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Abstract. This paper presents a method for normalization of diffusion
tensor images (DTI) to a fixed DTI template, a pre-processing step to
improve the performance of full tensor based registration methods. The
proposed method maps the individual tensors of the subject image in
to the template space based on matching the cumulative distribution
function and the fractional anisotrophy values. The method aims to de-
termine a more accurate deformation field from any full tensor regis-
tration method by applying the registration algorithm on the normal-
ized DTI rather than the original DTI. The deformation field applied to
the original tensor images are compared to the deformed image without
normalization for 11 different cases of mapping seven subjects (neonate
through 2 years) to two different atlases. The method shows an improve-
ment in DTI registration based on comparing the normalized fractional
anisotropy values of major fiber tracts in the brain.
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1 Introduction

Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) tech-
nique that enables the measurement of restricted diffusion of water molecules in
tissue to produce neural tract images. This technique has become increasingly
important for studies of anatomical and functional connectivity of the brain re-
gions. DTI is now extensively used to study the fiber architecture in the living
human brain via DTI tractography. This technique has proven especially valu-
able in clinical studies of white matter (WM) integrity in the developing brain
for diseases, such as metachromatic leukodystrophy (MLD), cerebral palsy and
Krabbe. In this paper, the tensor normalization method is tested on a particular
white matter demyelinating disease called Krabbe [1].

Krabbe disease (also called globoid cell leukodystrophy) is a rare, often fatal
genetic disorder of the nervous system caused by a deficiency of an enzyme called
galactocerebrosidase, which aids in the breakdown and removal of galactolipids
found in myelin. Previous studies show that patients with infantile Krabbe dis-
ease have lower fractional anisotropy (FA) across the corpus callosum and along
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the DTI fiber bundle of internal capsules (IC) when compared with healthy age-
matched controls [1]. Based on the above findings, atlas based fiber tract analysis
is used for analyzing DTI of Krabbe subjects [2]. There are considerable anatom-
ical variations between the Krabbe subjects and the atlas and hence for accurate
analysis of white matter fiber tracts it is crucial to establish a registration based
voxel-wise correspondence between a normal control neonate DTI atlas and the
Krabbe subjects. To achieve this needed registration accuracy, the research pre-
sented in this paper provides a method to improve the state-of-the-art approach
to individually register DTI images into the atlas space.

The registration of diffusion tensor images is particularly challenging when
compared to registering scalar images as DTI data is multi-dimensional and the
tensor orientations after image transformations must remain consistent with the
anatomy. Prior to the development of full tensor based registration methods,
DTI registration was performed with traditional image registration algorithms
on scalar images derived from the DTI[3]. These methods discard the orienta-
tion component of the data and thus DTI registration algorithms that directly
use higher order information of DTIs, such as the corresponding principal eigen-
vectors [4] and the full tensor information [5] are now preferred. In our recent
publication [6], the performance of scalar and full tensor registration algorithms
are compared for Krabbe neonates. In comparison to the commonly available
regsitration packages, the full tensor based DTI-TK [5] method showed the most
accurate registration performance. DTI-TK is a non-parametric, diffeomorphic
deformable image registration that incrementally estimates its displacement field
using a tensor-based registration formulation. It is designed to take advantage
of similarity measures comparing whole tensors via explicit optimization of ten-
sor reorientation. Hence, in this paper the method is tested with the DTI-TK
registration tool.

Normalization of DTIs is challenging as the data is multidimensional and
includes considering the shape of the tensors along with tensor properties such
as FA. Methods to improve DTI registration have been proposed by determining
the correspondence between tensors using Gabor filters [7]. For normalization,
the full tensor registration methods like DTI-TK [5] uses the ADC profile in-
formation. The F-TIMER [4] method uses the local statistical information of
underlying fiber orientations along with the edge strength of the FA and the
ADC maps for normalization. In both methods, the normalization is specific to
the methods developed and may not always result in good normalization if there
are considerable differences in local tensor appearance between the case and the
template, for example, in the mapping of a neonate to a 2 year template. In
this paper, our aim is to develop a general tensor normalization step that can
be incorporated in the analysis pipeline as a prior step to any full tensor based
registration algorithms.

For DTI derived scalar image registration methods, a simple histogram nor-
malization of the subject to the template improves the performance of regis-
tration considerably [8]. Motivated by these approaches, this paper presents a
normalization method for full tensor registration methods that normalizes the 3
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dimensional Eigenvalues of each tensor while maintaining similar FA values. The
deformation fields are computed using the full tensor registration methods on
the normalized DTI images, and the fields are applied on the original DTIs. The
performance with and without normalization are compared based on normalized
FA values of major fiber tracts of the brain.

