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We investigate a gradient enhanced �1-minimization for constructing sparse polynomial 
chaos expansions. In addition to function evaluations, measurements of the function 
gradient is also included to accelerate the identification of expansion coefficients. By 
designing appropriate preconditioners to the measurement matrix, we show gradient 
enhanced �1 minimization leads to stable and accurate coefficient recovery. The framework 
for designing preconditioners is quite general and it applies to recover of functions whose 
domain is bounded or unbounded. Comparisons between the gradient enhanced approach 
and the standard �1-minimization are also presented and numerical examples suggest 
that the inclusion of derivative information can guarantee sparse recovery at a reduced 
computational cost.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Uncertainty quantification (UQ) aims to develop numerical methods that can accurately approximate quantities of interest 
(QoI) of a complex engineering system and facilitate the quantitative validation of the simulation model. One challenge in 
UQ is in building surrogates for approximation of a parameterized simulation model, often involving differential equations. 
To characterize the uncertainty that parameters effect on such a system, one usually models the uncertain inputs as a 
d-dimensional vector of independent random variables x = (x1, . . . , xd). The QoI f that we seek to approximate is a function 
of these random parameters, f (x) :Rd → R. Here we will approximate f (x) with a generalized Polynomial Chaos Expansion 
(PCE) [16,48]. In this situation, we assume f can be well-approximated as a finite expansion in multivariate orthogonal 
polynomials, and the key step is to determine the expansion coefficients.

Recently, stochastic collocation methods have been identified as effective strategies to compute PCE coefficients [32]. 
Stochastic collocation allows one to treat existing deterministic simulation models as black box routines in a larger pipeline 
for performing parametric analysis with PCE. Popular stochastic collocation approaches include sparse grids approximations 
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[2,5,13,15,29,33], pseudospectral projections [39], and least squares approaches [22,43,53,9,31,52,19]. Each of these methods 
requires repeated queries of the black-box simulation model.

In many practical applications, scarce computational resources limit the number of possible queries for the black-box 
simulation model, thus limiting the amount of available information about the function f , and this makes accurate approx-
imation of the PCE coefficients a difficult task. One popular computational strategy that constructs PCE approximations with 
limited information is stochastic collocation via �1-minimization [12,51,34,23,24,20]. The approach is very effective when 
the number of non-zero terms in the PCE approximation of the model output is small (i.e. f has a sparse representation 
in the PCE basis) or the magnitude of the PCE coefficients decays rapidly (i.e. the PCE expansion of f has a compressible 
representation).

In this paper, we consider a gradient enhanced �1-minimization approach for constructing PCE coefficients. We consider 
�1 minimization with both function and gradient evaluations. Recent advances [40,3,27,10,28,25,35] have shown that the 
inclusion of derivative evaluations have the potential to greatly enhance the construction of surrogates especially if those 
derivatives can be obtained inexpensively, e.g. by solving adjoint equations [18]. Potential applications of this approach 
also include Hermite-type interpolative approximations [49,1,38]. The gradient enhanced approach here can be viewed as 
a Hermite-type interpolation, however, such an approach differs from classical Hermite interpolation (see e.g., [6,41,47,30]), 
since this approach seeks to finding a sparse representation.

The main contribution of this work is to present a general framework to include the gradient evaluations in an �1 mini-
mization framework. More precisely, we design appropriate preconditioners for the measure matrix, and we show that the 
inclusion of these derivative measurements can almost-surely lead to improved conditions for a successful solution recovery. 
The framework is quite general, and it applies to approximation of functions with either bounded or unbounded domain. 
Comparisons between the gradient enhanced approach and standard �1-minimization are also presented, and numerical 
examples suggest that the inclusion of derivative information can guarantee sparse recovery at a reduced computational 
cost.

The rest of the paper is organized as follows. In section 2, we present some preliminaries for the collocation methods 
with �1 minimization, we call this the “standard” approach. The gradient enhanced �1 minimization approach is presented 
in Section 3, and this is followed by some further discussions in Section 4. Numerical examples are provided in Section 5, 
and we finally give some conclusions in Section 6.

2. Preliminaries

2.1. Generalized polynomial chaos expansions

Let x = (x1, . . . , xd)
� be a random vector with d mutually independent components; each xi takes values in �i ⊂ R. Since 

the variables {xi}d
i=1 are mutually independent, their marginal probability density functions ρi , associated with random 

variable xi , completely characterize the distribution of x. Define � := ⊗d
i=1�

i ⊂ R
d , and let ρ(x) =∏d

i=1 ρi(xi) : � → R
+

denote the joint probability density function of x.
Our objective is to approximate the QoI f (x) : � → R. In a simple stochastic collocation approach, we wish to recover 

information about this function from limited set of function evaluations. In this paper, we seek this approximation using a 
PCE and so we first introduce the multivariate orthogonal PCE basis.

