
STOCHASTIC COLLOCATION METHODS VIA L1 MINIMIZATION USING

RANDOMIZED QUADRATURES

LING GUO, AKIL NARAYAN, TAO ZHOU, AND YUHANG CHEN

Abstract. In this work, we discuss the problem of approximating a multivariate function by

polynomials via `1 minimization method, using a random chosen sub-grid of the corresponding
tensor grid of Gaussian points. The independent variables of the function are assumed to be ran-

dom variables, and thus, the framework provides a non-intrusive way to construct the generalized

polynomial chaos expansions, stemming from the motivating application of uncertainty quantifi-
cation. We provide theoretical analysis on the validity of the approach. The framework includes

both the bounded measures such as the uniform and the Chebyshev measure, and the unbounded

measures which include the Gaussian measure. Several numerical examples are given to confirm
the theoretical results.

1. Introduction

Stochastic computation has received intensive attention in recent years, due to the pressing need
to conduct uncertainty quantification (UQ) in practical computing. One of the most widely used
techniques in UQ is generalized polynomial chaos (gPC), see e.g. [19, 45, 46]. In gPC, the sto-
chastic function f(x), with x ∈ Rd, is approximated via d- variate orthogonal polynomials, whose
orthogonality is defined by the probability measure of the input variable x. This becomes one of
the most effective procedures for UQ, and many numerical techniques on how to construct gPC
approximations have been developed. For practical computing, the gPC stochastic collocation al-
gorithm is highly popular because it allows one to repetitively use existing deterministic simulation
codes and to render the construction of gPC approximation a post-processing step. In the stochastic
collocation framework, one seeks to construct a gPC type orthogonal polynomial approximation
via point-evaluations of f . Popular methods for achieving this include sparse grids approximation
[2, 1, 3, 14, 16, 17, 26, 33], pseudo orthogonal projection [37] , interpolation [30], and least squares
approach [40, 51, 9, 29] to name a few. For a review of the gPC methodology, see [31].

The challenge is in high-dimensional spaces, where the number of collocation nodes grows fast.
Since each node represents a full-scale deterministic simulation, the total number of nodes one can
afford is often limited, especially for large-scale problems. This represents a significant difficulty in
constructing a gPC-type approximation using the existing approaches: it is often not possible to
construct a good polynomial approximation using a very limited number of simulations in a large
dimensional random space.

A more recent development in signal analysis is compressive sensing, also known as compressed
sampling. Compressive sensing (CS) deals with the situation when there is insufficient information
about the target function. This occurs when the number of samples is less than the cardinality of the
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2 Stochastic `1-minimization using randomized quadratures

polynomial space for the approximation. CS then seeks to construct a polynomial approximation
by minimizing the norm of the polynomial, typically its `1 norm or `0 norm (count the nonzero
components). Following the seminal work of [7, 8, 6, 11], the theory of CS has generated an enormous
amount of interest in many disciplines and resulted in many newer theoretical results and practical
implementations. The success of the CS methods lies in the assumption that in practice many target
functions (signals) are sparse, in the sense that what appear to be rough signals in the time/space
domain may contain only a small number of notable. The works of [4, 42, 13, 10] show that under
weak assumptions, solutions to the stochastic elliptic PDEs exhibit sparsity in the properly chosen
basis.

In a recent work [13], the idea of CS has been extended to stochastic collocation and resulted in
a highly flexible method. With CS, one can employ arbitrary nodal sets with an arbitrary number
of nodes. This can be very helpful in practical computations. In [13], some key properties, such
as the probability under which the sparse random response function can be recovered, are studied.
Then Yan, Guo and Xiu extends this work in [48], which focus on the recoverability of stochastic
solutions in high-dimensional random spaces with random sampling. This is relevant because in UQ
simulations the dimensionality is often determined by the number of random parameters and can be
very large. The work in [20] concerned with convergence analysis and sampling strategies to recover
a sparse stochastic function in both Hermite and Legendre PC expansions from `1-minimization
problem. Although random sampling methods have been widely used in the CS framework, a
judicious, deterministic choice of points may provide several advantages over randomly-generated
points. In [47], the authors use Weil points to recover sparse Chebyshev polynomials. Tang and
Zhou proposed a structured sampling method on quadrature points to recover sparse Legendre
polynomials in [39].

In this work, we investigate the compressive sensing approach for stochastic collocation method,
using a random chosen sub-grid from the corresponding tensor grid of Gaussian points. We will
provide theoretical analysis on the convergence of such an approach. The main contribution of this
work is to show that the method proposed in [39] is actually applicable for most random variables
of interest, including measures on bounded domains (e.g., the uniform and Beta distributions) and
unbounded domains (e.g., normal distributions). We also provide with several numerical examples
to confirm the theoretical results.

Our main result is a sample count criterion for sparse recovery for general polynomial spaces with
general measures. The precise statement is given by Theorem 4.1 and can be summarized as follows:
suppose we wish to recover a multivariate polynomial expansion of f(X) from a finite-dimensional
subspace of dimension N whose maximum polynomial degree in any dimension is less than n. To
do this, we use M collocation samples and perform an `1 minimization procedure. The M samples
are chosen randomly (with the uniform probability law) from a tensor-product Gaussian quadrature
grid with n points in each dimension. This method produces an approximation comparable to the
best s-term expansion of f with high probability if

M & L(n)s

where

• L(n) ≤ Cd if X has independent components, with each component having a Beta distri-
bution.

• L(n) ≤ (Cn)2d/3 if X is normally-distributed.
• L(n) ≤ (Cn)2d/3 if X has independent components, with each components having a one-

sided exponential distribution.

In all cases the constant C is independent of the degree n and the dimension d, and depends only
on the (one-dimensional) marginal distributions of X. In the first case, the Cd dependence was
established in [39] assuming the special case of X a uniform random variable on a hypercube. In
the latter two cases where X has unbounded state space, the n2d/3 dependence seems unpleasant,
but this rate is essentially sharp if one uses our strategy for analysis and insists on sub-sampling
from a tensor-product Gauss quadrature grid. Despite this dependence, we note that our analysis
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Symbol(s)

d, i Dimension d, index 1 ≤ i ≤ d.

n, ni Multivariate tensor-product quadrature rule size n, with ni points in dimension i

X, Xi Random vector X, components Xi

Γ,Γi State space of X and Xi, respectively

ρ, ρi Joint density of X, marginal density of Xi, respectively

φk, ϕ
i
ki

Multivariate gPC basis element of degree |k|, dimension-i univariate gPC basis element of index ki,
respectively. Each element has polynomial degree |k|, and ki, respectively.

Λ,ΛP
n General multi-index set, multi-index set

{
k ∈ Nd

0 |k ≤ n
}

, respectively.

Table 1. Notation used throughout this article.

is quite general, extending to any random vector X whose independent components have Beta or
Exponential (one- or two-sided) distributions with essentially any shape parameters. Finally, we
would like to mention the work by Li and Zhang [25], where a interpolation scheme (with M = N)
on a sub-set of Gaussian quadrature points is proposed, and the sub-set therein is chosen according
to the corresponding value of the joint probability density function of the random input. We expect
that the idea in [25] may be useful also for the compressed sensing approach, and this will be
investigated in our future studies.

The rest of the paper is organized as follows. In Section 2, we introduce the gPC approximation,
set up the `1-minimization problem and definitions and theorems used in the compressed sensing
approach. Section 3 gives a short view of Gaussian quadrature, introduces the discrete transform as
a discretization of orthogonal polynomial system, and gives the theorems for recovering polynomial
chaos when sampling from the discretized system. Several numerical tests are provided in Section
4, and we finally give some conclusions in Section 5.

