
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Organizing Large Data Sets for Efficient Analyses
on HPC Systems
To cite this article: Junmin Gu et al 2022 J. Phys.: Conf. Ser. 2224 012042

 

View the article online for updates and enhancements.

You may also like
Overview of recent experimental results
from the Aditya tokamak
R.L. Tanna, J. Ghosh, P.K. Chattopadhyay
et al.

-

Design and implementation of flight test
parameter calibration data management
system
Xue Bai, Ning Tang and Wei Li

-

Implementing data placement strategies
for the CMS experiment based on a
popularity model
F H Barreiro Megino, M Cinquilli, D
Giordano et al.

-

This content was downloaded from IP address 155.98.19.70 on 26/04/2022 at 20:18

https://doi.org/10.1088/1742-6596/2224/1/012042
/article/10.1088/1741-4326/aa6452
/article/10.1088/1741-4326/aa6452
/article/10.1088/1742-6596/1419/1/012026
/article/10.1088/1742-6596/1419/1/012026
/article/10.1088/1742-6596/1419/1/012026
/article/10.1088/1742-6596/396/3/032047
/article/10.1088/1742-6596/396/3/032047
/article/10.1088/1742-6596/396/3/032047
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsto521nbFQRJZcd5FVnOHqcuWRKx-J8cpH8Ve_OY1QhsZKiLPxy1ioDjPs0xXg9lY4ZcNiohdX-3-gnhbamuea_B_QbZZGF5rBEDTqbECCK6RybzdNvmQNjbBDTVFrr9f80luLreVSJYwd16TvXYyuF0oOkdrutS5d3RKepFMf-64UR1Gzl6Z8JISA1NoP0BnpV2C7AVaWqoOknn0vQSknVcyLu4zenhYRDZrs12bLNspQVmhgBp7vSbn0YbCbmR6fNEVTZjP36tPSKNAOkZODbg5byvwuqqgY&sig=Cg0ArKJSzN8U_Fc0JOQu&fbs_aeid=[gw_fbsaeid]&adurl=https://community.electrochem.org/eWeb/DynamicPage.aspx%3Fwebcode%3DEventInfo%26Reg_evt_key%3D798362dc-7e0c-42ba-aaf6-31c3418f151e%26RegPath%3DEventRegFees%26FreeEvent%3D0%26Event%3D241st%2520ECS%2520Meeting:%2520Vancouver,%2520BC,%2520Canada%26FundraisingEvent%3D0%26evt_guest_limit%3D9999


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ISAIC-2021
Journal of Physics: Conference Series 2224 (2022) 012042

IOP Publishing
doi:10.1088/1742-6596/2224/1/012042

1

Organizing Large Data Sets for Efficient Analyses on HPC 

Systems 

Junmin Gu1, Philip Davis2, Greg Eisenhauer3, William Godoy4, Axel Huebl1, 

Scott Klasky4, Manish Parashar2, Norbert Podhorszki4, Franz Poeschel5, Jean-

Luc Vay1, Lipeng Wan4, Ruonan Wang4, and Kesheng Wu1,* 

1 Lawrence Berkeley National Laboratory, USA 
2 Scientific Computing and Imaging (SCI) Institute, University of Utah, USA 
3 Georgia Institute of Technology, USA 
4 Oak Ridge National Laboratory, USA 
5 Center for Advanced Systems Understanding and Helmholtz-Zentrum Dresden-

Rossendorf, Germany 

*Email: KWu@lbl.gov 

Abstract. Upcoming exascale applications could introduce significant data management 

challenges due to their large sizes, dynamic work distribution, and involvement of accelerators 

such as graphical processing units, GPUs. In this work, we explore the performance of reading 

and writing operations involving one such scientific application on two different 

supercomputers. Our tests showed that the Adaptable Input and Output System, ADIOS, was 

able to achieve speeds over 1TB/s, a significant fraction of the peak I/O performance on Summit. 

