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Abstract

Objective. Transcranial direct current stimulation (tDCS) aims to alter brain func-

tion noninvasively via electrodes placed on the scalp. Conventional tDCS uses two

relatively large patch electrodes to deliver electrical currents to the brain region of

interest (ROI). Recent studies have shown that using dense arrays containing up to

512 smaller electrodes may increase the precision of targeting ROIs. However, this

creates a need for methods to determine effective and safe stimulus patterns as the

degrees of freedom is much higher with such arrays. Several approaches to this prob-

lem have appeared in the literature. In this paper, we describe a new method for

calculating optimal electrode stimulus pattern for targeted and directional modulation

in dense array tDCS which differs in some important aspects with methods reported

to date. Approach. We optimize stimulus pattern of dense arrays with fixed electrode

placement to maximize the current density in a particular direction in the ROI. We

impose a flexible set of safety constraints on the current power in the brain, individual

electrode currents, and total injected current, to protect subject safety. The proposed

optimization problem is convex and thus efficiently solved using existing optimization

software to find unique and globally optimal electrode stimulus patterns. Main re-

sults. Solutions for four anatomical ROIs based on a realistic head model are shown as

exemplary results. To illustrate the differences between our approach and previously

introduced methods, we compare our method with two of the other leading methods

in the literature. We also report on extensive simulations that show the effect of the

values chosen for each proposed safety constraint bound on the optimized stimulus

patterns. Significance. The proposed optimization approach employs volume based

ROIs, easily adapts to different sets of safety constraints, and takes negligible time

to compute. In-depth comparison study gives insight into the relationship between

different objective criteria and optimized stimulus patterns. In addition, the analysis

of the interaction between optimized stimulus patterns and safety constraint bounds

suggests that more precise current localization in the ROI, with supposably improved

safety criterion, may be achieved by careful selection of the constraint bounds.
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1 Introduction

tDCS modulates brain activity noninvasively [1–5]. tDCS is of great current interest to

support treatment of various brain disorders (stroke [6], epilepsy [7], Parkinson’s Disease

[8, 9], depression [10, 11], etc. ). In other applications, tDCS has been successfully employed

on healthy subjects e.g. to increase cognitive brain function [12–14].

Because tDCS uses electrodes placed on the scalp to inject current, it is difficult to pre-

cisely control the current flow in the head and brain in order to elicit the desired current

density field in a remote target ROI. In particular, current delivery to the ROI is limited due

to the shunting effect of the scalp and cerebrospinal fluid (CSF) [15, 16]. Moreover, simply

controlling the magnitude of the current density in the ROI may not be sufficient to achieve

a desired modulation outcome; current direction is also critical [1,17,18]. This introduces ad-

ditional difficulties in achieving the desired level of control over the injected current. Finally,

subject comfort and safety considerations require careful attention to prevent unintended

consequences of current application on the scalp (e.g. skin burns, itching sensations) and in

the brain (e.g. fatigue, headache, phosphenes) [4,19]. Thus, investigators and clinicians have

been particularly interested in improving the precision of targeting in tDCS to efficiently

utilize the current delivered to the brain and incur minimal adverse effects.

Conventional tDCS uses two relatively large (25-35 cm2 contact area) patch electrodes to

deliver electrical currents to the brain ROI. One approach to improve targeting in conven-

tional tDCS is to optimize the placement of these two patch electrodes. Optimal placement

may change depending on whether maximum focality or directionality at the target ROI is

desired [20]. When the goal is to maximize electric field strength at the target site, for ex-

ample, ‘standard’ two patch electrode montages recommended for modulating cortical ROIs

such as primary motor cortex (anode over the primary motor cortex - cathode above the

supraorbital area [1,12]) and dorsolateral prefrontal cortex (anode at F3 - cathode above the

supraorbital area [21]) are not necessarily optimal [20,22].

Another approach to increase the focality of the modulation over conventional tDCS is

to use dense electrode arrays, consisting of a large number of smaller (1-2 cm2 contact area)

electrodes instead of the conventional patch electrodes [23–27]. However, the availability of

a large number of electrodes, with the ability to control individualized current to each, pro-

vides a dramatic increase in the number of degrees of freedom, and therefore it is important

to devise systematic approaches to determine optimal current injection patterns with these

dense arrays. In this work, we introduce, solve, and test an optimization problem whose

solution finds optimal current injection patterns for dense array tDCS. To the best of our
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knowledge, the only other systematic approaches on this subject are reported in [28–32].

Optimization problems introduced in these reports differ in various ways: optimization ob-

jective, safety constraints considered, and the methods used to find the stimulus pattern.

In this paper we will describe our approach in detail, contrast it with two of the existing

approaches, and present some detailed comparisons of current patterns optimized by each

of the three methods. In addition, as we will describe, our own implementations of all three

methods will be made freely available to enable further comparison by the tDCS community.

To summarize previous reports, Im and colleagues proposed a method to optimize two

patch electrode positions, followed by an algorithm to determine the currents on a 4x4

electrode array that replaced the anode patch for higher focality at the target [22, 28, 29].

