
RINGING INSTABILITIES IN PARTICLE METHODS

by

Christopher E. Gritton

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computational Engineering and Science

School of Computing

The University of Utah

August 2014



Copyright c© Christopher E. Gritton 2014

All Rights Reserved



T h e  U n i v e r s i t y  o f  U t a h  G r a d u a t e  S c h o o l

STATEMENT OF THESIS APPROVAL

The thesis of Christopher E. Gritton 

has been approved by the following supervisory committee members:

Martin Berzins , Chair 3/10/14
Date Approved

Mike Kirby , Member 3/10/14
Date Approved

Aaron Fogelson , Member 3/16/14
Date Approved

and by Martin Berzins , Chair/Dean of 

the Department/College/School of Computational Engineering and Science

and by David B. Kieda, Dean of The Graduate School.



ABSTRACT

Particle methods have been used in fields ranging from fluid dynamics to plasma physics.

The Particle-In-Cell method and the family of methods that are an extension of it are a

combination of both Lagrangian and Eularian methods. In this thesis, we present a brief

survey of some of the methods and their key components. We show the different methods by

which spatial derviates are computed. We propose a method of showing how the so-called

“ringing instabilies” associated with particle methods arise and a means to remove them.

We also propose that the underlying nodal scheme plays a key role in the stability of the

method. Lastly, different particle methods are explored through numerical simulations and

compared against an analytic solution.
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CHAPTER 1

INTRODUCTION

Since the late 1940s, particle methods [29] have been an evolving and growing topic.

Particle methods have been used to solve problems in fields ranging from plasma physics

to material and fluid mechanics to astrophysics [14, 20, 4, 32, 9]. Along the way, numerous

methods such as Particle-In-Cell, Smoothed-Particle-Hydrodynamics, and Fluid Implicit

Particles [19, 26, 7] have come out of these fields. The Material Point Method, MPM

[32], is a particle method that is currently finding success in computational mechanics.

Another area in which MPM is being used is the field of multiscale/multiphysics simulations

[16, 11, 10, 24].

Given that MPM’s usage is growing in a range of subjects in materials modeling [34, 28,

36, 21] and given it is a particle method, MPM is a good choice for coupling atomistic and

continuum models [24, 16, 11]. Despite these positives, little is known about the stability of

MPM. If MPM is to continue to be used in multiscale modeling more needs to be done to

understand the stability characteristics of the method. The purpose of this thesis is to seek

an understanding of the stability issues associated with particle methods in general and in

particular apply this understanding to MPM.

The contributions of this thesis are concerned with a the study of the “ringing instability”

[5], and consist of two methods for removing the “ringing instability”, and a method for

understanding the underlying nodal scheme.

The rest of the thesis is as follows. First, there will be an overview of the historic develop-

ment of particle methods. The overview will cover those methods that are close derivatives

of the original Particle-In-Cell method. Other particle methods such as Smoothed-Particle-

Hydrodynamics will not be covered. Second is an examination of the different methods

of computing gradients and the stability issues, namely the “ringing instability”, that are

associated with the different methods. Third is an analysis of the underlying nodal schemes

of particle methods and how they affect stability. Finally, there is a comparison of the

different methods.



CHAPTER 2

THE DEVELOPMENT OF PARTICLE

METHODS

This chapter will cover the historical development of particle methods. This will not be

an all-inclusive survey but will cover some of the key points and methods that have helped

to push forward the state-of-the-art in particle methods.

2.1 Harlow’s Particle-in-Cell

The Particle-In-Cell (PIC) method was originally designed to solve fluid dynamics

problems that involve large slips and distortions [17]. Purely Lagrangian methods have been

used to successfully model fluid dynamics problems but have problems with large distortions

and slippages [19]. Purely Eulerian methods do not have problems with distortions and

slippages, but they lack the ability to easily handle boundaries between materials [19]. The

PIC method combines properties from both classes of methods in an attempt to combine

the positives of both the purely Lagrangian and purely Eulerian methods.

In order to better understand how the PIC method works, we will use the following set

of equations that arise from gas dynamics,

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0, (2.1)

ρ

(
∂u

∂t
+ u

∂u

∂x

)
+
∂p

∂x
= 0, (2.2)

p = c2ρ, (2.3)

where Equations 2.1 and 2.2 are the equations for the conservation of mass and momentum,

respectively, and Equation 2.3 is the equation of state. The symbols ρ, u, and p represent

density, velocity, and pressure, respectively, and c is the wave speed. Most PIC codes would

include an equation for the conservation of energy, but for simplification purposes, we focus
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on the conservation of mass and momentum. It is helpful to rewrite these conservation

equations in terms of their material derivatives.

dρ

dt
= −ρ∂u

∂x
, (2.4)

ρ
du

dt
= −c2 ∂ρ

∂x
. (2.5)

PIC discretizes the material domain into mesh cells and represents the solution as

particles on this mesh. In PIC material, properties such as temperature, energy, and velocity

are stored at the cells and mass is carried with the particles. For our example, we are only

concerned with mass and velocity. Other properties such as density and pressure will be

considered as needed.

The first phase in the method is to calculate the cell densities and update intermediate

material values for each cell [17, 18, 13]. The density is calculated by summing up the

particle masses and dividing by the cell volume. For our model problem, we are only

dealing with one material type, thus the density calculation is simply,

ρi =
Nim

h
(2.6)

where Ni are the number of particles in the cell and h is the cell width. The index i will be

used for cell indexing and p will be used for a particle index. With cell densities calculated,

we can now use Equation 2.5 to calculate accelerations for each cell. This is done by using

a centered finite difference scheme at the cell centers:

ρi
dui
dt

= −c2 ρi+1 − ρi−1

2h
. (2.7)

Alternatively, we can rearrange terms to get:

dui
dt

= −c
2

ρi

ρi+1 − ρi−1

2h
(2.8)

= − c2h

Nim

Ni+1m−Ni−1m

2h2
(2.9)

= −c2Ni+1 −Ni−1

2hNi
. (2.10)

Once the accelerations are calculated, we can now update the cell velocity as follows,

ui = uni +
dui
dt
dt, (2.11)

where dt is the time step, and where the velocity ui is an intermediate value for cell velocity.