For each marginal density ρi , we can define the univariate PCE basis elements, ϕ i
n , which are polynomials of degree n, 

via the orthogonality relation

E

[
ϕ i

n(xi)ϕ
i
�(xi)

]
=
∫
�i

ϕ i
n(xi)ϕ

i
�(xi)ρi(xi)dxi = δn,�, n, � ≥ 0, (1)

with δn,� the Kronecker delta function. Up to a multiplicative sign, this defines the polynomials ϕ i
n uniquely; thus the 

probability measure ρi determines the type of orthogonal polynomial basis. For example, the Gaussian (normal) distribution 
yields the Hermite polynomials, the uniform distribution pairs with Legendre polynomials, etc. For a more detailed account 
of the correspondence, see [48].

One convenient representation for a multivariate gPC basis is as a product of the univariate gPC polynomials in each 
direction. We define

ψn(x) :=
d∏

i=1

ϕ i
ni

(xi) , (2)

where n = (n1, . . . ,nd) ∈ N
d
0 is a multi-index set with |n| =∑d

i=1 ni . The product functions ψn are L2 orthogonal under the 
joint probability density function ρ for x:

E
[
ψn(x)ψ j(x)

]= ∫
�

ψn(x)ψ j(x)ρ(x)dx = δn, j, n, j ∈N
d
0 (3)

where δn, j =∏d
i=1 δn , j .
i i
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We denote by T d
n the total degree space, i.e., the space of d-variate algebraic polynomials of degree n or less. An element 

fn in T d
n has a unique expansion in the ψn basis:

fn =
∑

k∈�T
n

ckψk(x), (4)

where �T
n is the total-degree multi-index set,

�T
n :=

{
k ∈N

d
0

∣∣ d∑
i=1

ki ≤ n

}
.

The dimension of T d
n is

M =
∣∣∣�T

n

∣∣∣ := dim T d
n =

(
d + n

n

)
. (5)

By defining a total order on the elements of �T
n , we can re-write (4) as the following scalar-indexed version

fn =
∑

k∈�T
n

ckψk(x) =
M∑

j=1

c jψ j(x), (6)

where c ∈ R
M contains the vector of expansion coefficients, and hence uniquely defines a function fn .

2.2. The compressed sensing approach

In recent years, stochastic collocation via compressive sensing is one of the popular approaches to determine the co-
efficients c j in (6). Such as approach uses fewer evaluations, and seeks to compute a PCE approximation with a sparse 
coefficient vector. We denote by 	 ⊂ � a set of samples, i.e.,

	 := {z(1), ..., z(N)} ⊂ �.

We will eventually take 	 as a collection of N iid samples of a random variable. The standard compressed sensing approach 
attempts the �0 approach,

argmin
c∈RM

‖c‖0 subject to �c = f, (7)

where f = ( f (z(1)), ..., f (z(N)))T , c = (c1, . . . , cM)T ∈ R
M is the unknown coefficient vector to be determined that defines 

the PCE expansion (6), and � ∈R
N×M is the measurement matrix whose entries are

[�]i j = ψ j(z(i)), i = 1, . . . , N, j = 1, . . . , M. (8)

The �0 norm ‖c‖0 is the number of nonzero entries (the “sparsity”) of the vector c . The convex relaxation of the above 
problem is the following �1 approach

argmin
c∈RM

‖c‖1 subject to �c = f, (9)

where ‖c‖1 is the standard �1 norm on finite-dimensional vectors. The interpolation condition �c = f can be relaxed to 
‖�c − f‖2 ≤ ε , for some tolerance value ε and with ‖ · ‖2 the vector Euclidean norm, resulting in a regression type “denois-
ing” approach.

Fixing M , certain conditions on N and � can guarantee that the �1-relaxed minimization (9) produces the sought solu-
tion to the �0 problem (7). Several types of such sufficient conditions on � have been presented in the compressive sampling 
(CS) literature, such as the mutual incoherence property (MIP) and restricted isometry property (RIP). Our investigation in 
this paper concerns the MIP: The mutual incoherence constant (MIC) of � is defined as

μ = μ(�) := max
k �= j

|〈�k,� j〉|
‖�k‖2 · ‖� j‖2

, (10)

where � j is the jth column of �. Assume that c0 is an s-sparse vector in CM , i.e., ‖c‖0 ≤ s, and if

μ <
1

, (11)

2s − 1
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then the solution to the �1 minimization (9) with f = �c0 is exactly c0, i.e.,

c0 = argmin
c∈CM

{‖c‖1 subject to �c = �c0} .

This result was first presented in [11] for the case with � being the union of two orthogonal matrices, and was later 
extended to general matrices by Fuchs [14] and Gribonval & Nielsen [17]. In [7], it is also shown that μ < 1

2s−1 is sufficient 
for stable approximation of c in the noisy case.