2 Method

For scalar image registrations based on sum of squared differences, histogram
based intensity normalization is commonly used prior to registration to improve
the registration accuracy. Similarly for DTI derived scalar images such as FA im-
ages, histogram based intensity normalization is used to determine an improved
deformation field. This normalization is achieved by computing the histograms
of the subject Isub and the template Itemp scalar image. From the histograms,
the cumulative distribution functions (cdfs) of the two images Csub and Ctemp

are determined. For each image intensity ni, an intensity level no, for which
Csub(ni) = Ctemp(no) is computed; this is the result of histogram matching
function M(ni) = no. The histogram matching function applied on each voxel
of the subject image gives the normalized FA images. In this paper, we extend
this idea of scalar intensity normalization 3D tensors in DTI.

Diffusion tensor MRI characterizes the diffusion of water molecules by mea-
suring the apparent diffusion tensor in each voxel of an MRI volume. The method
assumes that water molecules move according to a simple anisotropic diffusion
process so that the displacement x of a water molecule over a fixed time t is
modeled as a random variable that follows the multivariate normal distribution
p with the mean at the origin and covariance 2tD, where D is the diffusion ten-
sor, a symmetric and positive-definite 3-by-3 matrix. The Eigenvalues λ1, λ2, λ3
of D are used to determine the standard DTI properties like mean diffusivity
(MD) and FA defined by:

MD = (λ1 + λ2 + λ3)/3;FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2

λ21 + λ22 + λ23
(1)

Our proposed method, works in this three dimensional Eigenvalue space by first
determining the cdf planes. The standard cdf equation for three values λ1, λ2, λ3
is defined by the equation:

Cin(λ1a, λ2a, λ3a) = p((0 ≤ λ1 ≤ λ1a), (0 ≤ λ2 ≤ λ2a), (0 ≤ λ3 ≤ λ3a)) (2)

In the 3D space, the summation cdf volume based on this equation is a rectangu-
lar box. Our aim in this paper is to nomalize two DTI volumes while maintaining
a similar cumulative distribution function and also to maintain a similar distribu-
tion of mean diffusivity. To achieve this aim, we propose to modify this equation
to have constant cdf planes rather than constant cdf rectangular volumes. The
modified 3-D cdf equation is defined as:

Cin(λ1in, λ2in, λ3in) = p((λ1 + λ2 + λ3 ≤ 3MDi)) (3)
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Fig. 1. Constant cdf planes - iso-MD planes defined in the subject and atlas eigen value
space.

where MDi = (λ1in+λ2in+λ3in)/3. The summation volume is bound by a plane
which has the same cdf values as shown in Fig. 2. The input cdf is a function
of MD. Since these planes have constant MD values for all points (λ1, λ2, λ3)
lying on the plane, in further discussion we refer to these constant cdf planes as
iso-MD planes. Ji-Hee et. al. [9] presents a similar argument and result for color
normalization in the r, g, b space.

The proposed method is discussed below step-by-step and is shown in Fig.
3. Based on the above proposed idea of constant cdf planes, the first step of the
algorithm is to define iso-MD planes in the subject and the atlas eigen value
space with fixed intervals ′δ′, a concept similar to defining histogram bins. The
value of ′δ′ is selected based on the Eigenvalues of tensors of the subject and
the atlas. The following steps are repeated for each tensor of the subject. Each
subject tensor (for discussion consider tensor at particular location (x, y, z)) is
mapped to the closest iso-MD plane. The atlas iso-MD plane with the closest cdf
value to the selected subject iso-MD plane is determined based on the equation
Cout(MDout) = Cin(λ1x1,y1,z1, λ2x1,y1,z1, λ3x1,y1,z1). This equation ensures a
uniform cumulative distribution function between the normalized subject tensors
and the atlas tensors. In fact, any selection of positive λ1, λ2, λ3 value lying on
this atlas iso-MD plane will lead to a uniform cdf. Let us refer to the set of
points on the atlas iso-MD plane ′i′ as λ1i,MD, λ2i,MD, λ3i,MD, the subscript
’MD’ indicating that all the points on this plane have constant MD. The next
step is to find the particular λ1, λ2, λ3 value on the iso-MD plane that best
normalizes the subject case to the atlas space. For this, we need to determine
the atlas normalized FA value for the tensor. This is achieved by applying a
standard 2D histogram matching of the subject FA scalar image to the atlas FA
scalar image as discussed below.



