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Abstract

The lithiation and delithiation of a silicon battery anode is modeled using the material point method
(MPM). The main challenges in modelling this process using the MPM is to simulate stress dependent dif-
fusion coupled with concentration dependent stress within a material that undergoes large deformations.
MPM is chosen as the numerical method of choice because of its ability to handle large deformations. A
method for modelling diffusion within MPM is described. A stress dependent model for diffusivity and
three different constitutive models that fully couple the equations for stress with the equations for diffu-
sion are considered. Verifications tests for the accuracy of the numerical implementations of the models
and validation tests with experimental results show the accuracy of the approach. The application of
the fully coupled stress diffusion model implemented in MPM is applied to modelling the lithiation and
delithiation of silicon nanopillars.

1 Introduction

Electrochemical storage devices are becoming pervasive in today’s society. Electronic devices ranging from
smart phones to electric vehicles all depend on efficient, robust, and high-capacity electrochemical storage.
Driven by this demand for greater energy storage capacity, new materials are being sought to improve the
performance of batteries. One promising material that is currently being explored to improve performance
is silicon. Silicon has a theoretical charge capacity in the range of 3500 mAhg−1 to 4200 mAhg−1 [1, 2]
which is 10 times larger than that of current anode materials such as graphite at 350 mAhg−1 [3]. The large
theoretical charge capacity comes from silicon’s ability to accommodate multiple lithium ions per silicon
atom. As a silicon anode approaches full lithiation, the ratio of lithium ions to silicon atoms is 3.75 to 1 [4].
This ratio of lithium ions to silicon leads to a large volume change of up to ∼ 280% [5]. This large change
in volume over multiple charge/discharge cycles can lead to mechanical failures that decrease the charge
capacity and thus reducing the effectiveness of using silicon as an anode material.

A key observable trait of the lithiation process is the notable lithiation front that occurs as lithium ions
diffuse through the silicon material. Experimental results presented by Wang et al. [5] show that as lithium
diffuses through the silicon material, there exists a sharp phase transition between the lithiated silicon and
the pure amorphous silicon. This sharp phase transition produces large strains on the lithium rich side of
the phase transition. Wang et al. [5] report strains in the range of 160% in the region around the phase
transition which produce a large percentage of the total volume expansion. The normalized concentration
of lithium in the region of the phase transition is approximately 67% or 2.5 lithiums to 1 silicon [5]. Outside
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of the region of the phase transition, the concentrations gradients for lithium are relatively small in the
lithiated regions the lithiation front.

By gaining an understanding of the chemical and mechanical changes that occur during the lithiation and
delithiation phases of a charge cycle, new anode configurations and geometries can be explored that reduce
the mechanical failure points within an anode. Numerous physical experiments have been performed testing
different anode configurations, ranging from thin films [6], to nano pillars [7], to honeycomb structures [8].
Through the use of computational simulations new anode configurations can be explored more easily which
can lead to better insights into the configurations used in physical experiments.

The study of diffusion-induced stress can be found in work dating back to the 1960’s. Prussin [9]
formulated a model that couples the diffusion of a solute in a single-crystal silicon wafer to the generation of
stresses and the resultant crystal dislocation distributions. The work by Li et al. [10] involved the derivation
of models for the chemical potentials of both the mobile guest species and immobile host material where the
host material is in a stressed state. Beginning in the 1970’s Larché and Cahn [11, 12, 13, 14] developed a
framework for modelling diffusion induced stress. The model uses a theoretical embedded network within a
material to track deformations. The diffusion process is driven by the chemical potential of the guest species
within the host material. The derived chemical potential is a function of both the guest species concentration
and hydrostatic stress. The work of Larché and Cahn now forms the basis for much of the current research
being done to model the lithiation of silicon anodes [15, 16, 4].

Alternatives to the Larché and Cahn model for diffusion induced stress have also been proposed. For
example in the paper by Wu [17] the argument is made that the Eshelby stress tensor should be used in the
stress dependent chemical potential as opposed to the hydrostatic Cauchy stress. Cui et al. [18] extends the
work of Wu to applications in modelling the stress-dependent chemical potential of lithium ion batteries.
Other methods avoid the derivation of a chemical potential and instead derive an empirically based model
for the diffusion process [5, 19, 20, 21].

As there have been multiple models proposed for the lithiation of a silicon anode, there have also been
multiple methods used to simulate the lithiation/delithiation process. One method has been to reduce
the dimensionality of the problem to a spherical geometry for the anode [22, 23]. While the reduction of
dimensionality can lead to insights into the lithiation/delithation process without the higher computational
costs of higher dimensional simulations, key features associated with anode geometries will be lost. For
numerical simulations that cannot be reduced to one dimension the Finite Element Method (FEM) has been
a popular choice. A large number of the published simulations involving the lithiation process of silicon have
been done using the finite element method [24, 25, 5, 19, 26]. FEM is well understood and there exists a
large number of different code bases, both commercial and open sourced, upon which a researcher can draw.

Key experimental observations of a silicon anode undergoing the lithiation process show the large defor-
mations that it will experience. A variety of numerical methods have been used to model large deformations.
Mesh based methdods such as FEM [27] and XFEM [28] have found success along with meshless methods
such as SPH [29] and RPKM [30]. An alternative to these approaches that has been found to be successful
in modeling large deformations is the Material Point Method (MPM) [31]. MPM uses aspects of both FEM
and particle methods to carry out computations.

