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Abstract
Atlas construction is an important technique in medical image analysis that plays a central role in understanding
the variability of brain anatomy. The construction often requires applying image processing operations to multiple
images (often hundreds of volumetric datasets), which is challenging in computational power as well as mem-
ory requirements. In this paper we introduce MIP, a Multi-Image Processing streaming framework to harness the
processing power of heterogeneous CPU/GPU systems. In MIP we introduce specially designed streaming algo-
rithms and data structures that provides an optimal solution for out-of-core multi-image processing problems both
in terms of memory usage and computational efficiency. MIP makes use of the asynchronous execution mechanism
supported by parallel heterogeneous systems to efficiently hide the inherent latency of the processing pipeline
of out-of-core approaches. Consequently, with computationally intensive problems, the MIP out-of-core solution
could achieve the same performance as the in-core solution. We demonstrate the efficiency of the MIP framework
on synthetic and real datasets.

1. Introduction

Multi-image processing is an advanced image process-
ing technique that is widely used in medical imag-
ing [CMVG96], video processing [BJW95, RDK∗98], as-
tronomy [Boy92, Ala92], visual robot control [DM95], vir-
tual reality [SSS06, SGSS08], modeling and reconstruc-
tion [GSC∗07, HE07], etc. One example is the atlas con-
struction technique, which plays a central role in medical
image analysis, particularly in understanding the variability
of brain anatomy [CMVG96, DFBJ07, JDJG04]. The atlas
construction projects a large set of images to a common co-
ordinate system, creates a statistical average model of the
population, and performs a regression analysis of anatom-
ical structures. This average serves as a deformable tem-
plate which maps detailed atlas data such as structural, de-
velopmental, genetic, pathological, and functional informa-
tion onto the individual or entire population of the brain.

Examples like this one show how multi-image process-
ing techniques provide benefits over single-image process-
ing, at the expense of introducing major computational chal-
lenges: First, they involve huge amounts of data that easily
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exceed the direct processing capability of the system. Sec-
ond, they require massive amounts of computation, which
results in the computations requiring days or even months
to complete. As a result, using multi-image techniques of-
ten involve super-computing systems [CMVG96] or large-
scale clusters to run [SGSS08, HKF∗09], which limits the
use of multi-image processing techniques to large laborato-
ries. A solution based on commodity hardware will make
this technique available to smaller labs, increase the influ-
ence of these techniques in research, and presents robust so-
lutions for many existing problems.

In this paper, we discuss a solution for the multi-image
processing problems on commodity hardware using graphic
processing units (GPUs) combined with an out-of-core
streaming model. The contributions of our paper are:

• We introduce a high-performance, multi-image process-
ing framework with a proof-of-concept optimal streaming
model.

• We define basic building blocks of a general framework
which allow efficient-implementation multi-image algo-
rithms.

• We introduce concepts for implicit and explicit pipelining
and prove that these are optimal solutions.
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Figure 1: Age regression anlysis on the ADNI dataset by
computing the average brain atlases at different ages (65,
70, 75, and 80) confirms the proposition that fluid space
is larger because brains atrophies overtime. This analysis,
however, could only be performed if the system is capable
of processing the whole dataset of 300-healthy brain-images
(144×192×160)

• We analyze reasons for streaming degeneracy and provide
a solution based on an order-independent model.
• Our performance analyses serve as the guidance to help

developers to profile performance and to make quantita-
tive decisions.

2. Related work

In the last decade, there is an emerging trend in High Per-
formance Computing research community (HPC) to use het-
erogeneous processing systems such as Cell processors, FP-
GAs, and multi-core GPUs to replace the conventional su-
percomputing model. Super-computing systems based on
the heterogeneous model have been successfully exploited
in some of the fastest computing system, such as the current
number one super-computer Tianhe-1A, the first computing
system to achieve 2.5 petaflop/s [Meu10].

With hundreds of simple, computation-centric processing
cores, the GPU processing model has proven to be highly
scalable to many problems especially image processing by
providing massive computational power. Modern GPUs can
offer a few Tera-flops of peak performance per unit, pro-
viding processing power equivalent to a super-computer in
mid-90s, while being much more cost-and energy-efficient.
The huge in-core memory bandwidth, which has historically
doubled every two years, is another advantage of GPU sys-

tems over the conventional processing model, adding sub-
stantial speed increases to GPU centric processing model.
There have been a number of image processing applications
implemented on GPUs [RSM10, SRC09, EAK10], most of
which achieve from 20x to several magnitudes of speedup
over CPU versions. Conceptually, our streaming framework
is an extension to the idea of the fast GPU image-processing
framework by Ha et al. [HKF∗09, HKJS11]. Their method
achieved 60x speed up in comparison to an optimized, fully-
parallel version running on an eight-core Xeon server for
Greedy Iterative Differmorphic Atlas construction problem.