5

Fig. 2. Mapping from the subject eigen space to the template eigen space.

The filter used to implement the standard 2D histogram matching normalizes
the grayscale values of a source image (subject FA image in our case) based on
the grayscale values of a reference image (atlas FA image in our case). This filter
from Insight Toolkit5 uses a histogram matching technique where the histograms
of the two images are matched only at a specified number of quantile values. As
a result of this histogram matching, each subject tensor has a corresponding
atlas intensity normalized FA value. Let us denote the intensity normalized FA
value for the location (x, y, z) as FANormV aluex,y,z . In our algorithm, after
determining the matched iso-MD plane in the atlas space for each subject tensor,
we determine the FA values of all the (λ1, λ2, λ3)s on this plane based on the
equation 1. The (λ1, λ2, λ3)s with the most similar FA value to the tensor’s
intensity normalized FA value FANormV aluex,y,z are selected.

argmin(FAi − FANormV aluex,y,z) (4)

Substituting equation 1 in the above equation and computing the arg mini-
mum leads to a set of points on the plane. These set of points represented as
(λ1i,MD,FA, λ2i,MD,FA, λ3i,MD,FA) (′i′ indicating the points on the selected iso-
MD plane and ′MD′ and ′FA′ represent that these points satisfy the condition
of closest MD and FA) form an ellipse on the iso-MD plane (Fig. 2). The final
step in our method is to determine the point pmin from these set of points that
satisfies the condition (λ1 > λ2 > λ3) and has the minimum Euclidean distance
to the original tensor.

pmin = argmin((λ1x,y,z − λ1i,MD,FA)2+

(λ2x,y,z − λ2i,MD,FA)2 + (λ3x,y,z − λ3i,MD,FA)2)0.5
(5)

This minimum Euclidean distance ensures that the normalized tensor has the
most similar shape to the original tensor. Hence, this algorithm computes the

5 www.itk.org
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Fig. 3. Block diagram showing all the steps in the normalization algorithm.

normalized tensor with the most similar tensor shape that satisfies the conditions
of same cdf and closest normalized FA values. The normalized DTI volume is
determined by computing the normalized tensor for each tensor of the subject
based on the above steps. For clarity, the block diagram Fig. 3 illustrates all the
steps.

3 Experiments

Subjects: The tensor normalization method is tested on Krabbe subjects in the
age 10 days to 2 years. These subjects are registered to a neonate atlas (built
from 377 age-matched neonate controls) and a 1-2 year atlas (from 283 controls
age 1 to 2 year). Both atlases are built using a scalar, unbiased diffeomorphic
atlas building method based on a nonlinear high-dimensional fluid deformation
method [3]. Details of image acquisition of the controls and Krabbe can be found
in [10].

Setup: Four Krabbe neonates are registered to a neonate atlas using the
DTITK algorithm with and without the proposed normalization method. To test
the robustness of the normalization wherein there are large anatomical variations
between the subject and the atlas, we registered the same four neonates to a 1-2
year atlas (as there are considerable differences from a neonate to a 1-2 year
brain). Three additional 1 to 2 year old Krabbe subjects are registered to the
1-2year atlas using the DTITK algorithm. An affine registration is implemented
as a preprocessing step prior to DTITK registration. For all the Krabbe subjects,
the DTI volumes are normalized using our proposed method and the DTITK
deformation field for mapping the normalized subjects to the atlas is determined.
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The field is applied to the original (not normalized) DTI and the results are
compared.

Tract-based Analysis: In this paper, we prove the performance of the
method for atlas based registration methods. Since this is an application based
methodology, we focus our evaluation on FA profiles of tract based analysis. The
clinicians use the statistics of the FA profiles for their Krabbe subject evaluation.
We evaluate the registration with and without normalization via fiber tractog-
raphy based FA profiles [2] for four fiber tracts - corticospinal internal capsule
tracts (left and right), genu and splenium. These tracts have been previously
manually extracted from the different atlases. The FA profiles represent the av-
erage FA values across the individual streamlines along the tract[2]. Since the
tracts under consideration are the prominent high intensity tracts, a higher FA
profile indicates a better registration. The comparison is performed between the
FA profiles of the four tracts obtained from: 1. Registration of the original DTI
to the atlas using DTITK algorithm and obtaining the registered DTI volume
in the same space as the atlas. The fiber tracts are extracted from the registered
DTI volumes using the previously defined atlas tracts and the transformation
field. Using a prior definition of a tract origin plane, which defines a curvilin-
ear re-parameterization of the tracts, corresponding average tract property FA
profiles are extracted from each individual fiber tract. 2. The original DTI is
normalized using the proposed method. The normalized DTI is registered to the
atlas and the deformation field is determined. This deformation field is applied
to the original DTI to obtain the atlas registered DTI volume. The fiber tracts
are extracted in the similar method as above. 3. A region of interest (ROI) in
the tract that is under study is defined by a trained expert for the original DTI
of each subject. The FA volume is used as a reference volume to trace the ROI.
From the ROI, the fiber tracts are seeded using the tool Slicer3 6. The fiber
tracts are cleaned to remove crossing fibers and the FA profiles are determined
of these tracts using an in-house tool called FiberViewer 7.