Their approach does not necessarily provide a unique and global solution. Sadleir and

colleagues [30] adopted the idea of maximizing the average current density in the ROI by

shaping the currents applied through an array of 19 large patch electrodes (22 cm2 contact

area). The authors applied safety constraints on the current in the non-ROI regions and

included the capability of having extra-cranial electrodes; however, their approach also fails

to find a unique and global solution, which limits its generalizability.

A variety of problem formulations that do provide unique and global stimulus patterns

have been studied by Dmochowski and colleagues [31]. The authors found optimal electrode

stimulus patterns that increase either focality or intensity of the modulation in focal ROIs.

The work by Ruffini and colleagues [32] added the flexibility of choosing a subset from a set of

predetermined electrode locations and defining spatially extended cortical ROIs. They first

determined electrode number and locations using a genetic algorithm and then optimized

electrode currents using least squares. Their method used 27 potential electrode locations,

however, the extension to arrays containing higher number of electrodes is not trivial due to

the genetic algorithm step.

In this study, we present an alternative approach for optimization of current injection

pattern employing multi-electrode configurations. We formulate an optimization problem

that provides a unique1 and global current injection pattern as a solution. The proposed

approach employs volume based ROIs, can be easily adapted to incorporate different sets

of safety constraints, takes negligible time to compute, and relies on open source software

(SCIRun [33], BrainStimulator [34], CVX [35]).

In what follows, we report exemplary results for four anatomical ROIs: the medial or-

1Theoretically, there may be multiple solutions depending on the exact choice of constraint bounds,

although this is highly unlikely to occur.
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bitofrontal cortex (MFC), anterior cingulate cortex (ACC), parahippocampal gyrus (PHCG),

and precuneus (PC). These regions were chosen for evaluation because they are deep within

the cerebral hemisphere, and are important to both cognitive and neurophysiological func-

tion. We then show the effect of a very large number of choices for the safety constraint

bounds on the achievable targeting. We also compare our results to results from the two

most similar studies in the literature: [31] by Dmochowski and colleagues (2011), and [32]

by Ruffini and colleagues (2014).

Our results show that the proposed optimization approach is a good alternative to existing

methods and may extend the capabilities and specificity of tDCS. It can readily be extended

to allow directional targeting of multiple ROIs distributed across the entire brain at small

computational cost and with the flexibility to add a variety of constraints to ensure safety

and comfort for the subject.
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2 Methods

In this section, we present in detail the construction and solution of the proposed optimization

problem. We start by giving a high level description of the model used in the simulations.

A finite element method (FEM) section describes how the current density in the head was

estimated numerically. We then describe our optimization formulation in detail and briefly

compare it with the two most similar existing methods, followed by a detailed description of

a reformulation of the optimization problem which leads to a computationally fast solution.

We conclude this section with a description of the simulation studies we report on in the

sequel.

2.1 Realistic head model

Previously acquired multi-modal imaging data (magnetic resonance imaging (MRI), com-

puted tomography (CT), and diffusion tensor imaging (DTI)) was used to generate a high-

resolution, realistic head model. We used the software package Cleaver [36] to generate a

tetrahedral mesh consisting of 8 million nodes and 47 million tetrahedral volume elements

(Figure 1), with 8 modeled tissue layers (scalp, skull, CSF, grey matter (GM), white matter

(WM), eye, internal air, and electrode sponge). Table 1 lists conductivity specifications for

different layers in the volume conduction model.

Table 1: The conductivity specifications for 8 tissue types in the head model.

Tissue type Conductivity (S/m) Notes

Scalp 0.33 [32,37]

Skull
min = 0.0064 (hard bone)

max = 0.0259 (soft bone)

Based on CT [38]. Linear

scaling of HU units between

min and max [27,39].

CSF 1.79 [32,37]

GM 3x3 tensors. Based on DTI [40–42].

WM 3x3 tensors. Based on DTI [40–42].

Eye 0.40 [43]

Internal air 1e-15 [31]

Electrode sponge 1.4 [44]
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Figure 1: The tetrahedral head mesh used in the simulations. An array of 126 cylindrically

shaped electrodes (transparent gray), each with 1 cm diameter and 0.5 cm thickness, were

placed on the scalp. A realistically shaped ROI (precuneus) is shown in red.

2.2 Finite element analysis

Assuming there are no interior current sources in the head, the potential field can be mathe-

matically described with Laplace’s equation: ∇·σ∇φ = 0, σ and φ being tissue conductivity

tensor (value) and electrical potential, respectively. Solving Laplace’s equation analytically

in a realistic head is intractable and thus, as has generally been done in this field, we approx-

imated the electrical potential numerically using the FEM. We used the complete electrode

model to allow the current density to vary on the electrode surface and to incorporate the

contact impedance of 5kΩ.m2 at the electrode-scalp interface [45].