While the use of GPUs appears to be a good solution to
the computing requirements of multi-image processing tech-
niques, the large memory footprint remains an open prob-
lem. Though providing ample memory bandwidth, the size
of the on board GPU memory is very limited. But as GPU
programs can only access on-board, all required data needs
to be present on the card, so out-of-core methods need to be
employed.

There are three primary approaches to out-of-core pro-
gramming. The first is to use virtual memory based on op-
erating system support. It is simple and unified for both in-
core and out-of-core processing. However, due to a lack of
application-specific knowledge about the data dependence
and parallelism, this method often leads to a poor perfor-
mance [WGRW02]. The second approach is to use compiler
directed I/O to convert a program from in-core to out-of-
core [BCK∗95, MDK96, BMK01]. For programs with com-
plicated data dependencies this approach is not as effec-
tive as the third approach that we use here: the explicit I/O
controls by developers. These methods concentrate on tech-
niques to improve the cache coherency such as caching and
prefetching [Mac94, CDS05, CESL∗03, HYWL07, BWP04]
to reduce the I/O necessary for blocks already in main mem-
ory and/or by overlapping I/O operations with main-memory
computations. The methods exploit particular computational
properties of each individual problem as part of the algo-
rithm design. While the explicit I/O controls are mostly
application-specific, our method is able to be applied to a
wide class of applications such as the out-of-core multi-
image processing.

Our out-of-core strategy exploits two key performance
concepts: prefetching and data-transfer-hiding based on an
asynchronous streaming execution model. Asynchronous
processing is a pipeline-concurrent execution model that ex-
ploits the availability of multiple execution units in the sys-
tem to run independent tasks concurrently. This strategy re-
duces idle stages and increases the resource usage. It can
also hide data transfer by prefetching data. When processing
units finish current tasks, they can start the next tasks with-
out delay. In many circumstances, using this model signif-
icantly increases the overall system throughput.The similar
concept has been successfully applied in video processing
pipeline where video encoding/decoding/composition and
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Figure 2: Basic Multi-Image Operators

filtering inherently require out-of-core multi-image stream
processing [BJW95, RDK∗98].

The asynchronous processing is realized with streaming
models for both tasks and data. Streaming is an efficient
model for parallel processing in that a task is divided into
smaller entities to allow their parallel executions. A stream
is an abstraction of an execution unit; in particular, it rep-
resents a sequence of commands that are executed or ac-
cessed in a particular order. Pure data streams determine
data parallelism processing model, while pure task streams
determine the task parallelism model. A stream in practice
may be either data-based or tasked-based or even a mixture.
The only restriction in a stream is the execution order that is
satisfied by a sequential consistency model [Lam79], which
makes a stream equivalent to a synchronous process. Differ-
ent streams, on the other hand, may execute their commands
out-of-order with respect to each other.

3. Multi-Image Processing Operators

As we can see from an example of the atlas construction Al-
gorithm 1 [HKJS11], a multi-image algorithm involves sev-
eral multi-image operations, most of which are direct exten-
sions of single-image processing operations through a for
loop over all the input. We build our multi-image processing
framework upon the single-image high-performance multi-
scale processing framework proposed by Ha et al. [HKF∗09]
so that we are able to exploit the optimized performance of
the existing framework.

We define the multi-image processing framework using
a construction method that builds regular multi-image op-
erators from basic building blocks. This strategy allows us
a fine-grained and multi-level parallelism in that we could
exploit different execution strategies on each implementa-
tion level to make use of available resources. Here, we clas-
sify basic multi-image operators into two main groups based
on Flynn’s taxonomy [Fly72]: the Multiple-Input-Multiple-
Output operators (MIMO) and the Multiple-Input-Single-
Output operators (MISO).

The basic MIMO operators are defined as functions with
equal numbers of inputs and outputs, whereas the n-th out-
put image depends solely on the n-th input image(Figure 2a).
These functions are the most frequently used in multi-image
processing as they are direct extensions of single-image op-
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erations. Examples for such operations include adding, shift-
ing, scaling, smoothing, filtering, de-noising images, and
normalizing the intensity range.

