
1

ISP: An Optimal Out-Of-Core Image-Set
Processing Streaming Architecture for Parallel

Heterogeneous Systems
Linh K. Ha, Jens Krüger, João L. D. Comba, Cláudio T. Silva, Sarang Joshi.

Abstract —Image population analysis is the class of statistical methods that plays a central role in understanding the development,
evolution and disease of a population. However, these techniques often require excessive computational power and memory that
are compounded with a large number of volumetric inputs. Restricted access to supercomputing power limits its influence in general
research and practical applications. In this paper we introduce ISP, an Image-Set Processing streaming framework that harnesses
the processing power of commodity heterogeneous CPU/GPU systems and attempts to solve this computational problem. In ISP we
introduce specially-designed streaming algorithms and data structures that provide an optimal solution for out-of-core multi-image
processing problems both in terms of memory usage and computational efficiency. ISP makes use of the asynchronous execution
mechanism supported by parallel heterogeneous systems to efficiently hide the inherent latency of the processing pipeline of out-
of-core approaches. Consequently, with computationally intensive problems, the ISP out-of-core solution can achieve the same
performance as the in-core solution. We demonstrate the efficiency of the ISP framework on synthetic and real datasets.

Index Terms —GPUs, out-of-core processing, atlas construction, diffeomorphism, multi-image processing framework

✦

1 INTRODUCTION

Image-set processing is an advanced image processing
technique, widely used in medical imaging [15], video
processing [5], [41], astronomy [1], [6], visual robot
control [18], virtual reality [44], [45], modeling and re-
construction [24], [28], among others. This technique
provides an extended processing power unattainable
with single-image processing techniques. For example,
for images captured by low-end devices, an image-set
average operation is capable of reducing noise without
compromising details, as well as increasing bit depth and
quality [1], [6]. Another example is the reconstruction
of the 3D structure of large buildings or monuments.
Using multiple images captured from different points of
view and under different lighting conditions, or from
public databases such as Flicker or Google Images, it is
possible to reconstruct the 3D layout of a large scene or
the interior of a building [24], [28], [44], [45]. Image-set
processing is also essential for real-time video process-
ing, with applications in video compression, computer
vision, automated obstacle avoidance vehicles, video
surveillance and security control.

Image-set processing provides the backbone for Com-
putational Anatomy, an important tool in analyzing
populations composed of hundreds to thousands of

• Linh K. Ha and Sarang Joshi are with the Scientific Imaging and
Computing Institute, University of Utah.

• Jens Krüger is with the University of Saarland.
• João L. D. Comba is with the Federal University of Rio Grande do Sul

(UFRGS-Brazil).
• Cláudio T. Silva is with Polytechnic Institute of NYU (NYU-Poly).

a) Age 65 b) Age 70 c) Age 75 d) Age 80

Fig. 1. Age regression analysis on the ADNI dataset by
computing the average brain atlases at different ages (65,
70, 75, and 80) confirms the proposition that fluid space
is larger because the brain atrophies over time.

subjects. In this paper, we use the atlas construction
technique as a driving challenge and also an illustration
for the effectiveness of our approach. The method plays
a central role in computational anatomy, particularly in
understanding the variability of brain anatomy [12], [15],
[22], [34]. As illustrated in Figure 1, the atlas construction
allows the analysis of a population using age regression
over average brain atlases computed at different ages.

However, the benefits of using image-set processing
techniques over single-image processing brings major
computational challenges. First, they involve a huge
amount of data that easily exceeds the direct processing
capability of the system. Second, they demand massive
amounts of computation, which often require days or
even months to complete. As a result, image-set tech-
niques often call for super-computing systems [12] or
large-scale clusters [25], [44] that limit their applica-
tions to large laboratories. Based on the commodity
hardware, a solution will make this technique available
to a widespread audience with limited computational



2

resources, thus increasing its use in many existing prob-
lems.

In this paper, we discuss a solution for image-set pro-
cessing problems on commodity hardware using graphic
processing units (GPUs) combined with an out-of-core
streaming model. The contributions of our paper are:

• A high-performance, image-set processing framework
with a proof-of-concept optimal streaming model;
• The definition of the basic building blocks of a general
framework, which allows an efficient-implementation of
image-set algorithms;
• The introduction of concepts for implicit and ex-
plicit pipelining, with considerations regarding their ef-
ficiency;
• A pseudo-loss-less compression scheme for floating
point inputs, which allows simple, effective, and high
performance encoding and decoding schemes;
• An analysis of the reasons for streaming degeneracy,
and a solution based on an order-independent model;
• Solutions for cross-stream synchronisation to handle the
profiling issue of asynchronous programming;
• A mechanism to extend the streaming model on het-
erogeneous systems;
• Guidelines based on the performance analysis that help
developers profile their code performance and make
quantitative decisions.

2 RELATED WORK

In the last decade, there is an emerging trend in the
High Performance Computing (HPC) community to use
heterogeneous processing systems (e.g cell processors,
FPGAs, multi-core GPUs, etc) to replace the conventional
supercomputing model. Super-computing systems based
on the heterogeneous model have been successfully ex-
ploited in some of the fastest computing systems, such as
the current number one super-computer Tianhe-1A, the
first computing system to achieve 2.5 petaflop/s [38].

The GPU processing model, with hundreds of sim-
ple and computation-centric processing cores, has been
proved to be highly scalable to many problems. In
particular, they are suitable to problems that can be
easily computed in parallel, such as the ones that arise
in image-processing applications.

Modern GPUs can offer a few Tera-flops of peak per-
formance per unit, providing processing power equiva-
lent to a super-computer in the mid-90s, while being con-
siderably more cost-and energy-efficient. The huge in-
core memory bandwidth, which has historically doubled
every two years, is another advantage of GPU systems
over the conventional processing model, adding substan-
tial speed increases to the GPU-centric processing model.
There are a number of image-processing applications
implemented on GPUs [19], [42], [46] , most of which
achieve from 20x to several magnitudes of speedup
over CPU counterparts. Conceptually, our streaming
framework is an extension to the idea of the fast GPU
image-processing framework by Ha et al. [25], [26]. Their
method achieved 60x speed up in comparison to an

optimized, fully-parallel version running on an eight-
core Xeon server for Greedy Iterative Diffeomorphic
Atlas construction problem.

While the use of GPUs appears to be a good solution to
the computational requirements of image-set processing
techniques, the large memory footprint remains an open
problem. Even though the memory bandwidth is fast
enough, the size of the on-board GPU memory is very
limited. Since GPU programs can only access on-board
memory, data must be stored on the GPU when they
are required. This incurs in some memory management
scheme or out-of-core solution.

There are three primary approaches to out-of-core
programming. The first is to use virtual memory based
on operating system support. It is simple and unified
for both in-core and out-of-core processing. However,
due to a lack of application-specific knowledge about
the data dependence and parallelism, this method often
leads to a poor performance [47]. The second approach is
to use compiler directed I/O to convert a program from
in-core to out-of-core [4], [7], [39]. For programs with
complicated data dependencies this approach is not as
effective as the third approach that we use here: explicit
I/O controls by developers. These methods concentrate
on techniques to improve the cache coherency such as
caching and prefetching [2], [9], [11], [31], [37] to reduce
the I/O necessary for blocks already in main mem-
ory and/or by overlapping I/O operations with main-
memory computations. Such methods exploit particular
computational properties of each individual problem as
part of the algorithm design. While explicit I/O controls
are mostly application-specific, our method applies to a
wide class of applications such as out-of-core image-set
processing.