In what follows, our notation distinguishes two closely related vector variables for the

array of electrode currents. Ĩ denotes the full electrode current array, with one entry for each

electrode, while I denotes the array with a chosen reference electrode excluded2:

2Note that since the algebraic sum of all currents entering the head must be equal to 0, the number of

free electrode current variables in the optimization is 1 less than the number of electrodes; here we enforce

that by choosing one electrode to be the reference and excluding it from the optimization.
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I =
[
I1 I2 · · · IL−1

]T

Ĩ =
[
I1 I2 · · · IL−1 IL

]T

,

where L is the total number of electrodes and IL = −
∑L−1

l=1 Il.

Once the domain is discretized into volume elements and boundary conditions are spec-

ified, the unknowns are node potentials (u) and electrode potentials (U), for which a set of

linear equations are derived from FEM (for details see [46, 47]):

M

[
u

U

]
=

[
0

Ĩ

]
. (1)

M is the so called global matrix and 0 is the zero vector. For computational reasons we

explicitly computed the transfer matrix T that links the electrode current array I to node

potentials u from (1) using an efficient lead field approach [31]:

u = TI. (2)

T then is integrated into the optimization formulation to reduce the computational time

significantly, noting that T is fixed as long as the head model remains unchanged.

2.3 Electrode current pattern optimization

We first introduce our objective and safety constraints and then describe an equivalent and

computationally much more efficient form of the resulting constrained optimization problem.

2.3.1 Objective function

We assume that the ROI boundary and the desired directional field3 for the current density

in the ROI are known. Given that, we maximize the projection of the induced current density

J on this directional field inside the ROI:

max
I

∫
ΩROI

(J(r) � d(r)) dr (3)

where J(r) is the current density and d(r) is a dimensionless vector field of unit magnitude

representing the desired direction for the current density at location r. The operator ‘�’

3Note that the desired directions can vary freely through the ROI; for example, a likely choice would be

the cortical surface normal through the ROI, which, given the convoluted nature of the human cortex, would

lead to a highly variable directional field through the region.
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represents the vector dot product and ΩROI denotes the brain target region, which can be

of any size and could be the union of disjoint volumes.

The objective function in (3) can be seen as a generalization of the objective function

used by Dmochowski and colleagues in [31] to maximize the current intensity from point-

like targets to volumetric ROIs. This choice of objective function is different from the least

squares approaches [31, 32] used in the comparison study below, and we want to point out

here the difference and some of the expected consequences. Specifically, in contrast to the

least squares approaches in [31,32], we specify only the desired orientation field for the current

density in the ROI; the magnitude along that directional field is left as a free variable to

be maximized. The comparison methods specify an explicit desired electric field in the ROI

and in the brain, and minimize a measure of the difference (weighted least squares) between

that desired field and the optimized result. One consequence of different objective function

definitions is that in our approach we are not required to specify the desired magnitude, only

the ROI and the desired directional field. Another is that the reported implementations of

the comparison methods choose a uniform magnitude desired field in the ROI, implicitly

penalizing for variability, while our approach allows the optimum field in the ROI to vary

as long as the integral of the total projected current is maximized. Another is that our

objective does not take into account the component of the optimized field normal to the

desired directional field. On the other hand, the comparison methods implicitly penalize

the electric field component normal to the desired field. Finally, our objective integrates

over the ROI using the FEM basis functions, while the comparison methods use point-wise

computation on the mesh nodes; thus we take into account differences in the volumes of the

finite elements themselves.

2.3.2 Safety constraints

We impose three safety constraints. In order to prevent excessive current delivery to the

brain, the current power in the brain outside the ROI is constrained:

C1:

∫
Ωbrain−ΩROI

‖J(r)‖2
2 dr ≤ pmax (4a)

where Ωbrain represents the entire brain. Another safety constraint limits the

total current entering the head:

C2: ‖Ĩ‖1 ≤ 2ımax (4b)
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where ‘‖‖p’ represents the p-norm. Since constraint C2 (4b) may not be sufficient

to prevent high current densities locally, especially with small electrodes, we also

impose constraints on each individual electrode current:

C3: Ĩmin � Ĩ � Ĩmax (4c)

where ‘�’ stands for ‘element-wise less than or equal’.

2.3.3 Computationally efficient optimization formulation

With the assumption that the desired directional field is treated as constant within each

individual volume element, the integrals in (3) and (4a) become weighted sums. We evaluated

these integrals (see Appendix A) and reduced them to linear and quadratic functions of the

electrode current array; after doing so, the overall optimization problem becomes:

max
I

wTI (5)

subject to

C1: ITQI ≤ pmax (6a)

C2: ‖Ĩ‖1 ≤ 2ımax (6b)

C3: Ĩmin � Ĩ � Ĩmax (6c)

We can think of w as the array of weights representing the relative importance of each

electrode current on the directional current density in the ROI. The matrix Q links these

electrode currents to the current power in the brain outside the ROI. The sizes of w and Q are

L-1 x 1 and L-1 x L-1, respectively, since, as described above, the number of independently

controlled electrodes is one less than the total number of electrodes L.

