
IV International Conference on Particle-based Methods – Fundamentals and Applications
PARTICLES 2015

E. Oñate, M. Bischoff, D.R.J. Owen, P. Wriggers & T. Zohdi (Eds)

IMPROVING ACCURACY IN PARTICLE METHODS
USING NULL SPACES AND FILTERS

Chris Gritton1, Martin Berzins2, Robert M Kirby3

SCI Institute, University of Utah, Salt Lake City, USA
1 cgritton@sci.utah.edu 2 mb@sci.utah.edu 3 kirby@sci.utah.edu

Key words: Particle in Cell Method, Ringing Instability, Singular Value Decomposition,
Material Point Method

Abstract. While particle-in-cell type methods, such as MPM, have been very successful
in providing solutions to many challenging problems there are some important issues that
remain to be resolved with regard to their analysis. One such challenge relates to the
difference in dimensionality between the particles and the grid points to which they are
mapped. There exists a non-trivial null space of the linear operator that maps particles
values onto nodal values. In other words, there are non-zero particle values values that
when mapped to the nodes are zero there. Given positive mapping weights such null
space values are oscillatory in nature. The null space may be viewed as a more general
form of the ringing instability identified by Brackbill for PIC methods. It will be shown
that it is possible to remove these null-space values from the solution and so to improve
the accuracy of PIC methods, using a matrix SVD approach. The expense of doing this
is prohibitive for real problems and so a local method is developed for doing this.

1 Introduction to Particle in Cell Methods

Particle-in-cell, PIC, methods have been in use and development since the mid 1950’s.
The original PIC method was developed by F.H. Harlow as a hydrodynamics code [7]
to handle fluid dynamics problems that involved large slips and distortions. The PIC
method combines both Lagrangian and Eulerian components. The Lagrangian compo-
nent involved particles that could be advected over the given domain and the Eulerian
component involved a grid that would be used to perform calculations. While successful
at achieving its original intent the original PIC was shown in the work done in the 1970s
and 1980s [8, 3] to be subject to errors that are introduced into PIC calculations due to
an aliasing affect caused by a mismatch in the degrees of freedom at the cell compared to
the degrees of freedom at the particles. Brackbill [3] stated that, ”Because the number
of particles is finite, the number of Fourier modes is also finite. Thus, when there are n
particles in each cell, there are n times as many Fourier modes as there are grid points.”

1

C.E. Gritton, M.Berzins and R.M.Kirby

When values are mapped from nodes to particles the lack of resolution at the nodes com-
pared to resolution at the particles can cause an aliasing error. Again to quote Brackbill,
”Aliases occur because all Fourier modes with wavelengths shorter than the grid spacing
are indistinguishable at the grid points.” [3].

The fluid implicit particle, FLIP, [4] method is a modification to the original PIC
method that is applied to fluid dynamics problems. Like the PIC methods that have been
used in plasma simulations, the FLIP method also has material properties that are car-
ried with the Lagrangian particles. One major difference though from other PIC methods
is that in most PIC methods velocities are calculated on the grid and then interpolated
to the particles. In FLIP the change in velocity is calculated at the grid level and then
interpolated to the particles where the particle velocity is then updated. By doing this
there is a reduction in the numerical diffusion or viscosity due to interpolation. A deriva-
tive of the FLIP method is the material point method, MPM, [11] which extends the
FLIP method to solid mechanics problems. Despite these and many other developments
in particle methods [2, 1, 10, 12] the understanding of this phenomenon has not increased
greatly. The intention here is to shed some light upon this issue.

2 The PIC Method Applied to Gas Dynamics

In considering the ringing instability Brackbill [3] started with simple gas dynamics
linearized equations

∂ρ1

∂t
+ u0

∂ρ1

∂x
+ ρ0

∂u1

∂x
= 0 (1)

ρ0

[
∂u1

∂t
+ u0

∂u1

∂x

]
+
∂p1

∂x
= 0, (2)

where u0 and ρ0 are constants representing the constant flow and the initial uniform
density, respectively, and u1 and ρ1 are the unknown velocity and density. Substituting
p1 = c2ρ1 where c is the wave speed and rewriting these equations in terms of their
material derivative,

D(.)