2. The setup

Let X = (X1, . . . , Xd)> be a random vector with d mutually independent components; each Xi

takes values in Γi ⊂ R. Since the variables {Xi}di=1 are mutually independent, they have marginal
probability density functions ρi associated with random variable Xi that completely characterize

the distribution of X. Define Γ := ⊗di=1Γi ⊂ Rd, and let ρ(x) =
∏d
i=1 ρ

i(xi) : Γ → R+ denote the
joint probability density function (PDF) of X.

In a simple stochastic collocation setup, we consider a d-variate function f : Γ → R, and wish
to recover information about this function from a finite (ideally small) set of function evaluations.
Let θM = {x1, · · ·,xM} ∈ Γ be a set of points at which the function values of f are available,
and denote these values as fm = f(xm),m = 1, · · ·,M . We are concerned with the approximation
of the function f based on {xm, fm}Mm=1. Let V be a linear space from which the approximation
is sought and let N = dimV . This paper is concerned with the special case of the above setup
where V is a polynomial subspace, and the N = dimV coefficients defining the approximation are
underdetermined from M < N samples.

Much of the rest of this section is tasked with introducing our requisite notation. A summary of
much of this notation is given in Table 1.

2.1. Generalized polynomial chaos. We are primarily concerned with the approximation f in a
polynomial subspace V . In particular, we seek this approximation using the Generalized polynomial
chaos (gPC) framework. The basic idea of gPC is to represent the function f as a polynomial
of the random variables Xi; the basis for approximation is typically taken as a set of orthogonal
polynomials. For each marginal density ρi, we can define the univariate gPC basis elements ϕin,
polynomials of degree n, via the orthogonality relation

E
[
ϕin(Xi)ϕi`(X

i)
]

=

∫
Γi

ϕin(s)ϕi`(s)ρ
i(s)ds = δn,`, n, ` ≥ 0,(1)
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with δn,` the Kronecker delta function. Up to a multiplicative sign, this defines the polynomials ϕin
uniquely; thus the probability measure ρi determines the type of orthogonal polynomial basis. For
example, the Gaussian (normal) distribution yields the Hermite polynomials, the uniform distribu-
tion pairs with Legendre polynomials, etc. For a detailed account of the correspondence, see [46].
In this paper, each marginal density ρi may be associated with any of the classical orthogonal poly-
nomial families: this includes Beta distributions (Legendre, Chebyshev, and Jacobi polynomials),
normal distributions (Hermite polynomials), and exponential distributions (Laguerre polynomials).

For the multivariate (d > 1) case, we will use standard multi-index notation. For some n ∈ Nd0,
it has components denoted ni, i.e., n = (n1, . . . , nd). Its modulus is its `1 norm, i.e., the sum

of its components |n| =
∑d
i=1 ni. The factorial is the product of its componentwise factorials,

n! =
∏d
i=1 ni!, where we take 0! = 1. Given another d-dimensional index j, we have

j + n = (j1 + n1, . . . , jd + nd) , nj =

d∏
i=1

njii .

Boldface explicit constants, e.g., 3 are multi-indices with the explicit value repeated:

3 = (3, . . . , 3) ∈ Nd0.
A partial ordering is defined on multi-indices:

j < n ⇐⇒ ji < ni ∀ i = 1, . . . , d,

with a similar definition for ≤. We will occasionally use multi-index operations on d-dimensional
vectors whose entries are non-integers; given the definitions above, the meaning of such notation
should be clear.

One convenient representation for a multivariate gPC basis is as a product of the univariate gPC
polynomials in each direction. For a multi-index n ∈ Nd0, we have

φn(x) =

d∏
i=1

ϕini

(
xi
)
.(2)

The product functions φn are L2 orthogonal under the joint probability density function ρ for X:

E [φn(X)φj(X)] =

∫
Γ

φn(x)φj(x)ρ(x)dx = δn,j ,(3)

where δn,j =
∏d
i=1 δni,ji .

A gPC expansion for f is given by

f(X) =
∑
j∈Nd

0

cjφj(X),(4)

where the coeficients cj are the unknowns that must be computed from available knowledge of the
function f . If f(X) has finite variance, then this expansion is well-defined and convergent in the L2

sense under fairly weak assumptions on the distribution of X [15].
For computational purposes, the above gPC expansion must be truncated. One widely-used

approach is to approximate f in a total-degree space V = Tn:

ΛTn =

{
k ∈ Nd0 |

d∑
i=1

ki ≤ n

}
, Tn = span

{
φk |k ∈ ΛTn

}
.

The dimension of Tn is

N = #ΛTn , dimTn =

(
d+ n
n

)
.(5)

Another common index space is the tensor-product index space; for a maximum degree n ∈ N0,

ΛPn =
{
k ∈ Nd0 | max

i
ki ≤ n

}
, Pn = span

{
φk |k ∈ ΛPn

}
.
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Note that the tensor-product space is larger than the total degree space, ΛTn ⊂ ΛPn , and that its
cardinality is #ΛPn = (n+1)d. We can define anisotropic versions of the tensor-product space: Given
a multi-index n ∈ Nd0, we can allow polynomials up to degree ni in dimension i,

ΛPn =
{
k ∈ Nd0 |k ≤ n

}
, Pn = span

{
φk |k ∈ ΛPn

}
.

The total degree space Tn is a more practical space to use in computations compared to the tensor-
product space Pn because the latter has extremely large dimension when d or n grows.

We remark that for any finite multi-index set Λ, it is always possible to define an ordering scheme
such that the multi-indices can be ordered via a single index. That is, we have

{φk(x)}k∈Λ ⇔ {φj(x)}Nj=1,

for some one-to-one correspondence between j ∈ {1, . . . , N}, with N = #Λ. For any such Λ, V is
the N -dimensional polynomial subspace formed from the span of φk for k ∈ Λ.

One of our main tasks is to estimate the projected function of f in the total degree space Tn, i.e.

fn =
∑
k∈ΛT

n

ckφk =

N∑
j=1

cjφj .(6)

using interpolation conditions on some data f(xm),m = 1, ...,M .

2.2. Compressive sensing approach. We now present the basic formulation for the stochastic
collocation methods in the compressed sensing framework. In the framework of this paper, the
compressive sensing approach can be described as follows. Given a set of M realizations {xi}Mi=1 ,
with corresponding outputs f = [f(x1), . . . , f(xM )]>, we now seek a solution that satisfies

Ψc = f(7)

where c = (c1, · · ·, cN )> is the coefficient vector of gPC (6), and

Ψ = (Ψij)1≤i≤M,1≤j≤N ∈ RM×N Ψij = φj(xi),

is the Vandermonde-like matrix, often referred to as the design matrix.
This problem is determined when M = N , overdetermined when M > N , and underdetermined

when M < N . It is the underdetermined case that is considered here. This is often encountered
in practice, especially in high dimensions with the total degree space TK since dimTK ∼ Kd can
be extremely large. In general when d � 1, the cardinality N of most standard polynomial spaces
becomes extremely large, even when the order of the polynomials is moderate. On the other hand,
in many practical applications the evaluation of the target function f(xi) is expensive and one often
has much smaller number of samples M than the number of gPC coefficients N , i.e. M � N . Thus
problem (7) becomes ill-posed and we need some form of regularization to obtain a unique solution.

One efficient method uses an `1-minimization algorithm which, under certain conditions, provides
a means of identifying sparse coefficient vectors from a limited amount of data. A polynomial chaos
expansion is defined as s-sparse when ‖c‖0 ≤ s, i.e the number of non-zero coefficients, does not
exceed s. An `1-minimization scheme attempts to find dominant gPC coefficients by solving the
optimization problem

argmin‖c‖1 subject to Ψc = f ,(8)

where ‖ · ‖1 is the `1 norm on vectors. The advantage of the above formulation (in contrast to
optimizing over ‖c‖0) is that it is a convex problem, and so computational solvers for convex problems
may be leveraged (see [50, 49]). Under certain conditions, the solution to the `1 optimization problem
also solves the `0 problem (see Theorem 2.1 below). This `1 minimization problem is often referred
to as Basis Pursuit. Other types of minimization problems such as Basis Pursuit Denoising and
Least Absolute Shrinkage Operator (LASSO) can be found in [12, 41] and references therein.
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2.3. Recovery via `1 minimization. The ability of `1-minimization method (8) to determine the
dominant coefficients of the gPC expansion is determined by the properties of the measurement
matrix Ψ and the sparsity of c. We need some definitions to make this precise.

