD : V → R, is given by

AGD(v) =
1
|V | ∑

u∈V
d(v,u).

This definition implies that the nodes near the center of the graph will
likely have low function values, while points on the periphery will have
high values. The AGD function has been used extensively in shape
analysis due to its desirable prosperities in detecting and reflecting sym-
metry [48] based on how the function values are distributed. Therefore,
the AGD as a filter function is capturing the symmetric properties of a
graph, which are described by all or parts of the graph that are invariant
to transformations such as reflection, rotation or scaling.

The mathematical notion of automorphism, in some sense, cap-
tures the symmetry of the space as it is a structural-preserving way
of mapping a space to itself. More precisely, consider a graph G as
a metric space equipped with the geodesic distance, (G,d). A bi-
jection T : V → V is called an automorphism on (G,d) if d(u,v) =
d(T (u),T (v)) for every u,v ∈ V . Let Aut(G) denote the group of
automorphisms on G. A function f : V → R is called an isome-
try invariant over Aut(G) if for every T ∈ Aut(G): f ◦ T = f . The
scalar AGD is an isometry invariant scalar function. Indeed, let
T be on automorphism on G, then for every v ∈ V we can verify:

AGD(T (v)) = 1
|V | ∑u∈V d(T (u),T (v)) = 1

|V | ∑u∈V d(u,v) = AGD(v).
See Fig. 3(a) and Fig. 4(a) for examples of AGD on graphs.

Density Estimation. The density estimation function [79] is given by

Dδ (v) = ∑
u∈V

exp(
−d(u,v)2

δ
),

where d(u,v) is the graph distance between two nodes in the graph and
δ > 0. Since Dδ is completely defined in terms of the distance d, it is
not hard to see that Dδ is also isometry invariant.

Dδ correlates negatively with AGD as it tends to take larger values
on nodes which are close to the center, see Fig. 3(a-b) and Fig. 4(a-b)
for examples.

Eigenfunctions of the graph Laplacian. Let G be an undirected,
weighted graph with positive edge weights w : E→R. Let C(G) be the
vector space of all functions f : V −→ R. The unnormalized Laplacian
of the graph G is the linear operator L : C(G)→ C(G) defined by
mapping f ∈C(G) to L f , where

(L f)(v) = ∑
u∈N(v)

wu,v(f (v)− f (u)).

The eigenvectors of the Laplacian L form a rich family of scalar
functions defined on G with many interesting geometric properties [52].
First, the gradient of the eigenfunctions of L tends to follow the overall
shape of the data [57]; and these functions has been used in applica-
tions such as graph understand [78], segmentation [73], and spectral
clustering [65]. Ordering the eigenvectors of L by the increasing value
of their corresponding eigenvalues, we use eigenvectors of the second
and third smallest eigenvalues of L as the filter functions, denoted as f2
and f3.

These vectors usually contain low frequency information about the
graph, and they usually help retaining the shape of complex graphs. In
particular, f2 is commonly referred to as the Fiedler vector [57] with
desirable geometric properties [24]. For instance, the maximum and the
minimum of the Fielder vector tend to occur at points in the dataset with
maximum geodesic distance [19] allowing it values to spread from one
end of the graph following its ”shape” to the other end. See Fig. 3(c)
and Fig. 4(c) for examples.

4.1.1 Histogram of the Scalar Function

Understanding the distribution of the scalar values of f can be helpful in
the mapper construction. Figure 5 shows an example of the histogram of
the AGD on a graph. We will illustrate later how the visual information
encoded in the histogram can be utilized to optimize the choice of the
cover.

4.2 The Cover

Let f : V −→ [a,b] be a scalar function defined on G and let cover U
be a cover of the interval [a,b] consisting of the interval U1 · · ·Un. We
represent this cover visually by drawing rectangular boxes besides the
histogram of the the scalar function as indicated in Figure 5.

As previously stated, mapper relies on a choice of cover for the
interval [a,b]. The cover choice is rather flexible but also essential to
achieve effective mapper visualization. To simplify the cover choice
we normalize the scalar values of f from the interval [a,b] to the unit
interval [0,1] unless otherwise specified. This simplification does not
yield any essential difference to the function f . It merely simplifies our
choices for the cover parameters that we will describe in this section.

In our pipeline the cover is constructed in two main steps: (1) the
initial cover stage; and (2) interactive cover manipulation stage. We
give a detailed description of these two stages below.

4.2.1 The Initial Cover Stage

The initial cover choice can be done by using the regular cover method.
To obtain a regular cover of the interval [a,b] we need two parameters :
n ∈ Z+ the cover resolution parameter, which is basically the number
of cover elements, and ε ∈ R+ the overlap parameter, which indicates

(a)

(b)

(c)

Fig. 4: The effect of a filter function on the mapper graph construction.
The original graph colored by one of the three filter functions is shown
on the left; its corresponding mapper graph along with a chosen cover
is shown on the right. (a) AGD. (b) Density estimation with δ = 1.
(c) The Fiedler vector of the graph Laplacian.

U3

U1

U2

a

b

Fig. 5: An example of histogram of a scalar function f : V −→ [a,b]
defined on a graph. The bottom part of the histogram represent the
one end of the interval, namely a, and the top part represent the other
end b. Along the side of the histogram we will represent the the cover
subintervals by boxes. This cover consists of three subintervals U1, U2
and U3.

the amount of overlap between two consequent cover elements. To
obtain this cover on the interval [a,b], we start by splitting the interval
into n subintervals [c1,c2], [c2,c3], ..., [cn−1,cn] with equal length, such
that c1 = a and cn = b. The parameter ε is then used to obtain the final
cover U (n,ε) := {Ui = (ci− ε,ci+1 + ε)}n−1

i=1 for [a,b]. Choosing the
parameters n and ε will have a significant impact on the final mapper
output. In Figure 6 we demonstrate examples of a graph G in Figure
(a) with a given AGD filter defined on it. The values of the filter AGD
were normalized to [0,1]. Figures 6 (b) to (f) show the result of the
mapper graph of the graph G and the filter. In figures (b), (c) and (d)
we fix the overlap parameter ε and vary the cover resolution n. On the
other hand, if Figures (c), (e) and (f) we fix ε and vary n.