The MISO operators, as illustrated in Figure 2b, produce
a single or few outputs. Examples for such operations in-
clude the computation of an average image, the image en-
ergy, cross-correlation, cross-product of images, and finding
the maximal and minimal values.

The implementation of general multi-image operators is
based on a decomposition strategy that breaks a complex
function into multiple, basic operations. For example, a gen-
eral MIMO function that has a number of outputs M which
is different from the number of inputs N, and the k-th out-
put depends on multiple inputs, could be implemented as M
instances of a MISO operator as shown on Figure 3.

Another group of frequently used multi-image operators
is the sliding-window operator (Figure 4a). This operator
computes an output image based on all values in a fixed-
size sliding window of the input. This window moves as we
compute the next output image. As shown on Figure 4b, if
we keep an input buffer with the size of the sliding window,
as the window moves, we need to replace an entry of the
window with the new input data. In other words, the compu-
tation of a current output requires only a single input. Algo-
rithmically, it is equivalent to the basic MIMO model.

Overall, we can implement arbitrarily complex multi-
image functions based on the basic MIMO and MISO func-
tions. We focus our discussion on how to efficiently imple-
ment these out-of-core operators.

Note that the framework of Ha et al. already has sup-
port for multi-image and large data processing through the
GPU-cluster implementation using MPI. It also offers a
multi-GPU implementation to exploit available computing
resources and to increase the amount of in-core GPU mem-
ory on a single processing node. Both approaches, however,
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have the limitation that they depend on the total amount
of system memory. The out-of-core approach we introduce
here, however, has no restrictions on data input and can
process the entire 3D-image brain dataset in a PC desk-
top equipped with commodity GPUs. Hence, our solution is
more complete and accessible to researchers and scientists.

We also offer a more flexible solution to existing methods
with two levels of streaming operations: out-of-core GPU
in-core-CPU, and fully out-of-core. The former utilizes the
availability of the larger CPU memory system; in some cases
the CPU (but not the GPU) memory may be sufficient for
the entire computation. In the latter case, the dataset does
not even fit into CPU memory and the data must be trans-
ferred through two memory levels: between disks and CPUs,
and between CPUs and GPUs. We show that our streaming
strategies could be generalized through multiple memory hi-
erarchy levels. In the following discussion, GPUs are pro-
cessing devices in the first out-of-core level; consequently,
in-core memory refers to the GPU global memory while the
CPU memory plays the role of storage devices.

4. MIP Out-of-core Framework

We use a synchronous implementation of the MIMO (Algo-
rithm 2) and MISO (Algorithm 3) operators as references
for the correctness and performance improvement of our
asynchronous implementations. We compare different meth-
ods to implement out-of-core multi-image operations: an
implicit model, a hardware-aware model, and a hardware-
independent model. We will prove that the proposed strate-
gies are optimal. But first, lets do some analyses on the best
achievable performance of an asynchronous algorithm.

4.1. Asynchronous optimal performance analyses

To evaluate the performance, we use a typical hardware con-
figuration with three components: one computational unit
(GPU) and two data transfer units(one for uploading, the
other for downloading data). For performance analysis, we
use following notation:

• n : the number of input images
• ns : the number of execution units
• τi, j : the runtime of the i-th execution unit on the j-th input

image.
• Ts,Ta : the total synchronous/asynchronous processing

time
• Tu, Te, Td : the uploading, executing, and downloading run-

time per image (Figures 5, 6, 7).
• Ti the total amounts of time spent by the execution unit i
• Tu = n×Tu,Te = n×Te,Td = n×Td : the total amounts of

time spent on upload, execution and download process.
• Tmax = max(T1,T2, · · ·Tns) the maximum amounts of

time spent by a single execution unit.

Our analysis is based on the assumption that all images
have similar sizes, and therefore require almost the same
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amount of running time. This assumption is normally sat-
isfied with pre-processing multi-image data.

First, we determine the optimal asynchronous runtime,
which we use as a reference to evaluate the efficiency of
proposed implementation method. In the ideal case, all ex-
ecution units run independently parallel. However, as a sin-
gle execution entity, they perform tasks in sequential order.
The total amounts of time that an execution unit spends is
Ti = ∑

n
j=1 τi, j that equals n× τi where τi runtime of i-th

stream on a single-image. Since the multi-image operation
is only completed when all the execution units have com-
pleted their tasks, the runtime the entire operation will be
at least Tmax = max(T1,T2, · · ·Tns) or Ta ≥ Tmax = n×τmax.
This is the optimum runtime that the system can accomplish.
Note that with the hardware configuration of upload, exe-
cution, and download units τmax = Tmax = max(Tu,Te,Td)
(Figure 5).