MPM along with the multiple variants of the method are well described in the literature [32, 33, 34, 35,
36, 37]. For the the purpose of this paper the Convected Particle Domain Interpolation (CPDI) variant, as
described by Sadeghirad and Brannon [38], will be used. The MPM algorithm as described in [34, 38] has
been implemented in the Uintah compuational framework [39], and serves as the code base for this work. The
Uintah User Guide [40] includes a further description of the MPM component, including additional feature
that have been implemented therein. The primary contribution of this paper is the chemical-mechanical
coupling, including the concentration diffusion solver working in concert with the momentum balance solver.

The paper proceeds as follows. Section 2 will be a brief overview of MPM followed by a description of
the method used to model diffusion within MPM. Results from verification tests of the diffusion method
will also be presented. Section 3 will be a description of the two way coupling of the chemical process of
lithium diffusion and mechanical process of momentum balance. Section 4 will present simulation results
along with a discussion of the issues and simulation outcomes associated with time integration, constitutive
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model selection, boundary conditions, and parameter choices. Section 4.6 will look at the results of bonding
an anode to a fixed or deformable substrate. Section 4.7 will present the simulation results of a silicon anode
undergoing a full lithiation/delithiation cycle. Lastly, Section 5 will draw conclusions and discuss further
work.

2 The Material Point Method

The Material Point Method was developed in the 1990s by Sulsky et al. [32] as numerical solution to the
momentum balance equation,

ρaaa = ∇ · σσσ + ρbbb, (1)

where ρ is density, aaa is acceleration, σσσ is stress, and bbb is the acceleration that comes as a result of an external
force such as gravity. The basic premise of MPM is that the domain of an object is discretized into material
points. Properties such as mass and momentum are assigned to each material point. The material points
are Lagrangian in nature and are advected within the domain of the problem. The second component of
MPM is a background Eulerian grid. Particle masses and momentums are mapped to the grid nodes using
an appropriate choice of grid and particle basis functions. The grid is then used to solve the momentum
balance equation. Particles values are updated by interpolating changes in the state from the grid nodes to
the particles and then integrating forward in time. Variations in MPM come as a result of the choices made
in grid and particle basis functions.

2.1 Modeling Diffusion in MPM

During the processes of lithiation and delithiation, lithium is transported by two different processes. The
first process is that of advection which arises as a result of the deformation of the host material. As the
host material undergoes deformation the guest material embedded in the material is carried along with the
deforming host material. The modeling of this process comes as result of lithium being assigned to a material
point, the mass of the host material of each material point does not change. The advection of the guest
material is accounted for naturally when material points are advected.

The second form of transport for lithium ions comes in the form of diffusion. For the purposes of
this paper, the lithium concentration is normalized, c = cg/cmax, where cmax is the molar concentration
representative of a ratio of 3.75 lithium to 1 silicon and cg is the current molar concentration. Diffusion
is modeled in MPM using many of the same numerical methods that are used in solving the momentum
balance equations. The standard diffusion equation is,

∂c

∂t
= −∇ · JJJ, (2)

where JJJ is the normalized concentration flux. The equation for the normalized concentration flux is,

JJJ = −D∇c. (3)

where D is the diffusivity constant.
Modeling diffusion in MPM is as follows. First, particle masses are mapped to the grid nodes,

mi =
∑
p

ϕipmp, (4)

where mi is the mass at the nodes, mp is the mass at the particles, and ϕip is the weighting function. For a
general description of the use of the weighting function used in MPM the reader is referred to [37] and for
a specific description of the weighting functions used in the CPDI variant of MPM see [38]. The mapping
of masses from particles to grid nodes is also a step found in the MPM solution to the momentum balance
equation and thus grid values for mi have already been computed.
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The second step is to map the normalized particle concentration values to grid nodes. This is done in a
similar fashion to mapping velocity values from particles to grid nodes and is done as follows,

ci =

∑
p ϕipmpcp

mi
, (5)

where ci is the normalized grid concentration value and cp is the normalized particle concentration value.
The third step is to calculate the flux values at the particles. This is done by taking the gradient of the
weighting function that interpolates normalized concentration values at the nodes to the particles,

JJJp = −D
∑
i

∇ϕipci. (6)

The fourth step is to compute the divergence of the flux term. This is done in a manner similar to that used
in computing the divergence of stress,

∂ci
∂t

=

∑
p(JJJp · ∇ϕip)mp

mi
. (7)

The fifth step is to update normalized concentration values at the particles,

cn+1
p = cnp + dt

∑
i

ϕip
∂ci
∂t
. (8)

This method of modeling concentration diffusion within MPM is similar to methods used previously in
modeling heat diffusion [41, 42, 43].