Choosing The Parameters of The Regular Cover. Our Method does

(a) (b)

(c) (d)

(e) (f)

Fig. 6: Choosing different resolution for the mapper cover. Fixing ε and
varying n in the regular cover. (a) Original graph G with a AGD filter
function. (b) The mapper graph with the cover U (2,0.1). (c) The
mapper graph with the cover U (3,0.1) (d) The mapper graph with
the cover U (4,0.1). (e) The mapper graph with the cover U (3,0.2).
(f) The mapper graph with the cover U (3,0.3).

not specify require any specific values for the parameters n and ε . Any
input yields a valid mapper output graph. However, in order to achieve
a more useful visualization summary, we choose the parameters n and
ε based on the complexity and the size of the graph G as well as the
information one desires to extract from it. If the desired mapper graph
M summary is required to be small then choosing the resolution n
should be chosen to be small. On the other hand, the parameter ε deter-
mines the mount of interconnection and connectivity between the nodes
of the mapper graph. Larger ε values indicate more interconnection
between the mapper graph. Generally speaking, for large graphs and
very highly connected graph we found that smaller values of ε give a
more effective visualization. In this case, we found the range [0.01,0.1]
to be sufficient for more purposes. On the other hand, for small graphs
the value of ε tends to be within the range [0.1,0.3].

Using The Histogram To Help Choose the Regular Cover Parame-
ters. The histogram of the scalar function can be used to decide the
regular cover parameters as follows. Generally speaking, an evenly
distributed histogram requires lower overlap ε parameters. When the
histogram is not evenly distributed, as in the case of Figure 4, we
usually choose higher overlap parameter ε to achieve the desired in-
terconnectivity between the mapper nodes. This decision is also made
with consideration of the size of the original graph.

4.2.2 The Interactive Cover Manipulation Stage

The initial cover stage is sufficient for most applications. However,
in certain circumstances it is useful to manipulate the cover elements
individually to achieve a different and more desirable mapper graph
output. For this purpose we developed an interactive cover manipulation
interface to aid the cover construction and achieve maximal control

over the shape of the output. The user can select one interval in the
cover and manipulate its ends dynamically in the interface.

Given an interval Ui = [ai,bi] in the cover U , our interactive cover
interface allows the following functionalities on Ui:

• Shrining the interval Ui to obtain a new interval U ′i .
• Expanding interval Ui to obtain a new interval U ′i .
• Shifting interval Ui to obtain a new interval U ′i .

These three cases are illustrated in Figures 7. We want analyze
the change that occur on a mapper graph M(G, f ,U) when a certain
interval Ui = [ai,bi] ∈U changes to a new interval U ′i from the above
three cases. In other words, given a cover element Ui in U we want to
to be able to compute the mapper graph when Ui changes to another
cover element U ′i efficiently assuming that all other mapper parameters
are fixed.

Recall from Section 3 that for a given interval [ai,bi], the graph Gi is
the subgraph of G that is mapped to [ai,bi] via f . As we perform one of
the operations, expansion, shrinking or shifting, on the interval [ai,bi]
the graph Gi changes to a new graph G′i. We illustrate the possible
changes that occur on the mapper graph by demonstrating the changes
that occur on the graph Gi. As we change the interval Ui, the connected
components of Gi change by merging with other components, splitting
to new components, new connected components might appear and
existing ones might disappearing.

Below we give a detailed description of how the above three interval
operations affect the mapper graph.

The Interval Ui Expands. This occur when the interval Ui = [ai,bi]
changes to an interval U ′i = [ai− ε,bi] or U ′i = [ai,bi + ε] for some
ε > 0. See Figure 7 (a) for an illustrative example.

(a)

(b)

(c)

(d)

Fig. 7: Figure (a) shows the case when the interval Ui shrinks, from
the left to the right, or equivalently when it expands, from the right
interval to the left. Figure (b) shows the effect of interval shrinking
(expanding) on the mapper graph nodes. Figure (c) shows the case
when the interval Ui shifts to a new interval U ′i with the same length.
(d) Shows the changes in the mapper graph nodes that occur due to the
interval shift.

Since Ui ⊂U ′i then f−1(Ui)⊂ f−1(U ′i) and hence the graph Gi is a
subgraph of G′i. In other words, due to the expansion of the interval
Ui more nodes and edges from the original graph G get added to form
the graph G′i. This means that each existing connected component of
Gi will remain connected in G′i potentially with more nodes and edges
added to it. However, as a result of adding more nodes and edges, the
following topological changes may occur to the connected components
of Gi:

• Multiple existing disjoint connected components of Gi might
merge in G′i to produce a single connected component. This
means that the corresponding nodes in the mapper graph will
also get merged. See Figure 7 (a) and (b).

• As a result of the expansion new connected component might
also appear. This will result in the creation of a new node in the
mapper graph. See Figure 7 (a) and (b).

