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Abstract. We propose and analyze a weighted greedy scheme for computing deterministic sam-
ple configurations in multidimensional space for performing least-squares polynomial approximations
on L2 spaces weighted by a probability density function. Our procedure is a particular weighted ver-
sion of the approximate Fekete points method, with the weight function chosen as the (inverse)
Christoffel function. Our procedure has theoretical advantages: when linear systems with optimal
condition number exist, the procedure finds them. In the one-dimensional setting with any density
function, our greedy procedure almost always generates optimally conditioned linear systems. Our
method also has practical advantages: our procedure is impartial to the compactness of the domain
of approximation and uses only pivoted linear algebraic routines. We show through numerous exam-
ples that our sampling design outperforms competing randomized and deterministic designs when
the domain is both low and high dimensional.
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1. Introduction. The construction of polynomial surrogates that emulate a sys-
tem response with respect to input parameters is a widely used tool in computational
science. A concrete example is provided by problems in parametric uncertainty quan-
tification (UQ), where this approach is frequently called generalized polynomial chaos
[16, 36]. The standard approach is to consider a scalar function f(y) depending on
inputs/parameters y ∈ Γ ⊂ Rd and to approximate this function with a multivariate
polynomial expansion. The parameter y is usually interpreted as a random parame-
ter Y , and the basis chosen to perform the expansion is one whose elements ψj are
orthonormal under the density of Y ,

f(y) ≈
N∑
j=1

f̂jψj(y).(1.1)
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WEIGHTED FEKETE POINTS FOR LEAST-SQUARES A367

Accurately estimating the coefficients f̂j of the expansion is important since these
coefficients can be easily manipulated to infer revealing properties, such as statistical
moments or parametric sensitivities. Many numerical techniques on how to obtain the
polynomial coefficients in UQ problems have been developed in recent years. While
early development often focused on “intrusive” methods, such as stochastic Galerkin,
much recent effort has concentrated on nonintrusive-type collocation methods [35, 13,
28]. In the collocation framework, one seeks to compute the expansion coefficients
via point evaluations of f , and thus constructing a “good” configuration of samples
in Γ has become an active area of research. Popular methods include sparse grids
[15, 29, 35, 25] and polynomial interpolation [27, 9]. The particular numerical method
one uses to compute expansion coefficients often influences the particular sampling
strategy, as evidenced by research on sparse approximations using `1-minimization
[12, 37, 38, 19].

In this paper we focus on computing coefficients via the discrete least-squares
approach using point evaluations of f . While it is relatively easy to compute the
coefficients via standard linear algebraic operations, least-squares approaches have
known stability issues. For instance, when using Newton–Cotes quadrature abscissae
(equidistant point sets) it is highly unstable even for an infinitely smooth noiseless
function unless significant oversampling is performed. Several sampling strategies
have been proposed in recent years [10, 22, 40, 17, 34, 26] to improve the stability
for least-squares. These methods use both randomized and deterministic sampling
methods.

In this paper we propose and analyze a greedily computed deterministic sample
set for discrete least-squares, where the objective in the greedy process is a weighted
determinant. A discrete least-squares system for computing coefficients in (1.1) from
M point evaluations of f utilizes a Vandermonde-like matrix V ∈ RM×N , and our
procedure greedily forms a set of points A via

A← A ∪ yn+1, yn+1 = arg max
y∈Γ

det |WV V TW |,

whereW is a diagonal matrix containing the weights whose entries are the L2 Christof-
fel function associated with the orthogonal polynomial family. The precise procedure
is given in (3.7a), which relies on the notion of Fekete points for polynomial interpo-
lation. The Fekete points are defined to be those points that maximize the (absolute
value of the) Vandermonde determinant on the given compact set. Without the
weights, the procedure is essentially the method of computing approximate Fekete
points [32, 1], and so computationally this is easily implemented with pivoted linear
algebraic routines. Based on these connections, we call our procedure Christoffel-
weighted approximate Fekete points (CFP).

The introduction of the weights introduces mathematically nontrivial results, and
our procedure results in the following theoretical and practical advantages:

• Approximate Fekete points are restricted to compact sets Γ. The CFP for-
mulation is impartial to (non-)compactness of Γ.

• Under certain assumptions, the greedy CFP procedure generates a sequence
that coincides with the result of simultaneous/global optimization (that is,
maximizing the weighted determinant by varying y1, y2, . . . simultaneously).
The required assumptions are in practice difficult to verify in multidimen-
sional settings, but that our greedy procedure can in principle produce the
same result as simultaneous optimization is a strong advantage of the method.

• For general distributions of Y in one dimension, the requisite assumptions
of the previous bullet point are essentially always satisfied. Thus, in one
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A368 LING GUO, AKIL NARAYAN, LIANG YAN, AND TAO ZHOU

dimension our greedy design almost always1 produces an optimal mesh. In
this particular one-dimensional setting, the CFP algorithm produces abscissae
for Gauss quadrature rules.

• Like the methodology for approximate Fekete points, the computational pro-
cedure for CFP requires essentially only pivoted linear algebra routines, in
particular the QR factorization.

• Our numerical results show that CFP produces empirically superior results
when compared with the deterministic sampling strategy given by approx-
imate Fekete points and when compared against randomized Monte Carlo
sampling methods. This is true for all our test cases, both in low-dimensional
settings (d = 2) and in relatively high-dimensional settings (d = 25).

The paper is organized as follows. In section 2, we introduce notation and dis-
cuss least-squares problems. Our approach for grid design is introduced in section
3, along with a description of theoretical properties (with proofs provided in the ap-
pendix). Section 4 describes some details of the algorithm, and section 5 numerically
investigates several examples.

1.1. Historical discussion. This section describes some previous theoretical
results on sampling for polynomial least-squares. The authors in [10] provide foun-
dational theoretical analysis for unweighted discrete least-squares using Monte Carlo
sampling. For anN -term expansion in tensor-product Legendre polynomials, indepen-
dent and identically distributed (iid) sampling from the uniform distribution requires
M ∼ N2 points to guarantee the stability with high probability. With expansions in
tensor-product Chebyshev polynomials, the condition can be reduced to M ∼ N

ln 3
ln 2

[8]. More general results can be derived using the inequalities in [21, 20].
Weighted least-squares approaches with Monte Carlo samples have also been in-

vestigated. Analysis for general weighted procedures is given in [26], where the au-
thors also observe that sampling from the weighted pluripotential equilibrium mea-
sure provides optimal stability and convergence estimates for approximations with
asymptotically large polynomial degree. The authors in [17] propose an inexact sam-
pling method (the Markov Chain Monte Carlo strategy) for optimal sampling in the
nonasymptotic case. The results in [11] suggest an exact sampling method (sampling
with the theoretical optimal measure) and show optimal convergence estimates in the
nonasymptotic case. The work in [23] provides efficient computational methods for
exact sampling in the nonasymptotic case.