Dt
=
∂(.)

∂t
+ u0

∂(.)

∂x
, (3)

After setting ρ0 = 1, we get the following set of coupled equations,

Dρ1

Dt
+
∂u1

∂x
= 0, (4)

Du1

Dt
+ c2∂ρ1

∂x
= 0. (5)

Applying the D(.)
Dt

operator to equation 4 and the ∂(.)
∂x

operator to equation 5 gives, after
some simple manipulation, the form of the wave equation on a grid moving with the

2

C.E. Gritton, M.Berzins and R.M.Kirby

velocity u0 as,

D2ρ1

Dt2
= c2∂

2ρ1

∂x2
. (6)

If our initial conditions are ρ1(x, 0) = f(x) and ∂ρ1(x,0)
∂t

= 0 and the boundary conditions
are periodic then the solution [9] in the fixed frame is the modified d’Alembert’s formula,

ρ1(x, t) =
1

2
(f(x− (c− u0)t) + f(x+ (c− u0)t)). (7)

2.1 Mapping Matrix

In particle methods, it is necessary to map values from the particles to the nodes [11, 2].
For example, one mapping of values gp, where gp = g(xp) are the values at particles, to
the nodes can be written as,

gi =

∑
p gpφip∑
p φip

, (8)

=
∑
p

Sipgp. (9)

where φip is the linear basis function φi(x) with value 1 at node xi and zero at other
nodes evaluated at the particle point xp. This mapping from particles to node can also
be expressed in terms of a system-wide matrix

gi = Sipgp, (10)

where gi contains the mapped values at the nodes and gp are the values at the particles.

2.2 PIC Method Description

One PIC type approach maps particle values to the nodes and then calculates the gra-
dient by taking the gradient of the interpolating function. Using the piecewise linear basis
functions, φi(x), the data values at the nodes the linear approximation to the function
g(x) can be defined as follows,

gl(x) =
∑
i

giφi(x). (11)

The gradient of the function g(x) can be defined as,

∇gl(x) =
∑
i

gi∇φi(x). (12)

3

C.E. Gritton, M.Berzins and R.M.Kirby

Figure 1: Computed versus true solution for ∂g(x)
∂x

For a piecewise linear function, the gradient of φi(x) is defined as,

∇φi(x) =

{
1
h

if xi−1 ≤ x < xi
−1
h

if xi ≤ x < xi+h.
(13)

When using a piecewise linear basis function, the gradient is piecewise constant across each
interval. Figure 1 shows the comparison between the computed gradients at the particles
and the true solution given by g(x) = e−60(x−0.5)2 and so ∂g(x)

∂x
= −120(x− 0.5)e−60(x−0.5)2 .

The pairing of point values is due to the piecewise constant derivative of the linear basis
functions.

3 Null Space of the Mapping Matrix

The matrix Sip is rectangular and may have a nontrivial nullspace. For example, let
c be a vector in Rn. If Sipc = 0, then we say that c is in the nullspace of Sip. We can
determine the nullspace of Sip by making use of its singular value decomposition, SVD
[5]. Taking the SVD of Sip gives the following decomposition,

Sip = UΣVT , (14)

where U has dimension m by m, Σ is m by n, and V is n by n. The matrices U and V
are unitary, meaning that the columns are orthonormal [13]. In other words, if ui and uj
are columns of the matrix U , then,

uTi uj = δij, (15)

where the superscript T is the transpose of the vector and δij is the Kroenecker delta.
The columns of U and V are orthogonal, linearly independent and span the spaces Rm

and Rn respectively, [13]. Any vector a ∈ Rm can be expressed as a linear combination
of the columns of U.

a = c1

u1

+ · · ·+ cm

um
 (16)

4

C.E. Gritton, M.Berzins and R.M.Kirby

where c1, . . . , cm are constants. The matrix Σ is an m by n matrix of the form

Σ =

σ1 0 . . . 0 0 . . . 0
0 σ2 . . . 0 0 . . . 0
...