Definition 2.1. The error of the best s-term approximation of a vector c ∈ RN in the `p-norm is
defined as

(9) σs,p(c) = inf
‖y‖0≤s

‖y − c‖p.

Clearly, σs,p(c) = 0 if c is s-sparse.

Definition 2.2 (restricted isometry constant[7, 8]). Let D be an M×N matrix. Define the restricted
isometry constant (RIC) δs < 1 to be the smallest positive number such that the inequality

(1− δs)‖c‖22 ≤ ‖Dc‖22 ≤ (1 + δs)‖c‖22(10)

holds for all c ∈ RN of sparsity at most s. Then, the matrix D is said to satisfy the s-restricted
isometry property (RIP) with restricted isometry constant δs.

Theorem 2.1 (Sparse recovery for RIP-matrices [8, 36, 5]). Let D ∈ RM×N be a matrix with RIC
satisfying δs < 0.307. For any given c̃ ∈ RN , let c# be the solution of the `1-minimization

(11) argmin‖c‖1 subject to Dc = Dc̃.

Then the reconstruction error satisfies

‖c# − c̃‖2 ≤ C
σs,1(c̃)√

s
(12)

for some constant C > 0 that depends only on δs. In particular, if c̃ is s-sparse then reconstruction
is exact, i.e., c# = c̃.

We consider a system {ψk(x)}k that is orthonormal with respect to a density ν(x) a bounded
orthonormal system if it satisfies:

max
1≤k≤N

‖ψk‖2∞ = max
1≤k≤N

sup
x∈supp ν

|ψk(x)|2 ≤ L(N) <∞.(13)

If the bound L is independent of N , then we call it a uniformly bounded orthonormal system,
satisfying

(14) sup
1≤k
‖ψk‖2∞ = sup

1≤k
sup

x∈supp ν
|ψk(x)|2 ≤ L,

for some L ≥ 1. For such systems, there is a precise undersampling rate for which the coefficient
vector can be recovered with high probability when we solve (8).

Theorem 2.2 (RIP for bounded orthonormal systems [34, 36]). Let D ∈ RM×N be the inter-
polation matrix with entries {dij = ψj(xi)} from (8), where the points xi, i = 1, . . . ,M , are i.i.d.
random samples drawn from the orthogonalizing measure ν for the bounded orthonormal system {ψj}
satisfying (13). For some δ > 0, assuming that

(15) M ≥ Cδ−2Ls log3(s) log(N),

then with probability at least 1−N−γ log3(s), the RIC δs of 1√
M

D satisfies δs ≤ δ. Here the C, γ > 0

are generic constants.

The Monte Carlo (MC) sampling method utilizing iid samples is very promising in the CS frame-
work, and the result above is one of the foundational tools in this regard. The authors in [36] use
the concept of bounded orthonormal systems to quantify recovery of sparse expansion coefficients in
a univariate Legendre polynomial basis. They exploit the fact that weighting Legendre polynomials
by the factor (1−x2)1/4 makes these polynomials a uniformly bounded system. The strategy is then
to perform recovery with weighted/preconditioned Legendre polynomials, sampling from the appro-
priate biased measure that retains orthogonality; in this case this biased measure is the Chebyshev
measure.
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This idea of preconditioning systems is a theme in recent `1 recovery procedures. Let Ψ denote an
M ×N matrix containing evaluations of the N multivariate polynomials φn at collocation locations
xm, with W a diagonal M ×M matrix:

(Ψ)m,n = φn(xm), (W )m,m = wm > 0,(16a)

where wm are weights that will be specified. We can introduce an M ×N weighted matrix D that
serves as the matrix used to recover sparse coefficients in the weighted setting, defined as

D =
√
WΨ.(16b)

For an unknown function f(x), the M × 1 vector f with entries (f)m = f(xm) contains evaluations
of f . The standard “unweighted” `1 optimization solves,

argmin‖c‖1 subject to Ψc = f ,(17)

whereas a weighted version is given by

argmin‖c‖1 subject to Dc =
√
W f .(18)

Note that we introduce W as a matrix of positive weights but use only its square root in the for-
mulations (16b) and (18). While cumbersome at present, this choice will be notationally convenient
later.

We can now summarize some existing methods for sparse recovery of multivariate Legendre ex-
pansions. The main results for recovery in the formulations (17) and (18) attempt to show that the
system matrices (Ψ and D, respectively) satisfy the conditions of Theorem 2.2 and thus can invoke
Theorem 2.1 to show convergence of the algorithm.

The authors in [48] extend the univariate results of [36] to high-dimensional problems, for both the
original (i.e., unweighted) `1-minimization and the preconditioned (i.e., weighted) `1-minimization.

Theorem 2.3 (Recoverability with multivariate Legendre Polynomials [48]). Let {φj}N−1
j=0 be the

multivariate Legendre polynomial basis elements of the total degree space T dn , and let f(x) =
N−1∑
j=0

c̃φj

be an arbitrary polynomial with coefficient vector c̃. For some nodal array {xi}1≤i≤M , let the weights
wm in (16) be defined by

wm =

(
2

π

)d d∏
n=1

(
1− (xni )2

)1/2

.(19)

1. Assume d ≥ n. With {xi}1≤i≤M i.i.d random samples drawn from the uniform measure on
[−1, 1]d, and if

M > 3ns log3(s)log(N),

then with high probability the solution c] to the direct `1 minimization problem (17) is within a factor
of the best s-term error:

Pr

[
‖c] − c̃‖2 ≤

Cσs(c̃)1√
s

]
≥ 1−N−γ log3(s)

2. Let {xi}1≤i≤M be i.i.d random samples drawn from the Chebyshev measure, and assume that

M > 2ds log3(s)log(N).

Then with high probability, the solution c] to the preconditioned/weighted `1 minimization problem
(18) is within a factor of the best s-term error:

Pr

[
‖c] − c̃‖2 ≤

Cσs(c̃)1√
s

]
≥ 1−N−γ log3(s)

For both of the above cases, the constants C and γ are universal.
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3. Random sampling of Gaussian quadrature points

We now present the method of random Gauss quadrature for sparse polynomial recovery via `1
minimization problem. The basic idea is to use the results from the previous section to conclude that
subsampling a tensor-product Gaussian quadrature produces an accurate recovery procedure for CS.
The two basic ingredients are (i) Tensor-product Gaussian quadrature can be used to define discrete
measures under which polynomials are orthogonal, (ii) weighted polynomials under a Gaussian
quadrature rule have quantifiable bounds.

3.1. Tensor grid of Gaussian points. Let ϕin(xi) be the degree-n orthonormal polynomial cor-
responding to the density ρi. It is well known that ϕin has n real and distinct zeros. I.e., there are
n distinct nodes zik, k = 1, . . . , n, such that

ϕin(zik) = 0, k = 1, · · ·, n.(20)

Furthermore, an interpolatory quadrature with weights wk rule can be constructed on the zeros,
satisfying

n∑
k=1

wikf(zik) =

∫
Xi

f(xi)ρi(xi)dxi,(21)

for any polynomial f of degree 2n − 1 or less; this is the Gaussian quadrature rule.∗ Here wik, k =
1, . . . , n, are the univariate Gauss quadrature weights associated with dimension i. The n-point
Gauss quadrature weights can be computed explicitly as

wik = λin(zik), k = 1, . . . , n,(22)

where λin is the 2-norm Christoffel function associated with dimension i:

λin(xi) =
1

n−1∑
k=0

(ϕik(xi))2

.(23)

We define a discrete probability measure defined on the support of the n-point Gauss quadrature
nodes. With δz the Dirac measure centered at z,

νin ,
1

n

n∑
k=1

δzik(24)

The measure νin is the uniform empirical probability measure associated with the discrete set{
zi1, . . . , z

i
n

}
.