4.2. Implicit Streaming Model

The implicit streaming model (Algorithms 4) is solely based
on data parallelism that assigns each image to a stream
which works as a logical execution unit that performs the
entire processing pipeline (Figure 5). As streams operate on
different memory spaces, the data transfer on a stream can be
overlapped with processing tasks on other streams. This is a
contrast to the explicit streams (Algorithms 5 6): hardware-
aware and hardware-independent models, which depend on
task parallelism. The former maps each hardware execution
unit to a single stream while the latter delineates a stream to
a fixed function.

Figure 5 illustrates the execution of an implicit streaming
model for a MIMO problem (Algorithm 4). It can be seen
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that with the number of images being significantly larger
than the number of streams, the overall processing time is
approximately n× Tmax which is the optimal runtime of
asynchronous processing.

4.3. Hardware-Aware Streaming Model

The execution of the hardware-aware processing model for
MIMO problems is illustrated in Figure 6. In this model,
there are three streams mapping to three execution devices.
Timing analysis of the method shows that the processing
time in this case is also optimal. Because the hardware-
aware model reflects the actual execution of asynchronous
processes in the system, it requires developers prior informa-
tion about the architecture of the underlying system. That is,
it requires different implementation on different hardware.

4.4. Hardware-Independent Streaming Model

The last processing strategy, the hardware-independent
model, is a generalization of the hardware-aware model. In-
stead of decomposing tasks based on actual hardware con-
figuration, we assume that there exists one special execu-
tion unit for every task, and we can assign each task a sin-
gle stream. In the case of MIMO operations, there are three
primary tasks to apply to each image: the data upload, the
processing, and the data download. On a system with two
data transfer units and one processing unit, it results in a
streaming scheme similar to hardware-aware models; con-
sequently, this model also achieves the optimal runtime.

Normally, however, there are more tasks than the actual
number of execution units. In this case it is possible that sev-
eral tasks are mapped to the same execution unit, for exam-
ple, data uploading and downloading will map to the same
unit in a single-data-unit system. The question is how effi-
cient it is when it incorrectly predicts the underlying sys-
tems, in particular, when there are multiple streams sharing
the same execution unit.

Data independence results in no performance loss, as the
system can instantly switch between one task and the other.
This function is done automatically as sharing info is avail-
able only at the system level. Figure 7 shows the runtime
analysis of an optimal solution for MIMO operation on a
system with one DMA and one ALU using the hardware-
ware and hardware-independent implementation. The result
shows that although the hardware-independent model incor-
rectly predicts the underlying execution system, it still per-
forms optimally.

4.5. Discussion on streaming modes

The primary advantage of the implicit approach is that devel-
opers are relieved from the burden of asynchronous schedul-
ing. Furthermore, the stream has the same execution flow
as processing a single-image, no further change is required,

MIMO - Single DMA system

1

1

1

2

2

3

3

n-2

n-1

n

n

n-1

4

Execution

1

1

2

2 3 nTu

Sync-point

n-1

(a) Hardware-aware model

(b) Hardware-independent model

1 3 2 n n-1 n

n

Ta = Tu + (n− 1)× Tm + Ted

Ta = Tu + Teu + (n− 2)× Tm + Ted + Td

Upload-
Download

Upload

Execution

Download
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matchs the system configuration, the performance is still op-
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and no synchronization is needed since each stream works
on different data. However, it has several disadvantages:

• The method does not reduce the memory usage and all the
data must be loaded in-core. Hence, this method cannot be
used for out-of-core processing.

• It requires the capability of decomposing input data and
combining output results that is not always satisfied.

• Although automatic scheduling hides executions from de-
velopers, understanding the physical execution is essen-
tial to profile the performance and to estimate the benefit
of the method. This estimation is an important factor for
making optimization decisions.

• The performance efficiency of the implicit streaming
model is largely dependent on the scheduling algorithm
used by the operating system or the concurrent controller.
In fact, the optimal scheduling problem is NP-hard. This
explains why, in practice, this approach does not always
provide the predicted optimal performance.

• The implicit model has an order-dependency that limits
the execution of the streams. Particularly, all streams ex-
ecute in the same order of the logical flow: uploading-
processing-downloading. However, flexible reordering is
an effective strategy to handle degenerate cases, including
synchronous functions calls.