The second phase of the method [13] is to move the particles. Particle velocities are

calculated via linear interpolation between cell centers using the intermediate cell velocity
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given by Equation 2.11. If a particle is located between cell center i + 1 and cell center i,

the particle velocity is,

up = φi+1,pui+1 + φi,pui, (2.12)

where φ is the linear basis function defined as,

φi(x) =

{
1− x−xi

h if xi − h ≤ x ≤ xi,
1 + x−xi

h if xi < x ≤ xi + h,
(2.13)

and φi,p is φ evaluated using the position of particle p and the location of the center of cell

i, φi,p = φ(xp, xi). The updated position for the particle is now

xn+1
p = xnp + updt. (2.14)

The third phase is to account for cell crossings [13]. If no particles cross into a cell, then

un+1
i = ui, but if a cell does cross over, then we need to account for a change in momentum.

Take, for example, when a particle crosses over from cell i − 1 to cell i, then that particle

carries with it momentum mui−1. We update the new cell velocity by taking into account

the change in momentum caused by the particle crossing as follows,

un+1
i =

Nn
i ui + ui−1

Nn
i + 1

. (2.15)

This same of idea of particle “bookkeeping” needs to be applied to cases where particles

may enter or leave a cell. It is this “averaging out” of a material property over a cell that

leads to the numerical diffusion problems associated with PIC [7]. When we look at the

energy, this averaging out process will always lead to a negative change in kinetic energy

[17].

These three phases compose one computation cycle of the PIC method. The PIC method

developed by Harlow presented a novel method for combining both Lagrangian and Eulerian

methods that could resolve problems associated with material boundaries, slippages, and

distortions. Its drawback is the numerical diffusion of material properties [7].

2.2 Full Particle PIC

In the original PIC method, mass is conserved because it is a material property that

is carried with the particle. As has been discussed above, properties such as energy and

velocity are cell properties that are subject to numerical diffusion [7]. A solution to this

problem is to have the particles carry the material properties. By having velocity and energy

carried with the particles, quantities such as momentum and energy do not suffer from the

numerical diffusion found in the original PIC method [7]. Brackbill makes the distinction
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between the different PIC methods by calling those where only mass and position are carried

with the particles as “classical” PIC and those where mass, position, velocity, and energy

are carried with the particles as “full particle” PIC. This notation will be used here to

distinguish between the two methods.

The idea of carrying material properties with particles comes from the plasma simulation

community [5]. In plasma physics, the simulation of individual particles is next to impossible

given the density of the plasma particles, 1018cm−3 for laboratory plasma and 1018km−3

for space plasmas [12]. In numerical simulations, a large number of plasma particles are

represented by a single particle. Each particle is then given the properties of charge, velocity,

and position. The background grid does not carry any information and is used only for

numerical calculations [5].

Such methods from the plasma simulation community led to the “full particle” PIC

codes for fluids. GAP (grid and particle) is one such method [25] that was developed in

the mid-1970s that used the ideas of placing material properties with the particles instead

of at the cell. A prominent “full particle” PIC method is FLIP (Fluid-Implicit-Particle)

[7]. FLIP is an answer to the numerical diffusion problems that are associated with the

“classical” PIC methods. FLIP has been used in simulations ranging from the animation of

sand for computer graphics [37] to magnetohydrodynamic flow [6]. FLIP is the predecessor

to the Material Point Method [32].

A couple of the key points of “full particle” methods will be covered here along with

some terminology that will be used throughout this thesis. The term node will be used to

indicate the point of intersection at cell corners. Basis functions are the centerpiece of “full

particle” methods. The piecewise linear basis function has already been introduced, but

basis functions do not need to be linear; quadratic and higher order functions are often used

[7, 26, 4, 2]. For the purposes of this thesis, the piecewise linear basis function will be used.

The gradient of the basis function is also a key component to particle methods [8, 32]. The

gradient of the piecewise linear basis function is,

∇φ(x, xi) =

{
− 1
h if xi − h ≤ x ≤ xi

1
h if xi < x ≤ xi + h,

(2.16)

and ∇φip = ∇φ(xp, xi).

One of the first steps in “full particle” methods is to map the velocity and mass to the

nodes as follows [7]:
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mi =
∑
p

φipmp, (2.17)

ui =
∑
p

φipmpup
mi

, (2.18)

where mp and mi represent mass at the particle and node and up and ui represent the

velocity at particle and node, respectively. This mapping is both mass and momentum

conserving [7], ∑
i

mi =
∑
p

mp, (2.19)∑
i

miui =
∑
p

mpup. (2.20)

In any full particle method, a gradient will be calculated. There are multiple ways of

approaching this. For example, we define functions for the velocity and velocity gradient

using the values at the nodes as follows,

u(x) =
∑
i

φi(x)ui (2.21)

∇u(x) =
∑
i

∇φi(x)ui. (2.22)

Because the values, ui, are constants at the nodes, the gradient of the function u(x) ends

up being a sum over the gradients of the linear interpolation functions [8]. This is not the

only method for computing gradients. The next chapter will explore other methods for

computing gradients.

2.3 MPM

The Material Point Method (MPM) is an extension of FLIP that was originally developed

to handle elastic bodies that are in contact with a fluid [32]. Like other “full particle”

methods, properties such as mass, position, and velocity are stored with the particle. For

elastic bodies, strain is another material property that is carried with the particle [32].

The governing equation for elastic materials is defined by the Cauchy momentum equa-

tion,

ρ
Dv

Dt
= ∇ · σ + b (2.23)

where v is velocity, σ is stress, and b is the body force. In the one-dimensional form, this

becomes,

ρ
Dv

Dt
=
∂σ

∂x
+ b. (2.24)
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As in a finite element method, one of the first steps in the derivation of MPM is to put the

governing equation into its weak formulation [32],∫
Ω
wρ

Dv

Dt
dΩ =

∫
Ω
w
∂σ

∂x
dΩ +

∫
Ω
wb dΩ, (2.25)

= −
∫

Ω

∂w

∂x
σ dΩ +

∫
Ω
wb dΩ + wσ|∂Ω, (2.26)

where w is the test function.