We proceed to tensorize the univariate Gaussian quadrature rules. Let

Θi
n = {zi1, ..., zin} ⊂ Γi, i = 1, ..., d(25)

be the one dimensional n-point Gauss set associated to the i’th dimension. We then take tensor
products to construct a d-dimensional point set. Let ni for i = 1, . . . , d denote the Gauss quadrature
rule size for dimension i. We collect these sizes into the multi-index n = (n1, . . . , nd) ∈ Nd. The
tensor product set is then

Θn = Θ1
n1
⊗ · · · ⊗Θd

nd
(26)

The cardinality of this set is |Θn| =
∏d
i=1 ni. As before, an ordering scheme can be employed to

order the points via a single index, i.e. for each j = 1, ..., |Θn|,

zj ↔ zk = (z1
k1 , ..., z

d
kd

), 1 ≤ k ≤ n

∗Note that zik depends on the value of n, but we omit explicit notation indicating this dependence.
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Each point has the scalar weight

wk =

d∏
i=1

wiki , 1 ≤ k ≤ n(27)

This tensorized Gauss quadrature in the d-dimensional space Γ exactly integrates any polynomial
in the tensor space P2n−1. We note that using (22) and (23), the d-dimensional Gauss quadrature
weights for Θn are given by

wk = λn (zk) ,
d∏
i=1

λini
(ziki) =

d∏
i=1

1
ni−1∑
k=0

[ϕik(ziki)]
2

(28)

The uniform empirical probability measure on the set Θn is given by

(29) νn =

d⊗
i=1

νini
=

1∏d
i=1 ni

∑
k≤n

δzk =
∑
k≤n

d∏
i=1

1

ni
δziki

Note that iid sampling from νn is equivalent to sampling uniformly from a tensor-product Gauss
quadrature grid.

We will use the notation Eνi
n

and Eνn to denote expectations under the measures defined in (24)
and (29), respectively. I.e.,

Eνi
n
f
(
Xi
)
,

1

n

n∑
k=1

f
(
zik
)
, Eνnf (X) ,

1∏d
i=1 ni

∑
1≤k≤n

f (zk)

3.2. Orthogonal matrices from Gaussian quadrature. The defining property of the univariate
Gauss quadrature rule allows one to conclude that weighted Vandermonde-like matrices formed on
the quadrature nodes are orthogonal matrices. Later, we will need the notion of an orthogonal
rectangular matrix.

Definition 3.1. An M ×N matrix D with M ≥ N is orthogonal if DTD = IN×N .

With ϕik the degree-k polynomial from the univariate ρi-orthonormal family, consider the ni×ni
Vandermonde-like matrix Ψi with entries(

Ψi
)
j,k

= ϕik−1

(
zij
)
, j, k = 1, . . . , ni(30)

where zij are the nodes of the ni-point Gaussian quadrature rule introduced in (20). We also need

a diagonal matrix Σi containing the quadrature weights:(
Σi
)
j,k

= wijδj,k, j, k = 1, . . . , ni,(31)

with δj,k the Kronecker delta. The degree of exactness of each Gaussian quadrature rule implies

δj,k =

∫
Γi

ϕj−1 (s)ϕk−1 (s) ρi(s)ds =

ni∑
k=1

ϕj−1

(
zik
)
ϕk−1

(
zik
)
wik =

(
ΨiTΣiΨi

)
j,k

for j, k = 1, . . . , ni. The fact that the Kronecker delta is equal to the (j, k) element of the matrix

ΨiTΣiΨi indicates that this matrix product is the identity matrix. So we have proven:

Lemma 3.1.A ([18]). The ni × ni matrix

Di =
(
Σi
)1/2

Ψi,(32)

defined by (30) and (31) is an orthogonal matrix.

A straightforward consequence of this is that the
(∏d

i=1 ni

)
×
(∏d

i=1 ni

)
matrix that is the tensor

product of the d univariate matrices Di is also an orthogonal matrix:
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Lemma 3.1.B ([39]). The
(∏d

i=1 ni

)
×
(∏d

i=1 ni

)
matrix,

D =

d⊗
i=1

Di,(33)

is an orthogonal matrix.

In [39], the matrix D was called a “discrete orthogonal matrix” (DOM). Note that the same
properties hold if D has more rows than columns. (I.e., the marginal quadrature rule order dominates
the marginal polynomial degree of the basis.)

Lemma 3.1.C. Let m,n ∈ Nd satisfy m ≥ n. For each i, define the mi × ni matrix Ψi with
entries (

Ψi
)
q,k

= ϕk−1

(
ziq
)
, k = 1, . . . , ni, q = 1, . . . ,mi.

With Σi the mi ×mi diagonal weighting matrix given in (31), define the mi × ni matrix,

Di =
(
Σi
)1/2

Ψi.

Then the
(∏d

i=1mi

)
×
(∏d

i=1 ni

)
matrix

D =

d⊗
i=1

Di(34)

is an orthogonal matrix.

The most general version of this statement is that any matrix D whose columns are a subset of
the appropriate tensor-product space is orthogonal.

Lemma 3.1.D. Let Λ ∈ Nd0 be a finite multi-index set, and let n be any multi-index satisfying

Λ ⊆ ΛPn−1.

With N = |Λ|, let k(1), . . . ,k(N) represent any enumeration of the elements of Λ. With M =∏d
i=1 ni, let m(1), . . . ,m(M) denote any enumeration of the elements in {m | 1 ≤m ≤ n + 1}.

Then the M ×N matrix D with entries

(D)j,` =
√
wm(j)φk(`)

(
zm(j)

)
, 1 ≤ j ≤M, 1 ≤ ` ≤ N

is an orthogonal matrix.

That D is an orthogonal matrix is interesting because it indicates that it is a well-conditioned
matrix. If, in addition, the mass of the matrix is equidistributed across all its entries, then Theorem
2.2 implies that it has a small RIP constant. Thus, if equidistribution holds, then it might be
possible to use its rows as a discrete candidate set to subsample for a compressive sampling strategy.
This was explored in [39] when X is a uniform random variable. Here we extend these results to
more general cases. We delay the analysis and converence results until Section 4.

3.3. Compressive sampling via Gaussian quadrature subsampling. A simple algorithm can
now be presented for compressive sampling recovery of a random function f(X): we can subsample
M rows from the matrix D in the previous section and use them to perform sparse recovery. A
more detailed algorithm is as follows:

(1) Given an index set Λ, find n ∈ Nd such that Λ ⊆ ΛPn−1.

(2) Generate the ni-point Gauss quadrature rule
{
zik, w

i
k

}ni

k=1
for i = 1, . . . , d. The resulting full

tensor-product rule is Θn = {(zk, wk)}1≤k≤n, but it need not be constructed explicitly.

(3) According to the uniform probability law, randomly choose (and construct)M points {(ym, vm)}Mm=1 ⊂
Θn.
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(4) Generate an M -row matrix D from these M points and index set Λ, having entries

(D)m,n =
√
vmφk(n) (ym) ,(35)

where k(1), . . . ,k(N) is an enumeration of the elements in Λ. Also form the M×M diagonal
matrix W with entries (W )m,m = vm, and collect the M evaluations of the function f(ym)
into the vector f .

(5) Solve (18) for the coefficients c.

This procedure amounts to subsampling the product Gaussian quadrature rule in order to perform
compressive sampling. One remaining question is how large M should be so that we can guarantee
recovery. The authors in [39] show that if X is a uniform random variable, then this strategy requires
M & 3ds samples to recover an approximately s-sparse vector. We provide a similar analysis for
more general random variables by using analysis presented in the next section. Numerical results
from the above algorithm are shown in Section 5 for various probability densities for X.