We also demonstrated the querying functionality in ADIOS could effectively support common 

selective data analysis operations, such as conditional histograms. In tests, this query mechanism 

was able to reduce the execution time by a factor of five. More importantly, ADIOS data 

management framework allows us to achieve these performance improvements with only a 

minimal amount of coding effort. 

1. Introduction 

Many recent scientific discoveries are from large-scale data analyses [1, 2]. This work examines the 

input/output, I/O, strategies to read/write the large amounts of data supporting these scientific 

discoveries. Because the scientific data is typically stored as multi-dimensional arrays in large files, we 

specifically focus on strategies that enable efficient read operations on these files. This work focuses on 

one of the I/O libraries, the Adaptable Input Output System, ADIOS (https://github.com/ornladios/ADIOS), 

because it requires relatively little tuning to achieve good write performance. This choice allows us to 

pay more attention to the read performance during data analyses. 

ADIOS is relatively new among parallel I/O libraries. Its design incorporates key lessons from the 

earlier systems to make the software easier to use [3, 4]. For example, most existing I/O libraries require 

users to describe data carefully in their source code, where any change to the I/O operations would 

require the program to be modified and recompiled, while ADIOS considerably simplified this 

description by separating the backend “engines” from the unified application programming interface 

(API) exposed to the library consumer. In addition, ADIOS could be adjusted through  a runtime 

configuration file to modify tuning parameters, transport mechanisms, and so on, which further reduces 

the coupling between user code and ADIOS. 
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Based on various published studies, we know that scientific data is largely represented by multi-

dimensional arrays [5, 6, 7]. Many of the these arrays are from simulations employing regular meshes 

to discretize their problem domains, however, to scale up simulations to new limits (e.g. exascale 

systems), they are switching to dynamic meshing mechanisms, such as adaptive mesh refinement (AMR) 

techniques [8]. Thus, it is timely for us to explore the performance tuning with one of these AMR based 

simulations at scale. In this study, we have chosen the state-of-the-art plasma physics simulation code 

WarpX [9]. The plasma particles in this simulation could move from processor to processor, adding to 

the dynamic meshes introduced by AMR, this code could have complex I/O patterns with significant 

load imbalances [10]. To abstract out the computational aspects from the physical particularities of this 

application and to study the impact of this load imbalances, we also created a synthetic benchmark based 

on the schema of the WarpX data. 

In a typical data analysis scenario, only a relatively small fraction of a data set is needed. In this work, 

we use a set of scenarios from a WarpX simulation of laser-driven accelerator to demonstrate the ADIOS 

querying capability for supporting selective data accesses. The previous version of ADIOS has an 

efficient metadata strategy that could be considered as a block index for its querying mechanism [7]. 

We have been working on reintroducing this block index and the query support in the new version of 

ADIOS [3]. This work reports our experience of working with this updated querying mechanism on a 

new generation of simulation data. 

The main contribution of this work includes: 

· A systematic study of I/O performance of an AMR-based plasma physics simulation code 

WarpX. Because WarpX employs dynamic data structures and makes extensive uses of 

accelerators, it examplifies a new generation of scientific simulation codes. 

· A synthetic benchmark to help study the imbalances in the I/O operations introduced by the 

dynamic data structures. 

· A study of the querying mechanism in the latest version of ADIOS library. 

2. Background 

Before describing our experience of tuning the options for organizing files for efficient I/O operations, 

we describe some background information, including the parallel I/O ADIOS library, the particle data 

standard openPMD, the HPC AMR simulation WarpX code, and the benchmark suite used to generate 

synthetic I/O test operations. 