3. A gradient enhanced compressed sensing approach

We consider inclusion of gradient measurements in an �1 optimization approach for compressed sensing. The motivation 
is that the gradient measurements can usually be obtained in a relatively inexpensive way from model simulations, e.g., by 
using the adjoint techniques [18]. Consider the availability of the following data:

y = f (z), z ∈ 	,

∂k(y) = ∂k f (z), z ∈ 	, k = 1, ...d,

where ∂k f (x) = ∂ f (x)
∂xk

stands for the derivative with respect to the k-th variable xk .
Then concatenating all the measurement conditions above into matrix-vector format in an �1 optimization problem 

yields the following approach:

argmin
c∈RM

‖c‖1 subject to W�̃Pc = Wf̃ (12)

with

f̃ =
(

f
f∂

)
, �̃ =

(
�
�∂

)
, �∂ =

⎡⎢⎢⎣
∂�
∂x1
...

∂�
∂xd

⎤⎥⎥⎦ , f∂ =

⎡⎢⎢⎣
∂f
∂x1
...
∂f
∂xd

⎤⎥⎥⎦
where for k = 1, ..., d, ∂�

∂xk
∈ R N×M , ∂f

∂xk
∈ R N are defined as following[

∂�

∂xk

]
i j

= ∂ψ j(x)

∂xk
(z(i)),

[
∂f

∂xk

]
i
= ∂ f (x)

∂xk
(z(i)), i = 1, ..., N, j = 1, ..., M.

Note that now �̃ ∈ R
N(d+1)×M , and we refer to this matrix as the gradient enhanced measurement/design matrix, with 

f̃ ∈ R
N(d+1) is the data vector.

Notice that compared to the standard �1 approach, the gradient enhanced approach (12) involves two additional matri-
ces:

• The preconditioning matrix W: this is designed to enhance recovery properties in �1 optimization. Its definition will 
depend on the type of PCE basis and on how the sample set 	 is generated. We will discuss this in detail later.

• The normalizing/weighting matrix P: this matrix is included to normalize the design matrix, so that �̂ := W�̃P satisfies 
mean isotropy.

We shall show that the preconditioned matrix �̂ := W�̃P is much more stable in the sense that its MIP (or RIP) constant 
better behaved than that of the matrix �̃. In what follows, we shall give a general guide for choosing these preconditioning 
matrices.

3.1. Legendre expansion with Chebyshev sampling

To illustrate the idea, we begin with Legendre expansion with Chebyshev sampling. i.e., ρ is the uniform measure on 
� = [−1, 1]d , the PCE basis functions ψ j are tensor-product Legendre polynomials, and 	 is constructed via iid sampling 
from the Chebyshev (arcsine) measure. The use of Chebyshev sampling when approximating with a Legendre polynomial 
basis (where available data is only function values) has been widely investigated [37,49,24], and can produce better results 
(compared to uniform sampling) when large-degree approximations are required. Here we shall show how inclusion of 
gradient information can be accomplished in a systematic way.

Suppose that 	 is comprised of N iid samples generated from the uniform measure ρ . Since the (orthonormal) Legendre 
polynomials satisfy (3), then we have
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E

[
1

N
�T �

]
= I. (13)

This is the mean isotropy property. However, if we instead construct 	 as N iid samples from a different measure, say the 
Chebyshev measure, then we must introduce a preconditioner to retain the mean isotropy property. Our gradient enchanced 
�1 minimization strategy aims to maintain mean isotropy when gradient evaluations are included in the measurement 
matrix.

We recall a standard fact, that derivatives of the univariate Legendre polynomials are orthogonal with respect to the 
weight function η(x) = (1 − x2) [42]. By using the above facts we can derive that if z ∈R

M is a random variable distributed 
according to the product Chebyshev weight function,

ρc(x) =
d∏

j=1

1

π
√

1 − x2
j

,

then we have

E
c

[
2d

ρc(z)
ψi(z)ψ j(z) +

d∑
k=1

1 − z2
k

ρc(z)

∂ψi

∂xk
(z)

∂ψ j

∂xk
(z)

]
= δi j

(
1 +

d∑
k=1

ckik(ik + 1)

)
, (14)

where ck is a constant that we make precise later. Here we use Ec to emphasize that the expectation is taken with respect 
to the Chebyshev measure.

The above derivation suggests the following choices for the matrices W and P:

W =

⎡⎢⎢⎢⎣
W0

W1

. . .

Wd

⎤⎥⎥⎥⎦ , (15)

where Wk are diagonal matrices whose entries are defined as

W0
n,n =

(
(4/π2)(1 − (z(n)

j )2)

)d/4

, W j
n,n = W0

n,n√
2

(
1 −

(
z(n)

j

)2
)1/2

, j = 1, ...,d, n = 1, ..., N.

Here z(n)
j is the jth component of the random vector z(n) . The normalizing matrix P is a diagonal matrix with entries 

Pi,i =
(

1 +
d∑

k=1
ckik(ik + 1)

)−1/2

.