Out-of-core processing on GPUs is not a new tech-
nique, especially for scientific visualization [16], [21],
[29], [48]. The amount of data generated in scientific
simulations or modern data acquisition systems (e.g.
laser scans) are reaching petascale sizes, which can
easily overwhelm the direct visualization capability of
any visualization system [49]. To allow real-time render-
ing, most out-of-core visualization techniques use some
caching scheme to minimize the amount of data pushed
through the system [2], [20], [43]. The advance of GPU
hardware allowed the extension of such techniques to
use acceleration structures, such as KD-trees or BVH
trees [36], [50]. Hou et al. [30] addressed the problem
of building the out-of-core BVH tree using a CUDA
solution that is able to handle the number of input trian-
gles several times larger than previous GPU algorithms.
Nevertheless, none of the above techniques handle the
problem of processing the entire data in real-time, but
instead explore the spatial coherence to extract subsets of
the data. In this paper, we handle out-of-core processing
problems for image-set processing which requires the
entire data to be processed. Our technique is orthogonal
to existing out-of-core visualization techniques, and can
also be used to speed up these algorithms.



3

Our out-of-core strategy exploits two key perfor-
mance concepts: prefetching and data-transfer-hiding based
on an asynchronous streaming execution model. Asyn-
chronous processing is a pipeline-concurrent execution
model that exploits the availability of multiple execution
units in the system to run independent tasks concur-
rently. This strategy reduces idle stages and increases
resource utilization. It can also hide data transfer by
prefetching data. When a processing unit finishes the
current task, it can start subsequent tasks without delay.
In many circumstances, using this model significantly
increases the overall system throughput.

Asynchronous processing is accomplished using
streaming models for both tasks and data. Streaming is
an efficient model for parallel processing, in which a task
is divided into smaller entities to allow parallel execu-
tions. A stream is an abstraction of an execution unit;
in particular, it represents a sequence of commands that
are executed or accessed in a particular order. Pure data
streams determine data parallelism processing model,
while pure task streams determine the task parallelism
model. In practice, a stream may be data-based, task-
based, or a mixture. The only restriction in a stream
is the execution order that is satisfied by a sequential
consistency model [35], which makes a stream equivalent
to a synchronous process. Different streams, on the other
hand, may execute their commands out-of-order with
respect to each other.

3 IMAGE-SET PROCESSING OPERATORS

An image-set algorithm involves several image-set
operations, most of which are extensions of single-image
processing operations iterated over all input images. We
use the atlas construction algorithm (Algorithm 1) [26]
to illustrate this point. We build the image-set process-
ing framework upon the single-image high-performance
multi-scale processing framework proposed by Ha et
al. [25] to exploit the optimized performance of the
existing framework.

We define the image-set processing framework using
a construction method that builds regular image-set op-
erators from basic building blocks. This strategy allows

1: Input : N volume inputs
2: Output: Template atlas volume
3: for k = 1 to max iters do
4: Fix images Ik

i , compute the template Îk =

1

N

∑
N

i=1
Ik

i
wi∑

N

i=1
wi

5: for i = 1 to N do {loop over the images}

6: Fix the template Îk, solve pairwise-matching

problem between Ik
i and Îk

7: Update deformed image Ik
i with current velocity

8: end for
9: end for

Algorithm 1: Atlas construction framework

Fig. 2. General Multi-Input Multi-Output operators

a fine-grained and multi-level control of parallelism. It
provides different execution strategies to be applied in
each implementation, and therefore, to make a better use
of the available resources. Here, we classify basic image-
set operators into two main groups based on Flynn’s
taxonomy [23]: the Multiple-Input-Multiple-Output op-
erators (MIMO) and the Multiple-Input-Single-Output
operators (MISO).

The basic MIMO operators (Algorithm 2) are defined
as functions where the n-th output image depends only
on the n-th input image(s). These functions are the most
frequently used in image-set processing, as they are
direct extensions of single-image operations. Examples
of these operations include adding, shifting, scaling,
smoothing, filtering, de-noising images, and normalizing
the intensity range.

The MISO operators (Algorithm 3) produce either one
or just a small number of outputs. Examples include
the computation of an average image, image energy,
cross-correlation, cross-product of images, and finding
the maximal and minimal values.

The implementation of general image-set operators is
based on a decomposition strategy that breaks a complex
function into multiple, basic operations. For example,
consider a general MIMO function with the number of
outputs M different from the number of inputs N and
the k-th image to be output depends on multiple inputs.
This operation can be implemented as M instances of a
MISO operator (Figure 2).

Another group of frequently used image-set operators
is the sliding-window operator (Figure 3.a). This oper-
ator computes an output image based on all values in
a fixed-size sliding window of the input. This window
moves as we compute the next output image. As shown
on Figure 3.b, if we keep an input buffer with the
size of the sliding window, as the window moves, we
need to replace an entry of the window with the new

1: Input : N input images
2: Output: N processed output images
3: for k = 1 to N do
4: Upload the k-th image from the storage device to

the processing device
5: Process the input in-core on the processing device
6: Download the output image back to the storage

device
7: end for

Algorithm 2: Synchronous out-of-core MIMO operators



4

1: Input : N input volumes
2: Output: few numbers(sum, max/min, etc) or few

images
3: for k = 1 to N do
4: Upload the k-th image from the storage device to

the processing device
5: Process the input in-core on the precessing device
6: Update the accumulated output buffer on the pro-

cessing device
7: end for
8: Write the final output to the storage device

Algorithm 3: Synchronous out-of-core MISO operators

Fig. 3. Sliding window MIMO operators. (a) sliding win-
dow MIMO, (b) basic MIMO equivalent.

input data. In other words, the computation of a current
output requires only a single input. Algorithmically, it
is equivalent to the basic MIMO model. Overall, we
can implement arbitrarily complex image-set functions
based on the basic MIMO and MISO functions. We focus
our discussion on how to efficiently implement these
operators out-of-core.

The framework of Ha et al. [26] already has support
for image-set and large data processing through a GPU-
cluster implementation using MPI. It also offers a multi-
GPU implementation to exploit available computing
resources and to increase the amount of in-core GPU
memory on a single processing node. However, both
approaches are limited by the total amount of system
memory. The out-of-core approach we introduce here has
no restrictions on data input and can process the entire
3D-image brain dataset in a PC desktop equipped with
commodity GPUs.

We also offer a more flexible solution to existing
methods with two levels of streaming operations: out-
of-core GPU combined with in-core-CPU, and fully out-
of-core. The former utilizes the availability of the larger
CPU memory system; in some cases the CPU (but not the
GPU) memory may be sufficient for the entire computa-
tion. In the latter case, data that does not fit into CPU
memory is transferred across two memory levels: from
disk to CPU memory, and from CPU memory to GPU
memory. We show that our streaming strategies could be
generalized through multiple memory hierarchy levels.

In the following discussion, GPUs are processing devices
in the first out-of-core level; consequently, in-core mem-
ory refers to the GPU global memory, while the CPU
memory plays the role of storage devices.

4 ISP OUT-OF-CORE FRAMEWORK

We use synchronous implementations of the MIMO
and MISO operators (Algorithms 2 and 3) as refer-
ences for the correctness and performance improve-
ment of our asynchronous implementations. We compare
three different models to implement out-of-core image-
set operations: implicit, hardware-aware, and hardware-
independent. We show that the proposed strategies are
optimal. Before that, we discuss the best achievable
performance of an asynchronous algorithm.

4.1 Asynchronous optimal performance analysis

We base the analysis on two main assumptions. The first
one is that image-set operators are order-independent,
and therefore return the same results regardless of the
order of the input data. The order-independence as-
sumption allows us to define a processing order which
can be different from the order given as input. The
second assumption is that all images have similar sizes
and therefore require the same amount of running time.
While the former is satisfied with regular image-set func-
tions, the latter is normally fulfilled with pre-processing
the image-set data. Though our analysis is directly ap-
plied for the first level of out-of-core models, for the
sake of the simplicity and clarity of the illustrations, the
same analogy is applied for higher levels of out-of-core
processing.

To evaluate the performance, we use a typical hard-
ware configuration with three components: one compu-
tational unit (GPU) and two data transfer units (one
for uploading, another for downloading data). In the
performance analysis we use the following notation:

• n number of input images and ns number of execution
units;
• τi,j : run-time of the i-th execution unit on the j-th input
image;
• Ts, Ta : total synchronous/asynchronous processing
time;
• Tu, Te, Td: uploading, executing, and downloading run-
time per image;
• Ti total time spent by the execution unit i;
• Tu = n×Tu,Te = n×Te,Td = n×Td: total time spent in
the upload, execution and download processes;
• Tmax = max(T1, T2, · · · Tns

) maximum time spent by a
single execution unit.