The Interval Ui Shrinks. This occurs when the interval Ui = [ai,bi]
changes to an interval U ′i = [ai + ε,bi] or U ′i = [ai,bi − ε]. This is
merely the dual case of the previous case. Namely, as we shrink the
interval Ui into the interval U ′i the graph G′i will be a subgraph of

the graph Gi. As a consequence an existing connected component
in Gi might split into multiple connected components in G′i. On the
level of the mapper graph, the corresponding node splits into multiple
nodes. Moreover, certain connected components in Gi might disappear
in G′i which translates into deleting the corresponding node in the
mapper graph.

The Interval Ui Shifts. This occurs when the interval Ui = [ai,bi]
changes to an interval U ′i = [ai±ε,bi±ε]. This case can be considered
as a combination of the sequence of expansion and shrinking of intervals
as follows. If the shift is positive (i.e. upwards), the first step we
change the interval [ai,bi] to the interval [ai,bi + ε]. In the second
step we change interval [ai,bi + ε] to the interval [ai + ε,bi + ε]. For a
negative (i.e. downward) shift, we expand [ai− ε,bi] and then shrink
[ai− ε,bi− ε]. In both steps we are back to cases of expansion and
shrinking discussed earlier. See Figure 7 (c) and (d) for an illustrative
example.

Using this capability, a given initial regular cover can be adjusted
to realize a desirable “feature” in the data. For instance, Figure 24 (c)
shows the circular feature in the mapper graph, capturing the corre-
sponding ”circular feature” in the original graph. The cover was inter-
actively manipulated, starting from the cover shown in Figure 24 (b). It
is also useful to mention that the histogram of filter is useful in deciding
the location of each individual interval.

5 Visual Design and Interaction

The goal of our design is to enable exploration of the structure of the
graph. This is done by providing a linked-view interface between the
original graph, a graph summary in the form of the mapper graph, and
an interactive cover designer component that allows for customization
of the mapper graph.

5.1 Graph Drawing

Graph Layout Method. For both the original graph and the
mapper graph, we utilized a force-directed layout [34] with the Barnes-
Hut optimization for repulsive force [4]. This approach was chosen
for its interactive nature. However, our approach is ultimately agnostic
of the underlying graph layout algorithm, and different layouts may
improve the presentation of certain graphs.

Node Coloring. As a part of the input for mapper we are given the
filter function f : V −→ [a,b]. The filter function choice provides the
hue: red for AGD, green for density, and purple for eigenfunctions.
The scalar value is mapped to the saturation value of the color. This
color scheme is used directly for the nodes of the original graph, as
illustrated in Figure 3. Moreover, this map is also used to color the
nodes of the mapper graph by taking the average of the filter function
values in the connected component. For a given connected component,
Cv, the average is 1

|Cv| ∑u∈Cv
f (u).

Node Size. For the mapper graph, the size of the node is chosen to be
proportional to the cardinality of the associated connected component,
in other words |Cu|.

Edge Thickness. For both graphs, edge thickness is drawn proportional
to edge weight. For the mapper graph, recall that an edge [u,v] is
determine by checking the intersection between Cu and Cv. For this
reason, the edge weight, and thus thickness, is drawn proportional to
the set intersection size, Cu∩Cv.

5.2 Interactive Cover Designer

The interactive cover designer consists of 2 main elements. First on the
left is the histogram of filter function f : V −→ [a,b]. This provides
intuition as to which function values occur frequently and thus may be
interesting to investigate further. The second element is the cover to the
right. Each box represents a single cover element. The vertical position
is its function value range, and the horizontal position is selected using
the first-fit bin packing algorithm to minimize space consumption. As
the cover elements are moved, expanded, or shrunk, the mapper graph

visualization dynamically adds and removes nodes and edges based
upon the approach outlined in Section 4.2.2.

5.3 Correlating the Substructures to the Original Graph

Having the mapper summary it is important to be able to extract the
correspondence between the original data and the summary represented
by mapper. All mapper components represented in our interface and
can be selected dynamically to understand the structure encoded in the
mapper graph. As components are selected, highlighting establishes
the correspondence between the cover, the mapper graph elements,
and the original graph. We provide the user with three mechanisms
for exploration: node selection, edge selection, and cover element
selection.

Node Selection. Each node in the mapper graph corresponds to a
connected component from the original graph. Selecting such a node,
our interface recovers and highlights the original connected component
from the graph. Furthermore, the cover element which generated
the mapper graph node is additionally highlighted. For all selection
examples, the color hues are chosen to be complimentary to the hue
used for the filter function to maximize visual difference. Figure 8
illustrates an example of node selection in a given mapper graph.

(a) (b)

Fig. 8: Two examples of selecting a node from the mapper graph.
In both cases the mapper graph is drawn on the top and the original
graph is shown on the bottom. The selected node is colored blue and
highlighted with an orange box in the mapper graph. This selection
corresponds to the selection of the a collection of nodes in the original
graph. The selection also triggers the selection of the cover element,
highlighted in blue, that generated the mapper node.

Edge Selection. Each edge [u,v] in the mapper graph M is determined
by two connected components Cu and Cv in the original graph G. When
selecting such an edge in our interface we highlight the nodes Cu∪Cv
with three different colors. The sets Cu− (Cu ∩Cv) and Cv− (Cu ∩
Cv) each receive a different color, indicating the node clusters with
similar properties. The intersection Cu∩Cv receives a different color,
highlighting the nodes responsible for the relationship between the
clusters. Figure 9 illustrates this process.

Interaction with the Cover. Giving an interval Ui from the cover
U , it is desirable to know the set of mapper graph nodes u ∈M and
original graph nodes v ∈ G that are mapped to the interval. When a
cover element Ui is selected, we select the nodes both f−1(Ui) and the
nodes in the mapper graph M(G, f ,U) that represent the connected
components of f−1(Ui). In Figure 10 we select the the interval (top
left in (a), (b) and (c)), colored blue and highlighted by a blue box. Our
system selects the corresponding nodes in the mapper graph (top) and
in the original graphs (bottom).