With the above definitions, one can easily show that the design matrix is mean isotropy, namely,

E
c
[

1

N
�̂T �̂

]
= I, with �̂ = W�̃P. (16)

This is the general strategy for our gradient formulation: we take the sampling measure from which 	 is constructed to be 
a degree-asymptotica “good” sampling measure for the PCE basis ψ j(x), we design a preconditioning matrix so that the PCE 
basis is mean isotropic, and finally we choose a weighting matrix P to retain isotropy of the gradient evaluations. Having 
shown the idea for the special case of Legendre polynomials, we now generalize to arbitrary Jacobi families.

3.2. General Jacobi expansions with Chebyshev sampling

Now, we turn to the case of General Jacobi expansions with Chebyshev sampling, which includes the Legendre expansion 
with uniform sampling as a special case. The univariate probability density

ρ(α,β)(x) = d(α,β)(1 − x)α(1 + x)β, α,β ≥ −1

2
(17)

is the Beta density function on [−1, 1]. The normalization coefficient is

d(α,β) = �(α + β + 2)

�(β + 1)�(α + 1)2α+β+1 .

Keeping with earlier notation, we use ρc ≡ ρ(−1/2,−1/2) . Then given
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α = (α1, . . . ,αd) ∈
[
−1

2
,∞
)d

, β = (β1, . . . , βd) ∈
[
−1

2
,∞
)d

,

we can define the notation for multi-dimensional Jacobi probability densities:

ρ(α,β)(x) =
d∏

j=1

ρ(α j ,β j)(x j).

The multivariate PCE basis elements ψ associated to ρ(α,β) is likewise now well-defined, but to avoid notational clutter we 
will omit showing explicit dependence of ψ and the measurement matrix � on α and β . By using the identity between Ja-
cobi polynomials and their derivatives, we can derive that if z is a random variable distributed according to the measure ρc , 
then

E

[
ρ(α,β)(z)

ρc(z)
ψi(z)ψ j(z) +

d∑
k=1

ρ(α+ek,β+ek)(z)

ρc(z)

∂ψi

∂xk
(z)

∂ψ j

∂xk
(z)

]
= δi j

(
1 +

d∑
k=1

c2(ik,αk, βk)

)
, (18)

where e j ∈R
d is the cardinal unit vector in the jth direction; i.e., (e j)k = δ j,k . We also define e0 = 0 as the zero vector. The 

normalization constant ck is

c2(ik,αk, βk) = ik(ik + αk + βk + 1)
(αk + βk + 2)(αk + βk + 3)

4(αk + 1)(βk + 1)
.

The above derivation suggests the following choices for the matrices W and P:

W =

⎡⎢⎢⎢⎣
W0

W1

. . .

Wd

⎤⎥⎥⎥⎦ , (19)

where Wk are diagonal matrices whose entries are defined as

W 0
n,n =

√
ρ(α,β)(z(n))

ρc(z(n))
, W j

n,n =
√

ρ(α+e j ,β+e j)(z(n))

ρc(z(n))

for n = 1, . . . , N , and j = 1, . . .d. The normalizing matrix P is a diagonal matrix with entries

Pi,i =
(

1 +
d∑

k=1

c2(ik,αk, βk)

)−1/2

. (20)

With the above definitions, one can, just as for the Legendre case, show that the whole design matrix is mean isotropy, 
i.e.,

E

[
1

N
�̂T �̂

]
= I, with �̂ = W�̃P. (21)

For this gradient enhanced approach, we are interested in understanding inclusion of derivative information can improve 
the recovery ability. We shall provide one answer to this question in the following theorem by analyzing the coherence 
parameter of the design matrix. To this end, we define the coherence parameter of the original compressed sensing approach 
as

μL(�) := sup
i, z∈	

|�i(z)|22.

We have that |�i(z)|2 is the norm of one column in the design matrix �. The parameter μL provides a quantitative recovery 
quality metric for compressed sensing approaches [8,23]. Smaller parameter values result in better recovery properties.

Similarly, following the notation in [35], we define the corresponding parameter of the gradient enhanced approach as

βL
(
�̂
) := sup

i, z∈	

∥∥∥̂�i(z)
∥∥∥2

,

where
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̂�i(z) = 1

Pi,i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
ρ(α,β)(z)

ρc(z) �i(z)√
ρ(α+e1,β+e1)(z)

ρc(z)
∂

∂x1
�i(z)√

ρ(α+e2,β+e2)(z)
ρc(z)

∂
∂x2

�i(z)
· · ·√

ρ(α+ed ,β+ed)(z)
ρc(z)

∂
∂xd

�i(z)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In the following, we present the main theorem of this paper, which shows the bound for the coherence parameters μL

and βL .