The focus of this paper is on deterministic sampling schemes; such methods have
also been investigated elsewhere [22, 37, 6]. We remark again that polynomial grids
constructed via Fekete or Leja methods are closely connected to our procedure [5, 4, 1].
Another closely related approach is provided in [30], wherein the authors optimize a
determinant-like objective.

2. Problem formulation. This section focuses on the introduction of notation
and some background material. More details on discrete least-squares problems can
be found in [31, Chaps. 10–11].

Let y = (y1, . . . , yd)
> be a d-dimensional vector whose components take values

in Γi ⊂ R. In parametric UQ problems, each yi corresponds to a random variable
input into a system, and the goal is to understand how the system depends on these
inputs. This is frequently done via a linear expansion in a basis of polynomials that is

1The initial sample for the greedy method can be any point on R not coinciding with N − 1
isolated points; see Theorem 3.4 for details.
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orthogonal with respect to the L2 norm weighted by the probability density function,
i.e., a polynomial chaos expansion [16, 36].

2.1. Notation. We assume that Γ is tensorial and ρ(y) is a tensor-product
probability density on Γ ⊂ Rd. In parametric UQ problems, this is equivalent to
assuming that the components of a random variable Y = (Y1, . . . , Yd) are mutually
independent and that Yi has marginal probability density ρi : Γi → [0,∞). Thus

Γ :=
∏d
i=1 Γi ⊂ Rd, and ρ(y) =

∏d
i=1 ρi(yi) : Γ → R+. All our results hold for vari-

ables Yi that are discrete, or mixtures of discrete and continuous random variables,
but for simplicity we assume throughout that they are continuous random variables
with densities.

For each i = 1, . . . , d, we can define orthogonality in terms of the ρi-weighted
L2 norm on Γi. Assuming that 0 < E |Yi|k < ∞ for all k ∈ N0, then Yi has finite
moments of all orders. This ensures existence of a family of orthogonal polynomials.
We let ϕin denote the degree-n polynomial from the orthogonal family associated to
the weight function ρi. Therefore,∫

Γi

ϕik(yi)ϕ
i
l(yi)ρi(yi)dyi = δk,l, i = 1, . . . , d, k, l = 0, 1, . . . ,

where δk,l is the Kronecker delta function.
Since ρ is a tensor-product weight on a tensorial domain Γ, multivariate poly-

nomials orthogonal under ρ can be formed via tensorization: For any multi-index
α ∈ Nd0, the polynomials defined as

ψα(y) :=

d∏
j=1

ϕjαj (yj) , α ∈ Nd0,

satisfy

〈ψα, ψβ〉 :=

∫
Γ

ψα(y)ψβ(y)ρ(y)dy = δα,β , α, β ∈ Nd0.

With α = (α1, . . . , αd) ∈ Nd0 a multi-index, then |α| =
∑d
j=1 αj . Various polynomial

subspaces can be defined by identifying an appropriate collection of multi-indices. For
example, the total degree and hyperbolic cross index sets of order k are, respectively,

ΛTD
k :=

{
α
∣∣∣ |α| ≤ k} , ΛHC

k :=

α ∣∣∣ d∏
j=1

(αj + 1) ≤ k + 1

 .

It will occasionally be convenient to place an ordering on indices in a finite index set.
If Λ ⊂ Nd0 has size N , then we will assume an implicit one-to-one correspondence
between the sets

{α | α ∈ Λ} ←→ {1, . . . , N} .(2.1)

We let α(j) denote the index corresponding to j from the above map, so that α(1), . . . ,
α(N) is an ordering of the elements of Λ. In our context, the particular choice of
correspondence defined above is irrelevant.

For any index set Λ, we define the associated space of polynomials as

P = P (Λ) = span {ψα | α ∈ Λ} .(2.2)
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Via the map (2.1), the functions ψj := ψα(j), j = 1, . . . , N , form an orthonormal basis
for P (Λ). We now define a set of weighted polynomials. With

KΛ(y) =
∑
α∈Λ

ψ2
α(y),

Q(Λ) is the following space of weighted polynomials:

Q = Q(Λ) = span

{
ψα√
KΛ

∣∣ α ∈ Λ

}
.(2.3)

Given any points y1, y2, . . . ∈ Γ, we will use the notation

Am = {y1, . . . , ym} , m ≥ 1,

to denote a size-m set of points. An m×N Vandermonde-like matrix for Am on P (Λ)
using an orthonormal basis is given by

V (Am, P ) ∈ Rm×N , (V )j,k := ψα(k)(yj),(2.4)

for 1 ≤ j ≤ m, and 1 ≤ k ≤ N , with α(k) as defined in (2.1). One advantage of
our using an orthonormal basis is that the Vandermonde-like matrix using any other
orthonormal basis for P (Λ) equals V (Am, P (Λ))U for some orthogonal matrix U .

We define V (Am, Q) similarly, having elements
ψα(k)(yj)√
KΛ(yj)

.

2.2. Discrete least-squares problems. Given a function f : Γ → R and
multi-index set Λ, our main goal is to construct a polynomial approximation fN from
P (Λ):

f(y) ≈ fN (y) :=

N∑
n=1

f̂nψn(y).(2.5)

The L2
ρ(Γ)-best approximation from P (Λ) is the polynomial

f∗N (y) =

N∑
n=1

〈f, ψn〉ψn(y).

The coefficients of this polynomial clearly require significant information about the
function f via the inner products 〈f, ψn〉. In practice such information cannot be
computed directly and instead only point evaluations f(y) at a discrete number y
values are possible to obtain. If AM = {y1, . . . yM} ⊂ Γ is some selection of M points,
then one possible method to compute fN is to compute the least-squares residual
minimizer, which is a quadratic optimization problem whose solution is linear in the
data f(ym):

{
f̂n

}N
n=1

= arg min
fn

M∑
m=1

[
f(ym)−

N∑
n=1

f̂nψn(ym)

]2

.(2.6)

This problem can be written algebraically: Let V(AM , P ) be theM×N Vandermonde-

like matrix defined in (2.4). We collect the unknown coefficients f̂n into the vector f̂
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and collect the function evaluations f(ym) into the vector f ∈ RM . The least-squares
approach (2.6) is equivalent to

(2.7) f̂ = arg min
v∈RN

‖V(AM , P )v − f‖2,

which is a simple algebraic least-squares problem.
Recent research has shown that the unweighted least-squares formulation above is

frequently inferior to a particular weighted approach [17, 26, 11]. This approach uses
weights given by 1/KΛ. The algebraic formulation of the weighted approach solves

(2.8) f̂ = arg min
v∈RN

‖V(AM , Q)v −W f‖2,

where W is a diagonal matrix with entries (W )m,m = 1/
√
KΛ(ym), 1 ≤ m ≤ M .

This paper focuses on solving (2.8), where we use a deterministic sampling approach
to compute AM .