2.2 Verification of MPM Diffusion

A one-dimensional system with an analytical solution is used to test the method described above. The
test problem is defined with the initial and boundary conditions on the spatial domain 0 ≤ x ≤ 1 with a
discontinuity existing between the initial condition and the boundary conditions and is written as follows,

∂c

∂t
= − ∂

∂x
J, (9)

c(x, 0) = 0.0, c(0, t) = 1.0, c(1, t) = 0.0. (10)

The flux term is defined as,

J = −D ∂c

∂x
, (11)

where D is the diffusivity constant. Combining Equation (9) and Equation (11) produces the following
equation,

∂c

∂t
= D

∂2c

∂x2
. (12)

The solution to Equation (12), subject to the initial and boundary conditions given in Equation (10), is well
known [44],

c(x, t) = (1− x)− 2

π

∞∑
n=1

1

n
e−Dπ

2n2

sin(nπx). (13)

For the purposes of determining the accuracy of the numerical method the first 1000 terms of the Fourier
expansion should be sufficient.

The numerical solution to Equation (12) is found using the MPM diffusion method described above. The
problem set-up is such that there are two particle per cell. A set of seven different simulations were run
with grid spacings of 0.1, 0.05, 0.02, 0.01, 0.005, 0.002 and 0.001, with the data again being captured at
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simulation time 0.25. The error for the method was calculated taking the L2 norm of the relative error in
concentration,

ep =

{
(cp − ĉp)/cp if cp 6= 0

0 if cp = 0
(14)

error =

√∑N
p=1 e

2
p

N
, (15)

where ep is the relative error, cp is the true solution, and ĉp is the computed value at each particle p and N
is the total number of particles. Figure 1.a shows a comparison of the actual results from the MPM diffusion
solution with the true solution for a grid size of 0.02. Figure 1.b shows the convergence of the error as grid
resolution increases. From the data it can be seen experimentally that the order of accuracy of the MPM
method appears to be O(h), for reference purposes the red line indicates a slope of 1.0 and the red error
marker of Figure 1.b correlates with the results shown in Figure 1.a.

2.3 Advected Flux Boundary Conditions

In the calculations carried out here, a flux was applied to the surface of the object under investigation
that was intended to mimic the flux induced by applying a voltage difference between the object and a far
away cathode. Due to coupling between the concentration and mechanical state, increasing concentration
results in deformation of the object. Hence, the location of the surface upon which the flux is prescribed is
changing with time. For the simulations here, initial surface particles were identified, and the initial external
area was computed and recorded. It was assumed here (and inspection of the results below validates this
assumption), that while the surface moves and stretches, there is no change to what would be considered
a surface particle, or to which face of the particle would be considered a surface. A current assumption
that is probably less valid, and will be fixed in future work, is that the surface area associated with each
particle remains constant. Inspection of the subsequent results show that this is not a valid assumption, but
given the relatively uniform expansion of the object that we are currently interested in, this is similar to
prescribing a slightly lower flux than intended. In future work, the particle area will be evolved according
to the particle deformation gradient, which is already part of the particle data that is integrated in time.

A time varying flux is applied to the surface particles by computing the rate of change in concentration
that this flux would be associated with, namely,(

∂cpv
∂t

)
bc

= J(t)bc
Ap
Vp
, (16)

where J(t)bc is the user defined flux boundary condition, Ap is the surface of the particle upon which the
boundary flux condition is being applied, Vp is the particle volume, and (∂cpv/∂t)bc is the rate of change of
concentration in the particle. Note that to avoid exceeding a normalized concentration of 1, a flux restriction
factor is used, such that: (

∂cpv
∂t

)′
bc

=

(
∂cpv
∂t

)
bc

· (1 + .25 log(1− cp)). (17)

Thus, once the concentration starts to saturate the substrate, the flux at that surface is gradually reduced.
While the equation above is ad hoc, this reflects physically meaningful behavior. This rate of change
is mapped to the grid and, in the case of boundary particles, functions as an additional source term in
Equation 7,

∂ci
∂t

=

∑
p(JJJp · ∇ϕip)mp

mi
+

∑
p (∂cpv/∂t)

′
bc ϕipmp

mi
. (18)
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Figure 1: (a) shows the computed results from the MPM diffusion method compared against the true solution
for grid size 0.02 and at time .25. (b) is the error convergence plot for the MPM diffusion method. The red
marker correlates with the results shown in (a) and the red line is for reference purposes and is a slope of
1.0.
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3 Chemical/Mechanical Coupling in MPM

3.1 Coupling Stress to Diffusion

Multiple models have been formulated that couple the affects of stress with the diffusion process [5, 23, 45, 46,
19, 20, 21]. The existing models can be broken up into two basic groups. The first group, [23, 45, 46], follows
the framework that was developed by Larché and Cahn [11, 12, 13, 14] and computes the concentration flux
based on a formulation of the chemical potential of lithium within the host silicon anode. The Larché and
Cahn chemical potential is defined as,

µLi = µ0
Li +RT ln

(
γ

c

1− c

)
+ κ

dεcvol
dc

p− κ

2
Bijklσijσkl, (19)

where µ0
Li is the reference chemical potential, R is the ideal gas constant T is temperature, γ is the activation

coefficient, κ is the molar volume of silicon, εcvol = εcii/3 is the volumetric portion of the stress-free strain due
to the insertion of lithium, p = −σii/3, and Bijkl = dSijkl/dc is the rate of change of the elastic compliance
tensor, Sijkl, with respect to concentration. The flux based on the chemical potential is defined as,