Theorem 3.1. Recall that � and ̂� are design matrices for the standard �1 and the gradient enhanced �1 approach via Jacobi expansions 
with Chebyshev sampling, respectively. Then the two coherence parameters satisfy the following estimates:

μL (�) ≤
d∏

j=1

2e
(

2 +
√

α2
j + β2

j

)
, (22)

βL

(
̂�
)

≤ C
d∏

j=1

2e
(

2 +
√

α2
j + β2

j

)
, (23)

where 1 ≤ C ≤ 1 +
√

2
2 . The lower bound for C is achieved when αk = βk = − 1

2 and the upper bound occurs when there is a k such 
that αk = βk = 0. If N (·) represents the nullspace of a matrix, then

N
(
�̂
)⊂ N

(
�
)
,

and this is almost-surely a strict subset when � is under-sampled.

Proof. See Appendix A.1. �
We remark that ideally we could show the gradient approach admits an improved (smaller) parameter βL , i.e. βL

(
̂�
)

≤
μL (�), yielding a better recovery property. Our analysis does not bear this fruit, but we have shown that (i) the coherence 
for both � and ̂� is a constant raised to the dth power, independent of polynomial degree; and (ii) the constant C in the 
estimate (23) is dimension-independent and relatively small.

3.3. Hermite expansions with Gaussian sampling

In the last two sections, we presented two examples in bounded domain. Here we present a unbounded case, where 
the basis elements are Hermite polynomials and the samples are chosen according to the Gaussian measure. The authors 
in [35] notice that the gradient of the Hermite basis elements are orthogonal with respect to the same Gaussian measure. 
The authors show that if ψ j are suitably normalized Hermite polynomials and z is a multivariate standard normal random 
variable, then

E

(
ψi(z)ψ j(z) +

d∑
k=1

∂ψi

∂xk
(z)

∂ψ j

∂xk
(z)

)
= δi j

(
1 +

d∑
k=1

ik

)
. (24)

This motivates the following choice of normalizing matrix:

Ph = diag(P1,1, ...,PN,N ), Pi,i =
(

1 +
d∑

k=1

ik

)−1/2

, i = 1, ..., N.

The preconditioning matrix W would be set to the identity in this case. One main result of [35] then shows a similar result 
as in Theorem 3.1.

We also remark that extensions to general unbounded problems (e.g., Laguerre expansions) would use similar techniques 
as above. We note that there are more sophisticated sampling strategies one can use in the unbounded case [31,24] so that 
the choice of W = I is not necessarily optimal.

Finally, we make some remarks about the weighting matrices P that we have constructed. Our choice of this matrix 
for the Hermite case above, and for the general Jacobi case in (20) have been diagonal matrices due to the orthogonality 
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property of derivatives of orthogonal polynomials. In fact, the only univariate polynomial families whose derivatives are 
also sets orthogonal polynomials are the Jacobi, Laguerre, and Hermite polynomials [21,46,26]. Therefore, if a PCE basis 
associated to a non-classical polynomial family is used, then the choice of P will not be diagonal: instead it will be any 
inverse square root of the Gramian associated to the polynomial derivatives.

4. Further discussions

In the last section, we have present a general framework to include the gradient information in the compressed sensing 
approach. Notice that in our approach, the gradient information is included directly for each direction (variable). How-
ever, one may consider different ways to include those information. For instance, partial gradient measurements, e.g., an 
incomplete set of directional derivatives, may be provided. We may therefore consider the following problem:

• Find a sparse expansion of f (x) with

f (z( j)) = f j, z( j) ∈ 	, (25)

Dvt f (z( j)) = f ′
j,t, t = 1, . . . ,k, z( j) ∈ 	, (26)

where Dvt f (z( j)) := 〈∇ f (x),vt〉|x=z( j) and vt ∈R
d are directional vectors. Namely, we assume that both function values 

and the directional derivative information at the sampling points are known.

The above approach can be viewed as a generalization of the approach in the last section. Here, we have more flexibility to 
choose the directions {v j} j , and it is expected that a smart choice of {v j} j may lead to a improved recovery results. However 
this approach might not be of practical value, as there is no evidence to show how to get such directional derivatives. 
Nevertheless, this can be viewed as an interesting mathematical problem, as discussed in [50].

Besides the above approach, one may also interested in the following mathematical problem:

• Find a sparse approximation of f (x) with

D
τ j
v j

f (z( j)) = y j, z( j) ∈ 	, j = 1, . . . , N, (27)

where v j ∈ R
d are directional vectors, and τ j ∈N0 are non-negative integers.

Here, it is supposed that one knows either the τ j -order directional derivative of f at z( j) or the function value f (z( j)). If 
τ j = 0, then (27) means that we know only the function value of f at z( j) , i.e., y j = f (z( j)). Notice that a main feature of this 
approach is that the locations (samples) for evaluating the function values and the gradient information are independent, 
while normally one assumes that function values and the gradient information are evaluated in the same locations (which 
is more practical).