3. A quasi-optimal sampling strategy. Our sampling strategy relies on the
notion of Fekete points for polynomial interpolation. To this end, we first review some
basic definitions for the Fekete points. Throughout this section Λ is an arbitrary but
fixed finite multi-index set with size N , and we use the abbreviations P = P (Λ) and
Q = Q(Λ) as defined in (2.2) and (2.3), respectively.

The CFP method we propose in this paper is provided by the greedy optimization
(3.7a), but the first three subsections below provide motivating discussion for this
optimization.

3.1. Determinants and interpolation. One set of good points, in theory, for
polynomial interpolation is the Fekete points. We give a brief discussion of this below,
but for more details along this line we refer to [3, 4] and references therein.

Assume in this section that Γ ⊂ Rd is a compact set with nonempty interior.
Given a set of N distinct points AN = {yi}Ni=1 ⊂ Γ and a function f : Γ → R, the
polynomial interpolation problem is to find a p ∈ PΛ(Γ) such that

(3.1) p(yi) = f(yi) ∀yi ∈ AN .

We assume that this problem is unisolvent; this is true unless the yi have a pathological
configuation in Γ.2 With {ψ1, ψ2, . . . ψN} any ordered basis for P (Λ), then there are
unique coefficients cj satisfying a linear system that determines p:

p =

N∑
j=1

cjψj , V(AN ;PΛ)c = f .(3.2)

Definition 3.1. Let yj, j = 1, . . . , N , denote any set of points in Γ, so that
Am = {yj}mj=1 for m ≤ N is well-defined. Define the determinant modulus of the

rectangular matrix V = V (Am, P ) as

|detV | =
√
|det (V V T )|, 1 ≤ m ≤ N.

2For example, if we choose yi as realizations of a continuous random variable that is uniform on
Γ, then the interpolation problem is unisolvent with probability 1.
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The definition above coincides with the standard square matrix determinant (modu-
lus) when m = N . Some additional notation is the operation of appending a point to
a given set Am and replacing the jth element of AN , respectively:

Am∪y = {y1, . . . , ym, y} , y ∈ Γ.

AN\j(y) := {y1, . . . , yj−1, y, yj+1, . . . , yN} , 1 ≤ j ≤ N, y ∈ Γ.

If the polynomial interpolation problem on PΛ is on AN , then the cardinal Lagrange
interpolation polynomials are given by

`j(y) =
detV

(
AN\j(y), PΛ

)
detV (AN , PΛ)

, `j(yk) = δj,k,

with δj,k the Kronecker delta. This allows us to explicitly construct the unique element
p ∈ P (Λ) that interpolates at AN an arbitrary f continuous on AN :

INf :=

N∑
n=1

f(yn)`n(y).

The output of this operator is an element of P (Λ), which we can view as a subspace
of C(Γ), continuous functions over Γ. This results in a popular notion of stability, the
Lebesgue constant,

‖IN‖C(Γ)→C(Γ) = sup
y∈Γ

N∑
n=1

|`n(y)| .

This quantity does not depend on which basis for P (Λ) is chosen to compute the
cardinal Lagrange interpolants. Finally, the conditioning of the problem of computing
c from an arbitrary f is measured by

κ (V (AN , P )) =
σ1 (V )

σN (V )
,

where σj , j = 1, . . . , N , are the singular values of V in decreasing order.

3.2. Near-optimal stability and conditioning. Consider the square systems
case, M = N , with interpolation on P = P (Λ). A set of points that maximizes the
determinant of the Vandermonde-like matrix is called a set of Fekete points:

AFN (P (Λ)) := arg max
AN={y1,...,yN}∈ΓN

|detV (AN , P )| .(3.3)

Classically, Fekete points on general manifolds are point configurations that minimize
a Reisz energy. On a compact interval in R, a specialization of Riesz energy coincides
with the determinant of the Vandermonde matrix. Thus, in the one-dimensional
setting a set of Fekete points is determined by maximizing the determinant of the
Vandermonde matrix.

The utility of Fekete points for polynomial approximation is that they provide at
most linear growth of the Lebesgue constant:

‖IN‖C(Γ)→C(Γ) = sup
y∈Γ

N∑
n=1

∣∣∣∣∣∣
detV

(
AFN\n(y), P

)
detV

(
AFN , P

)
∣∣∣∣∣∣ ≤ sup

y∈Γ

N∑
n=1

1 = N.
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In practice, logarithmic growth is observed. Thus, the computation of determinant-
maximizing sample points (3.3) is of great interest.

We can similarly define an optimization problem that seeks a point configuration
with minimal condition number [39]:

ACN (P ) := arg min
AN={y1,...,yN}∈ΓN

κ (V (AN , P )) .(3.4)

Note that AFN and ACN are different sets in general.

3.3. Greedy designs. The optimization problems (3.3) and (3.4) are not com-
putationally feasible in general, and so one frequently resorts to greedy algorithms.
Greedy versions of these algorithms are straightforward to devise:

AF∗N (P ) =
{
yF∗1 , . . . , yF∗N

}
, yF∗n+1 = arg max

y∈Γ

∣∣detV
(
AF∗n∪y, P

)∣∣ ,(3.5a)

AC∗N (P ) =
{
yC∗1 , . . . , yC∗N

}
, yC∗n+1 = arg min

y∈Γ
κ
(
V
(
AC∗n∪y, P

))
.(3.5b)

These greedy versions are still difficult but are more feasible since they involve only
repeated optimization over Γ (instead of optimization over ΓN ). The determinant-
maximizing objective is easier to compute compared to the condition number objec-
tive. In practice, one often replaces exact maximization over Γ with maximization over
a discrete set. Finally, there is ambiguity at each iteration if multiple locations y max-
imize objectives, and there is freedom in choosing the starting point y1 in each case.

There are two major difficulties with all of our previous discussions. First, we
now have four potential sets, AF , AC , AF∗, and AC∗, that we would like to compute.
It seems unclear, for example, whether AF∗ or AC∗ is the better option. Our second
difficulty is that none of these sets is well-defined if Γ is not compact.

3.4. Weighted greedy designs. We can partially resolve the difficulties identi-
fied at the end of the previous section by considering weighted polynomials. By doing
this, we show under some assumptions that greedy designs can produce the same
result as the much more burdensome simultaneous optimization designs. In addition,
we show in one dimension for any ρ that this almost always happens.

We reformulate all four problems, both the optimal versions (3.3) and (3.4) as well
as their greedy versions (3.5). Let Γ ⊂ Rd, d ≥ 1, and now assume only that Γ has an
interior containing any open set with positive Lebesgue measure. Instead of working
on the polynomial space P = P (Λ), we’ll use the weighted space Q = Q(Λ) defined
in (2.3). The point configurations that maximize the determinant and minimize the
condition number, respectively, are defined as

AFN (Q) := arg max
AN={y1,...,yN}∈ΓN

|detV (AN , Q)| ,(3.6a)

ACN (Q) := arg min
AN={y1,...,yN}∈ΓN

κ (V (AN , Q)) ,(3.6b)

and the greedy versions are, for n ≥ 1,

AF∗N (Q) =
{
yF∗1 , . . . , yF∗N

}
, yF∗n+1 = arg max

y∈Γ

∣∣detV
(
AF∗n∪y, Q

)∣∣ ,(3.7a)

AC∗N (Q) =
{
yC∗1 , . . . , yC∗N

}
, yC∗n+1 = arg min

y∈Γ
κ
(
V
(
AC∗n∪y, Q

))
.(3.7b)

In the above, the starting values yF∗1 and yC∗1 can take arbitrary values in R, but
this choice affects the final result of the greedy pursuit. Furthermore, at each n there
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may be multiple points yF∗n+1 that extremize the objective. We assume that any one
of these extremizers is chosen for the procedure, and we refer below to this potential
nonuniqueness of the sequence as a branch of the iterative optimization.