JJJ = −D c

RT
∇µ. (20)

If the constitutive model has compliance tensor that is not dependent upon concentration, as is the case
for the model discussed below, then Bijkl reduces to zero and in cases where the relationship between the
stress-free strain, εcij , and concentration is linear then dεcvol/dc is a constant. Based on the following two
assumptions Equation 20 can be written as a combination of the concentration and pressure gradients,

JJJ = − Dγ

(1− c)
∇c− Dκc

RT

dεcvol
dc
∇p. (21)

The second group, [5, 19, 20, 21], uses an empirical based approach where a model is formulated that
takes as input concentration and in some cases stress and then the user adjusts a set of parameters to produce
the desired behavior. In the empirical based approach flux is defined as follows,

JJJ = −D(c, σ)∇c. (22)

While both methods can be implemented within the MPM diffusion framework described above, for the
purposes of this paper the approach of the second group will be used. The selection of the empirical based
approach is based upon the observation that the greatest changes in pressure occur in regions where lithium
is diffusing into the non-lithiated amorphous silicon, in the areas behind this region the changes in pressure
are minimal and the contribution of the pressure gradient to the concentration flux is small. The empirical
based approach is able to approximate the behavior of the lithiation of non-lithiated amorphous silicon and
provides a good first approximation of the diffusion process.

The normalized concentration and pressure dependent function for diffusivity that will be used for this
paper is defined as,

D(c, p) =


D0e

αc if p ≤ 0,

D0e
αc−βp if 0 < p < pmax,

D0e
αc−βpmax if p ≥ pmax,

(23)

where D0 is the initial diffusivity, α and β are tuning parameters, and pmax is the capped value for pressure.
It is through the diffusivity function that stress is coupled to the diffusion process. By way of comparison,
Berla et al. [21] and Wang et al. [20] use a cubic polynomial to compute diffusivity as solely function of
concentration. The diffusivity function is defined as,

D(c) = D0(1− c)3 +Dmaxc
3, (24)
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Figure 2: (a) Comparison of the diffusivity function evaluated at 0 GPa and 3 GPa compared against the
diffusivity function proposed by Berla et al. (b) The surface plot of the diffusivity function over the range
of [0,1] for concentration and [0,3] GPa for pressure.

where Dmax is the diffusivity at full concentration. Using the following parameters D0 = 10−17m2/s, Dmax =
10−15m2/s, α = 6.0, β = .5 and pmax = 3 GPa for Equation (23) and Equation (24) diffusivity curves were
evaluated over the normalized concentration range [0, 1]. Figure 2.a shows the results for Equation (23) and
Equation (24) with Equation (23) being evaluated at 0 GPa and 3 GPa. Figure 2.b shows the surface plot
of Equation 23 over the normalized concentration range of [0, 1] and the pressure range from [0, 3] GPa with
α = 6.0, β = .5 and pmax = 3 GPa.

3.2 Coupling Concentration to Stress

The modeling of the silicon anode material response to concentration diffusion is done using a hypoelastic-
plastic constitutive model. The hypoelastic-plastic model allows for an additive decomposition of the rate
of strain tensor into elastic, plastic, and stress-free volumetric components,

d = de + dp + dc, (25)

where de is the elastic rate of strain, dp is the plastic rate of strain, and dc is the stress-free volumetric rate
of strain due to the insertion of lithium into the silicon material.

Objectivity is maintained in the stress calculation by rotating stress and the rate of strain back to its
unrotated state where the stress update calculation is then performed, and then subsequently this updated
stress is rotated back to its previous state. This is done using the rotation tensor obtained from the polar
decomposition of the deformation gradient,

F = RU, (26)

where F is the deformation gradient, R is the rotation tensor, and U is the right stretch tensor. The
transformation of stress from its rotated to unrotated state is performed as follows,

σ̄σσ = RTσσσR, (27)

and the transformation for the rate of strain is done in like manner,

d̄dd = RTdddR, (28)
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where the rate of strain is the symmetric part of the velocity gradient, lll,

ddd =
1

2
(lll + lllT ). (29)

The unrotated symmetric part of the velocity gradient is chosen as a rate of strain because of the relatively
low computational cost relative to other possible choices for rates of strain and under conditions where the
rotation of the principle referential directions is small the unrotated symmetric part of the velocity gradient
is a good approximation for Hencky strain rate [47].

In the unrotated state the stress/strain relationship is defined as,

σ̄σσ = 2Gεεεedev + 3Kεεεevol, (30)

where G is the shear modulus, K is the bulk modulus, εεεedev is the deviatoric elastic strain and, εεεevol is the
volumetric elastic strain. The derivation of the material stress rate then easily follows,

σ̇σσ = 2Gd̄dd
e
dev + 3Kd̄dd

e
vol, (31)

where d̄dd
e
dev is the deviatoric elastic strain rate and d̄dd

e
vol is the volumetric elastic strain.