Finally, we would like to remark that for the gradient enhanced approach it seems that the precondition matrix is the key 
for the recovery property. We believe that such matrices presented here is not optimal, and one may consider alternative 
choices, e.g., the Christoffel weighted approach in [31,24] that is optimal for degree-asymptotic approximations.

5. Numerical examples

We now provide some numerical examples to show the performance of the gradient enhanced �1-minimization ap-
proach. For the implementation of the �1 minimization, we employ the available tools such as Spectral Projected Gradient 
algorithm (SPGL1) from [45] that was implemented in the MATLAB package SPGL1 [44]. To compare the standard and 
gradient enhanced �-minimization solutions, we will use standard to denote the numerical results by using the standard 
�1-minimization, while we shall denote by gradient-enhanced the numerical results obtained by using gradient enhanced 
�1 approach. We shall also use standard-double to denote the standard approach with “doubled” function values. More pre-
cisely, consider for example a two dimensional example, suppose we have N function values and 2N gradient values (with 
respect to each variable). Then, the full gradient enhanced approach will use 3N information (100% information, i.e., N func-
tion values and 2N gradient values). A 50% gradient enhanced approach would involve N function values and N gradient 
information (with respect to a randomly chosen direction/variable). While the standard-double will stands for the standard 
approach with 3N function values.

5.1. Stability tests

We first show some stability tests between the preconditioned matrix �̂ = W�̃P and the original matrix �̃. This is done 
by showing the MIP constant in equation (10), which is a key index for stable sparse recovery. Notice that the smaller the 
MIC constant is, the better the recovery guarantee. We consider the Legendre expansion with Chebyshev sampling. For a 
fixed polynomial space, we show in Fig. 1 the MIP constants of �̂ and �̃ with respect to the number of samples. While 



L. Guo et al. / Journal of Computational Physics 367 (2018) 49–64 57
Fig. 1. The MIP constant for three matrices against the number of samples: �̂, �̃, and �. Left: d = 2, n = 30. Right: d = 6, n = 5. Legendre polynomial and 
Chebyshev samples. (For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

Fig. 2. The MIP constant for three matrices against the number of PCE terms with fixed number of samples: �̂, �̃, and �. Left: d = 2, N = 80. Right: d = 6, 
N = 80. Legendre polynomial and Chebyshev samples.

Fig. 2 presents the MIP constants, for a fixed number of samples, with respect to the number of expansion terms M . In both 
cases, we also present the MIP constant of the matrix � where no derivative information is included. It is clear shown that 
the preconditioned matrix �̂ admits a much well behaved MIC constant (see the purple-triangular lines). While it is also 
shown that the direct inclusion of derivative information (the matrix �̃) can actually destroy the stability of the matrix �
(see the blue lines and red lines).

5.2. Benchmark test: fixed sparsity

In this section, we assume that the target (exact) function has a sparse polynomial expansion, i.e. f (x) =∑M
j=1 c jψ j(x)

with ‖c‖0 = s, and attempt to recover this vector. In all our tests, we assume the random input is uniform distributed, and 
the samples are chosen randomly with the Chebyshev measure. Notice that numerical examples for the Hermite expansion 
can be found in [35].

For a given sparsity level s, we shall fix s coefficients of the polynomial while keeping the rest of the coefficients zero. The 
values of the s non-zero coefficients are drawn as i.i.d. samples from a standard normal distribution. We approximate the 
PCE coefficients c via the gradient enhanced approach from these generated data. We examine the frequency of successful 
recoveries. This is accomplished by 100 trials of the algorithms and counting the successful ones. A recovery is considered 
successful when the resulting coefficient vector c satisfies ‖c − c̃‖∞ ≤ 10−3.

We consider the two dimensional case first. In Fig. 3 (Left), we show the recovery probability against number of sample 
points N with a fixed sparsity s = 4. To have a better understanding, in the right plot of Fig. 3, we also present recovery 
probability with respect to sparsity s with a fixed number of random samples N = 35. Both the two plots show that the use 
of gradient information can indeed improve the recovery rate, and furthermore, the more gradient information is included, 
the better recovery results obtained.
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Fig. 3. Left: Recovery probability against number of samples, s = 8; Right: Recovery probability against sparsity, N = 50. Two dimensional tests with 
d = 2, n = 20. Legendre polynomial and Chebyshev samples.

Fig. 4. Left: Recovery probability against number of samples, s = 6; Right: Recovery probability against sparsity, N = 70. Two dimensional tests with 
d = 10, n = 3. Legendre polynomial and Chebyshev samples.

We now consider the 10-dimensional case. In Fig. 4 (Left), we show the recovery probability against number of sample 
points N with a fixed sparsity s = 6 and the right plot, we present the recovery probability with respect to sparsity with a 
fixed number of points N = 50. In this example, we test the 10% and 20% gradient enhanced approach, meaning that only 
one or two partial derivatives are involved in the �1 minimization. Once again, better performance can be observed when 
gradient information is included.