Most of the weaknesses of the implicit model can be han-
dled by explicit approaches.

• Explicit methods require a much lower memory footprint,
which is equal to the number of hardware devices with the
hardware-aware model or number of decomposed tasks
with the hardware-independent model. That means they
are suitable for out-of-core processing.

• As it is always possible to divide an out-of-core algorithm
into three primary tasks, it is easier to decompose tasks
than partition data.

• The explicit method uses an explicit scheduler. That
means the execution is controlled, providing several ben-
efits. First, developers can profile the performance before
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they actually run it. Second, it reduces the complexity of
scheduling problem to trivial mapping, so it is even opti-
mal without any automatic scheduler supports. And third,
it helps to understand why degeneracy happens, how it af-
fects the performance, and how to deal with it.

5. Re-ordering stages in streaming models

The aforementioned approaches are simple and theoretically
optimal. They are straightforward to transfer from single-
image processing to multi-image processing through the
generalization of basic multi-image operators. However, the
optimal performance is hardly achieved in practice, the pri-
mary reason as we show here is the streaming degeneracy.

5.1. Forced Synchronizations

There are three primary reasons that degeneracies may ap-
pear in streaming models

• Synchronous function calls
• Asynchronous stream mismatches
• Cross-stream function calls

The most common reason for an unintended synchronous
function call is that the application requires an external call
to a library function that was designed for synchronization
execution. Another reason is the mixed use of synchronous
and asynchronous functions.

Even when all functions support asynchronous execution,
they might be designed using different schemes. The strate-
gies are often incompatible and cannot work together effi-
ciently. For example, a kernel function defined to run on a
logical stream, named 0, is incapable of running in-parallel
with a data-transfer function on the physical stream with
the same identity. These functions frequently require ex-
plicit synchronization to switch between the different asyn-
chronous modes.

Cross-stream calls occur when the implementation re-
quires data access and computation to or from different
streams. As a result, the compiler force these streams to
synchronize at cross-reference points to preserve the seman-
tic order of the original program. One example is the tra-
ditional implementation of the class of reduction functions
in CUDA. Though the computations run in-core on GPU-
devices, the output of these functions, which are typically
used for branching on CPU-host, require the result to be
copied from device memory to host memory. This opera-
tion is a cross-stream function between the computational
stream on the devices and the transfer data stream between
devices and host. The popularity of the reduction functions is
the main obstacle for applying asynchronous models on ex-
isting GPU architectures. Our solution for the reduction-like
function is an on-device model that outputs the result only to
device memory. It requires subsequent functions to use on-
device parameters, and to delay or remove the branching in
the codes.
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5.2. Re-ordering Pipeline Stages

Still, in many cases, a forced synchronization is unavoidable,
though negative effects can be minimized using a reordering
technique. This out-of-order execution, is applied in modern
compilers to reduce the number of mis-predicted branches,
to avoid data spilling, to keep the instruction pipelines filled,
and especially to allow parallel execution on a system of
multi-processors.

In this case of streaming with degeneracy, the reordering
optimization cannot be done automatically using the com-
piler. The reason is that the uploading and downloading are
the IO processes which have the side effects. This constrains
the order of function execution and requires the compiler-
generated code to execute in the same order as it appears in
the API levels. Even worse, the forced synchronous func-
tions impose a restriction in the order of the outputs. So re-
ordering without compiler support must be done explicitly.

Allowing different streams working on independent im-
ages allows our explicit models to break the order-execution
dependency inside the loop, replacing it with an equivalent
order-independent streaming model. As shown in Figure 8,
the order dependency of the original loop is still preserved
in the order of loop execution. In other words, the logical
correctness of the processing model is guaranteed by con-
struction.

As the order of streams inside a loop becomes unim-
portant, we can change the order of streams at the API
level from the regular order of upload-process-download
to upload-download-process, or process-upload-download.
The ability to change the processing order allows stream-
ing optimization. This optimization is particularly effective
when asynchronous stream degeneracy is unavoidable.

In the implicit model, when the synchronizations exists in
the execution process, it is unable to overlap the uploading
and downloading stream as the uploading process has to fin-
ish before the synchronization points, while the download-
ing only happens after the synchronization points. As shown
on Figure 9, changing the order of streams in the code using
the explicit model allows the upload and download stream
to be fully overlapped even when a synchronization point is
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present. Thus, reordering helps reduce the run-time per iter-
ation as well as the overall run-time. The ability to seman-
tically reorder the stream execution in the code allows us to
adapt a performance heuristic that profiles the performance
and selects the optimal order.