We determine the optimal asynchronous run-time,
which we use as a reference to evaluate the efficiency
of the proposed implementation method. In the ideal
case, all execution units run independently in parallel.
However, since each corresponds to a single execution
entity, they perform tasks in sequential order. The total
time an execution unit spends is Ti =

∑n

j=1
τi,j , which

equals n× τi (where τi is the run-time of the i-th stream



5

on a single-image). Since a image-set operation is only
completed when all the execution units have completed
their tasks, the run-time of the entire operation is at least
Tmax = max(T1, T2, · · · Tns

) or Ta ≥ Tmax = n×τmax. This
is the optimum run-time that a system can achieve. Note
that with this hardware configuration, the maximum
time spent by an execution unit is given by τmax =
Tmax = max(Tu, Te, Td).

4.2 Asynchronous processing benefit

We estimate the performance benefit of an asynchronous
model, called by ra, as the ratio of the synchronous
processing run-time over the asynchronous run-time as:

ra =
Ts

Ta

=

∑ns

i=1
Ti

Tmax

. (1)

As defined before, Tmax = max(T1, T2, · · · Tns
), which

allows us to conclude that: ra ≤ ns. We call rp = ns

the potential performance benefit.
There are three interpretations we can draw from this

conclusion. First, for any processing model, the practical
speed up can not be higher than the number of streams
or concurrent tasks which can be physically performed
by the system. For example, on the system with only one
data transfer unit and one computational unit, we expect
a speed up ratio lower than 2. Second, the equality
happens when Tmax = T1 = T2 = . . . = Tns

, or the
system is balanced. In other words, we require load
balancing to achieve the maximum performance benefit
out of the system. Third, as we increase the number of
concurrent streams, we push the potential performance
benefit rp of a model even higher. That is, as we further
subdivide the workload, we provides more opportuni-
ties for the system to optimize the program and reduce
the maximum run-time Tmax. The performance favors
models with a higher number of streams.

We analyze next three different streaming models: one
implicit streaming model and two explicit approaches
(Algorithms 5 and 6). We demonstrate how these perfor-
mance strategies influence our streaming model design.

4.3 Implicit Streaming Model

The implicit streaming model (Algorithm 4) is solely
based on data parallelism. It assigns each image to a
stream, which works as a logical execution unit that
performs the entire processing pipeline (Figure 4). As
streams operate on different memory spaces, the data
transfer on a stream can overlap with processing tasks
on other streams.

streaming models (hardware-aware and hardware-
independent) which depend on task parallelism. The for-
mer maps each hardware execution unit to a single
stream, while the latter delineates a stream to a fixed
function.

Figure 4 illustrates the execution of an implicit stream-
ing model for a MIMO problem (Algorithm 4). It can be
seen that when the number of images is significantly
larger than the number of execution units, the overall

1: Input : N input volumes
2: Output: N processed output volumes
3: for k = 1 to N do
4: Load the data iImg[k] from storage device to

processing device, dk on the stream k-th
5: end for
6: for k = 1 to N do
7: Apply the operator on data do = oper(dk) on the

stream k-th
8: end for
9: for k = 1 to N do

10: Write output do to the storage device oImg[k] on
the stream k-th

11: end for

Algorithm 4: Implicit pipelining MIMO operator

Fig. 4. Implicit processing model for MIMOs

processing time is approximately n×Tmax, which is the
optimal run-time of asynchronous processing.

Although in the implicit model a higher benefit can be
achieved by having more streams, our analysis demon-
strated that this benefit has an upper bound on the num-
ber of hardware execution units in the system. Moreover,
the mapping from implicit stream to the real hardware
execution depends entirely on the system scheduler. The
optimal mapping is non-trivial; in fact, it is an NP-hard
problem. This helps to explain the difficulty of achieving
high performance with the implicit model.

4.4 Hardware-Aware Streaming Model

The hardware-aware streaming model, as the name
reflects, is based on the underlying system hardware,
in which exists a one-to-one mapping between streams
defined by the program and the real execution hardware
in the system. For example, assuming that the system
allows parallel data uploads and downloads using sep-
arated DMAs, there are three streams mapping to three

Fig. 5. Pipeline processing model for Multiple Images
Multiple Output



6

1: Input : N input volumes, device input buffers di[3]
and device input buffers do[3]

2: Output: N processed output volumes
3: for k = 1 to N + 2 do
4: if k <= N then
5: Load the data iImg[k] from storage device to

device buffer di[k%3] on the upload stream
6: end if
7: if k > 1 and k − 1 <= N then
8: Apply the operator on device buffer do[(k −

1)%3] = oper(di[(k−1)%3]) on execution stream
9: end if

10: if k > 2 and k − 2 <= N then
11: Write output do[(k− 2)%3] to the storage device

oImg[(k − 2)] on the download stream
12: end if
13: Synchronize streams
14: end for

Algorithm 5: Explicit pipelining MIMO operator

1: Input : N input volumes, device input buffers di[2]
and device input buffers do[2]

2: Output: few numbers(sum, max/min, etc) or few
images

3: for k = 1 to N + 1 do
4: if k <= N then
5: Load the data iImg[k] from storage device to

device buffer di[k%2] on the upload stream
6: end if
7: if k > 1 and k − 1 <= N then
8: Apply the operator on device buffer do[(k −

1)%2] = oper(di[(k−1)%2]) on execution stream
9: end if

10: Store/Accumulate result on processing device
11: Synchronize streams
12: end for

Algorithm 6: Explicit pipelining MISO operator

execution devices. The execution of this model for MIMO
problems is illustrated in Figure 5. A timing analysis
of the method shows that the processing time in this
case is also optimal. Because the hardware-aware model
reflects the actual execution of asynchronous processes in
the system, it requires developers to provide prior infor-
mation about the architecture of the underlying system.
In other words, it requires a different implementation
on different hardware. The performance benefit of this
model is limited by the number of streams or hardware
devices defined by the program.

4.5 Hardware-Independent Streaming Model

The last processing strategy, the hardware-independent
model, is a generalization of the hardware-aware model.
Instead of decomposing tasks based on the actual hard-
ware configuration, we assume that there exists one
special execution unit for every task, and that we can

Fig. 6. Although the hardware-independent model incor-
rectly predicts the system configuration, the performance
is still optimal.

assign each task a single stream. In the case of MIMO
operations, there are three primary tasks to apply for
each image: data upload, processing, and data down-
load. A system with two data transfer units and one
processing unit results in a streaming scheme similar
to the hardware-aware model; consequently, this model
also achieves the optimal run-time.

Usually there are more tasks than the actual number
of execution units. For example, in a commodity system
there is only one DMA to perform data uploading and
downloading. In this case, it is possible that several tasks
are mapped to the same execution unit (e.g. data upload
and download can map to the same unit). The question
is how efficient it can be when it incorrectly predicts the
underlying system–in particular, when there are multiple
streams sharing the same execution unit.

Data independence results in no performance loss,
as the system can instantly switch between tasks. This
function is performed automatically, since the shared
information is available only at the system level. Fig-
ure 6 illustrates the run-time analysis of an optimal
solution for a MIMO operation in a system with one
DMA and one ALU using the hardware-aware and
hardware-independent implementations. It shows that
the hardware-independent model incorrectly predicts
the underlying execution system, but still performs op-
timally.