5.3. Applications to function approximations

In this section, we demonstrate the utility of using gradient data to build PCE approximations for different kind of test 
functions defined as follows.

Sphere function:

f1(x) =
d∑

i=1

x2
i ,

Gaussian function:

f2(x) = exp

(
−

d∑
0.01(1/2(xi + 1) − 0.375)2

)
,

i=1
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Fig. 5. Discrete L2 error against number of samples with random points of f1(x). Legendre polynomial with Chebyshev sampling. Left: d = 2, n = 20. Right: 
d = 10, n = 3.

Fig. 6. Discrete L2 error against number of samples with random points of f2(x). Legendre polynomial and Chebyshev samples. Left: d = 2, n = 20. Right: 
d = 5, n = 6.

Sinusoids function:

f3(x) =
d∑

i=1

0.3 + sin(16/15xi − 0.7) + sin2(16/15xi − 0.7).

In Fig. 5, we consider to approximate the sphere function with Legendre polynomial chaos and random evaluations using 
the �1 approach. The left plot shows the root-mean-square-error (RMSE) against the number of sample points N for the two 
dimensional case (with n = 20 and M = 231), while the right plot presents the RMSE against the number of sample points 
for the 10-dimensional case (with n = 3 and M = 286). In both cases, it is clear shown that the use of gradient information 
can dramatically enhance the approximation accuracy. Similar tests are done for the Gaussian and Sinusoids functions, and 
the numerical results are presented in Fig. 6 and Fig. 7, respectively.

5.4. Elliptic PDE with random inputs

We next consider the following stochastic linear two-dimensional (in spatial) elliptic PDE problem{
−∇ · (a(y,ω)∇u(y,ω)) = f (y,ω) in D × �,

u(y,ω) = 0 on ∂D × �,
(28)

with spatial domain D = [0, 1]2. We take a deterministic load f (y, ω) = cos(y1) sin(y2) for these numerical examples. And 
construct the random diffusion coefficient aN (y, ω) with one-dimensional spatial dependence as in [4]:
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Fig. 7. Discrete L2 error against number of samples with random points of f3(x). Legendre polynomial and Chebyshev samples. Left: d = 2, n = 20. Right: 
d = 5, n = 6.

Fig. 8. Error in �2 norm of the mean and variance between the reference and approximation for the various gradient-enhanced method as a function of the 
number of samples N . d = 3, n = 10.

log
(
aN(y,ω) − 0.5

)= 1 + ξ1(ω)
(√

π L/2
)1/2 +

d∑
i=2

ζi gi(y)ξi(ω),

where

ζi := (
√

π L)1/2 exp
(−(� i

2 �π L)2

8

)
, i > 1

and

gi(y) :=

⎧⎪⎨⎪⎩
sin
(
−� i

2 �π y1

)
, i even,

cos
(
−� i

2 �π y1

)
, i odd.

Here {ξi}d
i=1 are uniformly distributed on the interval [−1, 1]. We assume that ξi are mutually independent from each 

other. Hence, a family of Legendre polynomials is used to approximate the quantities of interest of ξ . Here y represents the 
physical domain. The random diffusion coefficient aN (y, ω) used here only depends on y1. For y1 ∈ [0, 1], let L = 1/12 be 
a desired physical correlation length for a(y, ω). The deterministic elliptic equation are solved by a standard finite element 
method with a fine mesh.

The convergence rates are shown in Fig. 8 and Fig. 9 for a low dimensional case (d = 3, n = 10) and a high dimensional 
case (d = 10, n = 4), respectively. In the numerical tests, we employ a FEM solver as the deterministic solver and the Monte 
Carlo method with 6000 samples are used to get the reference mean and standard deviation of the solution. The gradient 
information is obtained by solving the adjoint equation as in [25]. Finally, the numerical error of our approach for the mean 
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Fig. 9. Error in �2 norm of the mean and variance between the reference and approximation for the various gradient-enhanced method as a function of the 
number of samples N . d = 10, n = 4.

and standard deviation are presented. We learn again in the pictures that the gradient-enhanced approach performs much 
better than the standard �1 approach.

6. Conclusion

In this work, we present a general framework for the gradient enhanced �1-minimization for constructing the sparse 
polynomial chaos expansions. By designing appropriate pre-conditioners to the measure matrix, we show the inclusion of 
derivative information can indeed improve the recovery property. And the framework is quite general and it applies to both 
problems with bounded random input and unbounded random input. Several numerical examples are presented to support 
the theoretical finding.
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Appendix A. Proofs

In this appendix we collect results which imply the results given by Theorem 3.1. These are essentially well-known 
results in the theory of orthogonal polynomials. Our analysis uses these well-known results in fairly straightforward ways.

Let p(α,β)
n (x) be degree-n Jacobi polynomial orthonormal under the Jacobi probability weight ρ(α,β)(x) defined in (17), 

i.e.,

1∫
−1

p(α,β)
n (x)p(α,β)

m (x)ρ(α,β)(x)d = δn,m.