...
. . .

...
...

... 0
0 0 . . . σr 0 . . . 0
0 0 . . . 0 0 . . . 0
...

... . . .
...

...
. . .

...
0 0 . . . 0 0 . . . 0

(17)

in which the columns 1 to r are zero apart from their diagonal elements which contain
the nonzero singular values σ1, . . . , σr and the columns r+ 1 to n are zero, [5, 13]. Taking
the matrix product of Σ and VT , gives,

ΣVT =
(
VΣT

)T
=

 σ1v1 . . . σrvr 0 ∗ vr+1 . . . 0 ∗ vn

T

. (18)

Consequently the column vectors vr+1 to vn span the nullspace of Σ, which in turn means
that they span the nullspace of Sip. From equation 16, any vector can be decomposed into
its orthogonal components [13]. Since the columns of V are orthogonal, they form a basis
for Rn, which means that any vector b ∈ Rn can be expressed as a linear combination of
the columns of V,

b = c1

v1

+ · · ·+ cr

vr

+ cr+1

vr+1

+ · · ·+ cm

vn

 .
︸ ︷︷ ︸

null(Sip)

(19)

From this it can be seen that a portion of b is in the nullspace of Sip. Using the inner
product [13] allows the components of a vector that are in the null space to be found.
Given a vector up if we define the vector ri as,

ri = up − (vTi up)vi, (20)

then as (vTi ri) = 0 it follows that ri, has no component in the direction of vi. The vector
up can now be expressed as linear combination of two vectors,

up = (vTi up)

vi

+

ri

 . (21)

5

C.E. Gritton, M.Berzins and R.M.Kirby

Repeating this process using the first r column vectors of V , and defining the vector r by,

r = up −
r∑
i=1

(vTi up)vi, (22)

gives a vector, r, that is the sum of the components of up that lie entirely in the nullspace
of Sip. The filtered form of up with no nullspace component is denoted here by uFp and
given by

uFp =
r∑
i=1

(vTi up)vi. (23)

This filtering operation can be described using a Matlab style of syntax in a function
called Filter() that takes as its parameters an n dimensional vector up and the matrix
Sip, uses a function called svd(), which decomposes a matrix into U, Σ, and V and a
function called rank(), which returns the number of singular values in a matrix. The
function returns the filtered form of uFp in up

function Filter(up, Sip)
U, S, V = svd(Sip) \\ S = singular values
k = rank(S)
r = 0
for i = 1 to k

r = r + (up’ * V(:,i))*V(:,i)
end
return r

The central idea of this paper is to use a filter such as this to remove numerical noise
associated with the null space.

3.1 Removing the Nullspace

Equation 11 maps particle values to the nodes. In matrix form, this is,

gi = Sipgp. (24)

At this point, the nullspace component of gp has been removed by the nature of the map-
ping. It is at the next step in the computation, equation 12, that a nullspace component
can be re-introduced. If we express the computed gradients at the particles, ∇gp, in the
vector form dgp then we can decompose the vector into a nullspace and a non-nullspace
component in the same way as above. Figure 2 show what the nullspace components look
like. Once the nullspace component is known, it can be removed from the computed gra-
dient, to get a smoothed version of dg. Figure 3 show dg with the nullspace component
removed.

6

C.E. Gritton, M.Berzins and R.M.Kirby

Figure 2: Nullspace of computed ∂g(x)
∂x

Figure 3: The results of ∂g(x)
∂x with the nullspace component removed

3.2 Nodalwise Noise Removal

Using singular value decomposition for the removal of nullspace noise works well for
small one-dimensional problems, but it does not scale well when running a multidimen-
sional simulation across multiple cores. A second issue is that the computational com-
plexity of generating the matrix V with a singular value decomposition is O(m2n + n3)
[5]. In order to have a method for removing the nullspace noise that scales well across
hundreds of cores, we need a new approach that works locally across just a few nodes and
not the entire set of nodes.