If the nodes of the mapper graph captured by a certain cover element
needs fine tuning, the box may be dragged, expanded, or contracted.
The mapper graph will update correspondingly.

(a) (c)(b)

Fig. 9: (a-b) Selecting two different nodes in the mapper graph. Se-
lecting a node (blue) in the mapper graph highlights the corresponding
nodes in the original graph (also in blue). (c) Selecting an edge in the
mapper graph (blue) selects the two nodes in the mapper graph that
are attached to this node as well as the nodes in the original graph that
are attached to the edge.

(a) (b) (c)

Fig. 10: Selecting an interval from the cover corresponds to selecting
the nodes in the mapper graph that corresponds to that interval, as
well as the nodes in the original graph. Figures (a-c) show the effect of
selecting intervals and how it triggers the selection of the mapper graph
and the original graph nodes.

6 Spectral Clustering and Mapper

In classical spectral clustering the eigenfunctions of the graph Laplacian
can be used to obtain segmentation algorithms of the underlying graph.
For instance the Fielder’s vector f2 can be used to bi-partition the graph
G into two parts C1 = {v ∈V | f2(v)> 0} and C2 = {v ∈V | f2(v)≤ 0}.
Spectral partition is well-studied, and its justification can be found in
many places in the literature [67].

The mapper construction that we presented here can be considered,
in the trivial case, as a generalization for spectral clustering. For
instance, the segmentation induced by the Fielder’s vector f2 is nothing
more than the mapper graph M(f2,G,U) where U is the regular cover
U(2,0). Higher order eigenfunctions of the Laplacian have also been
used for segmentation purposes in an analogous fashion [77].

The eigenfunctions of the graph Laplacian can be used to obtain an
approximation for the graph mincut problem [86]. From this, edges in
the mapper graph using the eigenfunction of the unnormalized Lapla-
cian can be interpreted as an approximation of the relations between
the graph segments obtained from the mincut problem. From this
perspective mapper does not only provide a generalization of spectral
clustering but also provide the connection between the clusters induced
using these spectral techniques.

Figure 11 illustrates the mapper graph of the USAIR 97 graph with
the filter function f3 and the regular cover U(5,0). Of course the
mapper graph here is trivial and has merely 5 nodes representing the
5 clusters captured by f3. Later in the next section, we return to this

example and demonstrate how mapper can be used to give insights
about the relation among these clusters, something classical spectral
clustering does not provide directly.

(a) (b)

Bethel Anchorage
 Int

Fig. 11: The clustering induced by the eigenfunction f3 of the Lapla-
cian on a graph can be seen as a special case of the mapper graph
construction. Here the chosen cover is U(5,0) gives 5 clusters of the
graphs, two of them are highlighted in blue. These are exactly the same
clusters obtained by using the spectral clustering on G using f3.

7 Results

In this section we evaluate our approach by examining mapper graph
on synthetic and real datasets.

7.1 Mapper on Synthetic Data

We validate our method by testing the output of the mapper graph on 20
synthetic datasets. All our graphs are generated using NetworkX [40].
Table 1 shows synthetic graphs and their corresponding mapper exam-
ples results. In each example a certain structure is emphasized via our
choice of the scalar function and the cover. This structure could be
symmetry, as in Figures 13, 18, and 22 or the overall shape of the graph,
as in Figures 12, 17, and 23. One can observe that original graphs in
Figures 12 and 17, have circular shape so here we choose the Fiedler’s
vector as our choice of filter because we wanted a scalar function that
can vary from one end of the graph to the other end. The mapper graph
in Figure 17 looks interesting from our perspective because the original
graph appears as a torus mesh and the mapper graph looks like the
Reeb graph one usually have when computing Reeb graph on a torus
mesh. Mapper also seems to capture the dual structure of some of some
graph examples such as the cases in 21 and 14.

It is worth mentioning that while Table 1 illustrates a single choice
of a specific scalar function and a cover. Other choices could also be
valid depending on the data and the context of the summary one wants
to obtain from the graph.

7.2 Map of Science

The map of science graph [9], Figure 24 (a), consists of 554 nodes
and 2276 edges. Nodes in this graph represent specialties with major
scientific disciplines and edges represent co-authorship of publications
between those specialties. Figure 24 shows the graph with its nodes
colored according to the major scientific disciplines of the node.

Since this graph does not seem to exhibit obvious symmetry, our
choice for the mapper graph scalar function was the eigenfunctions of
the Laplacian. As mentioned earlier, the smallest eigenfunctions of the
graph Laplacian can help retaining the shape of the graph. The third
smallest eigenfunction of the graph Laplacian f3 was selected as it gave
it retained the shape of the graph better than the Fiedler vector f2.

Figure 24 (b) shows the mapper graph calculated on the map of
science graph using f3 with the regular cover parameters n = 10 and
ε = 0.1. One can see from the figure that the mapper graph clearly pre-
serves the overall structure and shape of the original graph. Moreover,
the indicated mapper graph nodes capture certain super clusters in the
original graph.

Recall that the eigenfunctions of the unnormalized Laplacian can be
used to approximate the graph mincut problem. Moreover the mincut
output usually prefers isolated clusters in the graph [86]. Given the
interpretation for the mapper graph using the eigenfunction of the
Laplacian we provide in Section 6, the clusters shown in Figure 24 (b)

Table 1: Table of synthetics graphs. In all examples the mapper graph is shown on the top right and the original graph is shown on the bottom.

Fig. 12: Connected cavman
graph. Regular cover U (5,0.1).