The greedy algorithms working on Q are just as computationally feasible as those
working on P . However, the advantage of this particular weighted approach is that
if an optimal solution exists, then all of the four approaches (3.6) and (3.7) give the
optimal solution.

Theorem 3.2. Let ρ : Γ → [0,∞) be a probability density function on Rd. Let
Λ be an arbitrary multi-index set of size N defining Q. A point configuration AN
satisfies

|detV (AN , Q)| = 1(3.8a)

if and only if

κ (V (AN , Q)) = 1.(3.8b)

Thus, solutions to (3.6) attaining optimal objective values coincide. If AN is a set
that satisfies either (hence both) of the optimal objective values above, then

• if yF∗1 ∈ AN , then the iteration (3.7a) has a branch such that AF∗N = AN ;
• if yC∗1 ∈ AN , then the iteration (3.7b) has a branch such that AC∗N = AN .

Proof. See Appendix A.

The strength of this result is twofold. First, it suggests that we may optimize ei-
ther the determinant or the condition number and obtain equivalent answers. Second,
it shows that greedy optimization recovers the global optimum. These conclusions give
us great flexibility in computational procedures since we may propose a method for
a greedy determinant maximization and this plausibly gives results comparable to
global minimization of the condition number.

The unfortunate caveat in the result above is that we require existence of a point
configuration with optimal condition number and determinant. It is initially unclear
whether this is a reasonable assumption. However, nontrivial multidimensional ex-
amples for when this condition is satisfied exist [18].

A somewhat surprising positive result is that in one dimension (d = 1), infinitely
many point configurations with optimal condition number exist, and the union of all
these optimal sets covers every real number, except for N − 1 isolated points.

Lemma 3.3. Let ρ(y) be any probability density function on Γ = R, and let Λ =
{0, . . . , N − 1} for any N ≥ 1. Recall that ϕN (·) denotes the degree-N orthonormal
polynomial with respect to the ρ-weighted L2 inner product on Γ. We use ϕ−1

N−1(0) to
denote the zero set of the polynomial ϕN−1(y), which is always a set of N −1 distinct
points in R. Then

1. for any y 6∈ ϕ−1
N−1(0), there is a set AN = AN (y) that satisfies (3.8);

2. the set AN (y) defined above is unique as a function of y;
3. the set AN (y) is given by

AN (y) = r−1
N (rN (y)) ,

where rN is the meromorphic function

rN (y) =
ϕN (y)

ϕN−1(y)
,

and r−1
N denotes its set-valued functional inverse;
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4. the set AN (y) contains the abscissae for an N -point positive quadrature rule
exact for polynomials up to degree 2N − 2,∫

Γ

p(z)ρ(z)dz =
∑

z∈AN (y)

1

KΛ(z)
p(z), deg p ≤ 2N − 2;

5. if y ∈ ϕ−1
N (0), then AN (y) are the abscissae of the N -point Gauss quadrature

rule.

Proof. See Appendix B.

Note that in the lemma above we must consider ρ a density on Γ = R, even if its
support lies on a compact set. This result shows that in one dimension (for any ρ)
there are many optimal point configurations.

Theorem 3.4. Let ρ be any probability density function on Γ = R, and let Λ =
{0, . . . , N − 1} for any N ≥ 1. Let y ∈ ϕ−1

N−1(0) be arbitrary but fixed, and let AN (y)

denote the unique set defined in Lemma 3.3. Set AFN (Q) = ACN (Q) = AN (y), which
satisfy the maximization problems (3.6). Set the initial values for the greedy iterations
(3.7) as

yF∗1 = yC∗1 = y.

Then

ACN (Q) = AC∗N (Q) = AF∗N (Q) = AFN (Q)

and∣∣detV
(
AFN , Q

)∣∣ =
∣∣detV

(
AF∗N , Q

)∣∣ = 1 = κ
(
V
(
AC∗N , Q

))
= κ

(
V
(
ACN , Q

))
.

Proof. See Appendix C.

We emphasize that the above result holds for any univariate density ρ, even those
with noncompact support. This result completely characterizes the greedy scheme’s
behavior in one dimension and shows that it achieves an optimal condition number
for almost any starting point y.

One final observation is that the set AF∗N produced by the one-dimensional greedy
iteration produces optimal quadrature rules.

Corollary 3.5. Let y 6∈ ϕ−1
N−1(0). Then the greedy iteration (3.7a) with yF∗1 = y

produces the unique positive L2
ρ quadrature rule abscissae with optimal polynomial ac-

curacy. In particular, if y ∈ ϕ−1
N (0), then they produce the abscissae of the ρ-weighted

Gauss quadrature rule.

The theoretical results of this section give strong motivation for using the greedy
weighted determinant design AF∗N (Q): in one dimension we produce optimally con-
ditioned point sets for almost any starting location in the greedy design. The one-
dimensional greedy designs coincide with the more onerous simultaneous optimization
designs and even coincide with designs based on condition number optimization. For
multiple dimensions we retain all the previous properties but must make the assump-
tion that a point set with unit condition number exists and that our starting location
lies in this set. Under this existence assumption, greedy designs again produce optimal
sets.

The remainder of this paper investigates the computational performance of the
set AF∗N (Q).
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4. CFP algorithmic details. The CFP strategy given by (3.7a) can be used
to construct a sample set A having the same size as the dimension of the (weighted)
polynomial space Q. However, in least-squares problems we wish the sample count
M = |A| to dominate the polynomial space dimension N = dimQ. To achieve this,
we start with a specified space Q and enrich it with weighted polynomials of a higher
degree. This procedure is largely ad hoc, so we cannot claim optimality for our specific
strategy, but our numerical results indicate that our procedure works very well.

Let Λ be a given multi-index set of size N . All our examples will use a downward-
closed set Λ, but this is mainly for algorithmic convenience. An index set Λ is called
a downward-closed set if and only if ν ∈ Λ and µ ≤ ν =⇒ µ ∈ Λ, where µ ≤ ν if
and only if µk ≤ νk for all 1 ≤ k ≤ d. The weighted polynomial space Q is defined
in (2.3). We wish to compute a set of samples A = {y1, . . . , yM} that we use to solve
the weighted least-squares problem (2.8). Our procedure to accomplish this enriches
Λ to a size of M > N , and we subsequently compute M CFP points associated to
this enriched Λ. We then compute the least-squares solution (2.8) using the original
index set Λ. We describe the details of this below.