4.6 Discussion on streaming modes

The primary advantage of the implicit approach is that
developers are relieved from the burden of asynchronous
scheduling. Furthermore, the stream has the same ex-
ecution flow as when processing a single image. No
further changes or synchronization is needed since each
stream works on different data. However, it has several
disadvantages:

• The implicit model does not reduce the memory usage
and all the data must be loaded in-core. Hence, it can’t
be used for out-of-core processing;
• It requires the decomposition of input data and combi-
nation of output results, which is not always possible;



7

• Although automatic scheduling hides executions from
developers, understanding the physical execution is es-
sential to profile the performance and to estimate the
benefit of the method (an estimation that is an important
factor for making optimization decisions);
• The performance efficiency of the implicit streaming
model is largely dependent on the scheduling algorithm
used by the operating system or the concurrent con-
troller. In fact, the optimal scheduling problem is NP-
hard. This explains why, in practice, this approach does
not always provide the predicted optimal performance;
• The implicit model has an order-dependency that limits
the execution of streams. In particular, streams execute in
the same order of the logical flow: uploading-processing-
downloading. However, reordering is an effective strat-
egy to handle degenerate cases, including synchronous
functions calls.

Most of the weaknesses of the implicit model can be
handled by explicit approaches:

• Explicit methods require a lower memory footprint
O(C), compared to O(N) of the implicit model. The
number of memory blocks is either equal to the number
of hardware devices in the hardware-aware model, or
to the number of decomposed tasks in the hardware-
independent model. Therefore, they are suitable for out-
of-core processing;
• As it is always possible to divide an out-of-core algo-
rithm into three primary tasks, it is easier to decompose
tasks than partition data;
• The explicit method uses an explicit scheduler to con-
trol execution. This allows developers to profile the per-
formance of their code before execution. It also reduces
the complexity of the scheduling problem to a trivial
mapping, so it is optimal even without any automatic
scheduler support. And finally, it helps to understand
why degeneracy happens, how it affects performance,
and how to handle it.

Between the two explicit approaches, the independent
model is preferred in practice over the hardware-aware
for a number of reasons. The hardware-aware model
requires prior information about the underlying archi-
tecture of an execution system. It tights to the particular
hardware, and hence needs to be rewritten to work
optimally on a new hardware system. The hardware-
independent model is a more flexible model based on
functional decomposition. It depends only on the algo-
rithm and hence it is more scalable. Also, the hardware-
independent model can adapt to changes of the un-
derlying hardware, and hence is easier to maintain.
As illustrated, a hardware-independent model can run
optimally on both single-DMA and dual-DMA systems.

The hardware-aware model uses less memory than
the hardware-independent model, thus it might be the
method of choice on systems with limited memory ca-
pacity, such as embedded systems. In addition, it can
be used as a fall back solution to extend the system
processing capability.

5 STREAMING MODELS STAGE RE-ORDERING

The aforementioned approaches are simple and theo-
retically optimal. They are straightforward to transfer
from single-image processing to image-set processing
through the generalization of basic image-set operators.
However, the optimal performance is hardly achieved
in practice. As we show here, the primary reason is the
streaming degeneracy.

5.1 Forced Synchronizations

There are three primary reasons that performance de-
generacies appear in streaming models:

• Synchronous function calls;
• Asynchronous stream mismatches;
• Cross-stream function calls.

The most common reason for an unintended syn-
chronous function call is that the application requires
an external call to a library function that was designed
for synchronous execution. Another reason is the mixed
use of synchronous and asynchronous functions. Our
solution to the problem is to use a framework that fully
supports asynchronous execution [40] for all essential
functions. In addition to minimizing the demands for
external function calls, it improves the uniformity and
maintainability of the code.

Even when all functions support asynchronous execu-
tion, they might be designed using different strategies,
which are often incompatible and can’t work together
efficiently. For example, a kernel function defined to run
on a logical stream is incapable of running in-parallel
with a data-transfer function on the physical stream with
the same identity. These functions frequently require
explicit synchronization to switch between the different
asynchronous modes. Again, an unified framework pre-
vents the misaligned execution models from happening.
We have proved our asynchronous execution mechanism
approach to be simple and effective. Supporting asyn-
chronous execution at the run-time development level
guarantees this uniformity, and therefore a cross-library
execution model is achievable.

The third reason, cross-stream synchronization, occurs
when a stream requires data from different streams. An
example is the traditional implementation of reduction
functions (sum, average, maximum/minimum values
etc.) in CUDA. Though the computation runs on GPUs,
outputs of these functions are copied from GPU memory
to CPU memory to be used as parameters of subsequent
calls or branching on CPUs. This is a cross-stream func-
tion between the computational stream on GPUs and the
transfer data stream between GPUs and CPUs. Though
the amount of data transfer between CPUs and GPUs
is minimal, it requires any previous data transfers to be
completed, flushing the pipeline and resulting in a wait.
Figure 7 shows that the copy of the reduction result to
the host, which takes only a negligible amount of time
and has to be delayed until the data transfer pipeline
becomes available. Meanwhile, the GPUs are idle, thus
wasting their computational power.



8

Fig. 7. Though it requires a minimum amount of data
transfer, a cross stream function creates a forced synchro-
nization that causes an unintended delay in the execution
of the pipeline. In this example the GPUs are waiting for
the reduction result to update on the CPU.

The popularity of reduction functions is the main
obstacle for applying asynchronous models on existing
GPU architectures. This cross-stream synchronization is
difficult in profiling and might fail in some cases. Typ-
ically, the profiling tool, a probe, is inserted into the
execution stream to collect data. As an event is triggered,
the probing data needs to be copied from the device to
the host for in-time visualization purposes. This process
“steals” the data transfer pipeline, and unintentionally
becomes a synchronization point. As a result, the profile
result fails to measure the behaviour of the program
in practice. This explains why general profiling tools
such as the CUDA profiler [13] incorrectly reports the
performance of streaming applications. The lack of pro-
filing tools limits the understanding of streaming and
pipeline processing techniques. Fortunately, the cross
stream synchronization can be handled for most cases in
practice. We propose two approaches for these problems.

5.2 Solutions for cross-stream synchronization

Our first solution to the reduction-like function is an
on-device processing model that outputs the result only
to device memory. However, this solution requires sub-
sequent functions to use on-device parameters. While
on-device parameters seem to add difficulties and in-
cur a performance penalty on the program, we have
found a solution that minimizes this influence based
on texture caching. As shown on Figure 8, function
calls using parameter caching are as fast as regular
GPU function calls that allocate parameters from shared
memory. The CPU code branching can be delayed or
removed completely by moving it from CPUs to GPUs.
Note that GPUs still provide maximum performance
if the branching happens on the warp boundary (or
SIMD width boundary). The same mechanism can be
applied for profiling problems at the price of delayed
visualizations. We collect the data in the device memory,
and only release results to the host when an explicit
synchronization is called, which is regularly required in
a program. The delayed visualization, which allows for
minimal invasive profiling, is the method of choice for
most applications.

A more complete solution for the problem depends
on a special mechanism on the platform that allows
a non-invasive, small data transfers to instantly copy
the data from and to the device without using the

Fig. 8. Performance test with the GPU function. The
texture memory access gives the same performance as
the shared memory parameter models, global memory
access is significantly slower.

Fig. 9. The transformation from a synchronous model to
an explicit streaming model preserves semantic correct-
ness.

large data communication specialized DMA. This special
communication channel is able to run concurrently in
run-time with other CPU and GPU computations, and
other data channels. This will naturally remove the need
of in-device parameter functions, reducing the complica-
tion and improving the consistency of application code.
It also allows in-time visualization for profiling tools,
especially critical to real-time applications.

5.3 Re-ordering Pipeline Stages

In many cases a forced synchronization is still unavoid-
able, but its negative effects can be minimized using
a reordering technique. This out-of-order execution is
applied in modern compilers to reduce the number of
mis-predicted branches. It helps to avoid data spilling, to
keep instruction pipelines filled, and especially, to allow
parallel execution on a system of multi-processors.

In the case of degeneracies in streaming modes, the
reordering optimization cannot be done automatically
using the compiler. The reason is that the upload and
download tasks are I/O processes that have side effects.
This constrains the order of function execution, and
requires the compiler-generated code to execute in the
same order as it appears in the API levels. Even worse,
the forced synchronous functions impose a restriction in
the order of the outputs. Therefore, reordering without
compiler support must be done explicitly.