In the original MPM, the density function is defined at the particles as [32],

ρ(x) =
∑
p

mpδ(x− xp), (2.27)

where the Dirac delta function is used as the particle basis function. Letting w be the

standard piecewise linear basis function, wi = φ, and
Dvj
Dt = aj , the left-hand side of the

weak formulation about any node i is given by,∫
Ωi

φiρa dΩi ≈
∫

Ωi

∑
j

φjajφiρdΩi, (2.28)

≈
∫

Ωi

∑
j

aj
∑
p

φiφjδ(x− xp)mpdΩi, (2.29)

=
∑
j

aj
∑
p

φipφjpmp. (2.30)

The set of terms,
∑

p φipφjpmp, form what is called the consistent mass matrix, Mi,j [33].

Mass lumping can be applied [31] to get the following,

aimi = ai
∑
p

φipmp. (2.31)

The first term on the right-hand side of Equation 2.26 is the internal force. Let σ(x) be

defined as

σ(x) =
∑
p

δ(x− xp)σp, (2.32)

then the internal force at node i is defined as follows,

fi = −
∫

Ωi

∇φiσ (2.33)

≈ −
∫

Ωi

∇φi
∑
p

δ(x− xp)σp, (2.34)

= −
∑
p

σp

∫
Ωi

∇φiδ(x− xp), (2.35)

= −
∑
p

∇φipσp, (2.36)

(2.37)
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where σp is the assigned particle stress. The second and third terms together constitute the

external force and for simplicity will be combined into one term, bi =
∫

Ωwb+ wσ|∂Ω.

As stated above, in MPM, the particle basis function is the Dirac delta function. The

Generalized Interpolation Material Point Method (GIMP) extends MPM by generalizing

the particle basis function [2]. In GIMP, the particle basis function is defined by χp(x).

GIMP uses the particle basis function defined as [2],

χp(x) =

{
1 if x ∈ Ωp,

0 otherwise,
(2.38)

as one possible choice, where Ωp is the domain of the particle. The new mapping function

φip is defined as,

φip =
1

Vp

∫
Ωp

χp(x)φi(x) dΩp, (2.39)

where Vp is the particle volume. Note that if χp(x) = δ(x − xp)Vp is used as the particle

basis function, then we have the original MPM method [2]. For the rest of this thesis, the

Dirac delta function will be used as the particle basis function.

With the above formulations, the steps to the MPM method can now be laid out as

follows: Firstly, particle masses and velocities are mapped to the nodes,

mi =
∑
p

φipmp, (2.40)

vni =

∑
p φipv

n
pmp

mi
, (2.41)

where n is the nth time step. Secondly, internal forces at the nodes are calculated,

fi = −
∑
p

∇φipσp. (2.42)

Thirdly, the accelerations at the nodes are calculated,

ai =
fi + bi
mi

. (2.43)

Fourthly, the velocities at the nodes are updated,

vn+1
i = vni + aidt. (2.44)

Steps five and six update the velocity and displacement of the particles,

vn+1
p = vnp + dt

∑
i

φipai, (2.45)

un+1
p = unp + dt

∑
i

φipv
n+1
i . (2.46)
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Step seven is to calculate the velocity gradients at the particles,

vxp =
∑
i

∇φipvn+1
i , (2.47)

where vxp is the gradient of v for particle p. The final step of the MPM method is to update

stress. This step will depend on the stress model. For this thesis, a linear elastic model will

be used.



CHAPTER 3

COMPUTING GRADIENTS

One of the key components in particle methods is the means of computing gradients

and transferring their computed gradient values to particles. This chapter explores the

different means by which gradients are calculated. It should be noted that in each of

the methods, there may be other steps that follow after the gradient has been calculated

at the nodes and before updated values are interpolated to the particles. For example,

accelerations at the nodes may be calculated by taking the gradient of stress or pressure.

The calculated acceleration may then be used to calculate an updated velocity at a node

that is then interpolated to the particle to update a position. For the purposes of this

chapter, interpolation of the computed values to the particle will directly follow the gradient

calculation. The purpose here is to focus the attention on how gradients are calculated and

the possible problems that may arise with these methods for doing so.

3.1 The Test Problems

In order to explore the different means of computing gradients, two example functions

on which we can test the different methods will be used. They are,

f(x) = sin 2πx (3.1)

g(x) = e−60(x−0.5)2 . (3.2)

These two functions work well for demonstration purposes because, firstly, they are periodic

or can be made to be periodic over the domain, [0, 1], which allows us to focus on the

computational methods and to not worry about boundary conditions. Secondly, there exists

an analytic solution for the gradient in each case,

∂f(x)

∂x
= 2π cos 2πx (3.3)

∂g(x)

∂x
= −120(x− 5)e−60(x−0.5)2 . (3.4)
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Figures 3.1 and 3.2 show the plots for both the above-mentioned functions and their

computed gradients. A particle distribution of two particles evenly distributed between

each pair of nodes will be used for the calculation in this chapter.

3.2 Mapping to the Nodes

In most particle methods, one of the first steps that needs to be taken is to map material

values from the particles to the nodes. Mass is often the first quantity to be mapped because

the nodal mass is used in computing other nodal values [8, 32, 2]. If we let mp be the particle

mass, then we get the following equation for the mass, mi, at the nodes,

mi =
∑
p

mpφip, (3.5)

where φip is the linear basis function that was defined in the previous chapter, section 2.13.