4.1. Choosing Q. Given an enrichment size ∆N , we define Λ̃ of size N + ∆N
and satisfy Λ̃ ⊃ Λ by adding to Λ elements based on total-degree graded reverse
lexicographic ordering of the set Λn\Λ:

1. Compute n = max
{
|α|

∣∣ α ∈ Λ
}

.
2. Compute S := ΛTD

n \Λ. Set n← n+ 1 if Λ = ΛTD
n .

3. Impose a total order on S: graded (partially ordered) based on total degree,
and ordering within a grade defined by reverse lexicographic ordering.

4. Extract the first ∆N elements from S and append those to Λ, creating the
set Λ̃.

The input to the procedure above is simply Λ (assumed downward-closed) and an en-
richment size ∆N . In all our numerical tests, we choose ∆N = b0.05Nc, representing
a small enrichment of Λ. We now define the (N + ∆N)-dimensional space

Q̃ := QΛ̃.

We will compute CFP using this enriched weighted space.

4.2. Choosing candidate sets. CFP sets are computed via (3.7a). This pro-
cedure must be discretized in practice since it is computationally difficult to optimize
over the continuum Γ. We choose a large but finite-size candidate set Ã and replace
the maximization over Γ by maximization over Ã.

When d is “moderately small,” say, d ≤ 5, modern computational power allows
us to choose a candidate mesh that “fills” this d-dimensional space. Thus, we can
be reasonably sure that an intelligent choice for Ã is an effective surrogate for Γ.
However, when d & 5 we can no longer be reasonably confident that Ã is a fine
enough mesh on Γ. In this paper we do not make any advancements with respect to
this deficiency. In our numerical simulations we choose Ã as the union of two random
ensembles:

Ã =
{
R1, . . . , RM̃/2

, S1, . . . , SM̃/2

}
,

where M̃ is a reasonably large number, usually M̃ = 104. The random variables
Rj , j = 1, . . . , M̃/2, are iid samples from the probability density ρ on Γ, and Sj ,

j = 1, . . . , M̃/2, are iid samples from a degree-asymptotic density inspired by the
approach in [26].
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When ρ is the uniform measure on Γ = [−1, 1]d we choose Sj to be sampled from
the tensor-product Chebyshev density, and when ρ is the Gaussian meaure on Rd we
choose the sampling distribution of Sj to have support on the Rd unit ball with radius√

2n, with n as chosen in section 4.1. Its density as a function of s ∈ Rd is

Cd

(
1− 1

2n

d∑
k=1

s2
k

)d/2
, s = (s1, . . . , sd) ∈ Rd,

where Cd is a normalization constant. We refer to [26] for details on this latter sam-
pling density. Our choices above may naturally be replaced with any other candidate
mesh, e.g., quasi–Monte Carlo sets, sparse grids, or tensor-product points.

We finally note that weakly admissible meshes [7] are known to be good candidate
sets for non-weighted polynomial spaces. These meshes are good candidates for our
weighted formulation as well, but we forgo their use since known constructions of
these meshes exhibit very large growth for even moderate dimensions [1].

4.3. Greedy optimization. We have chosen a space Q̃ of dimension M =
N +∆N and a candidate mesh Ã of size M̃ � N . Our goal is now to compute a CFP
set:

Solve (3.7a), setting Q← Q̃ and Γ← Ã.

This optimization procedure at each iteration is equivalent to forming the matrix

V (Ã, Q̃) and then choosing rows that greedily maximize the spanned volume of the
chosen rows. This, in turn, is easily performed by a column-pivoted QR decomposition
of V T ; see, e.g., [32, 2]. The ordered pivots define the choice of M points AM = AF∗M .

We now summarize the procedure to generate the weighted Fekete points in
Algorithm 1.

Algorithm 1. A sequential algorithm to construct the weighted Fekete points.

• Input: A given multi-index set Λ of size N , the weighted polynomial space
Q is defined in (2.3), an enrichment size ∆N , a reasonable large number M̃ .

• Output: M = N + ∆N CFP points.
1. Enrich Λ to Λ̃ of size N + ∆N via the procedure given in section 4.1, then

define the (N + ∆N)-dimensional space Q̃ := QΛ̃.

2. Generate a large candidates set Ã of size M̃ following the descriptions in
section 4.2.

3. Form the design matrix V (Ã, Q̃), used for computing the CFP points via
(3.7a).

4. Perform the QR-type decomposition with column pivoting to the matrix V T

to get M CFP points AM = AF∗M .

4.4. Least-squares solve. Having selected a size-M point set AM in section 4.3,
and with a size-N polynomial space P (Λ) already defined (along with its weighted

version Q), we now compute f̂ as the solution to (2.8).

The coefficients in the solution vector f̂ define our desired expansion shown
in (2.5).
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5. Numerical tests. In this section we investigate the stability and convergence
properties of the CFP sampling strategy. We will generate sampling sets AM using
CFP and compare them against two popular alternatives for generating AM : ran-
domized Monte Carlo using iid samples from ρ, and deterministic approximate Fekete
points. We are interested primarily in investigating how sampling rates of M versus
the approximation space dimension N affects stable and accurate approximation. In
our figures and results, we will use “MC” to denote the Monte Carlo procedure,
“Fekete” to denote approximate Fekete points, and “C-Fekete” to denote the CFP
algorithm of this paper.

In order to implement our proposed method, we first picked M̃ random points as
a candidate set, then we selected M optimal points from section 1 as CFP points. In
all the following examples, we choose M̃ = 104.

5.1. Matrix stability. In this section we investigate the condition number of
the matrix V (AM , P ) (MC and Fekete) and the condition number for the matrix
V (AM , Q) (C-Fekete). In all examples that follow we perform 50 trials of each pro-
cedure and report the mean condition number along with 20% and 80% quantiles.

5.1.1. Bounded domains. We first consider the Legendre polynomials for which
the domain is Γ = [−1, 1]d and ρ is the uniform probability density. In Figure 1, the
d = 2 condition numbers obtained by the procedures are shown for a linear over-
sampling of M = 1.05N . The numerical results for d = 6 and d = 10 are shown
in Figures 2 and 3, respectively. We notice that the CFP procedure produces point
configurations that have notably more stable linear systems when compared against
the approximate Fekete points (AFP) or MC designs.

5.1.2. Unbounded domains. We now let Γ = Rd with ρ a Gaussian density,
ρ(y) ∝ exp(−‖y‖22). The associated orthonormal polynomial family is formed from
tensor-product Hermite polynomials. Our tabulation of the condition numbers is
shown in Figures 4–7. We note that for each case, dimension d = 2, 6, 10, and 25, the
CFP procedure produces more stable point sets than either of the alternatives, but
the improvement is modest in high dimensions.