The optimization problem with the objective (5) and constraints (6a-c) is convex, and

thus has a unique, global solution. In addition, the problem size is L − 1, which is many

orders of magnitude smaller than the number of nodes in the mesh. By pre-calculating w and

Q, we avoid the need to find the current density at each iteration to evaluate the objective

criterion and constraints. Thus the problem size is small enough that we are able to simply

employ CVX, a disciplined convex optimization solver package for Matlab [35], to compute

the solution. Despite using such a general convex optimization solver, the execution time of

an optimization for a given set of objectives and constraints, on a typical modern desktop

computer, is on the order of seconds.
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2.4 Simulations

We chose four anatomical ROIs, shown in Figure 2, to display exemplary results of the

proposed method. All four ROIs were deep rather than superficial, and thus challenging as

targets, with the PHCG ROI being significantly deeper than the other three. The desired

directional field for all four ROIs was based on the local cortical surface normal. Since the

size of the tetrahedral elements was significantly smaller than the thickness of the cortex, to

determine the cortical surface normal field through the full ROI, we first computed the surface

normal on the cortical surface and on the white matter boundary and then interpolated into

the interior of the cortex.

Figure 2: Four anatomical ROIs used in the simulations: (red) medial orbitofrontal cortex

(MFC), (blue) anterior cingulate cortex (ACC), (green) parahippocampal gyrus (PHCG),

and (yellow) precuneus (PC).

In these simulations the total current entering the head was limited to 2 mA (ımax =

2 mA). Each individual electrode current was limited to 0.30 mA (−Imin = Imax = 0.30

mA). We chose these values so that maximum scalp current density was comparable to that

of conventional tDCS4. The current power in the brain outside the ROI was limited to 10−6

A2/m, which was based on the literature [18].

With this set of constraints in place, we report on our investigation of the interaction

between these constraints and optimal stimulus patterns. We carried out a study on one of

the ROIs (MFC) in which we calculated the optimal current patterns for a wide range of

constraint bounds. We analyzed the changes in modulation strength and maximum current

4The total circumference of 7 dense array electrodes with a typical diameter of 1 cm is close to the

circumference of a 5 cm x 5 cm patch electrode and the current is mostly concentrated at the electrode

edges [16].
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density in the brain due to changes in the constraint bounds, leveraging the low computa-

tional cost of our formulation of the optimization problem.

In order to validate our methodology, we compared our results to the results from two

other studies [31,32] that use convex formulations for optimizing dense electrode array stim-

ulus patterns. We implemented two least squares methods from these studies and computed

optimal patterns for M1 motor cortex area as the target ROI to facilitate comparisons with

the results reported in the cited papers. In contrast to the anisotropic model used in the

first set of simulations, we used an isotropic head model for these simulations5 because both

comparison methods optimize and constrain the electric field while ours uses the current den-

sity. Isotropic conductivities ensure current density field and electric field are proportional

to each other by a scalar conductivity value in each tissue layer and thus again facilitate

comparison.

Because each of these three methods imposes different sets of safety constraints, as seen

in Table 2, we adapted the following procedure to optimize the current stimulus patterns.

We first optimized the stimulus pattern using our implementation of one of Dmochowski

et al.’s least squares problems [31], setting the constraint bound for individual electrode

currents to 1 mA. The total injected current resulting from that solution was used to set the

constraint bound for total injected current to 3.62 mA for the other two methods. We then

solved Ruffini et al.’s least squares problem with these constraint bounds. To imitate the

constraint C1 (4a) in our formulation, we set the bound on the electric power in the brain

outside the ROI to 44.04 V2m, which was the minimum of the electric power delivered to

the brain outside the ROI with the comparison method solutions.

We note that there are multiple optimization formulations to maximize either focality

or intensity at the target ROI by Dmochowski and colleagues in [31]; we have implemented

only one of the least squares approaches to compare our method with. The other least

squares method in [31] uses only a total injected current constraint, without any constraint

on individual electrode currents. This approach can be expected to lead to very sparse

solutions with higher current intensities on only a few electrodes, so we concluded it is not

an appropriate comparison method. The other two methods in [31] use point-wise rather than

volumetric objectives; one of them, like ours, maximizes current along a desired direction but

only at a point. Thus direct comparison with our approach would be difficult, and indeed

our objective can be seen as an integration over an ROI volume of the objective in [31].

5Instead of varying conductivity specifications for skull, GM and WM volume elements in the head model,

we assigned constant conductivity values (skull = 0.01, GM = 0.33, and WM = 0.142 S/m) to each of these

tissue layers.
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Table 2: Objective and constraints for all three methods used in the comparison study.

Dmochowski et al. [31] Ruffini et al. [32] Guler et al.

Objective: Minimize least squares

error between desired

and achievable electric

field in the brain

Minimize least squares

error between desired

and achievable electric

field component normal

to the cortex

Maximize integral of cur-

rent density component

normal to the cortex over

the ROI

Constraints: Individual electrode cur-

rents

Individual electrode cur-

rents and total injected

current

Individual electrode cur-

rents, total injected cur-

rent and current power

in the brain outside ROI

We also note that we only implemented the least squares step by Ruffini and colleagues

in [32], assuming that the number and locations of the electrodes were known. The number

and locations of the electrodes are determined in their work by their genetic algorithm step.