If the value of mp is set to one, then Equation 3.5 simplifies to,

mi =
∑
p

φip. (3.6)

The mapping of values gp, where gp = g(xp), to the nodes can be written as,

gi =

∑
pmpgpφip

mi
, (3.7)

=

∑
p gpφip∑
p φip

, (3.8)

=
∑
p

Sipgp. (3.9)

This mapping from particles to node can also be expressed in terms of a system-wide matrix

gi = Sipgp, (3.10)

where gi contains the mapped values at the nodes and gp are the values at the particles.

Sip is the mapping matrix defined by,

Sip =


S1,1 S1,2 0 0 0 0 0 S1,n−1 S1,n

S2,1 S2,2 S2,3 S2,4 0 0 0 0 0
...

...
. . .

. . .
. . .

. . .
. . .

...
...

0 0 0 0 0 Sm−1,n−3 Sm−1,n−2 Sm−1,n−1 Sm−1,n

Sm,1 Sm,2 0 0 0 0 0 Sm,n−1 Sm,n

 . (3.11)

Figure 3.3 and Figure 3.4 shows the mapping of particle values to the nodes.

For the purposes of this chapter, piecewise linear basis function continue to be used,

φi(x) =

{
1− x−xi

h if xi − h ≤ x < xi

1 + x−xi
h if xi ≤ x < xi + h,

(3.12)

but other higher order basis functions could be used.
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3.3 Classical PIC

As noted above, PIC is different from other particle methods in that material properties

are stored at the cell level, and only mass and position are carried by the particles. In order

to compute the gradient, a centered finite difference scheme at the cell centers is used,

∂fi
∂t

=
fi+1 − fi−1

2h
. (3.13)

After the gradient is calculated at the cell center, linear interpolation is used to calculate

the values at the particles.

fp = φifi + φi+1fi+1, i < p ≤ i+ 1 (3.14)

Figures 3.5 and 3.6 show the plots for the computed gradients.

3.4 Full Particle PIC Method 1

In “full particle” PIC methods, material properties are carried with the particles and

consequently, there are multiple ways of computing the gradients. The first of the methods

has three steps. The first step is to map the material properties to the nodes,

gi =

∑
p gpφip∑
p φip

. (3.15)

The second step is to compute the gradients at the nodes. There are a couple of ways to do

this. For the purposes of this section, a centered difference finite difference method is used,

dgi =
gi+1 − gi−1

2h
. (3.16)

The last step is to map the gradient values at the nodes back to the particles using

interpolation.

dgp =
∑
i

dgiφip. (3.17)

3.5 Full Particle PIC Method 2

Another approach to “full particle” methods follows the same first step as Method 1 by

mapping particle values to the nodes. The second step differs in that instead of calculating

gradients at the nodes and then mapping those values back to the nodes, the gradient is

calculated by taking the gradient of the interpolating function. Using the piecewise linear
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basis functions, φi(x), the data values at the nodes the function g(x) can be defined as

follows,

g(x) =
∑
i

giφi(x). (3.18)

The gradient of the function g(x) can be defined as,

∇g(x) =
∑
i

gi∇φi(x). (3.19)

For a piecewise linear function, the gradient of φi(x) is defined as,

∇φi(x) =

{
− 1
h if xi−1 ≤ x < xi

1
h if xi ≤ x < xi+h.

(3.20)

When using a piecewise linear basis function, the gradient is piecewise constant across each

interval. Figure 3.7 and Figure 3.8 show the comparison between the computed gradients at

the particles and the true solution. As can be seen by Figures 3.7 and 3.8, the resolution

at which we can compute gradients is no smaller then the nodal spacing. However, the

particle spacing is at a finer resolution still than that of nodal spacing.

3.5.1 Ringing Instability

This mismatch between the mesh and particle resolutions is responsible for the aliasing

error known as the “ringing instability” [5]. Aliasing occurs when data of higher frequency

is indistinguishable from sampled data of a lower frequency. In Figure 3.9, it can be

seen that the the higher frequency data in red and the lower frequency data in blue are

indistinguishable at the sample points in black. In particle methods, this aliasing happens

when data at a higher degree of freedom at the particles are mapped to a lower degree

of freedom at the nodes and then mapped back to the higher degree of freedom particles.

Brackbill explained it this way [5],

Since all modulations of the particle density which have the same amplitudes at
the grid points will produce the same interactions, two different modulations of
the particle density with wavelengths that differ only by harmonics of the the
grid wave number, kg = π

∆x , are indistinguishable on the grid. They are called
aliases. The aliases introduce resonances in the dispersion relation, which may
cause instability through a nonlinear interaction.

Figure 3.10 shows how this occurs when gradients are calculated using Method 2. When

we compute the gradients at each particle, the “ringing instability” is introduced into the

nullspace of the particle to node mapping matrix [3, 22]. To gain a better understanding

of how the “ringing instability” is introduced into a calculation and how the nullspace and

“ringing instability” are connected, we start by looking at the how particle data are mapped

to the nodes.
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3.5.2 The Mapping Matrix Sip

Using Equation 3.10, we can define the mapping from particles to nodes as a matrix

Sip. If there are m nodes and n particles, then the matrix Sip is m by n with m < n. The

matrix Sip is rectangular and it has a nontrivial nullspace. For example, let a be a vector

in Rn. We can decompose this vector into two vectors such that a = b + c. Applying the

matrix Sip to a we get,

Sipa = Sipb + Sipc. (3.21)

If Sipc = 0, then we say that c is in the nullspace of Sip. In this next section, it will be

shown how we can decompose a vector in Rn into a nullspace and non-nullspace component.

3.5.3 Defining the Nullspace

We can define the nullspace of Sip by making use of its singular value decomposition,

SVD [22]. Taking the SVD of Sip gives the following decomposition,

Sip = UΣVT , (3.22)

where U has dimension m by m, Σ is m by n, and V is n by n. The matrices U and V

are unitary, meaning that the columns are orthonormal [35]. In other words, if ui and uj

are columns of the matrix U , then,

uTi uj = 0 (3.23)

and

uTi ui = 1, (3.24)

where the superscript T is the transpose of the vector.