Allowing different streams to work in independent
images gives explicit models a way to break the order-
execution dependency inside the loop, thus replacing it



9

Fig. 10. Streaming optimization using a reorder-
ing technique eliminates the negative effect of forced-
synchronous function.

with an equivalent order-independent streaming model.
As shown in Figure 9, the order dependency of the
original loop is still preserved in the order of loop
execution. In other words, the logical correctness of the
processing model is guaranteed by construction.

As the order of streams inside a loop loses importance,
we can change the order of streams at the API level
from the regular order of upload-process-download to
upload-download-process, or even to process-upload-
download. The ability to change the ordering allows
streaming optimization, which is particularly effective
when asynchronous stream degeneracies are unavoid-
able.

In the implicit model, when the synchronizations ex-
ists in the execution process, it is not possible to overlap
the upload and download streams. The upload has to
finish before the synchronization points, and the down-
load only happens after the synchronization points. As
shown on Figure 10, changing the order of streams in
the code using the explicit model allows the upload
and download streams to fully overlap, even when a
synchronization point is present. Thus, reordering helps
reduce the run-time per iteration, as well as the overall
run-time. The ability to semantically reorder the stream
execution in the code allows us to adapt a performance
heuristic that profiles the performance and selects the
optimal order.

6 MAPPING STREAMING MODES TO SYSTEMS

It is critical in practice to map the streaming mode to the
underlying functions of the system. In CUDA, streams
have a one-to-one mapping to CUDA streams [14]. How-
ever, this relationship is not necessary true in other het-
erogeneous platforms. Fortunately, as CPUs have been
used to coordinate operations in the system, we can
exploit CPU threading models to define streams. In this
model, each stream is controlled by a single thread
with a fixed function. These function threads are created
at the beginning of the program and destroyed at the
exit. In the hardware-independent model, the number
of threads is based on the number of stream functions,
rather than the number of execution hardware in the

Warp synchronization

_
_
sy

n
th

re
ad

s(
)

_
_
th

re
ad

fe
n
se

()

(i
m

p
lic

it
 S

IM
D

 
sy

n
ch

ro
n
iz

at
io

n
)

Thread block synchronization

Inter block synchronization

(C
al

l 
b
o
u
n
d
ar

y)

GPU memory synchronization cu
d
aT

h
re

ad
sy

n
ch

ro
n
iz

e(
)

CUDA stream synchronization

Async-IO synchronization

+

p
th

re
ad

_
b
ar

ri
er

_
w

ai
t(

)

ai
o
_
fs

yn
c(

)

+

CPU thread synchronizationISP_synchronization()

Increasing level of synchronization in 
ISP-CUDA stream extension

Fig. 11. Synchronization strategy for ISP CUDA stream-
ing extension model

system. The stream synchronization is performed using
barriers. When two streams access the same resource, the
resource is protected with a mutex to serialize the access.
The job responsible for submitting streams is queued to
be executed in order when resources become available.

This streaming model can also be exploited on the
CPU with CUDA stream contexts. In the CUDA run-
time model, streams are defined explicitly for GPU-run-
time functions (through cudaStream t objects), with no
streaming mechanism for CPU counterparts. We use the
CPU threading model to create multiple CPU execution
streams. The synchronous barrier uses the GPU synchro-
nization mechanism (e.g. cudaThreadSynchronization) and
the CPU thread barriers (Figure 11).

Another option for asynchronous threading is to use
the asynchronous data transfer (AIO) provided by Linux
systems [33], or the equivalent IO Completion Port on
Windows [17]. This is an option if the CPU execution
streams only involve data transmission between external
storage and the main CPU memory. The synchronization
barrier is combined between the GPU synchronization
and the asynchronous transfer barrier (Figure 11).

7 ASYNCHRONOUS PROCESSING STRATEGY

The generality of our asynchronous processing model
allows us different implementation strategies to improve
the performance of image-set processing functions. Data
transfers are often the performance bottleneck for paral-
lel systems, and have direct impact in the performance of
asynchronous processing since devices have to wait for
the data to become available. As discussed in Section 4.2,
the system yields the maximum performance when the
load among devices is balanced. We can improve the
overall performance if we are able to increase computa-
tion on the processing devices.

This can be achieved using data compression. In this
approach, data is stored in a compressed format to
reduce the overall bandwidth. Compression algorithms
are chosen based on the requirements of each applica-
tion, which take into account the trade-off between the
compression ratio and the data decompression quality.
Data is received in the processing device, which de-
compress data to a format that can be processed. This
decompression step increases the on-device processing



10

0

17.5

35.0

52.5

70.0

2 4 6 8 10 12 14 16 18

Data compression throughput

P
ro

c
e

s
s
in

g
 b

a
n

d
w

id
th

 (
G

B
p

s
)

Number of elements (in millions)

Decompression

Compression

Fig. 12. Throughput measurement of our pseudo loss-
less data compression for floating point inputs.

time and potentially impacts the load balancing. We
might also consider to apply data compression to the
generated output. This can reduce the data downloading
bandwidth, as well as increase the processing load on
the parallel processing devices, which might improve the
overall load-balancing.

7.1 High performance pseudo loss-less data com-
pression for floating-point data

Choosing the right data compression strategy for an
out-of-core processing is essential. In this situation, the
compression method must allow real-time processing,
with compression and decompression rates that match
the bandwidth of out-of-core devices. As data com-
pression increases the overall processing time, it might
have a negative impact if it becomes a bottleneck. Data
compression implementations often requires a trade-off
between compression ratio, data reconstruction quality
and performance penalty. Depending on the type of data,
it is possible to design simple but effective solutions.
Here we consider floating point data, which is the most
popular data format in image processing.

Floating-point data has irregular, dynamic represen-
tations which often lead to low compression ratios us-
ing general integer, dictionary-based techniques such as
LZW, Gzip, Bzip [3]. These techniques are also devel-
oped specially for serial processing model, and make
it difficult to implement effectively on parallel hetero-
geneous devices such as GPUs. Furthermore, data com-
pression and decompression generally show data depen-
dencies, which allow it to leverage parallel computation.
We propose a simple pseudo loss-less compression [10]
strategy, which leads to a simple compression and de-
compression strategy for floating-point data.

Floating-point operations are prone to inaccuracy. It
is generally safe to assume that linear operations on
floating-point data do not introduce arithmetical er-
rors to existing algorithms. There is an interesting ob-
servation regarding the floating-point presentation of
numbers in the range of [2n; 2n + 1), which share the
same leading exponential and sign bits. These bits are

considered redundant for data storage, which allows a
reduction in the number of information bits from 32-bits
to 24-bits. For this purpose, fractional data is represented
using a normalized linear mapping from [a; b] to the
[0.5; 1) range. This mapping yields an immediate 25%
compression ratio, as we can store four floating-point
numbers using only three 32-bit integers. The only extra
information required for the mapping process is the
range of the input data that can be efficiently computed
using a parallel reduction algorithm. This range is also
needed to restore the compressed data to the initial value
in the decompression process. Both the reduction and
mapping operator use the highest memory bandwidth
available, equivalent to a memory copy [27]. Figure 12
shows that this strategy can run at 50 GBps for compres-
sion and at 65 GBps for decompression.

An additional advantage of using our compression
scheme is the ability to immediately extend the process-
ing capability of each level in our out-of-core processing
hierarchy by a factor of 1.33. Therefore, if we are capable
of processing 300 subjects on the first level, the compres-
sion stream is capable of processing 400 subjects without
requiring significant changes to existing algorithms.

In addition, the linear mapping preserves the data
coherency and allow it to be exploited by further com-
pression schemes, such as differential compression tech-
niques. The loss-less compression predictive coding of
Isenburg et al. [32] or FPC coder by Burtscher and
Ratanaworabhan [8] can also be applied, as these coding
techniques can be implemented efficiently on heteroge-
neous systems. Note that our compression scheme re-
quires reduction, which potentially leads to cross-stream
synchronization. This can be prevented using prior input
information or our on-device parameter models.