3.2.1 Local Method

This method takes a different approach then the SVD method to removing the nullspace
components. The key idea in the local method is to use the already mentioned fact that
any vector, a ∈ Rn, can be decomposed into a nullspace and non-nullspace component, so
when the matrix Sip is applied to the vector a, the nullspace portion of a is removed. In
our case, the gradient at the particles is computed by first mapping particle values to the
nodes, using equation 9. and then computing the gradients at the particles by using the
gradient of the the interpolating function that interpolates values from nodes to particles,
equation 12. When this happens, a nullspace component is introduced by this gradient
calculation. Taking advantage of the observation made earlier, if the newly computed

7

C.E. Gritton, M.Berzins and R.M.Kirby

Figure 4: Comparison between the true solution and the computed solution using the local method as
a filter for ∂g

∂x

gradient values are mapped back to the nodes,

∇gi =

∑
p φip∇gp∑
p φip

, (25)

or in matrix form,
∇gi = Sip∇gp, (26)

then its nullspace component is removed. With gradient values mapped to the nodes, all
that needs to be done now is to interpolate the values back to the particles,

∇gp =
∑
i

∇gi φip. (27)

While there is no nullspace component at the nodes, there is nothing to prevent nullspace
noise from being introduced at the particle via the interpolation process. Furthermore,
there is no longer a need to explicitly calculate the nullspace in order to smooth out
the particle gradients. Figure 4 show a comparison between the true gradient and the
calculated solution at the particles.

3.3 PIC Formulations for Compressible Flow

The approach used here is to map only the particle values for ρ to the nodes nodes,
to compute the gradient of ρ, and update the particle values of u. The updated particle
values for u are then mapped to the nodes. The gradients of u are then calculated and
are used to update the particle values of ρ. Finally, the particles are then moved.

This appraoch has at its heart a stable nodal method [6]. We use Formulation 2 as
defined by [6] in its vector form (p36-37) and its filtered form as defined above using the
Filter function.

8

C.E. Gritton, M.Berzins and R.M.Kirby

Formulation 2 Formulation 2 Filtered

1. uti =
∑np

p=1 Sipu
t
p

2. ρt+1
p = ρtp + cdt

h
(uti+1 − uti)

3. ρt+1
i =

∑np
p=1 Sipρ

t+1
p

4. ut+1
p = utp + cdt

h
(ρt+1
i+1 − ρt+1

i)

5. xt+1
p = xtp + vdt

1. uti =
∑np

p=1 Sipu
t
p

2. du = Filter((uti+1 − uti), Sip)

3. ρt+1
p = ρtp + cdt

h
(du)

4. ρt+1
i =

∑np
p=1 Sipρ

t+1
p

5. dρ = Filter((ρt+1
i+1 − ρt+1

i), Sip)

6. ut+1
p = utp + cdt

h
(dρ)

7. xt+1
p = xtp + vdt

Note that to avoid confusion in notation, the variable v is used instead the variable u0

that is found in equations 1 and 2 to represent the particle velocity. The nullspace filter
is applied to this model by applying the filter function to the updates to u and ρ. In
this case we first need to construct the matrix Sip. It is important to remember that
this needs to be done after each iteration because the mapping is dependent on particle
position. Two options are available when filtering. The first is to use the full SVD filter
while the second is to use the local filter. It is now possible to look at how the nullspace
noise can be filtered out during each computation cycle. As discussed above, nullspace
noise can be injected any time a value goes from node to particle. When the interpolation
is linear, the noise tends to be minimal, but in the cases when the piecewise constant
gradient calculated using nodal values is mapped to a particle, then there tends to be
more nullspace noise. There are two points in Formulation 2 when this occurs. The first
is when the gradient of ui is calculated, and the second is when the gradient at ρi is
calculated.