ADIOS is a framework for large-scale scientific data management tasks including data generation      

transfer, and storage across multiple transport media using a unified API [3, 4, 11]. It is well-known for 

obtaining near-optimal write-performance for simulations [12]. A notable feature is its in situ processing 

capability [13]. These features make ADIOS an attractive option for many science applications under 

the Exascale Computing Project (ECP). In this paper, we will only evaluate a few of the most efficient 

I/O operations, for example, having each compute node or having each message passing interface, MPI, 

process rank work independently on their I/O operations. For a thorough description of ADIOS, we refer 

readers to some published studies [3]. 

Many HPC simulations are capable of producing a large amount of output. Among them, particle-

in-cell (PIC) codes are well-known because they frequently track trillions of particles in complex 

electromagnetic fields [12, 14]. Their checkpoint files could easily reach hundreds of terabytes. In 

addition, it is hard to distribute both particles and mesh cells evenly on compute nodes, which leads to 

uneven I/O operations with suboptimal I/O performance. 

To represent the complex electromagnetic field, a number of PIC simulations are starting to refine 

their field representation adaptively [8], which increases the I/O complexity. To cope with this increased 

complexity, developers of PIC simulations are consolidating their I/O operations with the common API 

known as openPMD-api [15]. We use openPMD for I/O operations because it allows us to control the 

format of data files as well as the data access patterns. 

Our tests involve a set of synthetic benchmarks as well as a state-of-the-art PIC code named WarpX 

[9]. The synthetic benchmarks are constructed following typical PIC codes, but contain random values 
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that are evenly distributed among the writers. This uniform data distribution reduces the I/O variability 

and simplifies performance studies. The data distribution from WarpX is uneven. We choose WarpX as 

an example from a new generation of simulation codes because it is among the first to embrace AMR 

for mesh management and make extensive use of GPUs in computation. Thus, it would allow us to 

observe potential I/O performance characteristics for the next generation of GPU-based simulations. 

3. File Organizations for Efficient I/O 

Our evaluation on how to organize files for efficient analyses is divided into two parts: one with 

synthetic benchmarks and the other with WarpX. These evaluations are conducted on supercomputers 

named Summit and Cori. Summit, located at Oak Ridge National Laboratory, is developed by IBM and 

has 200 petaFLOPS peak performance [16]. The file system we use on Summit is Alpine, a 250 PB IBM 

Spectrum Scale GPFS file system (https://www.olcf.ornl.gov/olcf-resources/compute-

systems/summit/summit-faqs/). It has peak performance of roughly 2.5 TB/s of I/O. The Cori 

supercomputer is a Cray XC40 system with a theoretical peak performance of 30 petaFLOPS 

(https://www.nersc.gov/systems/cori/). The file system we use on Cori is Lustre 

(https://docs.nersc.gov/performance/io/lustre/). In all reported tests we use 32 object storage targets 

(OST) and 32MB stripe size. The report I/O performance measurements are based on the timers around 

the I/O operations, averaged over all participating computer cores when more than one is involved. 

We start our performance exploration with a set of synthetic benchmarks. It has a writer and a reader, 

to generate and retrieve 1D, 2D, and 3D particle and mesh data, following the openPMD schema [17]. 

The data is organized by timesteps where each timestep has 10 field and particle variables, similar the 

later WarpX tests. In the following tests, each run of the writer produces 10 timesteps, on 3D meshes. 

Each run of the writer starts with 64 nodes (16 MPI ranks per node) to generate 6.4TB of data and about 

10MB of metadata. We increased the output size with the number of processes used (i.e. weak scaling) 

on Summit, while kept the total size constant on Cori (i.e. strong scaling). 

 

  
(a) Summit (weak scale) (b) Cori KNL (strong scale) 

Figure 1. Weak-scaling performance of two ADIOS writing options, one subfile per MPI rank and 

one subfile per compute node. These options reduce the dependencies among the compute nodes and 

are typically the most performant options. 