4. Analysis of Gaussian quadrature subsampling

Here we present analysis of the algorithm shown in Section 3.3. The essential question is how
many samples M are required so that we can guarantee a faithful recovery of some function f . We
proceed to show this by analyzing the entries of the weighted Vandermonde-like matrix D. The
entries of this matrix can be viewed as non-polynomial functions orthornormal under the discrete
measure νn defined in (24). Using properties of orthogonal polynomials, we can determine the
maximum magnitude of these functions, allowing us to use Theorem 2.2 to determine a sufficient
number of samples M . Our main result is stated in Theorem 4.1.

4.1. Discrete orthonormal systems. The polynomials ϕik are orthonormal under the orthogo-
nalizing measure ρi. In this section we show that specially weighted versions of ϕik are orthonormal
under the discrete measures νin, defined in (24). We show similar statements for the multivariate
polynomials φk under the measure νn. These results stem from the accuracy of the Gauss quad-
rature rules introduced in the previous section: The four parts of Lemma 4.1 presented below are
restatements of the four parts of Lemma 3.1. We show brief proofs for the first two parts.

Lemma 4.1.A. Let n ∈ N be fixed. Then the n functions{
ψik,n

(
xi
)}n−1

k=0
,
{√

nλin (xi)ϕik
(
xi
)}n−1

k=0
(36)

are orthonormal under the probability measure νin defined in (24).

Proof. The result follows by direct calculation and use of the exactness of the Gauss quadrature
rule, and is essentially equivalent to Lemma 3.1.A. For j, k < n we have:

Eνi
n

[
ψik,n

(
Xi
)
ψij,n

(
Xi
)] (24)

=
1

n

n−1∑
p=0

ψij,n
(
zip
)
ψik,n

(
zip
)

(36)
=

1

n

n−1∑
p=0

nλin
(
zip
)
ϕij
(
zip
)
ϕik
(
zip
)

(22)
=

n−1∑
p=0

wipϕ
i
j

(
zip
)
ϕik
(
zip
)

(21)
=

∫
Γi

ϕij
(
xi
)
ϕik
(
xi
)
ρi
(
xi
)

dxi

(1)
= δj,k.

�
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Note the factor of
√
n in (36), and the fact that ψik,n depends on n. The result above generalizes

in a straightforward manner to the multivariate case.

Lemma 4.1.B. Let n ∈ Nd be fixed. Then the
∏d
i=1 ni functions

{ψk,n (z)}k∈ΛP
n−1
,

{
d∏
i=1

ψiki,ni

(
zi
)}

k∈ΛP
n−1

(37)

are orthonormal under the probability measure νn defined in (29).

Proof. We again use a direct calculation. For 0 ≤ j,k < n we have:

Eνn [ψj (X)ψk (X)] = Eν1
n1
⊗···⊗νd

nd

[
d∏
i=1

ψiji
(
Zi
)
ψiki

(
Zi
)]

=

d∏
i=1

Eνi
ni

[
d∏
i=1

ψiji
(
Zi
)
ψiki

(
Zi
)]

Lemma 4.1.A
=

d∏
i=1

δji,ki = δj,k,

In the second equality above we have used the fact that a random variable associated to the measure
νn has independent components Zi with marginal distributions given by νini

. �

Of course, one can use a quadrature rule of higher-degree accuracy than required and still retain
orthogonality of the resulting matrix.

Lemma 4.1.C. Let m,n ∈ Nd satisfy m ≥ n. The
∏d
i=1 ni functions

{ψk,m (z)}k∈ΛP
n−1

,

are orthonormal under the probability measure νm.

Finally, any non-tensor-product polynomial space of finite dimension can be encapsulated in
a tensor-product space, and the quadrature rule associated to the tensor-product space exactly
integrates elements from the original space.

Lemma 4.1.D. Given a finite index set Λ, let n ∈ Nd be such that Λ ⊆ ΛPn−1. With N = |Λ|, then
the N functions

{ψk,n (z)}k∈Λ ,

are orthonormal under the probability measure νn.

4.2. Bounded discrete orthonormal systems. We have established in the previous section that
the collection of functions {ψk,n}k∈Λ are νn-orthonormal for any Λ ⊆ ΛPn−1. The recovery result in
Theorem 2.2 then guarantees RIP properties associated to iid sampling strategies based on sup-norm
bounds of these functions, to which we now turn.

Consider the scalar random variable Xi with n ∈ N fixed. The ψik,n are νin-orthonormal, and so
we must determine the bound

Li(n) , max
0≤k≤n−1

sup
xi∈supp νi

n

∣∣ψk,n (xi)∣∣2 = max
0≤k≤n−1

max
1≤j≤n

∣∣ψik,n (zij)∣∣2 ,
where zij are the n-point Gaussian quadrature nodes. The ψk,n functions are polynomials weighted
by a Christoffel function. Much is known about the behavior of these functions, and can be used to
estimate the bound L. The following lemmas establish the behavior of Li(n) for general distributions
of Xi. The proofs of all the below Lemmas are in the Appendix.

When the polynomial family ϕk that defines the weighted functions ψk,n corresponds to almost
any Jacobi polynomial family, then the bounding constant Li(n) is independent of n, and in this
case the ψk,n are a uniformly bounded system for k ≤ n.
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Lemma 4.2.A. Let Xi ∼ B (γ + 1, δ + 1) be a univariate Beta-distributed random variable with
shape parameters γ, δ ≥ − 1

2 on the domain Xi = [−1, 1]. Thus, the polynomials ϕik are Jacobi
polynomials with parameters δ, γ. Then

Li(n) ≤ C

The constant C is uniform in n, C = C(γ, δ).

We show in the left-hand plot of Figure 1 the evolution of Li(n) as a function of the quadrature
node size n, along with its dependence on symmetric parameters γ = δ.

The strict n-independent bound obtained above for Jacobi polynomial families is, unfortunately,
not true for polynomials orthogonal with respect to exponential weights on unbounded domains.
Instead, the bound depends on the degree n. However, the dependence is relatively mild.

Lemma 4.2.B. Let Xi be a random variable whose density ρi is exponential on the real line:

ρi(x) ∝ exp(−|x|α), x ∈ R

for some α > 3
2 . Then the weighted polynomials ψik,n satisfy

Li(n) ≤ Cn2/3,

where the constant C is uniform in n, i.e., C = C(α).

Note that the above case covers α = 2, corresponding to a normally-distributed Xi and a gPC
basis of Hermite polynomials. The one-sided exponential bound is similar; we state it separately
because its proof in the Appendix requires a different set of results.

Lemma 4.2.C. Let Xi be a random variable whose density ρi is exponential on the half real line:

ρi(x) ∝ exp(−|x|α), x ≥ 0

for some α > 3
4 . Then the weighted polynomials ψik,n satisfy

Li(n) ≤ Cn2/3,

where the constant C is uniform in n, i.e., C = C(α).

Remark 4.1. We expect the conclusion of Lemma 4.2.C to be valid for the more general weight
ρi ∝ xµ exp(−|x|α) for some µ ≥ − 1

2 . This would require some estimates on zeros of the associated
orthogonal polynomials along with behavior of the associated Christoffel function. These estimates
are essentially present in [23, 24]. Since this would necessitate a more technical analysis with dubious
payoff, we do not pursue this here.

Of special note is the result of Lemma 4.2.C with α = 1, corresponding to an exponential random
variable Xi and a gPC basis of Laguerre polynomials.

The behavior of the bounds established above are shown in the right-hand plot of Figure 1 for
Hermite polynomials (Lemma 4.2.B with α = 2) and Laguerre polynomials (Lemma 4.2.C with
α = 1).