Given that the columns of U and V are orthogonal, they are linearly independent and

therefore span the entire spaces Rm and Rn, respectively [35]. This means, for example,

that any vector a ∈ Rm can be expressed as a linear combination of the columns of U.

a = c1

u1

+ · · ·+ cm

um
 (3.25)

where c1, . . . , cm are constants.
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The matrix Σ is an m by n diagonal matrix of the form

Σ =



σ1 0 . . . 0 0 . . . 0
0 σ2 . . . 0 0 . . . 0
...

...
. . .

...
...

... 0
0 0 . . . σr 0 . . . 0
0 0 . . . 0 0 . . . 0
...

... . . .
...

...
. . .

...
0 0 . . . 0 0 . . . 0


(3.26)

where the columns 1 to r contain the nonzero singular values σ1, . . . , σr and the columns

r + 1 to m are columns of zeros.

When we take the matrix product of Σ and VT , we get the following,

ΣVT =
(
VΣT

)T
= (VΣ)T =

 σ1v1 . . . σrvr 0 ∗ vr+1 . . . 0 ∗ vm


T

. (3.27)

From this, we can see that the column vectors vr+1 to vm span the nullspace of Σ, which

in turn means that they span the nullspace of Sip.

As mentioned earlier, in Equation 3.25, any vector can be decomposed into its orthogonal

components [35]. Since the columns of V are orthogonal, they form a basis for Rn, which

means that any vector b ∈ Rm can be expressed as a linear combination of the columns of

V,

b = c1

v1

+ · · ·+ cr

vr

+ cr+1

vr+1

+ · · ·+ cm

vm

 .
︸ ︷︷ ︸

null(Sip)

(3.28)

From this it can be seen that a portion of b is in the nullspace of Sip.

3.5.4 Finding the Residual Vector

Now that we have a basis for the nullspace of Sip, we can find the components of the

particle vectors up and ρp that are in the nullspace. In order to do this, we use the inner

product [35]. The geometric definition of the inner product of two vectors is,

xTy = ‖x‖‖y‖cosθ. (3.29)

If we substitute up and the ith column vector, vi, of V into the equation, we get,

uTp vi = ‖up‖‖vi‖cosθ. (3.30)
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uTp vi = ‖up‖cosθ, (3.31)

which is the length of orthogonal projection of up onto vi, or the amount that up goes in

the direction of vi. If we define the vector ri as,

ri = up − (vTi up)vi, (3.32)

then what is left is a vector, ri, that has no component in the direction of vi. The vector

up can now be expressed as linear combination of two vectors,

up = (vTi up)

vi

+

ri

 . (3.33)

If we repeat this process using the column vectors 1 to r of V , and define the vector r

by,

r = up −
r∑
i=1

(vTi up)vi, (3.34)

then the vector, r, is the components of up that lie entirely in the nullspace of Sip.

3.5.5 The getRes() Function

We have described the steps for finding what portion of a vector lies in the nullspace of

Sip. Here is an enumeration of the steps that are to be taken to find the residual vector.

We can place these steps inside a function called getRes() that takes as its parameters

an n dimensional vector a and the matrix Sip. We will also use a function called svd(),

which decomposes a matrix into U, Σ, and V and a function called rank(), which returns

the number of singular values in a matrix. Using a R©Matlab style of syntax, here is the

function.

function getRes(a, Sip)

U, S, V = svd(Sip) \\ S = singular values

k = rank(S)

for i = 1 to k

r = a - (a’ * V(:,i))*V(:,i)

end

return r
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3.5.6 Removing the Nullspace

Equation 3.18 maps particle values to the nodes. In matrix form, this is,

gi = Sipgp. (3.35)

At this point, the nullspace component of gp has been removed by the nature of the mapping.

It is at the next step in the computation, Equation 3.19, that a nullspace component can be

re-introduced. If we express the computed gradients at the particles, ∇gp, in the vector form

dgp then we can decompose the vector into a nullspace and a non-nullspace component.

Figure 3.11 and Figure 3.12 show what the nullspace components look like.

Now that we have the nullspace component, we can remove it from the computed

gradient,

dgn = dg − rdg, (3.36)

to get a smoothed version of dg. Figure 3.13 and Figure 3.14 show the results of df and

dg with the nullspace component removed.

3.5.7 Nodalwise Noise Removal

Using singular value decomposition for the removal of nullspace noise works well for

small one-dimensional problems, but it does not scale well when running a multidimensional

simulation across multiple cores. A second issue is that the computational complexity of

generating the matrix V with a singular value decomposition is O(m2n+n3) [15]. In order

to have a method for removing the nullspace noise that scales well across hundreds of cores,

we need a new approach that works locally across just a few nodes and not the entire set

of nodes.

3.5.7.1 Local Method

This method takes a different approach then the SVD method to removing the nullspace

components. The key idea in the local method is to use the already mentioned fact that

any vector, a ∈ Rn, can be decomposed into a nullspace and non-nullspace component,

a = b + c. When the matrix Sip is applied to the vector a, the nullspace portion of a is

removed,

Sipa = Sipb + Sipc (3.37)

= Sipb, (3.38)

where c is the nullspace component, Sipc = 0, of the vector a.
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For Method 2, the gradient at the particles is computed by first mapping particle values

to the nodes,

gi =

∑
p φipgp∑
p φip

(3.39)

and then computing the gradients at the particles by using the gradient of the the interpo-

lating function that interpolates values from nodes to particles,

∇gp =
∑
i

∇φipgi. (3.40)

When this happens, a nullspace component is introduced by this gradient calculation.