6. Extension to a full out-of-core framework

The extension from the partial out-of-core model with one
level of memory hierarchy to a full out-of-core model with
a two-memory levels comes naturally with the hardware-
independent model. By adding two more stages to the algo-
rithm decomposition-the upload from disk to CPU memory
and download from the CPU memory to disk-we realize the
transition to a fully out-of-core model. The execution of this
model for MIMO operation was displayed on Figure 10.

Using the same logic as the partial out-of-core model, we
can prove that the hardware-independent model for out-of-
core processing is optimal. Note that we use the term “full”
to mean that the data could be stored on the hard drives of a
single machine. However, our hardware-independent model
could be further extended to the other out-of-core models,
such as the data stream on the network and the system with
higher memory hierarchy levels, and we can still prove that
the proposed models are optimal.

7. Results

The system we used in our experiment is a PC desktop, Intel
Core i7-980X, 12-GB DDR3 1600, with a single NVIDIA
GTX 480. Communication from the host to GPU is via the
external x16 PCIe bus and is controlled by a single DMA.

    Weight Ratio  U    E   D    Sync  Impl  U_ED  UE_D  UED  EDU  DUE
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40
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100
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200

0.08 347 53 322 720 670 674 674 672 672 672
0.3 347 204 322 874 673 679 679 672 672 672
0.5 347 334 322 1003 679 682 692 672 672 672

0.77 347 515 322 1185 849 853 873 683 683 683
0.93 347 619 322 1289 953 957 977 690 690 690

1 347 671 322 1339 1006 1010 1028 695 695 695
1.54 347 1031 322 1700 1366 1370 1390 1057 1057 1057
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Figure 11: Runtime comparison of different streaming
strategies in ideal conditions.

The program is compiled with CUDA NVCC 3.1. Run-time
of each function is measured in milliseconds.

We made a synthetic test on a data set of 32 volumes,
sized 256×256×256. The test mimics a typical out-of-core
multi-image processing program using three processes: up-
load, execution, and download. Note that the execution time
and data-transfer times scale propotionally to the number of
images and the sizes of the image, we also achieve similar
performance curves with different number of images rang-
ing from 10 to 180 (the maximum number of volumes we
can fit onto the 12GB of memory).

The existing architecture on commodity hardware has sin-
gle DMA unit, so the upload and download process has
to be performed sequentially. This information allows a
two-device, hardware-aware model with only two memory
buffers. There are two options for its implementation: (1)
the upload of the k-th volume in parallel with the execu-
tion and the download of (k− 1)-th volume (U_ED);(2) the
upload and execution of the k-th volume in parallel with
the download of (k− 1)-th volume (UE_D). Our hardware-
independent model still decomposes the algorithm into three
processes regardless of the system configuration. There are
six permutations for the implementation of the hardware
independent model, however, here we report the perfor-
mance for three permutations: (1) regular upload-execution-
download (UED) (2) execution-download-upload (EDU) (3)
download-upload-execution (DUE).

7.1. Full asynchronous processing

First, we perform our test using the ideal cases, full asyn-
chronous processing function, without a single synchronous
call in the execution. Here we measure the influence of the
ratio betwen computation and data transfer (processing ra-
tio) on the performance of different asynchronous process-
ing models, denote re = E/(U + D). This ratio indicates
different types of out-of-core functions: data-transfer dom-
inance (r << 1), processing dominance (r >> 1), and bal-
anced functions (r ≈ 1). In the ideal case, the results on Fig-
ure 11 show:
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Function U E D Sync Impl Hrd-aware Hrd-indp
Max 347 13 0 360 349 349 349
Energy 692 20 0 710 698 700 698
Averaging 347 20 11 378 360 363 361
Normalization 347 28 322 694 696 687 677
Gaussian 347 431 322 1099 735 770 678
Atlas 201446 213423 1359583 555204 NA 372567 340356

Table 1: Runtime comparison of regular functions in practices with different streaming strategies.