4.3. Multivariate expansions. This section contains our main results that utilize the univariate
supremum bounds established in the previous section. Given n ∈ Nd, we define the product bound
L(n):

L(n) =

d∏
i=1

Li(ni)(38)

Our procedure runs into the familiar curse of dimensionality by requiring the sample count to
dominate s times the product of all d of the Li factors.
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Figure 1. Left: Bound L for Jacobi polynomials with symmetric parameters γ = δ. Right: Bound

for two exponential-type densities: Hermite polynomials with ρ = exp(−x2) on R, and Laguerre
polynomials with ρ = exp(−x) on [0,∞).

Theorem 4.1. Let Λ be a finite index set with size N . Let n be the smallest multi-index such that
Λ ⊆ ΛPn−1. (This defines n uniquely.) Choose M samples randomly without replacement from the
measure νn. (This is the algorithm presented in Section 3.3.) Assume M satisfies

M ≥ L (n)C1s log3(s) log (N) ,(39)

where C1 is a universal constant. Under these conditions, then for any c ∈ RN , let c] be the solution
obtained by the weighted `1 optimization problem defined by (18). Then,

Pr

[∥∥c− c]
∥∥

2
≤ C2σs,1 (c)√

s

]
≤ 1−N−γ log3(s),

where C2 and γ are universal constants. The individual factors Li(ni) in (38) that comprise L(n) in
(39) are bounded by the three parts of Lemma 4.2 when the components of X have the appropriate
distributions.

The proof of the above Theorem, utilizing Lemmas 4.2, is given in Appendix A.4. The above
theorem quantifies the size of M so that the subsampling algorithm in Section 3.3 converges with
high probability. In particular, we frame this result slightly differently compared to the conclusion of
Theorem 2.2: we make an explicit choice for the RIP constant δ so that recoverability is guaranteed
(cf. Theorem 2.1).

Lemmas 4.2 cover many of the standard univariate distributions for Xi, in both the bounded and
unbounded cases. Thus, the theorem above applies to very general cases of a random variable X
with independent components. We point out some special cases of our result:

• If ρ is uniform over Γ = [−1, 1]d, so that the ϕk are tensor-product Legendre polynomials,
then L(n) satisfies

L(n) ≤ Cd,

with C the univariate bound in Lemma 4.2.A with γ = δ = 1. We notice that the above
constant depends exponentially on the dimension d. The authors in [39] show that this
constant is essentially C = 3. Results from Figure 1 suggest that a sharper result would be
C = 2, although this is not proven.
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• If ρ corresponds to a standard Gaussian density function over Rd, so that the ϕk are tensor-

product Hermite polynomials, then each univariate Li(ni) satisfies an n
2/3
i bound, so that

L(n) ≤ C2d/3n2/3, 2/3 = (2/3, 2/3, . . . , 2/3) ∈ Rd,(40a)

with C the constant given in Lemma 4.2.B. If the maximum polynomial degree ni−1 , n−1
is uniform for all dimensions, then we have

L(n) ≤ (Cn)2d/3,(40b)

This result unfortunately exhibits not only exponential dependence on the parametric d,
but also algebraic dependence on the maximum polynomial degree n. Nevertheless, this
bound on the supremum of the Gauss quadrature-weighted polynomials is sharp. However,
the results in Figure 1 show that for polynomial degree n − 1 = 9, we empirically observe
Cn2/3 . 4, so that for a degree-9 polynomial approximation, the requirement (39) states

M ≥ 4ds log3(s) log (N) , (n ≤ 10)(40c)

We note that in high dimensions one is more likely to use low-degree approximations (small
n) so that in high dimensions this requirement is comparable to the bounded-case sample
count criterion.

• If ρ is given by ρ(x) ∝ exp (−‖z‖1) for z ∈ [0,∞)d, then we also obtain the set of bounds
(40) under the same conditions.

Finally, we remark that, once n is identified as the multi-index identifying maximum the polynomial
degree in each dimension, one may choose to subsample from the measure νm, where m ≥ n. When
X is a bounded random variable, this would produce the same bound (39) with n, even though
one subsamples from νm. However, if X has an exponential density (either one-sided or two-sided
exponential), our analysis suggests that such a strategy would have a bound L that behaves like
L ∼m2/3 > n2/3. The penalty for this unbounded case makes sense: using Gauss quadrature rules
with m > n results in possible sampling of points that lie in regions where degree-n polynomials
weighted by λm are decaying quickly to 0, making recovery by sampling in these regions difficult. It
is likely that one can improve the estimates in [21] to result in a tighter bound, but we still expect
this bound to be greater than n2/3.

5. Numerical examples

We now provide with some numerical examples to test the theoretical findings and the conver-
gence properties of the sparse recovery approach, with randomly chosen Gaussian grid. For the
implementation of the `1-minimization, we employ available tools such as Spectral Projected Gra-
dient algorithm (SPGL1) from [44] that was implemented in the MATLAB package SPGL1 [43].

5.1. Polynomial function recovery. We first assume the target function has a polynomial form
and choose a sparsity level s and then fix s coefficients of the polynomial while keeping the rest
of the coefficients zero. The values of the s non-zero coefficients are drawn iid from a standard
normal distribution. This procedure produces target coefficients that we seek to recover using the
`1-minimization algorithms.

In what follows, we use the following terms in figures to describe our recovery procedures:

• Random – sampling iid from the orthogonality measure ρ and solving the unweighted `1
optimization problem (17).

• PreChebyshev – sampling iid from the Chebyshev measure, i.e., the measure with probability
density

v(x) =
1

πd
∏d
i=1

√
1− x2

i

,

and solving the preconditioned optimization problem (18) using the weights (19).



16 Stochastic `1-minimization using randomized quadratures

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Sparsity s

P
ro

b
a
b
il
it
y
o
f
su

c
c
e
ss

PreChebyshev

Uniform

Gaussian

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Sparsity s

P
ro

b
a
b
il
it
y
o
f
su

c
c
e
ss

PreChebyshev

Uniform

Gaussian

Figure 2. Recovery probability with respect to sparsity s of Legendre polynomials with fixed
sample number M = 85. Left: d = 2, n = 21 (N = 231). Right: d = 10, n = 4 (N = 286).

• Gaussian – subsampling from a Gaussian quadrature grid using the Gaussian quadrature
weights to solve the preconditioned problem (18). (This is the method proposed in this
paper.)

• Chebyshev (resp. Uniform) – sampling iid from the Chebyshev (resp. uniform) measure and
solving the unweighted optimization problem (17).

We recall our notation: ni is the number of Gaussian quadrature points in dimension i, with ni−1
being the maximum polynomial degree in dimension i from the index set Λ. Thus, choosing n and
d defines the total degree space Λ. We define the size of Λ to be N , coinciding with the number of
columns in the matrix D that is input to the `1 optimization problem (18). The number of samples
we use is M , and is the number of points subsampled from the tensor-product Gaussian quadrature
grid, coinciding with the number of rows of the matrix D.

5.1.1. Uniform measure and Legendre polynomials. The first test is the recovery of sparse Legendre
polynomials, with the index set Λ corresponding to the two dimensional total degree space T2

n−1

and T10
n−1, respectively. We note that in this case our method coincides with the method in [39]. We

examine the frequency of successful recoveries when the number of sample points is fixed at M = 85.
This is accomplished by conducting 500 trials of the algorithms and counting the successful ones.
A recovery is considered successful when the resulting coefficient vector c satisfies ‖c − ĉ‖ ≤ 10−3.
In the left-hand plot of Figure 2, we show the recovery rate for sparse Legendre polynomials(with
d = 2, n1 = n2 = 11, and thus N = 66) as a function of sparsity level s. In the right-hand plot
of Figure 2, we show the recovery rate for sparse Legendre polynomials(with d = 10, n = 4, and
N = 286) as a function of sparsity level s. We have also tested preconditioned recovery results with
MC Chebyshev samples. In the cases we have tested, the Gaussian subsampling method works as
well or better than the other methods, both for low and high dimensions.