The following identity holds:

d

dx
p(α,β)

n (x) = c(n,α,β)p(α+1,β+1)
n−1 (x), (29)

c2(n,α,β) = n(n + α + β + 1)
(α + β + 1)(α + β + 2)

4(α + 1)(β + 1)
. (30)

The following result is also critical for us:

Lemma A.1 ([36]). For all Jacobi weight functions ρ(α,β)(x) with α ≥ − 1
2 and β ≥ − 1

2 , the following inequalities hold,

sup
x∈[−1,1]

ρ(α,β)(x)

ρc(x)

[
p(α,β)

n (x)
]2 ≤ 2e

(
2 +

√
α2 + β2

)
, (31)

uniformly in n, α, β .
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Therefore, consider performing �1 optimization with derivative evaluations using Jacobi polynomials and Chebyshev sam-
pling, as in Section 3.2. Each univariate sample z yields two rows of the design matrix, whose entries are(

p(α,β)
n (z)

d
dx p(α,β)

n (z)

)
=
(

p(α,β)
n (z)

c(n,α,β)p(α+1,β+1)
n−1 (z)

)
.

Since z is distributed according to the Chebyshev measure, we need to precondition these rows in order to keep mean 
isotropy:⎛⎜⎝

√
ρ(α,β)(z)

ρc(z) p(α,β)
n (z)

1
c(n,α,β)

√
ρ(α+1,β+1)(z)

ρc(z)
d

dx p(α,β)
n (z)

⎞⎟⎠=
⎛⎜⎝

√
ρ(α,β)(z)

ρc(z) p(α,β)
n (z)√

ρ(α+1,β+1)(z)
ρc(z) p(α+1,β+1)

n−1 (z)

⎞⎟⎠ .

Extending this result to the multivariate (tensor-product) case, we can show that the identity (18) holds for a multi-index i. 
Now we turn to the proof of our main result, Theorem 3.1.

A.1. Proof of Theorem 3.1

For positive a0, . . . , ad and b0, . . . , bd , the inequality∑d
j=0 a j∑d
j=0 b j

≤ max
j=0,...,d

a j

b j

holds. Define

√
a0(i, x) :=

√
ρ(α,β)(x)

ρc(x)
�i(x),

√
a j(i, x) :=

√
ρ(α+e j ,β+e j)(x)

ρc(x)

∂

∂x j
�i(x),√

b0(i, x) := 1,

√
b j(i, x) := c

(
i j,α j, β j

)
, j = 1, . . . ,d.

Note that

γ j := b j(i, x)∑d
k=0 bk(i, x)

∈ [0,1],
d∑

j=0

γ j = 1,

so that the γ j are convex weights. Then we can rewrite

μ(�) = sup
i,z

a0(i, z)

b0(i, z)
,

μ
(
̂�
)

= sup
i,z

∑d
j=0 a j(i, z)∑d
j=0 b j(i, z)

= sup
i,z

d∑
j=0

a j(i, z)∑d
k=0 b j(i, z)

.

Note that

a0

b0
= ρ(α,β)(x)

ρc(x)
�2

i (x),

a0∑d
k=0 bk

= b0∑d
k=0 bk

ρ(α,β)(x)

ρc(x)
�2

i (x) = γ0
ρ(α,β)(x)

ρc(x)
�2

i (x),

a j∑d
k=0 bk

(29)= b j∑d
k=0 bk

ρ(α+e j ,β+e j)(x)

ρc(x)
�2

i−e j
(x) = γ j

ρ(α+e j ,β+e j)(x)

ρc(x)
�2

i−e j
(x), (1 ≤ j ≤ d).

Therefore,

μ
(
̂�
)

= sup
i,z

d∑
j=0

γ j
ρ(α+e j ,β+e j)(z)

ρc(z)
�2

i−e j
(z)

(31)≤
d∑

γ j

d∏
2e

(
2 +

√
(α j + δk, j)

2 + (β j + δk, j)
2

)

j=0 k=1
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=
[

d∏
k=1

2e

(
2 +

√
(α j)

2 + (β j)
2

)] d∑
j=0

γ j

2 +
√

(α j + 1)2 + (β j + 1)2

2 +
√

α2
j + β2

j

≤
[

d∏
k=1

2e

(
2 +

√
(α j)

2 + (β j)
2

)]
max

j=1,...,d

2 +
√

(α j + 1)2 + (β j + 1)2

2 +
√

α2
j + β2

j

.

Therefore, (23) holds with

C = max
j=1,...,d

2 +
√

(α j + 1)2 + (β j + 1)2

2 +
√

α2
j + β2

j

The proof for the second statement is similar as in [35]: we notice that up to an invertible post-multiplication, �̂ is a 
sub-matrix of � and thus N

(
�̂
)⊂N

(
�
)
.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2018 .04 .026.
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