In the write tests, we report two options are known to perform well: (1) writing one subfile per MPI 

rank and (2) writing one subfile per compute note. Since these subfiles can be written independently 

ADIOS achieves high bandwidth on storage systems. However, each subfile is actually a file on the file 

system and the file creation is relatively expensive on a file system, if a large number of subfiles are 

created, then the overall performance might decrease. One concrete objective for our study is to 

determine how many subfiles might be too many. 

As shown in Figure 1 for both Summit and Cori systems, using a relatively modest number of MPI 

ranks, say, 1024, the one subfile per rank option produces faster I/O rates. This trend stops after 4K 

cores on Summit, and 8K cores on Cori. With more MPI ranks, the overhead of creating files becomes 

larger than time needed to aggregate the write operations on each compute node, which leads the one 

subfile per node to be the best performing option. 
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The benchmark reader implements several common read patterns [6]. In this paper, we only report two 

timing measurements: metadata loading time and retrieving a plane from a 3D array. Following the 

terminology used in WarpX, the plane we retrieve is the YZ plane, which is contiguous had the 3D array  

been organized in a single large memory space. 

Data in applications often come in batches from each processor, which is called a “block” in ADIOS. 

The number of blocks impacts ADIOS I/O throughput, as shown in Figure 2. In these tests, we kept the 

same number of subfiles and same global array dimensions, but varied block      sizes on disk for each 

variable.  In other words, a processor can store all its content all at once (1 block), or in many batches 

(many smaller blocks). The metadata size increases linearly as the number of blocks grows, which in 

turn increases metadata loading time on both Cori and Summit (though only Summit measurements are 

reported in Figure 2). From the read time shown in Figure 2, we see that the time to complete both read 

operations generally increases with the number of blocks. Even though the YZ plane is logically 

contiguous, the content is actually distributed into many blocks.       

 

 
 

(a) Knapsack (b) Z order 

Figure 3. WarpX write performance on Summit. The two load balancing strategies, Knapsack and Z 

order, show similar weak-scaling performance with the two writing options, subfile per node and 

subfile per rank. 

We next report our performance measurements with WarpX, both the write and read operations. 

Note that in WarpX, the data sizes vary from time step to time step, and from processor to processor. 

Additionally, there are more blocks per variable in WarpX than in the synthetic benchmark. 

On Summit, WarpX is set up to use all 6 GPUs per computing node. We ran from 64 nodes to 2048 

nodes, with output file sizes ranging from 3.9TB to 125TB (i.e., weak scaling). We focus our tests on 

Summit to understand how GPUs might affect I/O performance. 

Although resource configurations and workloads differ, what we observed in Figure 3 is close to 

what we saw on the synthetic benchmarks. WarpX groups its computational blocks (defined by AMReX) 

using two different strategies for load balancing: Knapsack and Z order. Using either strategy, one 

subfile per rank option out performs the one subfile per node option until 6144 ranks. As the number of 

 
 

(a) load metadata (b) read YZ slice of fields 

Figure 2. Time (in seconds) needed to complete some read operations on a single core on Summit 

versus the number of blocks in a single ADIOS variable. We see that the time needed generally 

increases as the number of blocks increases. 
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MPI ranks increases further, the second option performs better. With one subfile per node option, the 

best rate we achieved is 1TB/sec on summit (6144 ranks with Knapsack load balancing). 

The WarpX output files contain more blocks per variable. Therefore, the size of metadata is much 

bigger and requiring more time to load, see Figure 4. However, the read time consumed for different 

reading patterns is similar to that of the synthetic benchmark. Furthermore, the two load balancing 

methods did not show any significant impact on reading performance. 

 
 

(a) load metadata (b) read XY slice 

Figure 4. Time (in seconds) to complete some read operations on WarpX data on Summit (plotted 

aganst the number of compute cores involved). 