Fig. 13: Lobster graph. Regular
cover U (5,0.1).

Fig. 14: Large Dorogovtsev Golt-
sev Mendes graph. Regular cover
U (3,0.2); density δ = 7.

Fig. 15: Large bipartite graph.
Regular cover U (8,0.15).

Fig. 16: Community graph. Reg-
ular cover U (5,0.25).

Fig. 17: Annulus shape graph.
Regular cover U (3,0.3).

Fig. 18: Dorogovtsev Goltsev
Mendes graph. Regular cover
U (3,0.3).

Fig. 19: Lollipop graph. Regular
cover U (3,0.1); density δ = 7.

Fig. 20: Small bipartite graph.
Regular cover U (3,0.4).

Fig. 21: Grid graph. Regular
cover U (3,0.1).

Fig. 22: Tree. Regular Regular
cover U (3,0.1).

Fig. 23: Ladder Graph. Regular
cover U (4,0.1).

are justified. However, it maybe desirable to obtain a mapper graph
summary that captures more closely the shape and categories of the
original graph.

To illustrate that the mapper graph can be used to obtain a better
representation of the original graph, we utilize the interactive cover ca-
pabilities presented in Section 5.2. The graph is shown in Figure 24 (c).
In the mapper graph in Figure 24 (c) the nodes are circled to highlight

the majority scientific discipline from the underlying cluster. For in-
stance the nodes that are labeled 1 in the mapper graph represent the
Humanities nodes in the original graph.

Figure 24 (c) indicates how the mapper graph in this instance gives
a small introductory summary of the original graph. This summary is
indicated in both the clusters and the relationship among those clusters.
For instance node 9 and node 5 are branching nodes, namely these

1211

10

9

7

6

8

4

5

3

2

1

Humanities

SocialMSciences

HealthMProfessionals

Chemistry

EarthMSciences

MathMdMPhysics

BrainMResearch

InfectiousMDiseases

MedicalMSpecialties

Biotechnology

Biology

Chemical(MMechMdMCivilMEngineering

EbMEngineeringMdMCS

ga,

1

2 4

3

5

6

7

8

9

10

11

12

gc,gb,

Fig. 24: (a) Circle of Science categories. (b) Circle of Science mapper graph using the regular cover U(10,0.1) and the third smallest
eigenfunction we obtained the mapper graph shown on the top. The shape preservation for the mapper graph of the original graph is indicated in
the layout of the mapper graph and the original one. Some mapper graph nodes naturally capture clusters in the graph. (c) mapper graph using
the interactive cover achieves better clustering quality and shape summary.

are nodes where the mapper graph changes its topology. Inspecting
communities 8 and 6 we can see that these communities represent
Chemistry and Biology. These two field merge at the node 5, which
represents medical science and infectious diseases.

7.3 USAIR 97

The previous example illustrates the natural interpretation of the
mapper graph nodes as clusters of the original graph. In Figures 25,
we illustrate how the nodes and edges of the mapper graph show nat-
ural connection between clusters. The USAIR 97 graph consists of
332 nodes and 2126 edges [6]. The nodes represent airport and the
edges represent the connection between the airports. For mapper graph
setting we use the eigenfunction of the Laplacian f3 with interactive
cover setting as shown in Figure 1 (a). Recall that we illustrated in
Figure 11 on the same graph how the eigenfunction f3 can be used in
spectral techniques to capture clusters in the graph but these techniques
do not provide any relation among these clusters. Here We demonstrate
how the mapper graph can affectively be used for this purpose.

We start by examining the connection between mapper graph nodes
1 and 2 and the mapper graph edge [1,2]. In Figure 25 (a), the cluster
that corresponds to mapper graph node 1 is illustrated by the light and
dark blue nodes, whereas the cluster that corresponds to mapper graph
node 2 is represented by the nodes highlighted in dark blue and purple.
Inspecting these nodes we can see that mapper graph node 1 corre-
sponds to a cluster in the original graph that has the Bethel airport
as a major airport. On the other hand the cluster that corresponds to
mapper graph node 2 contains the major airport Anchorage interna-
tional.

The airports that are in contained in mapper graph edge [1,2], high-
lighted in blue in Figure 25 (a), which are the Aniak and the St Mary’s
airports. One can clearly see from the graph that these two airports rep-
resent the two major connection airports between cluster 1 and cluster
2.

Note here that mapper graph edge [2,3] is thicker than
mapper graph edge [1,2] (see Figure 1 (a)). This thickness indicated
that there are more likely traffic in this mapper graph edge [2,3] than
there is in [1,2].

The mapper graph nodes 2 and 3 and the mapper graph edge [2,3]
have similar interpretation as well. Note that nodes in C3, shown in
Figure 1 (a), has the major Juneau International airport. On the other
hand C2 has two airports Aniak and St Mary’s. The mapper graph edge
[2,3] is larger than the previous case, but it can mainly represented by
the Anachorage International airport. One can notice from Figure 25
(b) that in order to go from any airport represented by the C3 to the
airports Aniak or St Mary’s, one must pass from through Anachorage
International.

Finally, the mapper graph node 6 corresponds to the cluster C6,
shown in Figure 1 represents a peripheral cluster that is far away from
the main bulk of the graph. The mapper graph node 6 is represented
mainly by the Guam international airport. In order to pass from any
airport in cluster C6 to the any airport in the main central bulk rep-
resenting by mapper graph node 5 one must pass from the Honolulu
International, which is contained in the original graph nodes that repre-
sent the mapper graph edge [5,6].

Anchorage2Int

Juneau2Int

St2Mary's

Aniak

St2Mary's

Aniak
Bethel

Anchorage2Int

Guam2Int.