Taking advantage of the observation made earlier, if the newly computed gradient values

are mapped back to the nodes,

∇gi =

∑
p φip∇gp∑
p φip

, (3.41)

or in matrix form,

∇gi = Sip∇gp, (3.42)

then its nullspace component is removed. Let the vector representing calculated gradients

at the particle values be decomposed into its non-nullspace, ∇bp, and nullspace, ∇cp,

components,

∇gp = ∇bp +∇cp. (3.43)

Then mapping gradient values at the particles back to the nodes we get,

∇gi = Sip∇gp (3.44)

= Sip∇b +∇Sipc (3.45)

= Sip∇b, (3.46)

which removes the null component that was introduced by the gradient calculation. With

gradient values mapped to the nodes, all that needs to be done now is to interpolate the

values back to the particles,

∇gp =
∑
i

∇gi φip. (3.47)

While there is no nullspace component at the nodes, there is nothing to prevent nullspace

noise from being introduced at the particle via the interpolation process. Furthermore, there

is no longer a need to explicitly calculate the nullspace in order to smooth out the particle

gradients. Figures 3.15 and 3.16 show a comparison between the true gradient and the

calculated solution at the particles.
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3.6 MPM

MPM differs from the Full Particle methods described in this section in that it computes

the gradient by taking the gradient of the mapping function. The first step in MPM is to

compute the mass at the nodes in the same way as the other “full particle” methods. The

second step is to map to the nodes using the gradient of the mapping function and dividing

by the nodal mass,

dgi =

∑
p gp∇φip∑
p φip

. (3.48)

The next step is to map the gradient values back to the particles by using linear interpola-

tion,

dgp =
∑
i

dgiφip. (3.49)

Figure 3.17 and Figure 3.18 show a comparison between the true gradient and the calculated

solution at the particles using the MPM version on the functions f(x) and g(x) defined by

Equations 3.1 and 3.2.

3.7 Comparison of Methods

Now that we have described all the different methods for computing gradients, we can

do a side-by-side comparison of the different methods. In the first test case, the gradients

are computed using a uniform distribution of particles over a grid with two particles per

grid. Since the true solution is known, the error in the L2 norm can be computed.

A second test case is presented that is more representative of what happens when

computing gradients using particle methods. Normally in a simulation, particles will not

remain evenly distributed over the grid. To represent this, a set of particles are evenly

distributed between nodes like in the first test case. Then each particle is randomly shifted

a varying amount to the left or right of its original position. The shifting of particles is

limited so that no particle will cross over a node or another particle. Gradients for the

different methods are then calculated and an error in the L2 norm is calculated. This

process is then repeated a given number of times and then an average is calculated.

In Table 3.1, the results of the two test cases are given. For both test cases, the nodes

are evenly distributed from 0 to 1 with the spacing between nodes being h = 0.025. The

randomized test case is performed 100 times to compute an average. Calculated errors are

relative.
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Figure 3.17. The MPM version results for computing gradients for ∂f(x)
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Figure 3.18. The MPM version results for computing gradients for ∂g(x)
∂x

f(x) g(x)

Method Uniform Randomized Uniform Randomized

Classical PIC: 0.006409 0.006358 0.036819 0.036681

Full Particle 1: 0.008705 0.020588 0.049420 0.053552

Full Particle 2: 0.004108 0.038973 0.023921 0.053081

MPM: 0.004105 0.096314 0.023774 0.095828

Table 3.1. Comparison of results for computed gradients



CHAPTER 4

STABILITY OF PIC METHODS

In the previous chapter, we described the different ways in which a gradient can be

calculated in particle methods, but computing gradients is not the only issue when it comes

to stability. While the methods for computing gradients, mapping from particles to nodes,

and the methods for interpolating back to particles all contribute to the stability of the

numerical code, they are not the only potential causes of instabilities. The stability of the

underlying method at the nodes plays a crucial role in the overall stability of the solution.

The first part of this chapter will examine the stability issues associated with the gas

dynamics problem. The second half of the chapter will examine the underlying stability of

the Cauchy momentum problem.

4.1 Gas Dynamics Problem

Starting with the gas dynamics problem that we have already examined, we will use

the same simplifying assumptions that Brackbill makes [5]. The original gas dynamics

Equations 2.1 and 2.2 are linearized in [5] to get,

∂ρ1

∂t
+ u0

∂ρ1

∂x
+ ρ0

∂u1

∂x
= 0 (4.1)

ρ0

[
∂u1

∂t
+ u0

∂u1

∂x

]
+
∂p1

∂x
= 0, (4.2)

where u0 and ρ0 are constants representing the constant flow and the initial uniform density,

respectively, and u1 and ρ1 are the values subject to change. Substituting p1 = c2ρ1 and

rewriting Equations 4.1 and 4.2 in terms of their material derivative,

Dρ1

Dt
=
∂ρ1

∂t
+ u0

∂ρ1

∂x
, (4.3)

Du1

Dt
=
∂u1

∂t
+ u0

∂u1

∂x
, (4.4)

we get the following set of coupled equations,
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Dρ1

Dt
+
∂u1

∂x
= 0, (4.5)

Du1

Dt
+ c2∂ρ1

∂x
= 0. (4.6)

Without a loss of generality, we set ρ0 = 1 and note that Equations 4.5 and 4.6 can be

rewritten in an Eulerian form,

∂ρ1

∂t
= −∂u1

∂x
, (4.7)

∂u1

∂t
= −a2∂ρ1

∂x
, (4.8)

on a grid that is moving at velocity u0. The coupled set of equations can then be written

in the form of the wave equation on a grid moving with the velocity u0 as,

∂2ρ1

∂t2
= c2∂

2ρ1

∂x2
. (4.9)

If our initial conditions are ρ1(x, 0) = f(x) and ∂ρ1(x,0)
∂t = 0 and the boundary conditions are

−∞ < x <∞ and t > 0, then the solution to the wave equation is d’Alembert’s formula [23]

on a moving grid,

ρ1(x, t) =
1

2
(f(x− ct) + f(x+ ct)). (4.10)

If you want to take into account the moving frame of reference, then the solution in the

fixed frame is the modified d’Alembert’s formula,

ρ1(x, t) =
1

2
(f(x− (c− u0)t) + f(x+ (c− u0)t)). (4.11)

Throughout this paper, all problems will be solved on the boundary conditions −∞ <

x <∞ and t > 0. When performing numerical calculations, the spatial boundary conditions

will be periodic.