Evaluation: The FA profiles from manual tractography (MeanFAmt) are
considered as the ground truth and compared to the FA profiles of the fiber tracts
extracted from the registered original and normalized DTI (MeanFAorig/norm).
The mean absolute point-wise difference (MAD) normalized by the mean FA of
the ground truth is used as the evaluation error metric:

E =
MeanFAorig/norm −MeanFAmt

MeanFAmt
(6)

4 Results and Discussions

For the four fiber tracts, the tensor normalization resulted in FA profiles with
higher values as compared to the profiles without normalization. In Table 1, we
show the percentage error in registration of the major fiber tracts with and with-
out normalization. Compared to the ground truth an average percentage decrease

6 www.slicer.org
7 www.na-mic.org
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Internal Capsule Left

Internal Capsule Right

Genu

Splenium

Enorm = 16.8%
Eno_norm = 24.2%

Enorm = 6.9%
Eno_norm = 25.1%

Enorm = 16.6%
Eno_norm = 26.3%

Enorm = 14.7%
Eno_norm = 20.3%

Fig. 4. Comparison of FA profiles for the four tracts. (x-axis:FA values; y-axis: points
along the fiber tracts) For each tract - manual (highest FA), with normalization (mid-
dle) and without normalization (lowest FA).

in error of 5 to 10% is observed. For example, for the Genu tract (Neonate3),
normalization resulted in a 7% error as compared to 25% error without nor-
malization i.e. an improvement in average FA values from 0.32 to 0.4 (18%
improvement). The challenge of registration of Krabbe cases to a normal atlas
has been discussed earlier, and a 2 to 18% improvement is substantial. Even
in cases of poor registration (eg. left internal capsule Neonate1 mapped in 1-2
year atlas), the normalization improves the registration considerably (11%). The
selected tracts are the tracts with the highest FA intensities and thus higher FA
values indicate better mapping of the subject into the atlas template i.e. better
registration. We observe a higher improvement in registration in the corpus col-
losum tracts compared to the cortico-spinal tracts. This is likely due to a higher
reduction in registration errors that are normally seen in the central bends of
the genu and splenium tracts without normalization (see splenium tract in Fig.
4. It is important to note that manual tractography, though performed to the
best of our ability by a trained expert, is akin to manual segmentation and is
subject to variability. Due to this factor, point-wise comparison and higher vari-
ability towards the ends of the tracts, the % error values in Table 1 appear high.
Important to this evaluation is the percentage decrease in error rather than the
absolute % error.

In most cases, the shape of the FA profile with normalization appears similar
to the profile without normalization but with higher values. But in certain cases
(splenium profile of Fig. 4), the shape of the FA profile from normalization
appears more similar to the ground truth, again indicating an improvement in
registration along the entire tract. This method can be easily introduced as
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Table 1. Table showing the E% for 11 cases (7 subjects) and average % error reduction.

a pre-processing step in most analysis pipelines. On a typical workstation, the
normalization takes less than 5 minutes. The code is open source and the binaries
can be downloaded as a part of the ”dtiprocess” package 8.

5 Conclusions

Based on the evaluation criteria, the proposed tensor normalization method
considerably improves the registration of the subjects into the atlas template.
Even for white matter demylinating diseases like Krabbe, where registration is
a very crucial step for analysis, this method gives a significant improvement in
the registration accuracy. This method can be very easily introduced as a pre-
processing step prior to registration in any analysis pipeline. The normalized DTI

8 www.nitrc.com
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is only used for generating the registration diffeomorphic field, and this generated
field is applied to the original DTI and hence no properties of the original DTI
are altered in this pre-processing step. Our future work will be focused on testing
this method on other tensor registration methods like MedINRIA and also on
atlas building methods.
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