8 HARDWARE -INDEPENDENT MODEL EXTEN-
SIONS
8.1 Extension to a Full Out-of-Core Framework

The extension from a partial out-of-core model (with
one level of memory hierarchy) to a full out-of-core
model (with two-memory levels) comes naturally with
the hardware-independent model. We realize the tran-
sition to a fully out-of-core model by adding two more
stages to the algorithm pipeline. The first stage is at the
start of the pipeline, corresponding to the upload from
disk to CPU memory, and the second stage is at the end
of the pipeline, corresponding to the download from the
CPU memory to disk. The execution of this model for
MIMO operation is given in Figure 13.

Using the same logic as in the partial out-of-core
model, we can prove that the hardware-independent
model for out-of-core processing is optimal. We use the
term full to indicate that data can be stored on disk of
a single machine. Moreover, the hardware-independent
model can be further extended to other out-of-core mod-
els, such as the one with a data stream on the network
in a system with higher memory hierarchy levels, and
we can still prove that the proposed models are optimal.



11

Fig. 13. The implementation of hardware-independent
model for “full” out-of-core image-set processing.

Fig. 14. Extension of the hardware-independent model
with more CPU processing stages. The architecture is
another option to improve the load balancing for hetero-
geneous systems.

8.2 Extension with more CPU processing stages

In the discussion above, CPUs are used as control de-
vices that perform external IOs and coordinate streaming
units. There are circumstances when the processing time
is higher than data transfers. In such cases, we can
improve load balancing using the CPU (or multi-CPUs)
as processing devices to reduce the workload of GPUs.

Due to the lower processing capability, CPUs are
suitable for pre-processing stages (e.g. raw data pro-
cessing, data normalization, data compression, etc.) or
post-processing stages (e.g. data de-normalization, data
decryption, etc.). Figure 14 shows an independent asyn-
chronous processing model with input data compression
on CPUs. The strategy increases the effective bandwidth
between CPUs and GPUs without adding further work-
load to GPU processing devices. This is also the model
for a hybrid processing system, which aims to exploit
the computational power of the underlying hardware.

9 RESULTS

The system we used in our experiments is a PC desktop,
Intel Core i7-980X, 12-GB DDR3 1600, with a single
NVIDIA GTX 480. Communication from the host to GPU
is via the external x16 PCIe bus and is controlled by
a single DMA. The program is compiled with CUDA
NVCC 3.2. Run-time of each function is measured in
milliseconds.

We made a synthetic test on a data set of 32 volumes,
sized 256×256×256. The test mimics a typical out-of-core
image-set processing program using three processes:
upload, execution, and download. Note that the execu-
tion time and data-transfer times scale propotionally to
the number of images and the sizes of the image, we

Fig. 15. Runtime comparison of different streaming
strategies in ideal conditions.

also achieve similar performance curves with different
number of images ranging from 10 to 180 (the maximum
number of volumes we can fit onto the 12GB of memory).

As mentioned in Section 7.1, floating point compres-
sion strategy allows us to extend the processing ca-
pability in the first level to 240 compressed volumes
immediately (a higher number might be achieved with
more sophisicated compression schemes).

The existing architecture on commodity hardware has
a single DMA unit, therefore the upload and download
processes have to be performed sequentially. This infor-
mation allows a two-device, hardware-aware model with
only two memory buffers. There are two options for its
implementation: (1) the upload of the k-th volume in
parallel with the execution and the download of (k−1)-
th volume (U ED);(2) the upload and execution of the
k-th volume in parallel with the download of (k − 1)-th
volume (UE D). where U, E, and D stand for Upload,
Execution and Download respectively. Our hardware-
independent model still decomposes the algorithm into
three processes regardless of the system configuration.
There are six permutations for the implementation of
the hardware independent model: UED, UDE, EDU,
EUD, DUE, and DEU. We have also experimented with
six permutations of our compression scheme, displayed
in dashed lines and the post-fix C in the name (i.e.
UED C). We also keep track the best performance among
non-compression schemes—the HI curve, and among
compression schemes—the HI C curve.

Since it is not possible to perform data upload and
download in parallel, there are actually only 3 distinct
performance pairs UED-DEU, UDE-DUE, and EDU-
EUD, thus we show only one performance curve for each
pair. The same approach is applied for the compression
schemes.

9.1 Full asynchronous processing

First, we tested using the ideal case: a full asynchronous
processing function without a single synchronous call
in the execution. We measured the influence of the
ratio between computation and data transfer (processing
ratio) on the performance of different asynchronous
processing models, denoted by re = E/(U + D). This



12

ratio indicates different types of out-of-core functions:
data-transfer dominance (r << 1), processing dominance
(r >> 1), and balanced functions (r ≈ 1). In the ideal
case, the results on Figure 15 show:

• In all tests, the six hardware independent implementa-
tions give us the same performance. The six compression
schemes also give identical results. The hardware-aware
and implicit models give similar runtimes;
• If the function is transfer-dominant (re < 0.5), all mod-
els achieve the optimal solution (equivalent to the data
transfer), and the execution time is completely hidden.
The compression scheme which mainly reduces transfer
time gives an immediate speed up of 25% over non-
compression technique;
• When the execution time is larger than the upload
or downloading time, the first two models still give
strong performances, approximately Tu + Te. However,
it is not the optimal of max(Tu + Td, Te) achieved
with the hardware-independent model. In this case,
the hardware-independent model is faster than the
hardware-aware model because the awareness from the
hardware system requires that a double-image memory
buffer is used instead of a triple one used by a hardware
independent model. In this configuration, it is impossible
for the hardware-aware models to have a single stream
with both the upload and the download when the other
stream is only processing. This condition is required to
achieve the best performance;
• When the function is balanced or processing-dominant
(re ≥ 1), the hardware-independent model gives the
optimal runtime Te and the data transfer is completely
hidden. Note that this is also the condition for ISP out-of-
core functions to outperform ISP in-core implementation
since the in-core version will spend Te + n × Tu;
• The asynchronous function gives the best speedup in
comparison to the synchronous models when the loads
between two execution units are balanced (re = 1);
• The turning point of the compression scheme happens
earlier than non-compression counterparts due to less
amount of data to transfer and the adding compres-
sion/decompression load to execution process;
• When the process is balanced or execution dominant,
the execution fully hides the data transfer. The com-
pression scheme is no-longer effective, and might even
reduce the overall performance.

9.2 Synchronous functions

Second, we tested a synchronous function. We fixed
the run-time of three basic processes, but changed the
position of the synchronous function inside the execution
process to measure the influence of sync points inside
the functions to different streaming models through
the synchronous ratio rs = E1/(E1 + E2). From our
experiments (detailed result graphs can be found in the
appendix) we conclude:

• The position of the sync point within the asynchronous
code directly affects the performance of the given imple-
mentations;

• The implicit model no longer gives us the optimal result
and is as slow as the synchronous implementation. It
simply cannot find a schedule for asynchronous execu-
tion;
• The hardware-aware model cannot give optimal results
in all the tests. However, it is still far better than the
implicit model. Note that their two implementations also
give different runtimes;
• The three hardware-independent pairs give different
performance characteristics but in essence, the best re-
sult is always achieved with one of the hardware-
independent implementations;
• When the execution is low, the UED (or DEU) strategy
gives the best performance. Similarly, the UED C (or
DEU C) is the best among compression schemes;
• As the execution increases, the EDU (or EUD) performs
better in the low synchronous ratio region, the UED (or
DEU) is favourable in the middle range, while the DUE
(or UDE) scheme is best in the upper range. The same
arguments hold for the compression schemes;
• Similar to the ideal condition, a compression scheme
shows the effectiveness when the execution ratio re is
low, but it becomes less efficient when this ratio increases
and is even slower than non-compression approaches
when this ratio is high (above the balance region).