Honolulu2Int.

Guam2Int.

Honolulu2Int.

(a)

(b)

1

2
3

1

2 3
6

4

5

6

4

5

Bethel

Fig. 25: Selection edge in the mapper graph and the corresponding
clusters in the original USAIR 97 graph. (a) The edge [1,2] is selected
indicating the connection between the cluster 1 that contains Bethel and
the cluster 2, which contains Anchorage international. (b) The edge
mapper graph [2,3] is selected and highlights in blue in the nodes in
the original graph. In order to go from the cluster that contains Juneau
International to the any of the airports in light blue one must pass
through Anchorage international, which represents the main airport in
the mapper graph edge [2,3].

8 Conclusion

We have presented a topological data analysis approach to generate
a summary for a graph using the mapper construction. Our method
is effective at finding clusters or communities in a graph and the rela-
tions among these clusters. The strength of our construction lies by its
flexibility in the being able to capture the structure of the underlying
graph on multiple scales and using different topological and symmet-
rical properties. Finally, in the future, we would like to explore other
potential applications for mapper graph. Other than graph exploration,
mapper graph can be consider as a skeleton for the underlying graph,
which could be used for many other tasks, such as graph layout.

References

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic sub-
space clustering of high dimensional data for data mining applications,
vol. 27. ACM, 1998.

[2] D. Archambault, T. Munzner, and D. Auber. Topolayout: Multilevel graph
layout by topological features. IEEE transactions on visualization and
computer graphics, 13(2), 2007.

[3] M. Bampasidou and T. Gentimis. Modeling collaborations with persistent
homology. CoRR, abs/1403.5346, 2014.

[4] J. Barnes and P. Hut. A hierarchical o (n log n) force-calculation algorithm.
nature, 324(6096):446, 1986.

[5] M. Bastian, S. Heymann, and M. Jacomy. Gephi: an open source software
for exploring and manipulating networks. In ICWSM, pp. 361–362, 2009.

[6] V. Batagelj and A. Mrvar. Pajek datasets, 2006.
[7] S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. Reeb graphs for

shape analysis and applications. Theoretical Computer Science, 392:5–22,
2008.

[8] S. Biasotti, S. Marini, M. Mortara, and G. Patane. An overview on
properties and efficacy of topological skeletons in shape modelling. Shape
Modeling International, 2003.

[9] K. Börner, R. Klavans, M. Patek, A. M. Zoss, J. R. Biberstine, R. P. Light,
V. Larivière, and K. W. Boyack. Design and update of a classification
system: The ucsd map of science. PloS one, 7(7):e39464, 2012.

[10] U. Brandes, M. Gaertler, and D. Wagner. Experiments on graph clustering
algorithms. In European Symposium on Algorithms, pp. 568–579, 2003.

[11] U. Brandes and C. Pich. Eigensolver methods for progressive multidi-
mensional scaling of large data. In Graph Drawing, pp. 42–53. Springer,
2007.

[12] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the web. Computer networks,
33(1-6):309–320, 2000.

[13] T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser. Graph bisection
algorithms with good average case behavior. Combinatorica, 7(2):171–
191, 1987.

[14] G. Carlsson. Topology and data. Bulletin of the American Mathematical
Society, 46(2):255–308, 2009.

[15] G. Carlsson. Topological pattern recognition for point cloud data. Acta
Numerica, 23:289–368, 2014.

[16] M. Carriére and S. Oudot. Structure and stability of the 1-dimensional
mapper. arXiv preprint arXiv:1511.05823, 2015.

[17] C. J. Carstens and K. J. Horadam. Persistent homology of collaboration
networks. Mathematical Problems in Engineering, 2013, 2013.

[18] B. Cassidy, C. Rae, and V. Solo. Brain activity: Conditional dissimi-
larity and persistent homology. IEEE 12th International Symposium on
Biomedical Imaging (ISBI), pp. 1356 – 1359, 2015.

[19] M. K. Chung, S. Seo, N. Adluru, and H. K. Vorperian. Hot spots conjec-
ture and its application to modeling tubular structures. In International
Workshop on Machine Learning in Medical Imaging, pp. 225–232, 2011.

[20] W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-based edge
clustering for graph visualization. IEEE Transactions on Visualization
and Computer Graphics, 14(6):1277–1284, 2008.

[21] Y. Dabaghian, F. Mémoli, L. Frank, and G. Carlsson. A topological
paradigm for hippocampal spatial map formation using persistent homol-
ogy. PLoS Computational Biology, 8(8):e1002581, 2012.

[22] T. K. Dey, F. Memoli, and Y. Wang. Topological analysis of
nerves, reeb spaces, mappers, and multiscale mappers. arXiv preprint
arXiv:1703.07387, 2017.

[23] I. S. Dhillon. Co-clustering documents and words using bipartite spectral
graph partitioning. In Proceedings of the seventh ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, pp. 269–274.
ACM, 2001.

[24] C. H. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cut
algorithm for graph partitioning and data clustering. IEEE International
Conference on Data Mining, pp. 107–114, 2001.

[25] K. Dinkla, M. A. Westenberg, and J. J. van Wijk. Compressed adjacency
matrices: untangling gene regulatory networks. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2457–2466, 2012.

[26] I. Donato, G. Petri, M. Scolamiero, L. Rondoni, and F. Vaccarino. Deci-
mation of fast states and weak nodes: topological variation via persistent
homology. Proceedings of the European Conference on Complex Systems,
pp. 295–301, 2012.

[27] C. Dunne and B. Shneiderman. Motif simplification. Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, 2013.

[28] T. Dwyer, N. H. Riche, K. Marriott, and C. Mears. Edge compression
techniques for visualization of dense directed graphs. IEEE Transactions
on Visualization and Computer Graphics, 19(12):2596–2605, 2013.