5.2. Least-squares accuracy. In this section, we will compare the CFP, APF,
and MC algorithms in terms of their ability to approximate test functions. In all
examples that follow we report the numerical results over an ensemble of 50 tests.
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Fig. 1. Condition number with respect to the polynomial degree in the 2-dimensional polynomial
spaces. Left: Total degree. Right: Hyperbolic cross.
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Fig. 2. Condition number with respect to the polynomial degree in the 6-dimensional polynomial
spaces. Left: Total degree. Right: Hyperbolic cross.
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Fig. 3. Condition number with respect to the polynomial degree in the 10-dimensional polyno-
mial spaces. Left: Total degree. Right: Hyperbolic cross.
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Fig. 4. Condition number with respect to the polynomial degree in the 2-dimensional polynomial
spaces. Left: Total degree. Right: Hyperbolic cross.

5.2.1. Algebraic function. In Figure 8, we show the convergence rate of the
least-squares approximation for Legendre approximation (ρ uniform over [−1, 1]d) in

the two-dimensional polynomial space for the test function f(y) = exp(−
∑d
j=1 y

2
j ).

We measure accuracy using the discrete `2 norm which is computed using 1,000 ran-
dom samples drawn from the probability measure of orthogonality. In this case the
CFP and AFP procedures work comparably.
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Fig. 5. Condition number with respect to the polynomial degree in the 6-dimensional polynomial
spaces. Left: Total degree. Right: Hyperbolic cross.
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spaces. Left: Total degree. Right: Hyperbolic cross.
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Fig. 7. Condition number with respect to the polynomial degree in the 25-dimensional hyperbolic
cross polynomial spaces. Left: Legendre. Right: Hermite.

In Figure 9, we consider the Hermite approximation for f(y) in the two-dimensional
polynomial space. We observe here that CFP produces considerably better results
compared with MC or AFP, especially for high-degree approximations.

5.2.2. Parameterized elliptic differential equation. We now consider the
stochastic elliptic equation, one of the most used benchmark problems in UQ, in one
spatial dimension,
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Fig. 8. Approximation error against polynomial degree. Legendre approximation of f(Y) =
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Polynomial order
0 5 10 15 20 25 30 35

A
p
p
ro

x
im

a
ti
o
n
 e

rr
o
r

10
-15

10
-10

10
-5

10
0

10
5

d=2, Hermite, M= 1.05N

MC
Fekete
C-Fekete

Hyperbolic cross order
0 5 10 15 20 25 30 35

A
p
p
ro

x
im

a
ti
o
n
 e

rr
o
r

10
-2

10
0

10
2

10
4

10
6

10
8

d=2, Hermite, M= 1.05N

MC
Fekete
C-Fekete

Fig. 9. Approximation error against polynomial degree. Hermite approximation of f(Y) =

exp(−
∑d

i=1 Yi) Left: Total degree. Right: Hyperbolic cross.

(5.1) − d

dx
[κ(x, y)

du

dx
(x, y)] = f, (x, y) ∈ (0, 1)× Rd,

with boundary conditions

u(0, y) = 0, u(1, y) = 0,

and f = 2. The random diffusivity takes the following form:

(5.2) κ(x, y) = 1 + σ

d∑
k=1

1

k2π2
cos(2πkx)yk.

This form resembles that of the well-known Karhunen–Loeve expansion.
We approximate the solution u(y) = u(0.5, y) and let the density ρ(y) be uniform

over the hypercube [−1, 1]d and thus use Legendre polynomials in y to approximate
u(y). Figures 10 and 11 compare the convergence accuracy of the least-squares ap-
proximations of the quantity of interest u(0.5, y) using CFP, AFP, and MC algorithms.
CFP performs comparably to, but no worse than, AFP and much better than MC.

Appendix A. Proof of Theorem 3.2. We first show the equivalence of the
relations (3.8). Recall the fact that for a matrix A ∈ RN×N having columns ai ∈ RN ,
i = 1, . . . , N ,
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Fig. 10. Approximation error against polynomial degree. Legendre approximation of the diffu-
sion equation. Left: d = 2. Right: d = 6.
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Fig. 11. Approximation error against polynomial degree. Legendre approximation of the diffu-
sion equation. Left: d = 10. Right: d = 25.

|detA| ≤
N∏
i=1

‖ai‖2(A.1)

with equality if and only if ai are pairwise orthogonal. Now assume that (3.8a) holds
with AN = {y1, . . . , yN}. The matrix V (AN , Q) is made up of rows

V =


ψT (y1)
ψT (y2)

...
ψT (yN )

 , ψT (yj) =

(
ψ1(yj)

KΛ(yj)
,
ψ2(yj)

KΛ(yj)
, . . . ,

ψN (yj)

KΛ(yj)

)
.(A.2)

We have

‖ψ(yj)‖2 =

√√√√ N∑
i=1

ψ2
i (yj)

KΛ
= 1(A.3)

for all j. Thus,

∣∣detV T
∣∣ = |detV | (3.8a)

= 1 =

N∏
j=1

‖ψ(yj)‖2 ,
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thus showing equality in (A.1) for A = V T . Therefore, the ψ(yj) are pairwise or-
thogonal and are furthermore orthonormal because of (A.3). A square matrix V with
pairwise orthonormal rows is an orthogonal matrix and hence has all of its singular
values equal to 1. Therefore, κ(V ) = 1, showing (3.8b).

Now assume that (3.8b) holds. Then V , being a square matrix, is an orthogonal
matrix. Hence,

|detV |2 =
∣∣detV TV

∣∣ = |det I| = 1,

showing that |detV | = 1, and hence (3.8a). This completes the proof of the equiva-
lence of relations (3.8).

Now let AN = {y1, . . . , yN} be a set that satisfies either (hence, both) of the
conditions (3.8), and choose yF∗1 ∈ AN ; we further assume without loss that yF∗1 = y1.
(If not, then relabel the elements in AN .) We proceed by induction, showing that
for each n = 1, . . . , N − 1, the greedy optimization (3.7a) has a branch yielding the
new point yF∗n+1 = yn+1. Note that the initialization step of induction is true by
assumption. We will show the induction step is true by noting that (3.7a) varies a
single RN vector in an attempt to maximize an (n+ 1)-dimensional volume spanned
by unit vectors. One way to maximize this volume is by choosing the vectors to
correspond to the set AN , which makes the volume an (n+ 1)-dimensional orthotope.
The details are as follows.

Since conditions (3.8) are true, the vectors ψ(yj), j = 1, . . . , N , are pairwise
orthonormal. For some n ≥ 1, assume yF∗j = yj for 1 ≤ j ≤ n. The iteration (3.7a)
at index n ≥ 1 takes the form

yF∗n+1 = arg max
y∈Γ

∣∣detV
(
AF∗n∪y, Q

)
V T

(
AF∗n∪y, Q

)∣∣ ,
where

V
(
AF∗n∪y, Q

)
=


ψT (yF∗1 )

...
ψT (yF∗n )
ψT (y)

 .