Since implementations of the genetic algorithm can be highly variable, we felt implementing

our own version and then using it in the optimization would just introduce confusion into

the comparison.
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3 Results

As described above, we first report on our optimization results for the four aforementioned

anatomical ROIs. We then report on a comprehensive study of the effect of safety con-

straint choices on the optimal solution. Finally, we compare our method with two existing

approaches, listed in Table 2.

3.1 Exemplary results on four ROIs

We summarize our findings for the four anatomical ROIs in Figures 3 and 4. In Figure 3, we

show six views of the optimized results for one of the ROIs, the MFC. Panel (a) shows the

optimized electrode current stimulus pattern, panel (b) the corresponding electrical potential

on the scalp. Panels (c) and (d) show two visualizations of current density streamlines

through the ROI. Panel (c) illustrates how the streamlines connect to the electrodes, while

panel (d) shows the relationship, in the ROI, between the optimized current and the desired

directional field, shown in pink. Since the streamlines in panel (c) do not show any current

outside the ROI, panel (e) shows the current density on an axial slice through the ROI. Panel

(f) visualizes the current density magnitude on the cortex. We observe from panels (e) and

(f) that the cortical regions surrounding the ROI are exposed to much higher currents than

the ROI, which may be pointing to the physical limitation of applying currents via scalp

electrodes. In Figure 4, we show optimized stimulus patterns (left column) and streamlines

through the ROI (right column) for the other three ROIs (ACC, PHCG, PC). We want to

point out again that the streamline visualizations on panels (b), (d), and (f) show only the

current that goes through the ROI and thus the current distribution across the entire head

is not shown.

To provide more quantitative results, we tabulated median and peak values for current

density magnitudes, of ROI and six tissue types for all four ROIs in Table 3. Although

median of current density magnitude for the ROI is lower in the PHCG ROI compared to

the other three, it is higher in the grey matter. This may be an indicator of the expected

difficulty of targeting deeper brain structures with scalp electrodes. To more fully describe

how the current density is distributed in the head for each ROI, we show current density

magnitude histograms of different tissue layers in Figure 5. In more detail, each curve on a

given plot shows the distribution of current density magnitude in the corresponding tissue

type. Since each of the ROIs is much smaller in volume than, say, the grey matter, we
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MFC

mA (a) (b) mV

A/m2
(c) (d) A/m2

A/m2
(e) (f) A/m2

Figure 3: Optimization results for targeting MFC. (a) optimal electrode current stimulus

pattern, (b) electrical potential field on the scalp, (c) current density streamlines through

ROI, (d) current streamlines (rainbow colored lines) and desired directional field (pink lines)

in the ROI, (e) current density on an axial slice through ROI, and (f) current density mag-

nitude on the cortex. The colorbars in (c) and (e) are log-scaled.

normalized all the curves to have unit volume6 for each layer for better visualization. These

plots show the degree to which we are able to focus current in the ROI in comparison to the

surrounding tissues. Although there are regions in grey matter that receive higher currents

6Sum of the stair heights in each histogram is equal to 1.
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ACC

mA (a) (b) A/m2

PHCG

mA (c) (d) A/m2

PC

mA (e) (f) A/m2

Figure 4: Optimization results for targeting ACC, PHCG, and PC. (left) optimal electrode

stimulus patterns, and (right) current streamlines through ROI. The colorbars for the current

streamlines are log-scaled.
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than the ROI, the average current in the ROI is much higher than in the remaining grey

matter as a whole. In particular we see that most of the current density in the ROI has

higher magnitude than most of the grey matter in the MFC, ACC and PC ROIs. In contrast,

the ROI and grey matter histograms in the PHCG are much closer together. These findings

again are consistent with the expectation that modulation of deeper regions will be less focal

than of shallower ROIs.

Table 3: Median (Med) and maximum (Max) current densities of different tissue types for

all four ROIs (Units: A/m2).

MFC ACC PHCG PC

Tissue type Med Max Med Max Med Max Med Max

ROI 0.069 0.214 0.050 0.086 0.034 0.103 0.050 0.203

GM 0.015 0.412 0.013 0.304 0.021 0.221 0.016 0.346

WM 0.011 0.300 0.011 0.245 0.016 0.200 0.013 0.348

Scalp 0.034 10.86 0.013 10.64 0.085 8.663 0.007 9.983

Skull 0.004 0.560 0.004 0.674 0.009 0.301 0.001 0.453

CSF 0.081 7.308 0.083 1.623 0.114 3.680 0.099 0.930

Eye 0.198 0.572 0.045 0.177 0.201 0.589 0.004 0.006

3.2 Effect of constraints

We chose the safety constraint bounds, as described above, to be consistent with approaches

in the literature. However, these values are necessarily rough choices, so we leveraged the

computational efficiency of our formulation to carry out a systematic sensitivity study of the

effect of each constraint by solving the optimization problem repeatedly with a wide range

of values for the bounds. We visualize the results in Figure 6 for the MFC ROI. Specifically,

the figure shows objective function isolines as a function of individual electrode current

bound and current power in the brain outside the ROI bound, where the total injected

current bound was set to a constant (1 mA). The background color in the figure represents

the maximum current density at any location in the brain, thus enabling us to detect any

local “hot spots”. To aid the reader in interpreting this figure, we make some observations

here about the results. First, we note that for significant portions of the constraint space,

objective function isolines are almost parallel to one or the other of the axes. This indicates
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Figure 5: Current density magnitude histograms of scalp, skull, CSF, GM and ROI for all

four ROIs. (a) MFC, (b) ACC, (c) PHCG, and (d) PC modulation, all in cortical surface

normal direction.