[29] W. E, J. Lu, and Y. Yao. The landscape of complex networks. CoRR,
abs/1204.6376, 2012.

[30] G. Ellis and A. Dix. A taxonomy of clutter reduction for information
visualisation. IEEE Transactions of Visualization and Computer Graphics,
13(6):1216–1223, 2007.

[31] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull.
Graphviz— open source graph drawing tools. Graph Drawing, pp. 483–
484, 2002.

[32] O. Ersoy, C. Hurter, F. Paulovich, G. Cantareiro, and A. Telea. Skeleton-
based edge bundling for graph visualization. IEEE Transactions on Visu-
alization and Computer Graphics, 17(12):2364–2373, 2011.

[33] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical
journal, 23(2):298–305, 1973.

[34] T. M. Fruchterman and E. M. Reingold. Graph drawing by force-directed
placement. Software: Practice and experience, 21(11):1129–1164, 1991.

[35] E. R. Gansner, Y. Hu, S. North, and C. Scheidegger. Multilevel ag-
glomerative edge bundling for visualizing large graphs. In IEEE Pacific
Visualization Symposium, pp. 187–194, 2011.

[36] E. R. Gansner, Y. Koren, and S. North. Graph drawing by stress majoriza-
tion. In Graph Drawing, pp. 239–250. Springer, 2005.

[37] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for
drawing directed graphs. IEEE Transactions on Software Engineering,
19(3):214–230, 1993.

[38] M. Girvan and M. E. Newman. Community structure in social and bi-
ological networks. Proceedings of the national academy of sciences,
99(12):7821–7826, 2002.

[39] R. Guimera, S. Mossa, A. Turtschi, and L. N. Amaral. The worldwide
air transportation network: Anomalous centrality, community structure,
and cities’ global roles. Proceedings of the National Academy of Sciences,
102(22):7794–7799, 2005.

[40] A. Hagberg, P. Swart, and D. S Chult. Exploring network structure,
dynamics, and function using networkx. Technical report, Los Alamos
National Lab.(LANL), Los Alamos, NM (United States), 2008.

[41] D. Hansen, B. Shneiderman, and M. A. Smith. Analyzing social media net-
works with NodeXL: Insights from a connected world. Morgan Kaufmann,
2010.

[42] D. Holten and J. J. Van Wijk. Force-directed edge bundling for graph
visualization. Computer Graphics Forum, 28(3):983–990, 2009.

[43] D. Horak, S. Maletić, and M. Rajković. Persistent homology of complex
networks. Journal of Statistical Mechanics: Theory and Experiment, p.
P03034, 2009.

[44] Y. Hu. Efficient, high-quality force-directed graph drawing. Mathematica
Journal, 10(1):37–71, 2005.

[45] G. Jeh and J. Widom. Simrank: a measure of structural-context similarity.
In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 538–543. ACM, 2002.

[46] S. Kairam, D. MacLean, M. Savva, and J. Heer. Graphprism: Compact
visualization of network structure. In Advanced Visual Interfaces, 2012.

[47] M. Khoury, Y. Hu, S. Krishnan, and C. Scheidegger. Drawing large graphs
by low-rank stress majorization. Computer Graphics Forum, 31:975–984,
2012.

[48] V. G. Kim, Y. Lipman, X. Chen, and T. Funkhouser. Möbius transforma-
tions for global intrinsic symmetry analysis. Computer Graphics Forum,
29(5):1689–1700, 2010.

[49] Y. Koren. On spectral graph drawing. In Computing and Combinatorics,
pp. 496–508. Springer, 2003.

[50] Y. Koren, L. Carmel, and D. Harel. Ace: A fast multiscale eigenvectors
computation for drawing huge graphs. IEEE Symposium on Information
Visualization, pp. 137–144, 2002.

[51] B. Kulis, S. Basu, I. Dhillon, and R. Mooney. Semi-supervised graph
clustering: a kernel approach. Machine learning, 74(1):1–22, 2009.

[52] S. Lafon and A. B. Lee. Diffusion maps and coarse-graining: A unified
framework for dimensionality reduction, graph partitioning, and data set
parameterization. IEEE transactions on pattern analysis and machine
intelligence, 28(9):1393–1403, 2006.

[53] H. Lee, M. K. Chung, H. Kang, B.-N. Kim, and D. S. Lee. Computing the
shape of brain networks using graph filtration and gromov-hausdorff met-
ric. International Conference on Medical Image Computing and Computer
Assisted Intervention, pp. 302–309, 2011.

[54] H. Lee, M. K. Chung, H. Kang, B.-N. Kim, and D. S. Lee. Discriminative
persistent homology of brain networks. IEEE International Symposium
on Biomedical Imaging: From Nano to Macro, pp. 841–844, 2011.

[55] H. Lee, H. Kang, M. K. Chung, B.-N. Kim, and D. S. Lee. Persistent
brain network homology from the perspective of dendrogram. IEEE
Transactions on Medical Imaging, 31(12):2267–2277, 2012.

[56] H. Lee, H. Kang, M. K. Chung, B.-N. Kim, and D. S. Lee. Weighted
functional brain network modeling via network filtration. NIPS Workshop
on Algebraic Topology and Machine Learning, 2012.

[57] B. Lévy. Laplace-beltrami eigenfunctions towards an algorithm that under-
stands geometry. In IEEE International Conference on Shape Modeling
and Applications, p. 13, 2006.

[58] S. Liu, D. Maljovec, B. Wang, P.-T. Bremer, and V. Pascucci. Visualizing
high-dimensional data: Advances in the past decade. IEEE Transactions
on Visualization and Computer Graphics, 23(3):1249–1268, 2017.