9.3 Regular out-of-core functions

On the third experiment, we focus on the regular out-of-
core function sets such as a maximum value of all im-
ages, normalization, averaging, Gaussian filtering, prod-
uct (energy computation), temporal image smoothing
using bilateral filter for movie data, and atlas build-
ing. The results from Table 1 confirm that when the
computation only requires simple functions (max, prod-
uct, normalization, averaging, etc. ), the asynchronous
streaming does give you the benefit of hiding the compu-
tational cost. However, it is negligible in comparison to
the transfer cost. The compression scheme significantly
improves the performance due to reduced amounts of
data. As the complexity of the functions increases (for
example, Gaussian filtering functions), we start seeing
significant benefits of asynchronous streaming strategies,
especially with the hardware-independent model. On the
other hand, for expensive processing functions such as
bilateral temporal image filtering for movie data, we
can completely hide the data transfer time by execution;
however, it also leads to low performance benefits in
comparison to a simple synchronous approach.

In atlas construction, which is taken on the ADNI
dataset that we mentioned on Figure 1, as we increase
the complexity of computational functions and reduce
the cost of data transfer by merging all the functions to-
gether on a single loop, we yield significant performance
improvement over the synchronous out-of-core version.
The performance is comparable to the incore perfor-
mance (execution time only) while we could process a
significant amount of data much larger than that of an in-
core version. Besides increasing the performance about



13

10%, the compression scheme allows us to process 240
brain volumes on the first out-of-core level in compari-
son to 180 subjects with a non-compression approach.

Overall, results confirm our theoretical analysis. All
the strategies are able to achieve optimal performance;
however, only the hardware-independent model gives
the best performance in all tests. In the degenerate
cases, the implicit model completely fails. The pres-
ence of synchronization points makes it impossible to
find a efficient scheduling automatically. Note that in
this case, a greedy approach, which immediately exe-
cutes whenever the resource is available, also fails. The
hardware-aware model gives better performance even
with the degenerate cases, although it is not optimal.
It is always possible to find the best runtime between
hardware-independent implementations. In other words,
the optimal performance is always achievable with the
hardware-independent model. Our compression scheme
could significantly increase the performance from 10 to
25% with minimal additions to the existing framework.

10 CONCLUSIONS

In this paper, we presented an optimized, parallel,
image-set processing framework on heterogeneous com-
modity systems extending from the existing single-
image, parallel processing framework. We introduced
image-set operators, serving as the connection between
the single-image processing model and the image-set
processing variant. We proposed the MIMO and MISO
image-set operators, which are used to construct other
image-set operators, allowing us to build a image-set
processing framework.

Optimal streaming models were presented for the
image-set processing framework. We analyzed the ad-
vantages and disadvantages of various streaming strate-
gies, and proposed a generalized streaming model
based on functional decomposition that is optimal,
hardware-independent, and highly scalable on future
hardware. Experimental results show that our hardware-
independent model adapts to underlying hardware con-
figurations, out-performs other streaming strategies, and
gives optimal performance in all tests.

We also evaluated the efficiency of streaming models,
and presented a quantitative evaluation that serves as
a model for developers. We investigated an optimal
streaming strategy in unfavorable conditions based on
reordering from order-independent properties of the
explicit-streaming models. We also gave insights to the

Function U E D Sync Impl H A H I HI C

Max 347 13 0 360 349 349 349 280

Energy 692 20 0 710 698 700 698 540

Averaging 347 20 11 378 360 363 361 293

Normalization 347 28 322 694 696 687 677 567

Gaussian 347 431 322 1099 735 770 678 613

Bilateral 448 7342 418 8205 NA 7832 7385 NA

Atlas 201446 213423 135958 555204 NA 372567 340356 292567

TABLE 1
Runtime comparison of regular functions in practices

with different streaming strategies.

causes of unfavorable streaming conditions that help
developers locate the performance degradation points in
their implementations. Though we use a GPU computa-
tional model to illustrate the efficiency, our framework
makes no specific assumptions about the underlying
architecture and hence can be generalized to any het-
erogeneous parallel processing system.

Acknowledgments

We would like to thank Thomas Fogal and the anony-
mous reviewers for insightful discussions and con-
structive comments that helped us to substantially im-
prove this paper. This research has been funded by
NIH grant: NIBIB 5R01EB007688, UCSF grant NCRRR
(P41 RR023953), CNPq 200498/2010-0, 569239/2008-7,
and 491034/2008-3), and NSF grants CNS-0751152 and
0844572 as well as the Intel Visual Computing Institute.
Linh Ha is partially supported by Vietnamese Education
Foundation fellowship.

REFERENCES

[1] A.M. Alattar, A probabilistic filter for eliminating temporal noise in
time-varying image sequences, ISCAS ’92. Proceedings., vol. 3, May
1992, pp. 1491 –1494.

[2] J. Bittner, M. Wimmer, H. Piringer, and W. Purgathofer, Coherent
hierarchical culling: Hardware occlusion queries made useful., Comput.
Graph. Forum (2004), 615–624.

[3] G.E. Blelloch, Introduction to data compression, Carnegie Mellon
University (2010).

[4] R. Bordawekar, A. Choudhary, K. Kennedy, C. Koelbel, and
M. Paleczny, A model and compilation strategy for out-of-core data
parallel programs, SIGPLAN 30 (1995), no. 8, 1–10.

[5] V.M. Bove, Jr., and J.A. Watlington, Cheops: A reconfigurable data-
flow system for video processing, ITCS’ 95, 1995, pp. 140–149.

[6] J.M. Boyce, Noise reduction of image sequences using adaptive motion
compensated frame averaging, ICASSP’ 92, Proceedings, vol. 3, Mar
1992, pp. 461–464.

[7] A.D. Brown, T.C. Mowry, and O. Krieger, Compiler-based i/o
prefetching for out-of-core applications, TCS 19 (2001), no. 2, 170.

[8] M. Burtscher and P. Ratanaworabhan, High throughput compression
of double-precision floating-point data, DCC’07, Proceedings, 2007,
pp. 293–302.

[9] E. Caron, F. Desprez, and F. Suter, Out-of-core and pipeline tech-
niques for wavefront algorithms, IPDPS’ 05. Proceedings. 01 (2005).

[10] T.-J. Chen and K.-S. Chuang, A pseudo lossless image compression
method, CISP’ 10, vol. 2, Oct 2010, pp. 610 –615.

[11] Y.J. Chiang, J. El-Sana, P. Lindstrom, R. Pajarola, and C.T. Silva,
Out-of-core algorithms for scientific visualization and computer graph-
ics, IEEE Vis. (2003).

[12] G.E. Christensen, M.I. Miller, M.W. Vannier, and U. Grenander,
Individualizing neuroanatomical atlases using a massively parallel com-
puter, Computer, vol. 29, 1996, pp. 32–38.

[13] NVIDIA Corp, Compute Visual Profiler User Guide, Oct 2010.
[14] , NVIDA CUDA Programming Guide 3.2, Oct 2010.
[15] B.C. Davis, P.T. Fletcher, E. Bullitt, and S. Joshi, Population shape

regression from random design data, IJCV 90 (2010), no. 1, 255–266.
[16] E. Derzapf, N. Menzel, and M. Guthe, Parallel view-dependent out-

of-core progressive meshes., VMV, 2010, pp. 25–32.
[17] T.R. Dial, Multithreaded asynchronous io & io completion ports.
[18] F. Dufaux and F. Moscheni, Motion estimation techniques for digital

tv: a review and a new contribution, IEEE, Proceedings 83 (1995),
858 –876.

[19] A. Eklund, M. Andersson, and H. Knutsson, Phase based volume
registration using CUDA, ICASSP’ 10, Mar 2010, pp. 658 –661.

[20] T. Engelhardt and C. Dachsbacher, Granular visibility queries on the
gpu, I3D ’09, Proceedings, I3D ’09, 2009, pp. 161–167.

[21] R. Farias and C.T. Silva, Out-of-core rendering of large, unstructured
grids, ICGA’ 01 21 (2001), 42–50.



14

[22] P.T. Fletcher, R.T. Whitaker, R. Tao, M.B. DuBray, A. Froehlich,
C. Ravichandran, A.L. Alexander, E.D. Bigler, N. Lange, and
J.E. Lainhart, Microstructural connectivity of the arcuate fasciculus
in adolescents with high-functioning autism, NeuroImage 51 (2010),
no. 3, 1117–1125.