Since yF∗j = yj for 1 ≤ j ≤ n, then ψT (yF∗j ) for 1 ≤ j ≤ n are pairwise orthonormal.

This allows us to easily compute the QR decomposition of V T :

V T = QR =
(
ψ(yF∗1 ) ψ(yF∗2 ) · · · ψ(yF∗n ) ψ̃(y)

)( In b
0 r

)
,

where In is the n× n identity matrix, the vector b ∈ Rn has entries

(b)j = ψT
(
yF∗j

)
ψ (y) ,

and r =
√

1− ‖b‖22. Note by Bessel’s inequality that ‖b‖2 ≤ 1, and hence r ∈ [0, 1].
When r > 0, the last column of Q is

ψ̃(y) =
1

r

ψ(y)−
n∑
j=1

bjψ(yF∗j )

 ,D
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and when r = 0 we let ψ̃(y) be any unit vector. Since the matrix Q is orthogonal, we
have ∣∣detV

(
AF∗n∪y, Q

)
V T

(
AF∗n∪y, Q

)∣∣ =
∣∣det(RTQTQRT )

∣∣ =
∣∣det(RTR)

∣∣ = r2.

This is maximized when r = 1, which happens when ψ(y) is orthonormal to ψ(yF∗j ) for
1 ≤ j ≤ n. This is achievable by setting y ← yn+1 since ψ(yn+1) is a vector satisfying
the desired orthonormality condition. Thus one maximizer of (3.7a) is yF∗n+1 = yn+1.
This completes the inductive step, showing that yF∗j = yj for 1 ≤ j ≤ N .

Nearly the same argument shows that the greedy iteration (3.7b) has a solution
branch equal to AN ; we omit the proof.

Appendix B. Proof of Lemma 3.3. The results of this lemma are essentially
well-known (e.g., historically [33, 14], or see [24] for a modern compilation of these
results). However, these results are scattered so we provide a proof here in order to
be self-contained.

There are five enumerated statements in Lemma 3.3. In this univariate d = 1
case, our orthonormal polynomials ϕn(z) satisfy a three-term recurrence and the
Christoffel–Darboux relation,

zϕn(z) =
√
bnϕn−1(z) + anϕn(z) +

√
bn+1ϕn+1(z),

n−1∑
j=0

ϕj(x)ϕj(z) =
√
bn
ϕn(x)ϕn−1(z)− ϕn(z)ϕn−1(x)

x− z
(B.1)

=

√
bn

ϕn−1(x)ϕn−1(z)

(
rn(x)− rn(z)

x− z

)
,(B.2)

where the constants an and bn depend on the polynomial moments of ρ. We define
the set

AN (y) = r−1
N (rN (y)) ,

where rN (y) ∈ R since by assumption y 6∈ ϕ−1
N−1(0). The function rN is meromorphic

with N − 1 distinct poles on R, and a straightforward computation shows that r′N (z)
is continuous and positive everywhere except at its poles. This, coupled with the fact
that limz→±∞ rN (z) = ±∞, shows that the set AN (y) defined above consists of N
distinct points on R. We label these points as yj :

AN (y) = {y1, . . . , yN} .

By definition, rN (yj) is the same number for any 1 ≤ j ≤ N . We now consider the
matrix V (AN (y);Q), whose rows are ψT (yj), which is defined in (A.2). Note that
ψ(yj) is a unit vector for each j. We have, for j 6= k,

ψT (yj)ψ(yk) =
1√

KΛ(yj)KΛ(yk)

N−1∑
j=0

ϕj(yj)ϕj(yk)

(B.1)
=

√
bN

ϕN−1(yj)ϕN−1(yk)
√
KΛ(yj)KΛ(yk)

(
rN (yj)− rN (yk)

yj − yk

)
= 0,

where the last equality holds since rN (yj) = rN (yk) with yj 6= yk. Thus, V is a square
matrix with orthonormal rows; therefore it is an orthogonal matrix and has modulus
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determinant 1 and condition number 1. Therefore, AN (y) satisfies (3.8), proving
the first statement in the lemma. The second statement, uniqueness of AN (y), is
straightforward given the construction above. The third statement, defining AN (y)
as level sets of rN , is our explicit construction above.

To show the fourth statement, consider the matrix V = V (AN (y), Q), which we
have already shown is an orthogonal matrix, and hence

V TV = IN .

For row and column indices i and j, respectively, the componentwise equality above
reads

N∑
q=1

1

KΛ(yq)
ϕi(yq)ϕj(yq) = δi,j =

∫
Γ

ϕi−1(z)ϕj−1(z)ρ(z)dz(B.3)

for 0 ≤ i, j ≤ N−1, where the final equality is just orthonormality of the polynomials
ϕi. This shows that the quadrature rule whose abscissae are collocated at AN (y)
exactly integrates products ϕiϕj for 0 ≤ i, j ≤ N−1. Let p be an arbitrary polynomial
of degree 2N − 2 or less. Euclidean division of this polyomial by ϕN−1 yields

p = ϕN−1q + r,

where q is a polynomial of degree N − 1 or less, and r is a polynomial of degree N − 2
or less. We now use the fact that {ϕj}N−1

j=0 is a basis for polynomials of degree N − 1
and less, and so there exist constants cj and dj such that

q(z) =

N−1∑
j=0

cjϕj(z), r(z) =

N−1∑
j=0

djϕj(z),

with dN−1 = 0. Since ρ is a probability density, then ϕ0(z) = 1, implying

p(z) =

N−1∑
j=0

cjϕj(z)ϕN−1(z) +

N−1∑
j=0

djϕj(z)ϕ0(z).

Since the quadrature rule in (B.3) is linear and can exactly integrate products ϕiϕj ,
it can exactly integrate p, which equals a sum of such products. This shows statement
4 of the lemma.

The final statement is straightforward: if y ∈ ϕ−1
N (0), then rN (y) = 0, and so

AN = r−1
N (0). The zero level set r−1

N (0) coincides with the zero level set ϕ−1
N (0) since

the roots of ϕN−1 and the roots of ϕN are disjoint sets. This shows that AN (y) is the
zero set of ϕN ; therefore, these points are the Gaussian quadrature nodes, proving
statement 5 of the lemma.

Appendix C. Proof of Theorem 3.4. This proof is essentially a combination
of Lemma 3.3 and Theorem 3.2. By Lemma 3.3, the set AN has determinant modulus
and condition number 1, satisfying (3.8). Thus, Theorem 3.2 guarantees that both
greedy algorithms (3.7) produce the same optimal set AN . Since the set AN containing
y is unique, this is true regardless of which solution branches are taken during the
greedy iterations (3.7).

D
ow

nl
oa

de
d 

06
/0

7/
18

 to
 1

55
.9

8.
19

.7
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A386 LING GUO, AKIL NARAYAN, LIANG YAN, AND TAO ZHOU

REFERENCES

[1] L. Bos, J. P. Calvi, N. Levenberg, A. Sommariva, and M. Vianello, Geometric weakly
admissible meshes, discrete least squares approximation and approximate Fekete points,
Math. Comp., 80 (2011), pp. 1623–1638.