Weight Ratio U E1 E2 E D Sync Impl U_ED UE_D UED EDU DUE
10
40
65
100
120
130
150
150

0.05 347 53 997 1050 322 1698 1663 1654 1389 1340 1054 1652
0.2 347 204 820 1024 322 1698 1664 1506 1389 1191 1054 1498

0.32 347 334 694 1028 322 1698 1664 1380 1389 1067 1055 1369
0.5 347 515 514 1029 322 1698 1664 1370 1389 1056 1199 1199
0.6 347 619 411 1030 322 1698 1664 1370 1389 1056 1296 1101

0.65 347 671 360 1031 322 1698 1664 1370 1389 1054 1346 1055
0.75 347 773 257 1030 322 1698 1664 1370 1457 1124 1448 1055
0.95 347 976 51 1027 332 1698 1667 1372 1651 1317 1650 1054

Ratio U E1 E2 E Sync Impl U_ED UE_D UED EDU DUE
0.05
0.2
0.32
0.5
0.6
0.65
0.75
0.95

347 53 997 1050 1698 1663 1654 1389 1340 1054 1652
347 204 820 1024 1698 1664 1506 1389 1191 1054 1498
347 334 694 1028 1698 1664 1380 1389 1067 1055 1369
347 515 514 1029 1698 1664 1370 1389 1056 1199 1199
347 619 411 1030 1698 1664 1370 1389 1056 1296 1101
347 671 360 1031 1698 1664 1370 1389 1054 1346 1055
347 773 257 1030 1698 1664 1370 1457 1124 1448 1055
347 976 51 1027 1698 1667 1372 1651 1317 1650 1054
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Figure 12: Runtime comparison of different streaming
strategies in degenerate conditions.

• In all the tests, the three hardware independent imple-
mentations give us the same performance. The hardware-
aware and implicit models give similar runtimes. The
U_ED is slightly faster than UE_D since the upload takes
a bit longer than the download.
• If the function is transfer-dominant (re < 0.5), all the

models give optimal solutions.
• When the execution time is larger than the upload or

the downloading time, the first two models still give
strong performance, approximately Tu + Te. However, it
is not the optimal of max(Tu +Td ,Te) achieved with the
hardware-independent model. The hardware-independent
model is faster than the hardware aware model in this
case because the awareness from the hardware system re-
quires that a double-image memory buffer is used instead
of a triple one used by a hardware independent model.
In this configuration, it is impossible for the hardware-
aware models to have a single stream with both the upload
and the download when the other stream is only process-
ing. This condition is required to achieve the best perfor-
mance.
• When the function is balanced or processing-dominant

(re ≥ 1), the hardware-independent model gives the op-
timal runtime Te and the data transfer is completely hid-
den. Note that this is also the condition for MIP out-of-
core functions to outperform MIP in-core implementation
since the in-core version will spend Te +n×Tu.
• The asynchronous function gives the best speedup in com-

parison to the synchronous models when the loads be-
tween two execution units are balanced (re = 1).

7.2. Synchronous functions

Second, we test the result with the use of a synchronous
function. Here we fix the run-time of three basic processes
but change the position of the synchronous function inside
the execution process to measure the influence of sync points
inside the functions to different streaming models through
the synchonous ratio rs = E1/(E1+E2). With the existence
of the synchronous function, the results in Figure 12 show:

• The position of the sync point within the asynchronous
code directly affects the performance of the given imple-
mentations.

• The three hardware-independent implementations give
us different performance characteristics. No single
hardware-inpendent implementation gives us the best run-
ning time overall. However, the best result always is
achieved with one of the hardware-independent imple-
mentations.

• The implicit model no longer gives us the optimal result,
and is as slow as the synchronous implementation. It sim-
ply cannot find a schedule for asynchronous execution.

• The hardware-aware model could not give us optimal re-
sults in all the tests. However, it is still far better than the
implicit model. Note that their two implementations also
give different runtimes.

Though we show the results with execution-dominant func-
tion here, we also draw the same conclusions from transfer-
dominant and balanced functions.

7.3. Regular out-of-core functions

On the third experiment, we focus on the regular out-of-core
function sets such as a maximum value of all images, nor-
malization, averaging, Gaussian filtering, product (energy
computation), and atlas building. The results from Table 1
confirm that when the computation only requires simple
functions (max, product, normalization, averaging, etc. ), the
asynchronous streaming does give you the benefit of hiding
the computational cost. However, it is negligible in compar-
ison to the transfer cost. As the complexity of the functions
increases (for example, Gaussian filtering function), we start
seeing significant benefits of asynchronous streaming strate-
gies, especially with the hardware independent model. In at-
las construction, which is taken on the ADNI dataset that
we mentioned on Figure 1, as we increase the complexity of
computational functions and reduce the cost of data transfer
by merging all the functions together on a single loop, we
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yield significant performance improve over the synchronous
out-of-core version. The performance is compared to the in-
core performance (execution time only) while we could pro-
cess a significant amount of data much larger than that of an
in-core version.