that relaxing the constraint bounds in those regions will have little effect; increasing the

individual electrode current bound above the knee of a given contour, for example, will not

improve the objective function but will cause higher peak values for the current in the brain.

Second, both the objective function value and the maximum current density in the brain are

sensitive to both bounds, but not in exactly the same way, suggesting that setting the bounds

to achieve a desired value of the objective function can be done without necessarily causing

a significant increase in the maximum current density. Third, the important region on the

plot is an arc-shaped region going from the bottom-left corner up and to the right; in this

region, increasing either of the constraint bounds improves the objective function. Finally,

the sparsity of the optimal stimulus pattern and bounds for the safety constraints are closely

related; relaxing the constraint bounds is likely to yield sparser optimal patterns. Thus,

these results suggest that there is a region in constraint space in which we should choose the
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combination of bounds, taking into account both safety and the ability to increase potential

modulation effect.

A/m2

Figure 6: Objective function isolines as a function of constraint bounds on the individual

electrode currents and on the current power in the brain outside the ROI. The numbers on

the isolines represent achievable directional current density in the ROI for a given set of

constraint bounds. Note that the vertical axis is shown as the negative log of the current

power bound in A2/m so that the bound gets larger as we move up the axis. The background

color represents the maximum current density in the brain, whose colorbar is shown on the

right and is log-scaled.

3.3 Comparison with other existing methods

We compared our method with two methods reported by Dmochowski and colleagues [31],

and by Ruffini and colleagues [32]. Figure 7 shows the three optimized electrode current

patterns on the scalp, along with the ROI. Figure 8 shows some comparisons of these three

optimized patterns. The highest individual electrode current in magnitude differed in the

optimal solutions (0.61, 0.75, and 0.91 mA). In addition, the total current was more uniformly

distributed across the electrodes in Dmochowski et al.’s solution than in Ruffini et al.’s

solution and than in Guler et al.’s solution.
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(a) M1 ROI (b) Dmochowski et al. (c) Ruffini et al. (d) Guler et al. mA

Figure 7: Optimized electrode stimulus patterns for targeting (a) M1 ROI in cortical surface

normal direction, using (b) Dmochowski et al.’s, (c) Ruffini et al.’s, and (d) Guler et al.’s

optimization formulation.

Table 4 summarizes the statistics of the optimized electric field as well as the constraint

bounds used in each optimization. We observe that our method produced a solution that

yielded higher average electric field in the ROI (+%17) and lower in the brain (-%60) com-

pared to Dmochowski et al.’s solution. In contrast, the average electric field with our solution

is slightly lower both in the ROI (-%14) and in the brain (-%12) compared to Ruffini et al.’s

solution, which presumably is due to relatively low constraint bound on the electric power

in the brain outside the ROI.
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Figure 8: Comparison of three optimal patterns. Top panel shows optimized currents for

the electrodes with current magnitude higher than 0.1 mA in either of the three optimal

patterns. Bottom panel shows the highest 20 electrode current magnitudes in each solution.

Note that these sets of 20 ‘significant’ electrodes might differ across solutions. The residuals,

i.e. sum of the injected current magnitudes for the remaining least significant 106 electrodes,

were 1.79, 1.50, and 1.51 mA in Dmochowski et al.’s, Ruffini et al.’s, and Guler et al.’s

solution, respectively.
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Table 4: Comparison of the statistics of electric fields optimized by our

method and by the comparison methods. Mean value for the electric

field in a particular region was calculated by integrating the electric field

magnitude over the region, divided by the region volume. All units are

V/m except where noted. The numbers with asterisk (*) are used as the

constraint bounds for the corresponding method.

Dmochowski Ruffini Guler

et al. et al. et al.