[23] M.J. Flynn, Some computer organizations and their effectiveness, ITC’
72 C-21 (1972), 948 –960.

[24] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S.M. Seitz,
Multi-view stereo for community photo collections, ICCV’ 07, Oct
2007, pp. 1 –8.

[25] L.K. Ha, J. Kruger, P.T Fletcher, S. Joshi, and C.T. Silva, Fast parallel
unbiased diffeomorphic atlas construction on multi-graphics processing
units, EGPGV’ 09. Proceedings., 2009.

[26] L.K. Ha, J. Krüger, S. Joshi, and C.T. Silva, Multiscale Unbiased
Diffeomorphic Atlas Construction on Multi-GPUs, vol. I, Elsevier, Jan
2011.

[27] M. Harris, Optimizing Parallel Reduction in CUDA, 2007.
[28] J. Hays and A.A. Efros, Scene completion using millions of pho-

tographs, TOG 26 (2007).
[29] H. Hoppe, Progressive meshes, SIGGRAPH’ 96, Proceedings, 1996,

pp. 99–108.
[30] Q. Hou, X. Sun, K. Zhou, C. Lauterbach, and D. Manocha,

Memory-scalable gpu spatial hierarchy construction, TVCG 17 (2011),
no. 4, 466 –474.

[31] C. Hu, G. Yao, J. Wang, and J. Li, Transforming the adaptive
irregular out-of-core applications for hiding communication and disk
i/o, OTM’07. Proceedings. Part II (2007).

[32] M. Isenburg, P. Lindstrom, and J. Snoeyink, Lossless compression
of predicted floating-point geometry, Comput. Aided Des. 37 (2005),
869–877.

[33] M.T. Jones, Boost application performance using asynchronous i/o, IBM
developerWorks (2006).

[34] S. Joshi, B. Davis, M. Jomier, and G. Gerig, Unbiased diffeomorphic
atlas construction for computational anatomy, NI 23 (2004), 151–160.

[35] L. Lamport, How to make a multiprocessor computer that correctly
executes multiprocess programs, ITC’ 79 28 (1979), 690–691.

[36] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and
D. Manocha, Fast bvh construction on gpus, EG’ 09, vol. 28, 2009,
pp. 375–384.

[37] A. Macovksi, Tolerating latency through software-controlled data
prefetching, en.scientificcommons.org (1994).

[38] H. Meuer, China grabs supercomputing leadership spot in latest rank-
ing of world’s top 500 supercomputers, Nov 2010.

[39] T.C Mowry, A.K. Demke, and O. Krieger, Automatic compiler-
inserted i/o prefetching for out-of-core applications, OSDI’ 96, Proceed-
ings 30 (1996), no. si, 3–17.

[40] S Preston, L.K. Ha, and S. Joshi, http://www.sci.utah.edu/
software.html, AtlasWerks: High-performance tools for diffeo-
morphic 3D image registration and atlas building.

[41] S. Rixner, W.J. Dally, U.J. Kapasi, B. Khailany, A. López-Lagunas,
P.R. Mattson, and J.D. Owens, A bandwidth-efficient architecture for
media processing, MICRO 31th. Proceedings., 1998, pp. 3–13.

[42] M. Roberts, M.C. Sousa, and J.R. Mitchell, A work-efficient gpu
algorithm for level set segmentation, SIGGRAPH’ 10, Posters, 2010,
pp. 53:1–53:1.

[43] D. Scherzer, L. Yang, and O. Mattausch, Exploiting temporal coher-
ence in real-time rendering, SIGGRAPH Asia’ 10 Courses, SA ’10,
2010, pp. 24:1–24:26.

[44] N. Snavely, R. Garg, S.M. Seitz, and R. Szeliski, Finding paths
through the world’s photos, T0G 27 (2008), 15:1–15:11.

[45] N. Snavely, S.M. Seitz, and R. Szeliski, Photo tourism: Exploring
photo collections in 3D, SIGGRAPH’06, Proceedings, 2006, pp. 835–
846.

[46] N. Sundaram, A. Raghunathan, and S.T. Chakradhar, A framework
for efficient and scalable execution of domain-specific templates on gpus,
IPDPS ’09 0 (2009), 1–12.

[47] D. Womble, D. Greenberg, R. Riesen, and S. Wheat, Out of core, out
of mind: Practical parallel i/o, SPLC’ 93. Proceedings. (2002), 10–16.

[48] S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha, Cache-
oblivious mesh layouts, TOG 24 (2005), 886–893.

[49] S.-E. Yoon, B. Salomon, R. Gayle, and D. Manocha, Quick-vdr: out-
of-core view-dependent rendering of gigantic models, TVCG 11 (2005),
no. 4, 369 –382.

[50] K. Zhou, Q. Hou, R. Wang, and B. Guo, Real-time kd-tree construc-
tion on graphics hardware, TOG 27 (2008), 126:1–126:11.

Linh K. Ha studied Electronics and Telecommu-
nications at UTH, Vietnam, 2003. He finished
ME from College of Technology, VNUH, 2005.
He received the VEF Fellowship for young out-
standing Vietnamese scholars to continue grad-
uate studies in the US and was admitted to Uni-
versity of Utah, Computer Science Department,
2005. He joined Visualization and Geometric
Computing (VGC) group at Scientific Computing
Institute (SCI) under the supervision of Prof.
Claudio Silva. He finished PhD in Aug 2011.

Jens Krüger received his PhD in Computer Sci-
ence from the Technische Universität München
and shortly after joined the Scientific Comput-
ing and Imaging (SCI) Institute. He is currently
working at the the Cluster of Excellence in 2009
to head the Interactive Visualization and Data
Analysis group. In addition to his position within
the Cluster, Jens also holds an adjunct faculty
title of the university of Utah and is a principal
investigator of multiple projects in the Intel Visual
Computing Institute.

João L. D. Comba received a PhD in Computer
Science from Stanford University under the su-
pervision of Leonidas J. Guibas, a MSc degree
in Computer Science from the Federal University
of Rio de Janeiro (UFRJ), Brazil, and a BSc
in Computer Science was given by the Fed-
eral University of Rio Grande do Sul, Brazil. Dr
Comba is currently an Associate Professor in the
Graphics Group at the ”Instituto de Informática”
of the Federal University at Rio Grande do Sul
(UFRGS), Brazil. His main research interests

are in visualization, computer graphics, spatial data structures, graphics
hardware and HPC.

Cláudio T. Silva is Professor of Computer Sci-
ence at NYU’s Polytechnic Institute. He received
his Ph.D. in computer science at SUNY-Stony
Brook in 1996. He coauthored more than 175
papers and eight U.S. patents. He is currently
in the editorial board of Computing in Science
and Engineering, Computer and Graphics, The
Visual Computer, and Graphical Models. He was
general co-chair of IEEE Visualization 2010, and
papers co-chair of VIS 2005 and 2006. He re-
ceived IBM Faculty Awards in 2005, 2006, and

2007, and best paper awards at IEEE Visualization 2007, IEEE Shape
Modeling International 2008 and the 2010 Eurographics Educator Pro-
gram. His work is funded by grants from the NSF, NIH, DOE, IBM, and
ExxonMobil.

Sarang Joshi received his D.Sc. in Electrical
Engineering from Washington University in St.
Louis. After his D.Sc., Dr. Joshi was Director of
Technology Development at IntellX, a Medical
Imaging start-up company which was later ac-
quired by Medtronic. He returned to academia
as an Assistant Professor of Radiation Oncology
and an Adjunct Assistant Professor of Computer
Science at the University of North Carolina in
Chapel Hill. Currently he is an Associate Profes-
sor in the Department of Bioengineering and a

member of Scientific Computing and Imaging Institute at University of
Utah. His research interests are in the field of Computational Anatomy
and statistics in high dimensional nonlinear spaces with applications to
Medical Image Analysis.