[2] L. Bos, S. De Marchi, A. Sommariva, and M. Vianello, Computing multivariate Fekete and
Leja points by numerical linear algebra, SIAM J. Numer. Anal., 48 (2010), pp. 1984–1999,
https://doi.org/10.1137/090779024.

[3] L. Bos and N. Levenberg, On the calculation of approximate Fekete points: The univariate
case, Electron. Trans. Numer. Anal., 30 (2008), pp. 377–397.

[4] L. Bos, S. D. Marchi, A. Sommariva, and M. Vianello, Computing multivariate Fekete and
Leja points by numerical linear algebra, SIAM J. Numer. Anal., 48 (2010), pp. 1984–1999.

[5] L. P. Bos and N. Levenberg, On the calculation of approximate Fekete points: The univariate
case, Electron. Trans. Numer. Anal., 30 (2008), pp. 377–397.

[6] J.-P. Calvi and N. Levenberg, Uniform approximation by discrete least squares polynomials,
J. Approx. Theory, 152 (2008), pp. 82–100, https://doi.org/10.1016/j.jat.2007.05.005.

[7] J. P. Calvi and N. Levenberg, Uniform approximation by discrete least squares polynomials,
J. Approx. Theory, 152 (2008), pp. 82–100.

[8] A. Chkifa, A. Cohen, G. Migliorati, F. Nobile, and R. Tempone, Discrete least squares
polynomial approximation with random evaluations application to parametric and stochas-
tic elliptic pdes, ESAIM Math. Model. Numer. Anal., 49 (2015), pp. 815–837.

[9] A. Chkifa, A. Cohen, and C. Schwab, High-dimensional adaptive sparse polynomial in-
terpolation and applications to parametric PDEs, Found. Comput. Math., 14 (2014),
pp. 601–633.

[10] A. Cohen, M. A. Davenport, and D. Leviatan, On the stability and accuracy of least squares
approximations, Found. Comput. Math., 13 (2013), pp. 819–834.

[11] A. Cohen and G. Migliorati, Optimal Weighted Least-Squares Methods, arXiv:1608.00512
[math, stat], (2016).

[12] A. Doostan and H. Owhadi, A non-adaptive sparse approximation for pdes with stochastic
inputs, J. Comput. Phys., 230 (2011), pp. 3015–3034.

[13] M. Eldred, Recent advances in non-intrusive polynomial chaos and stochastic collo-
cation methods for uncertainty analysis and design, in Proceedings of the 50th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confer-
ence, 2009.

[14] G. Freud, Orthogonal Polynomials, Pergamon Press, Oxford, UK, 1971.
[15] B. Ganapathysubramanian and N. Zabaras, Sparse grid collocation methods for stochastic

natural convection problems, J. Comput. Phys., 225 (2007), pp. 652–685.
[16] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer,

New York, 1991, http://portal.acm.org/citation.cfm?id=103013.
[17] J. Hampton and A. Doostan, Coherence motivated sampling and convergence analysis of

least squares polynomial chaos regression, Comput. Methods Appl. Mech. Eng., 290 (2015),
pp. 73–97.

[18] J. Jakeman and A. Narayan, Generation and Application of Multivariate Polynomial Quadra-
ture Rules, preprint, arXiv:1711.00506, 2017.

[19] J. D. Jakeman, A. Narayan, and T. Zhou, A generalized sampling and preconditioning
scheme for sparse approximation of polynomial chaos expansions, SIAM J. Sci. Comput.,
39 (2017), pp. A1114–A1144.

[20] G. Migliorati, Multivariate Markov-type and Nikolskii-type inequalities for polynomials asso-
ciated with downward closed multi-index sets, J. Approx. Theory, 189 (2015), pp. 137–159,
https://doi.org/10.1016/j.jat.2014.10.010.

[21] G. Migliorati, F. Nobile, E. von Schwerin, and R. Tempone, Approximation of quantities
of interest in stochastic PDEs by the random discrete L2 projection on polynomial spaces,
SIAM J. Sci. Comput., 35 (2013), pp. A1440–A1460.

[22] G. Migliorati, F. Nobile, E. von Schwerin, and R. Tempone, Analysis of discrete L2 pro-
jection on polynomial spaces with random evaluations, Found. Comput. Math., 14 (2014),
pp. 419–456.

[23] A. Narayan, Computation of Induced Orthogonal Polynomial Distributions, arXiv:1704.08465
[math], 2017.

[24] A. Narayan, Polynomial Approximations by Sampling from the Spectral Distribution, preprint,
2017.

[25] A. Narayan and J. Jakeman, Adaptive Leja sparse grid constructions for stochastic
collocation and high-dimensional approximation, SIAM J. Sci. Comput., 36 (2014),
pp. A2952–A2983, https://doi.org/10.1137/140966368.

D
ow

nl
oa

de
d 

06
/0

7/
18

 to
 1

55
.9

8.
19

.7
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/090779024
https://doi.org/10.1016/j.jat.2007.05.005
https://arxiv.org/abs/1608.00512
http://portal.acm.org/citation.cfm?id=103013
https://arxiv.org/abs/1711.00506
https://doi.org/10.1016/j.jat.2014.10.010
https://arxiv.org/abs/1704.08465
https://doi.org/10.1137/140966368


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WEIGHTED FEKETE POINTS FOR LEAST-SQUARES A387

[26] A. Narayan, J. D. Jakeman, and T. Zhou, A Christoffel function weighted least squares
algorithm for collocation approximations, Math. Comput., 86 (2017), pp. 1913–1947.

[27] A. Narayan and D. Xiu, Stochastic collocation methods on unstructured grids in high di-
mensions via interpolation, SIAM J. Sci. Comput., 34 (2012), pp. A1729–A1752, https:
//doi.org/10.1137/110854059.

[28] A. Narayan and T. Zhou, Stochastic collocation on unstructured multivariate meshes, Com-
mun. Comput. Phys., 18 (2015), pp. 1–36, https://doi.org/10.4208/cicp.020215.070515a.

[29] F. Nobile, R. Tempone, and C. G. Webster, An anisotropic sparse grid stochastic collocation
method for partial differential equations with random input data, SIAM J. Numer. Anal.,
46 (2008), pp. 2411–2442, https://doi.org/10.1137/070680540.

[30] Y. Shin and D. Xiu, Nonadaptive quasi-optimal points selection for least squares linear re-
gression, SIAM J. Sci. Comput., 38 (2015), pp. A385–A411.

[31] R. C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications, Comput.
Sci. Eng. 12, SIAM, Philadelphia, 2013.

[32] A. Sommariva and M. Vianello, Computing approximate Fekete points by QR factorizations
of Vandermonde matrices, Comput. Math. Appl., 57 (2009), pp. 1324–1336, https://doi.
org/10.1016/j.camwa.2008.11.011.
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