[59] P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson,
M. Alagappan, J. Carlsson, and G. Carlsson. Extracting insights from the
shape of complex data using topology. Scientific Reports, 3, 2013.

[60] E. Munch and B. Wang. Convergence between categorical representations
of Reeb space and mapper. International Symposium on Computational
Geometry (SOCG), 2016.

[61] M. E. Newman. Properties of highly clustered networks. Physical Review
E, 68(2):026121, 2003.

[62] M. E. Newman. Fast algorithm for detecting community structure in
networks. Physical review E, 69(6):066133, 2004.

[63] M. E. Newman and M. Girvan. Mixing patterns and community structure
in networks. In Statistical mechanics of complex networks, pp. 66–87.
Springer, 2003.

[64] M. E. Newman and M. Girvan. Finding and evaluating community struc-
ture in networks. Physical review E, 69(2):026113, 2004.

[65] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and
an algorithm. In Advances in neural information processing systems, pp.
849–856, 2002.

[66] M. Nicolaua, A. J. Levine, and G. Carlsson. Topology based data analysis
identifies a subgroup of breast cancers with a unique mutational profile
and excellent survival. Proceedings National Academy of Sciences of the
United States of America, 108(17):7265–7270, 2011.

[67] J. Park, M. Jeon, and W. Pedrycz. Spectral clustering with physical
intuition on spring–mass dynamics. Journal of the Franklin Institute,
351(6):3245–3268, 2014.

[68] G. Petri, M. Scolamiero, I. Donato, and F. Vaccarino. Networks and cy-
cles: A persistent homology approach to complex networks. Proceedings
European Conference on Complex Systems 2012, Springer Proceedings in
Complexity, pp. 93–99, 2013.

[69] G. Petri, M. Scolamiero, I. Donato, and F. Vaccarino. Topological strata
of weighted complex networks. PLoS ONE, 8(6):e66506, 2013.

[70] V. Pirino, E. Riccomagno, S. Martinoia, and P. Massobrio. A topological
study of repetitive co-activation networks in in vitro cortical assemblies.
Physical Biology, 12(1), 2015.

[71] P. Pons and M. Latapy. Computing communities in large networks using
random walks. In International symposium on computer and information
sciences, pp. 284–293. Springer, 2005.

[72] S. Redner. How popular is your paper? an empirical study of the citation
distribution. The European Physical Journal B-Condensed Matter and
Complex Systems, 4(2):131–134, 1998.

[73] M. Reuter, S. Biasotti, D. Giorgi, G. Patané, and M. Spagnuolo. Discrete
laplace–beltrami operators for shape analysis and segmentation. Comput-
ers & Graphics, 33(3):381–390, 2009.

[74] S. E. Schaeffer. Graph clustering. Computer science review, 1(1):27–64,
2007.

[75] S. E. Schaeffer. Graph clustering. Computer science review, 1(1):27–64,
2007.

[76] D. Selassie, B. Heller, and J. Heer. Divided edge bundling for directional
network data. IEEE Transactions on Visualization and Computer Graphics,
17(12):2354–2363, 2011.

[77] A. Sharma, R. P. Horaud, D. Knossow, and E. Von Lavante. Mesh seg-
mentation using laplacian eigenvectors and gaussian mixtures. In AAAI
Fall Symposium: Manifold Learning and Its Applications, 2009.

[78] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst.
The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains. IEEE
Signal Processing Magazine, 30(3):83–98, 2013.

[79] B. W. Silverman. Density estimation for statistics and data analysis,
vol. 26. CRC press, 1986.

[80] G. Singh, F. Mémoli, and G. Carlsson. Topological methods for the analy-
sis of high dimensional data sets and 3d object recognition. Eurographics
Symposium on Point-Based Graphics, 22, 2007.

[81] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation for graph
summarization. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pp. 567–580. ACM, 2008.

[82] B. Y. Torres, J. H. M. Oliveira, A. T. Tate, P. Rath, K. Cumnock, and D. S.
Schneider. Tracking resilience to infections by mapping disease space.
PLoS biology, 14(4), 2016.

[83] W. T. Tutte. How to draw a graph. Proceedings of the London Math-
ematical Society, s3-13(1):743–767, Jan 1963. doi: 10.1112/plms/s3-13.1.
743

[84] S. Virtanen. Clustering the chilean web. In Web Congress, 2003. Proceed-
ings. First Latin American, pp. 229–231. IEEE, 2003.

[85] T. Von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van
Wijk, J.-D. Fekete, and D. W. Fellner. Visual analysis of large graphs:
State-of-the-art and future research challenges. Computer graphics forum,
30(6):1719–1749, 2011.

[86] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17(4):395–416, 2007.

[87] S. White and P. Smyth. A spectral clustering approach to finding communi-
ties in graphs. In Proceedings of the 2005 SIAM international conference
on data mining, pp. 274–285. SIAM, 2005.

	Introduction
	Prior Work
	Graph Visualization
	Graph Clustering
	Topological Data Analysis of Graphs

	Overview on Mapper Graph Construction
	A General Mapper Construction
	Mapper Construction on Graphs

	Parameter Exploration for Mapper Graphs
	Filter Functions
	Histogram of the Scalar Function

	The Cover
	The Initial Cover Stage
	The Interactive Cover Manipulation Stage

	Visual Design and Interaction
	Graph Drawing
	Interactive Cover Designer
	Correlating the Substructures to the Original Graph

	Spectral Clustering and Mapper
	Results
	Mapper on Synthetic Data
	Map of Science
	USAIR 97

	Conclusion