5.1.2. Chebyshev measure and Chebyshev polynomials. The second test is the recovery of sparse
Chebeshev polynomials, with the index set Λ corresponding to the two dimensional total degree
space T2

n−1 and T10
n−1, respectively. We examine the probability of successful recoveries when the

number of sample points is fixed at M = 85. In the left-hand plot of Figure 3, we show the recovery
rate for sparse Chebyshev polynomials(with d = 2, n = 11, and N = 66) as a function of sparsity
level s. In this low-dimensional case, the results are similar to recovery of Legendre polynomials
in Figure 2. In the right-hand plot of Figure 3, we show the recovery rate for sparse Chebyshev
polynomials(with d = 10, n = 4, and N = 286) as a function of sparsity level s. Again we see
that the subsampling Gaussian quadrature case performs better than other methods, although the
improvement in the high-dimensional cases is more minor.
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Figure 3. Recovery probability with respect to sparsity s of Chebyshev polynomials with fixed
sample number M = 85. Left: d = 2, n = 21 (N = 231). Right: d = 10, n = 4 (N = 286).

5.1.3. Gaussian measure with Hermite polynomials. In Fig.4, we report the numerical results for the
Gaussian measure with Hermite polynomials approximation. We examine the maximum coefficient
error, ‖c − ĉ‖∞, as we increase the number of sample points. In the left-hand plot of Figure 4, we
show the convergence rate for sparse Hermite polynomials (with d = 2, n = 21, and N = 231) as a
function of number of sample points. In the right-hand plot of Figure 4, we show the convergence
rate for sparse Hermite polynomials(with d = 10, n = 4, and N = 286) as a function of number of
sample points. The sparsity in both cases is s = 5. Although subsampling from a tensor-product grid
works well in low dimensions, in the high-dimensional d = 10 case, we see that sampling according
to the orthogonality measure produces better results. This is consistent with earlier observations
[48].
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Figure 4. Recovery error with respect to number of sample points of Hermite polynomials. Left:

d = 2, n = 21, and N = 231. Right: d = 10, n = 4, and N = 286. For both plots, the error
shown is the average over 500 trials.

5.2. Recovery of analytical functions. In general, functions do not have a finite representation
in the orthogonal polynomials, but instead have “approximately” sparse representations. Here, we
consider a few functions of this form.



18 Stochastic `1-minimization using randomized quadratures

We report the numerical error with Legendre polynomials for the underlying high-degree mono-

mial function f(x) = x10
1 x

10
2 and high-dimensional Generalized Rosenbrock f(x) =

10∑
i=1

(1 − xi)2 +

100(xi+1 − x2
i )

2. We attempt to recover a sparse representation of these functions in a Legendre
polynomial basis. The left-hand plot of Figure 5 shows recovery of the monomial function (high
degree, low dimension), and the right-hand plot shows recovery of the Rosenbrock function (low
degree, high dimension). In both of these cases, subsampling from a Gaussian quadrature grid
produces superior results when compared against standard alternatives.
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Figure 5. Convergence rate against number of sample points. Left:High-degree monomial

function(d = 2,n = 21). Right: Generalized Rosenbrock (d = 10,n = 5). For both plots,
the error is averaged over 500 trials.

We run a similar test using Hermite polynomials for two different functions in two dimensions:

f1(x) = 2−0.2x2
1−0.2x2

2 and f2(x) = e−0.6x1−0.6x2 . The recovery results are shown in Figure 6, where
we see that in these low-dimensional cases, it is not always clear that subsampling from a Gaussian
quadrature grid produces better results than sampling from the orthogonality measure. However,
this does appear to be true if one can afford to take a larger sample count M .
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Figure 6. Convergence rate against number of sample points. Left:f1(x) = 2−0.2x2−0.2x2
2 .(d =

2,n = 26). Right: f2(x) = e−0.6x1−0.6x2 .(d = 2,n = 25). In both plots, the error is averaged
over 500 trials.
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5.3. A simple ODE with random inputs. We consider a simple random ODE problem with
Gaussian random input:

du

dt
= −k(X)u, u(0) = 1,(41)

where k(X) is a function of a Gaussian random variable X; thus the Hermite functions will be used
as the approximation basis. To illustrate the idea, we set k(X) = βX. We approximate u, i.e., we
recover the solution

u(t,X) ∼
N−1∑
n=0

cn(t)ϕn(X),

by attempting to find a sparse representation of the coefficients cn. Thus we are in fact approximating

the function f̃ = e
−y2

2 u2(t, y). We are interested in the second moment of the solution, i.e.

Q = Eu2(t,X) ∝
∫
e

−x2

2 u2(t, x)dx.

For each collocation points, one has to solve the ODE to get the information u(t, yi). The numerical
convergence results for the quantity of interest Q is shown in Figure 7 with β = −0.65 and t = 1.
In this case, the Gaussian quadrature subsampling strategy works very well.
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Figure 7. Convergence rate against number of sample points. β = −0.65, with n = 30, with

error averaged over 500 trials.

5.4. PDE with random inputs. This section illustrates the computational performance of our
algorithm for the following stochastic linear elliptic problems in two spatial dimensions.

(42)

{
−∇ · (a(y, ω)∇u(y, ω)) = f(y, ω) in D × Ω,
u(y, ω) = 0 on ∂D × Ω,

with spatial domain D = [0, 1]2. For these numerical examples we take a deterministic load f(y, ω) =
cos(y1) sin(y2) and construct the random diffusion coefficient aN (y, ω) with one-dimensional spatial
dependence as in [2, p. 2336]:

log(aN (ω,y)− 0.5) = 1 +X1(ω)

(√
πL

2

)1/2

+

3∑
i=2

ζifi(y)Xi(ω),

where

ζi := (
√
πL)1/2exp

(−(b i2cπL)2

8

)
, if i > 1,
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and

fi(y) :=


sin

(
b i
2 cπy1
Lp

)
, if i even,

cos

(
b i
2 cπy1
Lp

)
, if i odd.

Here {Xi}3i=1 are mutually independent and are each uniformly distributed on the interval [−1, 1].
Thus a family of Legendre polynomials is used to approximation as a function of X. For y1 ∈ [0, 1],
let Lc = 1/64 be a desired physical correlation length for a(y, ω). Then the parameter Lp and L

are Lp = max{1, 2Lc} and L = Lc

Lp
, respectively. The deterministic elliptic equations are solved by

a standard finite element method and the spatial domain D is partitioned into 648 triangles with
1369 unknowns.

As the exact solution is not available, we use a high level sparse grid collocation method to
obtain the reference solution. In Fig. 8, we see plots of error in `2 norm of the mean and standard
deviation between the reference and `1-minimization for various sampling techniques as a function
of the number of samples M .
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Figure 8. Error in `2 norm of the mean and standard deviation between the reference and `1-
minimization for the various sampling method as a function of the number of samples M . d = 3,

n = 11 (N = 286)

6. Conclusion

We investigate the problem of approximating a multivariate function via `1 minimization meth-
ods. Such strategies presume that the underlying function is sparse, or approximately sparse, in the
approximating basis. The ability to exactly recover a sparse representation with a small number
of samples has been the focus of much research in compressive sampling. We propose sampling
by randomly subsampling a tensor-product grid of Gaussian quadrature points. This procedure
was investigated in [39] for Legendre polynomials (corresponding to a uniformly distributed random
variable). We have provided a nontrivial extension in both analysis and numerical results, covering
general Beta distributions taking values on compact domains, as well as one- and two-sided expo-
nential random variable taking values on unbounded domains. In particular, our analysis covers the
case of Hermite polynomials (normally-distributed random variables) and Laguerre polynomials (ex-
ponential random variables). Our framework provides a non-intrusive way to construct generalized
Polynomial Chaos expansions for very general classes of distributions.
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Appendix A. Proofs

In this appendix we collect results which imply the results given by the three parts of Lemma
4.2. These are essentially well-known results in the theory of orthogonal polynomials. Our analysis
uses these well-known results in fairly straightforward ways.