Overall, our results confirm our theoretical analysis. All
the strategies are able to achieve optimal performance; how-
ever, only the hardware-independent model gives the best
performance in all the tests. In the degenerate cases, the im-
plicit model completely fails. An presence of synchroniza-
tion points makes it impossible to find a efficient sched-
ule automatically. Note that in this case, a greedy approach,
which immediately executes whenever the resource is avail-
able, also fails. The hardware-aware model gives better
performance even with the degenerate cases, although it
is optimal. It is always possible to find the best runtime
between hardware-independent implementations. In other
words, the optimal performance is always achievable with
the hardware-independent model.

8. Conclusions

In this paper, we have presented an optimized, parallel,
multi-image processing framework on heterogeneous com-
modity systems extending from the existing single-image,
parallel processing framework. We have introduced multi-
image operators, serving as the connection between the
single-image processing model and the multi-image process-
ing variant. We proposed two basic multi-image operators:
the MIMO and the MISO, which are utilized to construct
other multi-image operators, allowing us to build a complete
multi-image processing framework. We have also presented
optimal streaming models for the multi-image processing
framework. We have analyzed the advantages and disadvan-
tages of various streaming strategies, and proposed a gener-
alized streaming model based on functional decomposition
that is optimal, hardware-independent, and highly scalable
on future hardware. Our experimental results show that our
hardware-independent model adapts to underlying hardware
configurations, out-performs other streaming strategies, and
gives optimal performance in all tests.

We also evaluated the efficiency of streaming models, and
presented an quantitative evaluation that serves as a model
for developers. We have investigated an optimal streaming
strategy in unfavorable conditions based on reordering from
order-independent properties of the explicit-streaming mod-
els. We also give insight to the causes of unfavorable stream-
ing conditions that help developers locate the performance
degradation points in their implementations. Though we use
a GPU computational model to illustrate the efficiency, our
framework makes no specific assumptions about the under-
lying architecture and hence can be generalized to any het-
erogeneous parallel processing systems.

9. Appendix

1: Input : N volume inputs
2: Output: Template atlas volume
3: for k = 1 to max_iters do

4: Fix images Ik
i , compute the template Îk = 1

N
∑

N
i=1 Ik

i wi
∑

N
i=1 wi

5: for i = 1 to N do {loop over the images}
6: Fix the template Îk , solve pairwise-matching problem between Ik

i and Îk

7: Update deformed image Ik
i with current velocity

8: end for
9: end for

Algorithm 1: Atlas construction framework

1: Input : N input images
2: Output: N processed output images
3: for k = 1 to N do
4: Upload the k-th image from the storage device to the processing device
5: Process the input in-core on the processing device
6: Download the output image back to the storage device
7: end for

Algorithm 2: Synchronous out-of-core MIMO operators

1: Input : N input volumes
2: Output: few numbers(sum, max/min, etc) or few images
3: for k = 1 to N do
4: Upload the k-th image from the storage device to the processing device
5: Process the input in-core on the precessing device
6: Update the accumulated output buffer on the processing device
7: end for
8: Write the final output to the storage device

Algorithm 3: Synchronous out-of-core MISO operators

1: Input : N input volumes
2: Output: N processed output volumes
3: for k = 1 to N do
4: Load the data iImg[k] from storage device to processing device, dk on the stream

k-th
5: end for
6: for k = 1 to N do
7: Apply the operator on data do = oper(dk) on the stream k-th
8: end for
9: for k = 1 to N do
10: Write output do to the storage device oImg[k] on the stream k-th
11: end for

Algorithm 4: Implicit pipelining MIMO operator

1: Input : N input volumes, device input buffers di [3] and device input buffers do[3]
2: Output: N processed output volumes
3: for k = 1 to N + 2 do
4: if k <= N then
5: Load the data iImg[k] from storage device to device buffer di [k%3] on the up-

load stream
6: end if
7: if k > 1 and k− 1 <= N then
8: Apply the operator on device buffer do [(k− 1)%3] = oper(di [(k− 1)%3]) on

execution stream
9: end if
10: if k > 2 and k− 2 <= N then
11: Write output do [(k−2)%3] to the storage device oImg[(k−2)] on the down-

load stream
12: end if
13: Synchronize streams
14: end for

Algorithm 5: Explicit pipelining MIMO operator
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