4.2 A Finite Difference Approach

In order to better understand how different PIC formulations can affect the stability of

a given solution, we consider the following pair of coupled equations,

∂ρ

∂t
= c

∂u

∂x
(4.12)

∂u

∂t
= c

∂ρ

∂x
. (4.13)

using finite difference methods.
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At first glance, a common approach might be to discretize the equations in the following

manner,

ρt+1
i = ρti + k

1

2
(uti+1 − uti−1) (4.14)

ut+1
i = uti + k

1

2
(ρti+1 − ρti−1), (4.15)

where k = c(dt/h). The solution is first order accurate in time and second order accurate in

space. The method can be solved explicitly. The problem is that this solution is unstable

[30] for c < 0. By contrast, a slight variation on the above equations can lead to the

following conditionally stable form [30],

ρt+1
i = ρti + k

1

2
(uti+1 − uti) (4.16)

ut+1
i = uti + k

1

2
(ρt+1
i − ρt+1

i−1). (4.17)

Both formulations are solved explicitly, but in this case, by using the updated values

for ρ in the second calculation and a slight shift in spatial differences, an unstable form can

become stable. This small example using a finite difference approach will be helpful when

looking at the stability of the “full particle” PIC method.

4.2.1 PIC Formulations for Compressible Flow

The stability of PIC methods is more difficult to analyze than simple finite difference

methods because of the movement of information between particles and nodes.

A naive first approach to the problem might be to map the particle values for both ρ

and u to the nodes, to compute the gradients of both ρ and u and update both ρ and u, and

then to move the particles. A second approach might be to map only the particle values

for ρ to the nodes nodes, to compute the gradient of ρ, and update the particle values of

u. The updated particle values for u are then mapped to the nodes. The gradients of u are

then calculated and are used to update the particle values of ρ. Finally, the particles are

then moved.

Both approaches are possible solutions to the problem, but the first one is unstable while

the second contains a stable nodal method; this comes as a result of using the updated u

values in a similar way to that found in Equations 4.16 and 4.17. Here are the two different

formulations written out in steps.
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Formulation 1 Formulation 2

1. uti =
∑np

p=1 Sipu
t
p

2. ρti =
∑np

p=1 Sipρ
t
p

3. ut+1
p = utp + cdth (ρti+1 − ρti)

4. ρt+1
p = ρtp + cdth (uti+1 − uti)

5. xt+1
p = xtp + vdt

1. ρti =
∑np

p=1 Sipρ
t
p

2. ut+1
p = utp + cdth (ρti+1 − ρti)

3. ut+1
i =

∑np
p=1 Sipu

t+1
p

4. ρt+1
p = ρtp + cdth (ut+1

i+1 − u
t+1
i )

5. xt+1
p = xtp + vdt

Note that to avoid confusion in notation, the variable v is used instead the variable u0 that

is found in Equations 4.1 and 4.2 to represent the particle velocity.

4.3 Stability Analysis of PIC Formulations

The starting point for answering the stability questions about the above formulations is

to look at what happens at the nodes [3].

4.3.1 Analysis of Formulation 1

The value at the node for ut+1
i is given by.

ut+1
i =

np∑
p=1

St+1
ip ut+1

p . (4.18)

From the first formulation, we substitute in for ut+1
p [3] to get,

ut+1
i =

np∑
p=1

St+1
ip ut+1

p ,

=

np∑
p=1

St+1
ip [utp + c

dt

h
(ρt+1
i+1 − ρ

t
i)],

=

np∑
p=1

St+1
ip utp + c

dt

h

np∑
p=1

St+1
ip (ρti+1 − ρti),

= uti +

np∑
p=1

(St+1
ip − S

t
ip)u

t
p + c

dt

h

np∑
p=1

St+1
ip (ρti+1 − ρti).

The same steps can be followed to arrive at the values for ρt+1
i . For simplicity, we set

k = cdth . We now have the following pair of equations representing what happens at the

nodes [3].
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ut+1
i = uti +

np∑
p=1

(St+1
ip − S

t
ip)u

t
p + k

np∑
p=1

St+1
ip (ρti+1 − ρti), (4.19)

ρt+1
i = ρti +

np∑
p=1

(St+1
ip − S

t
ip)ρ

t
p + k

np∑
p=1

St+1
ip (uti+1 − uti). (4.20)

Further insight can be gained by looking at the individual terms for Equations 4.19 and

4.20 [3]. If we are using piecewise linear basis functions for our kernel functions and if xp is

in between nodes i− 1 and i, then

St+1
ip − S

t
ip = wi

[(
1 +

xt+1
p − xi
h

)

)
−

(
1 +

xtp − xi
h

)]
,

= wi
xt+1
p − xtp
h

,

where wi = 1∑
p φip

. If xp is in between nodes i and i+ 1, then we get

St+1
ip − S

t
ip = wi

[(
1−

xt+1
p − xi
h

)

)
−

(
1−

xtp − xi
h

)]
,

= −wi
xt+1
p − xtp
h

.

We can now use the fact that xt+1
p = xtp + vdt to write [3],

St+1
ip − S

t
ip = ±wiv

dt

h
. (4.21)

From the description of the problem, we know that v is constant across all particles. Hence,

if we start out with a uniform distribution of particles, wi is constant for all the nodes.

St+1
ip − S

t
ip = ±wiu0

dt

h
= ±C1 (4.22)

Further insight can also be gained by looking at the third term of the equation for ut+1
i .