Due to the amorphous nature of the silicon in our investigation, the concentration dependent stress-free
portion of strain may be regarded as isotropic and follows the same model used in [13]. This is analogous to
the expressions used for isotropic thermal expansion [48],

εεεc = η(c− c0)III, (32)

where η is the volume expansion coefficient and III is the identity tensor. The material rate of stress-free
volumetric strain is then,

d̄dd
c

= η
∂c

∂t
III. (33)

3.3 Perfect Plasticity and Linear Strain Hardening

Two different plasticity models will be used to determine the rate of plastic strain, d̄dd
p
. The first is perfect

plasticity with the yield surfaces defined by,√
3

2
σ̄σσdev : σ̄σσdev − σY = 0, (34)

and the second is linear isotropic strain hardening with the yield surface defined by,√
3

2
σ̄σσdev : σ̄σσdev − (σY +Kεpequiv) = 0, (35)

where σY is the initial yield stress, σ̄σσdev = σ̄σσ − 1/3tr(σ̄σσ) is the deviatoric stress, K is the plastic modulus,
and εpequiv is the equivalent plastic strain. A description of the method for computing d̄dd

p
is beyond the scope

of this paper, but the interested reader is referred to [49] for a complete description of the algorithm. Both
the perfectly plastic and linear isotropic strain hardening models are implemented within the Uintah MPM
component [39] and are used for the simulations presented in this paper.

3.4 Stress Update

Using Equation 29, Equation 33, and the rate of plastic strain, d̄dd
p
, the rate of elastic strain can then be

calculated,
d̄dd
e

= d̄dd− d̄ddc − d̄ddp. (36)
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The rate of elastic strain is then decomposed into its deviatoric and volumetric component,

d̄dd
e
vol =

1

3
tr(d̄dd

e
)III, d̄dd

e
dev = d̄dd

e − d̄ddevol. (37)

Using the deviatoric and volumetric elastic strain rates the updated stress is then computed,

σ̄σσn+1 = σ̄σσn + (2Gd̄dd
e
dev + 3Kd̄dd

e
vol)dt, (38)

where σ̄σσn is the current stress, σ̄σσn+1 is the updated stress, and dt is the timestep size. The last step in the
stress update calculation is to rotate the updated stress to it rotated state,

σσσn+1 = RRRσ̄σσn+1RRRT . (39)

4 Numerical Solution of the Model Problem

As was mentioned in the introduction, there have been a multitude of numerical simulations performed to
study the affects of lithiation on silicon anodes. In these studies different anode geometries have been used.
Three common choices have been a sphere, a nanowire, and a pillar. For the purposes of this paper the pillar
geometry will be used and while the pillar geometry lends itself to a 2D axisymmetric numerical solution for
the purposes of this paper full 3D simulations will be performed. Two different choices in pillar sizes will be
used through out this section. The smaller pillar has a diameter of 0.1µm and a height of 0.1µm. The larger
pillar has a diameter of 0.5µm and a height of 0.05µm. Multiple simulations were run using the smaller
pillar size to explore choices in constitutive model, parameter selection, and boundary conditions. With the
results from the simulations performed using the smaller diameter pillar, decisions where then made as to
constitutive model choice, parameter selection, and boundary conditions and then applied to simulations
using the larger diameter pillar. The use of a substrate material was then explored using the larger diameter
pillar.

4.1 Time Scales of Governing Equations

The governing equations for momentum balance and concentration diffusion are represented by Equation 1
and Equation 2. For the purposes of this paper the external forces acting on the nanopillar will be neglected,
bbb = 0, and Equation 1 can be reduced to,

ρaaa = ∇ · σσσ. (40)

The time scales of these two different physical processes differ greatly in magnitude. As was discussed in
Section 3.1 the range of values for diffusivity of lithium within amorphous silicon range between 10−17m2/s
and 10−15m2/s. On the other hand, the material response to changes in deformation happens at a much
smaller time scale. The speed of sound within a given material is defined by the following equation,

cs =

√
K + 4/3G

ρ
, (41)

where K is the bulk modulus, G is the shear modulus, and ρ is density. For amorphous silicon reasonable
values for density, bulk modulus, and shear modulus are 2.33×103 kg/m3, 67GPa, and 31GPa, respectively.
Based on these values the sound speed for amorphous silicon is 6.8 × 103m/s. A simple comparison of
diffusivity and sound speed shows the large differences in time scale by which each of the physical processes
occur. Because of this difference the momentum balance equation reaches a quasi-steady state,

∇ · σσσ = 0, (42)

within the time scale that diffusion occurs [16, 50, 51].

10



4.2 Time Integration and Time Step Selection

At the end of each iteration of the mpm algorithm a new time step, dt, is calculated. The size of the time
step is limited by the numerical solutions for the diffusion equation and the momentum balance equation.
The time step for the momentum balance equation is computed in the following manner,

dtmb = min

(
dxcell
cs + vx

,
dycell
cs + vy

,
dzcell
cs + vz

)
, (43)

where dxcell, dycell, and dzcell are the cell dimension and vx, vy, and vz are the components of the particle
velocity vector in the x, y, and z directions respectively.