Brain

Max ~E 0.12 0.17 0.13

Median ~E 3.4E-4 1.3E-3 2.5E-4

Mean ~E 3.8E-3 1.7E-3 1.5E-3

Electric power (ROI excluded) (V2m) 44.04 116.46 44.04*

ROI

Mean ~E 0.05 0.07 0.06

Head

Max ~E 70.08 70.93 74.38

Highest electrode current in magnitude (mA) 0.61 0.75 0.91

Individual electrode bound (mA) 1* 1* 1*

Total injected current (mA) 3.62 3.62* 3.62*
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4 Discussion

In this simulation study, we formulated and solved a multi-constraint optimization problem

on the electrode current stimulus pattern to achieve, in our computational model, precise

targeting and polarity in dense array tDCS. Computer-based simulations on a realistic head

model showed ROI characteristics (e.g. depth) may have a significant effect on the optimal

patterns and the current flow in the head. We recognize that these simulations must be

tested by experimental results that provide validation that the intended current is actually

delivered effectively. The sensitivity study on the effect of safety constraint bounds on the

optimal patterns showed that relaxing the constraint bounds do not necessarily improve the

objective function. Finally, we compared our method with the other two similar methods in

the literature and found similar optimized stimulus patterns, with slight differences due to

presumably different problem formulations.

In our simulations, we used dense arrays consisting of electrodes much smaller than

the patch electrodes, which may result in high current densities at the electrode edges due

to small contact area between the electrode and the scalp [16]. To this end, we imposed

constraints on the individual electrode currents and also used the complete electrode model to

more accurately estimate the non-uniform current density distribution at the electrode-scalp

interface. Another approach to prevent high current densities locally would be to impose

additional constraints on the elements closest to the electrode edges, where highest currents

occur due to edge effect [48]. This, however, could mean imposing many more constraints

and higher computational burden. A simpler yet more effective solution may be to design

electrodes that distribute the current across electrode-scalp interface more uniformly by, for

example, varying the sponge depth through the electrode [49].

Because the current flow in the head is very complex due to factors such as anatomical

structures, tissue characteristics, electrode positions and shape [4, 50], there may be need,

in particular settings, for additional current power constraints to prevent excessive current

delivery to the critical regions in the brain. Although here we only constrained the cur-

rent power in the brain outside the ROI, the optimization problem is readily capable of

incorporating multiple critical regions, each assigned with its own safety bound, to allow

the flexibility of defining subject-specific critical regions. As an illustration, in Figure 9, we

added an additional constraint on the current power in the eye (peyemax ≤ 10−8 A2/m) to

simulate the desire to prevent phosphenes. We observe from the two solutions that the cur-

rent patterns differ significantly when this additional constraint is imposed on the solution.

The objective value reached with the additional eye constraint was 33% lower than the value
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reached without the eye constraint.

(a) (b) mA

Figure 9: Optimized electrode stimulus patterns (a) without and (b) with additional con-

straint on the current power in the eye.

Having an optimization problem with multiple safety constraints, it is important to un-

derstand the influence of each on the optimal stimulus pattern. Thus, we investigated the

effect of each constraint bound on the objective function as well as on the maximum current

density in the brain. Because our optimization was so computationally efficient, we were able

to solve for the best stimulus pattern repeatedly, with varying constraint bounds. Results

showed that loose constraint bounds don’t necessarily yield higher desired current in the

ROIs but they may allow higher peak currents in the brain. Carefully chosen safety bounds

in the presence of multiple safety constraints are important in extending the range of tDCS

applications.

Comparing our method with two other methods in the literature, we observe the solutions

differ somewhat due to the difference in problem formulation. Because Dmochowki and

colleagues’ method is a least squares fitting problem, high electric field magnitudes in the

ROI are also penalized. Thus, we observe the highest electrode current magnitude in the

optimal pattern is 0.61 mA although individual electrode current bound was set to 1 mA. In

Ruffini and colleagues’ method, only the electric field component along the cortical surface

normal is considered in the least squares fitting and thus there is more flexibility due to the

unconstrained component tangential to the cortical surface. This, we speculate, is why this

solution has a higher maximum electrode current magnitude (0.75 mA) than Dmochowski

and colleagues’ solution. In our method, in addition to not constraining the component of

the current tangential to the cortical surface, we also let the magnitude of the component

normal to the cortical surface vary, which might produce solutions with higher currents for

a subset of the electrodes. The only consideration in our formulation is to have the direction

of the current density match the desired directional field.

24



In the case where it is useful to target several regions believed to be functionally or

anatomically connected, perhaps even with differing relative importance, the ROI may be

defined according to a weighted mapping scheme. For example, functional connectivity maps

can be used to weight the ROI when the target entails the whole cortical surface [32]. We can

easily adjust our objective function to achieve this goal by weighting the desired directional

field such that each location in the joint ROI has its own weight (ω) associated with it, as

in (7). Adding such weights does not affect the complexity of the problem and enables us to

assign relative importance to different parts of the ROI:

max
I

∫
Ω

ROI

ω(r)
(
J(r) � d(r)

)
dr = max

I

∫
Ω

ROI

(J(r) � dω(r)) dr (7)

All our results consider only the directed magnitude of stimulus current in the ROI. Of

course the real goal of tDCS is effective modulation of neural activity, not just optimizing

control over current density localization. The relationship between local density of injected

current and modulatory effect is complex and, to-date, not well understood. This suggests

that our method, and our comparison to competing methods, should be tested experimentally

to better understand the efficacy of the results. Such testing is not trivial because of both

the difficulty of defining adequate metrics of success and the need to exercise proper care in

experimenting with the brains of human subjects, but some studies are being carried out,

for example by using changes in TMS stimulus strength needed to obtain motor response,

for motor cortex stimulation, under tDCS, as a surrogate for tDCS efficacy [51].