We treat individually the proofs of each of the three Lemmas 4.2.A, 4.2.B, and 4.2.C. The strategy
for each proof is identical: First we characterize the interval in which the univariate orthogonal
polynomial zeros zij are located. Then we use established bounds on weighted orthogonal polynomial
families on those intervals.

Note that our main reference for bounds on orthogonal polynomials is [21], which explicitly states
these bounds in the form that we require. However, the conclusions in [21] are essentially a reshuffling
of far deeper, more technical, and elegant results in [22, 32, 23, 24].

After proving the three Lemmas 4.2, we end with the proof of our main result, Theorem 4.1.

A.1. Proof of Lemma 4.2.A. Assume the setup of Lemma 4.2.A: that Xi is a scalar random
variable taking values on [−1, 1] with a Beta distribution with shape parameters γ, δ ≥ 1

2 . We first
establish intervals in which the zeros of orthogonal polynomial lie, and then use boundedness results
on these intervals. This bounded case is easiest, for which the n zeros zij for j = 1, . . . , n all lie inside
the n-independent compact interval of orthogonality.

Lemma A.1. For all n ∈ N, we have
{
zij
}n
j=1
⊂ [−1, 1].

See, e.g., Theorem 3.3.1 of [38]. We can now use results from [21].

Lemma A.2 ([21]). For all n ∈ N and 0 ≤ k ≤ n− 1, we have

sup
zi∈[−1,1]

∣∣ψk,n(zi)
∣∣2 ≤ C(γi, δi)

Lemma 4.2.A now follows easily:

Li(n) = max
0≤k≤n−1

max
j=1,...,n

∣∣ψk,n(zij)
∣∣2 ≤ max

0≤k≤n−1
sup

zi∈[−1,1]

∣∣ψk,n(zi)
∣∣2 ≤ C(γi, δi).(43)

A.2. Proof of Lemma 4.2.B. Both of the exponential cases are more subtle. Assume the setup
of Lemma 4.2.B, that the random variable Xi has a two-sided exponential distribution, ρi

(
xi
)

=

exp(−|xi|α) with α > 3
2 . In order to characterize intervals containing the zeros of the associated

orthogonal polynomials, we will need the numbers aWn , which for n ≥ 1 are given by

aWn =

(
n

√
πΓ
(
α
2

)
Γ
(
α
2 + 1

2

))1/α

.

Note that, modulo an α-dependent constant, these numbers scale like n1/α. The an are the Mhaskar-

Rahkmanov-Saff numbers associated to the weight
√
ρi [27] and play an essential role in the anaylsis

of weighted polynomials.

Lemma A.3 ([22]). For each n ∈ N, the n-point Gaussian quadrature nodes satisfy:{
zij
}n
j=1
⊂
[
−âWn , âWn

]
,

where âWn satisfy

âWn = an

[
1 + cn−2/3

]
,(44)

with c a n-independent constant.

If α is an even integer, we can take C = 0 so that âWn = aWn [28]. We have bounds for weighted
polynomials on the interval defined above.
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Lemma A.4 ([21]). Let c > 0 be as in (44) defining âWn . For all n ∈ N and 0 ≤ k ≤ n−1, we have

sup
zi∈[−âWn ,âWn ]

∣∣ψk,n(zi)
∣∣2 ≤ C(α)n2/3.

With these two lemmas, essentially the same argument as in (43) can be used to establish,

Li(n) = max
0≤k≤n−1

max
j=1,...,n

∣∣ψk,n(zij)
∣∣2 ≤ Cn2/3,

which is Lemma 4.2.B.

A.3. Proof of Lemma 4.2.C. Assume the setup of Lemma 4.2.C, that the random variable Xi

has a one-sided exponential distribution with density ρi
(
xi
)
∝ exp(−|xi|α) with α > 3

4 .
In this half-line case, both the strategy and the results are essentially the same as with the whole

real line in the previous section. One major change is in the constants aK , which in this case are
given by

aHn =

(
n

√
πΓ (α)

Γ
(
α+ 1

2

))1/α

.

Note again that these numbers scale like n1/α. These aHn are the Mhaskar-Rahkmanov-Saff numbers

associated to the half-line weight
√
ρi.

Lemma A.5 ([22]). For each n ∈ N with n ≥ 1, the n-point Gaussian quadrature nodes satisfy:{
zij
}n
j=1
⊂
[
0, âHn

]
,

where âHn satisfy

âHn = an

[
1 + cn−2/3

]
,(45)

with c a n-independent constant.

We have bounds for weighted polynomials on the interval defined above.

Lemma A.6 ([21]). Let C > 0 be as in (45) defining âHn . For all n ∈ N and 0 ≤ k ≤ n − 1, we
have

sup
zi∈[0,âHn ]

∣∣ψk,n(zi)
∣∣2 ≤ C(α)n2/3.

Again the same argument as in (43) can be used to establish,

Li(n) = max
0≤k≤n−1

max
j=1,...,n

∣∣ψk,n(zij)
∣∣2 ≤ Cn2/3,

which is Lemma 4.2.C.

A.4. Proof of Theorem 4.1. Under the assumptions of this theorem, we perform the algorithm
given in Section 3.3. Recalling the notation, we have a multi-index set Λ ⊂ ΛPn−1 for some multi-
index n. The index set Λ has size N . We construct the tensor-product Gauss quadrature rule with

ni points in dimension i. Then the rectangular
(∏d

i=1 ni

)
×N weighted Vandermonde-like matrix

A is defined, whose entries are

(A)p,q =
√
w`(p)φk(q)

(
z`(p)

)
, 1 ≤ p, q ≤

d∏
i=1

ni(46)

where k(q) and `(p) represent any enumeration of the elements in ΛPn−1. The matrix A is an
orthogonal matrix. (See Lemmas 4.1 or 3.1, and Definition 3.1.) According to Section 3.3, D is
formed by subsampling rows from A.

We subsample rows from A without replacement. This does not sample iid from νn since the
samples are dependent. Thus, Theorem 2.2 cannot be used directly to analyze this procedure.
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Nevertheless, the analysis may be amended to include this type of procedure; see Corollary 12.38 in
Section 12.6 of [35] and the surroundng discussion.

Lemma A.7 ([35]). Suppose A is an orthogonal matrix whose entries are bounded by 1√∏d
i=1 ni

√
L.

Suppose we subsample M rows from A. Then under the sample count condition (15), the subsampled
matrix satisfies the conclusions of Theorem 2.2.

We then must determine how to bound the entries of the matrix A. Assuming that the marginal
components of the random variable X each have a distribution satisfying any of the conditions in
Lemmas 4.2, then the entries of A, defined by (46), satisfy(

d∏
i=1

√
ni

)∣∣∣(A)p,q

∣∣∣ =

(
d∏
i=1

√
ni

)
√
w`(p)

∣∣φk(q)

(
z`(p)

)∣∣
(2),(27)

=

d∏
i=1

√
niwi`(p)i

∣∣∣ϕik(q)i

(
zi`(p)

)∣∣∣
(22)
=

d∏
i=1

√
niλini

(
zi`(p)

) ∣∣∣ϕik(q)i

(
zi`(p)

)∣∣∣
(36)
=

d∏
i=1

∣∣ψ`(p)i,ni

∣∣
Lemmas 4.2
≤

d∏
i=1

√
Li(ni),

with the individual Li factors given by the bounds in Lemmas 4.2 depending on the distribution of
X. Thus,

sup
p,q

(
d∏
i=1

ni

)
(A)

2
p,q ≤ L(n)

Thus, under condition (39), then Lemma A.7 implies the conclusion of Theorem 4.1.
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