The time step size based on the numerical solution for the diffusion equation is calculated as follows,

dtdiff = min

(
dx2cell
2D

,
dy2cell
2D

,
dz2cell
2D

)
, (44)

where D is the diffusivity coefficient. The time step that is then used for the overall simulation is the smallest
of the two time steps,

dt = min(dtmb, dtdiff ). (45)

4.2.1 Time Stepping Issues.

The time step criteria stated above is used to maintain a stable numerical solution, but if the time step
needed for a stable solution becomes too small then computation time needed for a viable solution will
become intractable. To illustrate this point, a stable time step is computed using Equation 43. The sound
speed of 6.8 × 103m/s computed in Section 4.1 and a grid cell dimension of dxcell = 10−8m is used in the
calculation. For simplicity the particle velocity is neglected in the calculation because it small in comparison
to the computed sound speed. The resulting time step is,

dtmb =
dxcell
cs

= 6.8× 10−11s. (46)

Using the above computed time step size, 1011 time step integrations would be needed to reach 6.8s of
simulation time. The number of time steps for this calculation would be intractable. By way of comparison,
for a given diffusivity of D = 10−15m2/s the calculated time step size is,

dtdiff =
dx2cell
2D

= 0.05s, (47)

which is a tractable time step size.
From the above example it can be seen that for a simulation to run in a reasonable time a stable means

of increasing dtmb to a tractable time step size needs to be found. Ideally the time step size would be limited
by the diffusion calculations and not momentum balance.

In order to increase the limiting time step size needed for the numerical solution to the momentum
balance equation, the density of silicon is artificially raised to a value such that the limiting time step
criteria is dependent upon the numerical solution of the diffusion equation and not the solution to the
momentum balance equation. The argument for the validity of artificially raising the density stems from
the observations made in Section 4.1 that within the time scale of chemical diffusion the momentum balance
equation reaches a quasi-static state. Using constitutive relationship found in Equation 30, Equation 40 can
be rewritten as,

ρaaa = 2G∇ · εεεedev + 3K∇ · εεεevol, (48)

and dividing through by density produces the equation for acceleration,

aaa =
2G

ρ
∇ · εεεedev +

3K

ρ
∇ · εεεevol. (49)
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Figure 3: (a,c,e) density of 2.33× 103 kg/m3 and (b,c,f) density of 2.33× 108 kg/m3

Figure 4: (a,c,e) density of 2.33× 1018 kg/m3 and (b,c,f) density of 2.33× 1024 kg/m3

An increase in density decreases the speed by which elastic waves travel through the material, but the elastic
strain remains the same.

For the purposes of demonstration, two different sets of numerical simulations where run. In the first set
of numerical experiments two simulations were run. In the first simulation the density for amorphous silicon
is used, 2.33 × 103 kg/m3. The bulk and shear moduli are 67GPa and 31GPa, respectively. The linear
isotropic stain hardening constitutive model is used with a yield stress of 1.4GPa and a plastic modulus
of 1.15GPa. The initial diffusivity is artificially increased to D0 = 10−10m2/s. In the second simulation
the density is increased to 2.33× 108 kg/m3 with all other parameters remaining the same. Figure 3 shows
a side by side comparison of the two simulations at 6.0 × 10−9 s, 26.0 × 10−9 s, and 48.0 × 10−9 s. From
Figure 3 it can be seen that even with a five order increase in density, qualitatively the variations between
the simulations are small.

In the second set of simulations two simulations were run. In the first, an initial diffusivity is set to
D0 = 10−17m2/s, which falls within the range of published values [52]. The density is artificially raised to
2.33 × 1018 kg/m3. The bulk and shear moduli are 67GPa and 31GPa, respectively. The linear isotropic
stain hardening constitutive model is used with a yield stress of 1.4GPa and a plastic modulus of 1.15GPa.
The second test was run using an initial density of 2.33 × 1024 kg/m3. Figure 4 shows a side by side
comparison of the two simulations at three different time steps - 4.0 s, 16.0 s, and 28.0 s. From Figure 4
it can be seen qualitatively that there is very little variation between the two simulations despite the five
orders of magnitude difference in density.
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Figure 5: Fig.(a-c) are images of pillars mid-saturation and Fig.(d-f) are images of pillars at full-saturation.
Fig.(a,d) Linear Elastic, Fig.(b,e) Perfect Plasticity, Fig.(c,f) Linear Strain Hardening.

4.3 Comparison of Constitutive Models

A proper constitutive model needs to be selected in order to achieve the desired behavior that matches that
of a silicon anode during lithiation. Simulations were run using three different constitutive models, linear
elastic, perfectly plastic, and linear isotropic strain hardening. The bulk and shear moduli for all three
models are 67GPa and 31GPa, respectively. For the perfectly plastic and linear isotropic strain models the
yield stress is 1.4GPa and for the linear isotropic strain hardening models the plastic modulus is 1.15GPa.
The volume expansion coefficient used for this set of simulations and all subsequent simulations is η = .56.
The flux boundary conditions and diffusivity parameters are the same for all three simulations.

Figure 5 shows images of the pillars at mid-saturation and full saturation. From the image it can be
seen that at full saturation there is a noticeable difference between the linear elastic and the two plasticity
models. The largest noticeable difference is along the base of the pillars where the largest concentration of
plastic deformation occurs. In images (a-c) of Figure 5 it can be seen that plastic deformation is already
occurring along the base of the pillars producing different deformation patterns compared against the linear
elastic pillar.