Another practical consideration is that dense array tDCS optimization schemes generally

assume there are as many current sources available as the number of electrodes, which may

be practically inconvenient, especially when the number of electrodes is as high as 100 or even

larger. Thus it may be useful to develop optimization methods to find good stimulus patterns

that use fewer current sources than electrodes. However the corresponding optimization

problem is combinatorial and the number of configurations to check increases exponentially

in both the number of current sources and the number of electrodes. Further research on

how such solutions could be found using combinatorial optimization approaches is needed.
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5 Conclusion

This study presents a novel method for calculating electrode current stimulus pattern in

dense array tDCS that maximizes the current density along a desired directional field in the

ROI. The proposed method provides a unique and global stimulus pattern for a given ROI

and a desired directional field for the current density in the ROI. Simulation results on four

anatomical ROIs suggests the difficulty of targeting deeper brain regions. Moreover, it was

shown that increasing the constraint bounds may not improve the objective function but

may cause higher peak values for the current density in the brain. The solutions found by

our method and the two comparison methods appeared similar, with minor differences due

to different objective and safety constraint choices.
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A Evaluating the integrals on a discretized domain

In this section, equivalent forms of integrals in (3) and (4a), after domain discretization, are

derived. In linear FEM, potential field is assumed to be linear within each finite volume

element and thus the potential at any point inside mth volume element can be written as:

um(x, y, z) = am + bmx+ cmy + dmz (8)

where (x, y, z) is the position and am, bm, cm, dm are the linear coefficients. This linearity

condition is satisfied at the nodes of the same element:

um1 = am + bmx
m
1 + cmy

m
1 + dmz

m
1

um2 = am + bmx
m
2 + cmy

m
2 + dmz

m
2 (9)

um3 = am + bmx
m
3 + cmy

m
3 + dmz

m
3

um4 = am + bmx
m
4 + cmy

m
4 + dmz

m
4

where umj denotes the potential at the jth node of the mth element and (xmj , y
m
j , z

m
j ) is the

position of the jth node of the mth element, for j = 1, 2, 3, 4 and m = 1, 2 · · ·M , M being

the total number of volume elements in the mesh. Rewriting the set of equations in (9) in

matrix form, we get: 
um1

um2

um3

um4


︸ ︷︷ ︸
,um

=


1 xm1 ym1 zm1

1 xm2 ym2 zm2

1 xm3 ym3 zm3

1 xm4 ym4 zm4


︸ ︷︷ ︸

,Pm


am

bm

cm

dm

 (10)

where we defined um as the vector of potentials at the nodes of mth element and Pm as the

position matrix of the nodes of the same element. The linear coefficients can then be found

as: 
am

bm

cm

dm

 = P−1
m um. (11)

Let Am represent the last three rows of matrix P−1
m . Then

[
bm cm dm

]T

= Amum. Note

that um is a subset of the potentials at all nodes of the mesh and thus um = Smu, where Sm

is a selection matrix of size 4xN . The current density at any point r in the mth element is
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found as:

Jm(r) = −σm∇um(r) = −σm


bm

cm

dm

 = −σmAmSmu. (12)

All the terms on the right hand side of (12) are independent of the position. We can drop

the position argument of the current density and use only Jm to denote current density at

any point inside the mth element. The fact that current density is constant within each finite

volume element is used to find equivalent forms for the integrals in the objective function (3)

and power constraint (4a). The objective function (3) becomes a linear function of electrode

currents:

∫
ΩROI

(J(r) � d(r)) dr =
∑

m∈ROI

∫
Ωm

(Jm � dm) dr

=
∑

m∈ROI

vmdT
mJm

=
∑

m∈ROI

vmdT
m(−σmAmSmu)

=

{
−
∑

m∈ROI

vmdT
mσmAmSmT

}
︸ ︷︷ ︸

,wT

I

= wTI (13)

where Ωm and vm denote the domain and volume of the mth finite volume element, respec-

tively, and we assumed that the desired directional field is fixed through each finite element.

Similarly, we can find an equivalent form for the power constraint (4a):∫
Ωbrain−ΩROI

‖J(r)‖2
2 dr =

∑
m∈brain−ROI

∫
Ωm

‖Jm‖2
2 dr

=
∑

m∈brain−ROI

vm‖Jm‖2
2

=
∑

m∈brain−ROI

vm(−σmAmSmTI)T(−σmAmSmTI)

= IT

{
TT

( ∑
m∈brain−ROI

vmST
mAT

mσ
2
mAmSm

)
T

}
︸ ︷︷ ︸

,Q

I

= ITQI. (14)
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w and Q remain fixed through the optimization if the mesh, the desired directional field, and

the ROI boundary remain unchanged. The size of w is #(electrodes)-1 x 1, and the size of

Q is #(electrodes)-1 x #(electrodes)-1. Precalculation of w and Q before the optimization

thus reduces the computation time significantly.
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