4. Supporting Efficient Filtering  

Many analysis operations only need to access data from a small part of the simulation domain or to 

satisfy some other user-defined conditions. This type of filtering (or querying) is particularly useful 

when the data collection is very large, as in the case with some large scale WarpX runs. In some cases, 

there could be 1013 particles along with 109 mesh cells for representing fields. Additionally, some parts 

of the mesh could be refined multiple times creating complex data structures that are especially 

challenging to handle efficiently. Without an efficient filtering strategy, the data analysis functions will 

have to read the whole data set, which would be very time-consuming [12]. 

In this work, we have adopted a number of strategies to address this type of selective data access. 

The first strategy is applying subfiling, as mentioned earlier. Within each subfile, the user data is 

organized into blocks that serve as the basic unit of I/O operations. Within each block, we maintain a 

small amount of metadata that includes a version of the block index in the data [7]. This block index 

effectively records the statistics for values of each variable in a block. By examining this block index, 

we could decide whether or not a particular block needs to be retrieved before actually committing the 

effort to perform the necessary I/O operations.  

Next, we use a specific WarpX as an example to demonstrate the effectiveness of our approach for 

supporting selective accesses. In an application scenario, WarpX is used to model the acceleration of 

particles in a laser-driven accelerator, hence to analyze and correlate accelerated particle beams with a 

specific accelerator geometry, sub-selecting the particles is a common task. Depending on the exact 

geometry and plasma response, scientists may select particles emitted below a given angle, in a certain 

acceptance range, or a part of a certain sub-ensemble. A scientist might vary the selection conditions to 

explore the characteristic signature of the laser-plasma interaction. In these cases, being able to select 

the particles satisfying the user-specified conditions quickly is critical to the scientific understanding of 

the accelerator design. 
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Figure 5. Data analysis using region of interest filtering with ADIOS queries. a)-c) Phase space 

projections of plasma particles oscillating in a laser pulse, filtered close to the laser axis. d) Read time 

comparison between conventional reads and pre-filtered reads with queries. 

Figure 5 shows a common scenario from this accelerator design involving filtering, where the 

subfigures a)-c) show the histograms of particles in three different phase spaces. This is effectively a 

mapreduce operation, which is ubiquitous in data science. The particles are selected using the block 

index embedded in the metadata of the blocks in ADIOS files. In this specific case, the selection is based 

on the position of particles in 3D (real) space. In sub-figure 5 d), we show a comparison of execution 

time of generating these histograms with and without the query support. In these cases, we are able to 

reduce the histogram computation time from 80-100 seconds to about 20 seconds, clearly demonstrating 

the usefulness of the block index mechanism. (Note that the two NoQuery measurements should require 

the same amount of time, the observed variations are due to file-system variance.)  

5. Conclusion and Future Work 

We have experimented with a number of promising strategies to optimize I/O rates for large scientific 

applications on HPC, using ADIOS. These options are primarily exploring the number of subfiles to use 

and the number of blocks for variables, where the former decides the rate to store data on disk and the 

later affects the rate to retrieve information back from disk. 

In our tests, both the synthetic benchmark and a scientific simulation are able to write at scale on Alp 

ine at 1TB/sec. We are interested in further studying this simulation code and see how it performs with 

more levels of mesh refinement. 

In this paper, we also report an exploration of the block indexing feature built into the ADIOS file 

structure. This index structure is able to effectively support selective accesses to the data file, for 

example, by allowing querying software to determine whether any records in a block satisfy the user-

specified conditions. If none of the records in a block could satisfy the conditions, there is no need to 

actually read the data block from the storage media. Tests showed that we are able to significantly reduce 

the time needed to compute common tasks such as 2D histogramming (mapreduce). We are interested 

in studying the options to support more complex query conditions. 

To ensure that data analysis operations could read files efficiently, it is important to limit the number 

of blocks to read. One effective strategy for this is to utilize in situ processing capabilities to reorganize 

the data for more efficient read operations. While we have studied strategies to reduce the number of 
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blocks elsewhere [18], we have also explored in situ processing capabilities [19]. We plan to study this 

in situ option further because it is likely to become more important in future exascale systems. 
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