While there are noticeable differences between the linear elastic model and the two plasticity models
there are also qualitative differences between the two plasticity models.
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Figure 6: (a-d) series of images during the lithiation process using a 10−9 flux boundary condition and the
linear isotropic strain hardening model. (e-h) series of images during the lithiation process using a 10−8 flux
boundary condition and the linear isotropic strain hardening model.

4.4 Affects of Flux Boundary Conditions

Both the perfectly plastic and the linear strain hardening constitutive models are dependent upon the prior
history of the material. Because of this history dependent behavior the choice of flux boundary conditions
affects the shape of the pillars. To demonstrate the affect that the choice of the flux magnitude has on
deformation behavior two different simulations were run. The diffusion parameters for both simulations are
α = 6, β = 0.5, and pmax = 3GPa. The linear isotropic strain hardening constitutive model is used with
the bulk and shear modulus values of 67GPa and 31GPa, respectively. The yield stress is 1.4GPa and the
plasticity modulus is 1.15GPa. The magnitude of the flux boundary condition are 10−9 and 10−8. Figure 6
shows two sequence of images where the top row shows results from the simulation run at the lower flux
value and the lower row shows the sequence of images for the simulation run at the higher flux value.

Both sets of simulations illustrate the sharp transition between high normalized concentrations and low
normalized concentrations as the lithium diffuses through the anode. The noticeable difference between
the simulations is in the normalized concentration levels that are behind the sharp transition in normalized
concentration. As would be expected the simulation with the larger influx of normalized concentration will
have larger normalized concentration values behind the high/low transition. From the experimental results
presented by Wang et al. the initial concentration values behind the phase transition have a normalized
concentration of ∼ 0.67. For the lower flux boundary condition the normalized concentration values fall in
the range of 0.5 to 0.6 while the high flux boundary condition have normalized concentration values greater
than 0.7.

As can be seen from Figure 6, differences in flux boundary condition values not only affects the level of
concentration values behind the sharp phase transition it also changes patterns in deformation. In the pillar
with the larger flux boundary condition values the bulging near the base is more pronounced in comparison
to the pillar with the small flux values. Figure 7 shows the state of the the nanopillar as it reaches its fully
lithiated state where the differences in flux boundary condition values produces noticeable differences in the
deformation of the nanopillar.
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Figure 7: (a) fully lithiated state of nanopillar using 10−9 flux boundary condition and the linear isotropic
strain hardening model. (b) fully lithiated state of nanopillar using 10−8 flux boundary condition and the
linear isotropic strain hardening model.

4.5 Diffusivity

Using density functional theory calculations a range of diffusivity values have been determined for diffusion
of lithiation in amorphous silicon of 10−18m2s−1 to 10−14m2s−1 [52]. The diffusivity model presented in this
paper produces diffusivity values that fall within the proposed range. The issue that has been discovered is
that while the calculated values for diffusivity may fall within the computed range of values for a chosen set
of tuning parameters, the deformation behavior can vary based on what tuning parameters are chosen.

Previous works [5, 19, 20, 21] have chosen models that compute diffusivity solely as a function of con-
centration. But it’s clear that the mobility of lithium ions within amorphous silicon has to be a function of
both lithium concentrations and pressure. From numerical experiments it can be seen that the inclusion of
pressure in the diffusivity calculation does affect the deformation of the pillar during lithiation.

Two simulations were run to show the difference that can occur when pressure is accounted for in the
diffusivity calculation. The first simulation used the following parameters, α = 6.0 and β = 0.0, and the
second simulation used α = 6.0 and β = 1.0. By setting β equal to zero, pressure is neglected from the
calculation. Both simulations used the linear isotropic strain hardening constitutive model with bulk and
shear modulus values of 67GPa and 31GPa, respectively. The yield stress is 1.4GPa and the plasticity
modulus is 1.15GPa. The magnitude of the flux boundary condition is 10−9. Figure 8 shows a comparison
of the two simulation. Figure 8.a and Figure 8.b show the results of the simulation during the lithiation
process, from these figures it can be seen that by changing the pressure tuning parameter the difference in
deformations, especially near the base of the pillar, are noticeable. Figure 8.c and Figure 8.d show the results
of the simulations as the pillars reach full saturation. In the fully lithiated state the differences between the
two simulations are less noticeable. Both sets of parameters produce the sharp phase transition between
high and low normalized concentration levels as lithium diffuses through the pillar. The difference being in
the deformation behavior during the lithiation process.

4.6 Use of Material Substrate

Up to this point all simulations have been made with the assumption that the base of the pillar is fixed.
Experimental results show that this is not the case. Wang et al. [5] have shown through experiments that the
base of the electrode can expand in the radial direction by ∼ 20%. It is unknown if the deformation comes
as a result of the sliding between the anode and the substrate material or deformation in the substrate.