3.4 Comparison of Filtered and Nonfiltered Formulations

Figures 5, 6, and 7 are snapshots from a simulation that was run comparing Formulation
2 without the nullspace filter and Formulation 2 with the nullspace filter. As can be seen
by Figure 6 at time step 700, the method without the nullspace filter is showing the
results of the numerical nullspace noise. On the other hand, it is shown in Figure 7
that the method with the nullspace filter is still stable at 1000 steps even though the
original method is clearly unstable. One interesting feature of the two filters is that
if the calculation is continued out too 5000 steps the solution obtained with the local
filter remains stable but the SVD filtered solution does finally become unstable. The two
solutions are shown in Figure 8 We have also experimented with the use of this filter
with the Material Point Method. Numerical calculations show that the MPM method

9

C.E. Gritton, M.Berzins and R.M.Kirby

Figure 5: Initial time step

Figure 6: Time step 700

Figure 7: Time step 1000

Figure 8: Time step 5000

10

C.E. Gritton, M.Berzins and R.M.Kirby

has some important advantages over the PIC approach, [6]. In part these appear due to
the different formula used by MPM in discretising the wave equation. Our observation is
that it is the grid crossing error derived by [12] and discussed by [10] that may dominate
the error in cases such as those considered above, but further work is required.

4 Conclusion

The removal of the nullspace error from the PIC method used has resulted in much
improved stability. While the original method uses an expensive SVD decomposition, a
local method that is much less expensive has also been proposed. This local method also
seems to work well. These ideas have also been applied to the MPM method in work that
will be reported elsewhere.
Acknowledgement: Research was primarily sponsored by the Army Research Labora-
tory and was accomplished under Cooperative Agreement Number W911NF-12-2-0023.
The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the
Army Research Laboratory or the U.S. Government.

REFERENCES

[1] S. Bardenhagen, Energy conservation error in the material point method for solid
mechanics, Journal of Computational Physics, 180 (2002), pp. 383 – 403.

[2] S. Bardenhagen and E. Kober, The generalized interpolation material point method,
Computer Modeling in Engineering and Science, 5 (2004), pp. 477 – 495.

[3] J. Brackbill, The ringing instability in particle-in-cell calculations of low-speed flow,
Journal of Computational Physics, 75 (1988), pp. 469 – 492.

[4] J. Brackbill, D. Kothe, and H. Ruppel, Flip: A low-dissipation, particle-in-cell method
for fluid flow, Computer Physics Communications, 48 (1988), pp. 25 – 38.

[5] G. H. Golub and C. F. V. Loan, Matrix Computations, The John Hopkins University
Press, third ed., 1996.

[6] C.E. Gritton, Ringing Instabilities in Particle Methods, M.S.Thesis in Computational
Engineering and Science, August 2014, School of Computing, University of Utah.

[7] F. H. HarlowThe particle-in-cell method for fluid dynamics, Methods in Computational
Physics, 3 (1964).

[8] A. Langdon, Effects of the spatial grid in simulation plasmas, Journal of Computa-
tional Physics, 6 (1970), pp. 247 – 267.

[9] J. D. Logan, Applied Partial Differential Equations, Springer-Verlag, New York, sec-
ond ed., 2004.

11

C.E. Gritton, M.Berzins and R.M.Kirby

[10] M. Steffen, R. M. Kirby, and M. Berzins, Analysis and reduction of quadrature errors
in the material point method (mpm), International Journal for Numerical Methods in
Engineering, 76 (2008), pp. 922–948.

[11] D. Sulsky, Z. Chen, and H. Schreyer, A particle method for history-dependent mate-
rials, Computer Methods in Applied Mechanics and Engineering, 118 (1994), pp. 179
– 196.

[12] L.T. Tran and J. Kim and M. Berzins, Solving Time-Dependent PDEs using the
Material Point Method, A Case Study from Gas Dynamics, International Journal for
Numerical Methods in Fluids”, 62,7,709–732”,2009.

[13] L. N. Trefethen and I. David Bau, Numerical Linear Algebra, SIAM, 1997.

12