Two simulations were run to test the effects that a deformable material substrate will have on pillar
deformation. For the purposes of this paper the pillar is assumed to be affixed to the substrate and the
substrate material is allowed to deform. The bulk and shear moduli of the substrate material are 180.4GPa
and 76GPa, respectively. The density of the material is the same as that of the pillar. The linear isotropic
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Figure 8: (a) pillar using diffusivity parameters α = 6.0 and β = 0.0 during lithiation process. (b) pillar using
diffusivity parameters α = 6.0 and β = 1.0 during lithiation process. (c) pillar using diffusivity parameters
α = 6.0 and β = 0.0 at full saturation. (d) pillar using diffusivity parameters α = 6.0 and β = 1.0 at full
saturation.
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Figure 9: (a,c) pillar attached to a non-deformable material substrate. (b,d) pillar attached to a deformable
material substrate

strain hardening plasticity model is used with a yield stress of .7GPa and a plasticity modulus of 1.15GPa.
Figure 9 shows a comparison between the pillar attached to a non deformable substrate and a pillar attached
to a deformable substrate.

From Figure 9 it can be seen that there are noticeable differences between the two simulations. In the non-
deformable substrate image it can be seen that large deformations occur in the region where pillar attaches
to the base, by way of comparison in the deformable substrate image it can be seen that the deformation
due to the pillar swelling is shared between both the pillar and the substrate. The deformable substrate
reduces the accute deformations that occur in the pillar as highlighted by circled regions of Figure 9.a and
Figure 9.b.

The use of a deformable substrate also affects the shape of the pillar as it reaches full lithiation. Figure 9.c
and Figure 9.d show the pillars in the lithiated state. A visual comparison of the images shows that the
shapes of the two pillars are different.

4.7 The Full Lithiation and Delithiation Cycle of the Silicon Anode

Using what was learned from the previous sections a full lithiation/delithiation cycle was performed on the
large pillar. The linear isotropic strain hardening constitutive model was used for the pillar with the bulk
and shear moduli being 67.0GPa and 31.0GPa, respectively, the yield stress was 1.4GPa and the plasticity
modulus was 1.15GPa. The diffusivity parameters used during the lithiation phase were D0 = 10−17m2/s,
α = 6.0, β = 0.5 and pmax = 3GPa. During the delithiation phase diffusivity was fixed at the final diffusivity
value during the lithation phase. The linear isotropic strain hardening constitutive model was used for the
substrate material with the bulk and shear moduli being 180.4GPa and 76.0GPa, respectively, the yield
stress was 0.7GPa and the plasticity modulus was 1.15GPa. There was no diffusion of lithium into the
substrate material. Figure 10 shows the results from the simulation of the silicon anode undergoing the full
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Figure 10: A sequence of images showing the full lithiation and delithiation of a silicon nanopillar.

litiation/delithiation cycle.
As was discussed in the introduction to this paper and by Wang et. al. [5] one key observable trait of

the lithiation of silicon is the sharp lithiation front that occurs during the lithiation process. As can be seen
from Figure 10 the sharp lithiation front is present during the lithiation phase of the simulation. Another
key observable trait found in both the simulation and in experiments [5] is the occurrence of the much more
shallow concentration gradients in the region behind the region of the sharp lithation front.

For the delithiation phase of the simulation the diffusivity value was fixed at last value obtained during
the lithiation phase. With the use of the fixed larger diffusivity value the rate of diffusion throughout the
entire pillar appears to be more uniform. A comparison of the first and last images of the sequence found
in Figure 10 shows the amount of plastic deformation that occurs in both the nanopillar and the substrate
during one full lithiation/delithaition cycle.

The simulation was run on 9 cores of a single compute node. The cpu for the compute node is an Intel
Xeon E5-2667 with 6 physical cores extended to 12 cores with hyper-threading enabled. The cpu clock speed
is 2.9GHz. The total number of time steps needed to complete the simulation was 27472 and the estimated
wall-clock time was 48.57 hours.

5 Conclusion

Silicon has the ability to absorb up to 3.75 lithium ions for each silicon atom. The ability to absorb large
amounts of lithium make silicon an excellent candidate material to increase the efficiency of electrochemical
storage devices. The drawbacks for silicon is the accompanying large volume change that comes as a result
of absorbing large amounts of lithium. The ability to simulate accurately the large physical deformations
that occur during the lithation/delithation of silicon will to help to better how it can best be used as an
anode material.

In this paper it has been demonstrated that the full lithiation and delitiation of a silicon anode can be
simulated using the Material Point Method. A description of the method for used to model diffusion within
MPM was given and validation tests were performed. This paper presented a coupled chemical-mechanical
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model that couples stress to the diffusion process and concentration to the constitutive model for stress.
The coupled chemical-mechanical model was implemented in the Uintah Computational Framework’s MPM
component. Multiple numerical simulations were run to explore the different possible choices that could
be made pertaining to constitutive model selection, boundary conditions, and parameter selection. Using
what was learned from the different numerical simulations a full lithiation/delitiation cycle simulation was
performed.

The implementation of the coupled chemical-mechanical model into the Uintah Computational Frame
work allows for Uintah MPM to be used as a tool to for future work in examining different anode geometries,
material substrates, and flux rates.

In future work methods for modeling fracture need to be introduced into the Uintah framework in order
to better simulate the full physical effects of lithiation and delithation on a silicon anode. In this current
work the affects of an applied voltage have been approximated using the flux boundary condition. Future
work needs to be done to implement the full electrochemistry in to the numerical models.
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[12] Francis Larché and John W. Cahn. A nonlinear theory of thermochemical equilibrium of solids under
stress. Acta Metallurgica, 26(1):53 – 60, 1978.
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