The term
np∑
p=1

St+1
ip (ρti+1 − ρti) (4.23)

is a summation of all the gradients affecting the particles within the support of node i;

therefore, Equation 4.23 ends up being a weighted combination of the nodal gradients

across the spans i− 1 to i and i to i+ 1. Equation 4.23 ends up being [3],

np∑
p=1

St+1
ip (ρti+1 − ρti) = C2(ρti − ρti−1) + C3(ρti+1 − ρti) (4.24)



31

where C2 +C3 = 1. The same steps [3] that we used for Equation 4.23 can also be applied

to the third term in Equation 4.20 to get,

np∑
p=1

St+1
ip (uti+1 − uti) = C2(uti − uti−1) + C3(uti+1 − uti). (4.25)

Applying Equations 4.22, 4.24, and 4.25 to Equations 4.19 and 4.20, we get the following

updated set of equations,

ut+1
i = uti + C1

np∑
p=1

±utp + k
(
C2(ρti − ρti−1) + C3(ρti+1 − ρti)

)
, (4.26)

ρt+1
i = ρti + C1

np∑
p=1

±ρtp + k
(
C2(uti − uti−1) + C3(uti+1 − uti)

)
. (4.27)

4.3.1.1 What happens if v = 0

Motivated by Brackbill’s [5] comments that the “ringing instability” occurs in cases for

which the particles move at low velocities, we consider the case when each particle velocity

is zero. If v = 0, then C2 = C3 = 0.5 and C1 = 0, and we get the following equations,

ut+1
i = uti + k(ρti+1 − ρti−1), (4.28)

ρt+1
i = ρti + k(uti+1 − uti−1). (4.29)

Using Von Neumann analysis, we can gain some insight into the stability of the underlying

schemes. Let ξ and η represent the errors at the nodes for u and ρ, respectively.

ξ = aGteiβj , (4.30)

η = bGteiβj . (4.31)

Substituting the error terms ξ and η into Equations 4.28 and 4.29 we get an expression for

the error growth at the nodes,

aGt+1eiβj = aGteiβj + k(bGteiβj+1 − bGteiβj−1), (4.32)

bGt+1eiβj = bGteiβj + k(aGteiβj+1 − aGteiβj−1). (4.33)

We then collect and rearrange terms to form the following system of equations.[
(1−G) k(2i sinβ)
k(2i sinβ) (1−G)

] [
a
b

]
=

[
0
0

]
(4.34)

Using the fact that a solution, a and b, exists if and only if the determinant of the the system

is zero [30], and setting γ = k(2i sinβ), we get the following characteristic polynomial.

(1−G)2 − γ2 = G2 − 2G+ 1− γ2 = 0. (4.35)
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Solving for G we get,

G =
2±

√
4− 4(1− γ2)

2
,

= 1± γ.

As |G| > 1, this leads to an unstable scheme.

4.3.2 Analysis of Formulation 2

If we follow the same steps as in the previous section, we end up with a very similar set

of equations.

ut+1
i = uti + C1

np∑
p=1

±utp + k
(
C2(ρti − ρti−1) + C3(ρti+1 − ρti)

)
, (4.36)

ρt+1
i = ρti + C1

np∑
p=1

±ρtp + k
(
C2(ut+1

i − ut+1
i−1) + C3(ut+1

i+1 − u
t+1
i )

)
. (4.37)

The difference between the two sets of equations is the use of the updated values of u at

time, t+ 1, at the nodes.

4.3.2.1 What happens if v = 0

As we did in the previous section, we set each particle velocity to zero. This means that

C2 = C3 = 0.5 and C1 = 0.

ut+1
i = uti + k(ρti+1 − ρti−1), (4.38)

ρt+1
i = ρti + k(ut+1

i+1 − u
t+1
i−1). (4.39)

Let ξ and η represent the errors at the nodes for u and ρ, respectively. ξ and η are defined

as follows,

ξ = aGteiβj , (4.40)

η = bGteiβj . (4.41)

Substituting the error terms ξ and η into Equations 4.38 and 4.39 gives us an expression

for the error growth at the nodes.

aGt+1eiβj = aGteiβj + k(bGteiβj+1 − bGteiβj−1), (4.42)

bGt+1eiβj = bGteiβj + k(aGt+1eiβj+1 − aGt+1eiβj−1). (4.43)

We then collect and rearrange terms to form the following system of equations.[
(1−G) k(2i sinβ)

kG(2i sinβ) (1−G)

] [
a
b

]
=

[
0
0

]
(4.44)
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As stated previously, we know that for there to be a solution to the system of equations,

4.44, the determinant of the system must be zero and for simplification purposes, let γ =

k(2i sinβ)); it then follows that,

(1−G)2 −Gγ2 = G2 −G(γ2 + 2) + 1 = 0. (4.45)

Solving for G, we get,

G =
(γ2 + 2)±

√
(γ2 + 2)2 − 4

2
,

= 1 +
γ2 ±

√
γ4 + 2γ2

2
.

Given that γ = k(2i sinβ), G then has the form,

G = 1− 2k2 sin2 β ±
√

16k2 sin4 β − 8k2 sin2 β

2
,

= 1− 2k2 sin2 β ± k sinβ

√
4k2 sin2 β − 2.

If |k| < 1√
2
, then G can be re written as follows,

G = 1− 2k2 sin2 β ± k sinβi

√
2− 4k2 sin2 β. (4.46)

We can now compute the norm of G,

|G| =

√(
1− 2k2 sin2 β

)2
+

(
k sinβ

√
2− 4k2 sin2 β

)2

, (4.47)

=

√
1− 2k2 sin2 β. (4.48)

Because |k| < 1√
2
, the term 2k2 sin2 β is always positive and less then one. This means that

formulation 2 at velocity u0 = 0 shows a sufficient condition for stability.

4.4 Results Using the Two Formulations

Figures 4.1, 4.2, and 4.3 are snapshots from a simulation that was run comparing Formu-

lation 1 and Formulation 2. As can be seen by the figures at time step 530, Formulation 1

is already showing the results of the numerical instability while Formulation 2 is still stable.

As can be seen by Figure 4.3, even Formulation 2 starts to becomes unstable at time step

700. Given that v = 0, it has been shown that Formulation 2 shows a sufficient condition

for numerical stability. The question then arises what happens when v 6= 0. For example, is

it the movement of particles that causes the nonlinear “ringing instability” [5] to arise? In

the next section, it will be shown that the null space filter covered in the previous chapter

can be used to remove what appears to be the “ringing instability”.
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Figure 4.1. Initial time step
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Figure 4.2. Time step 530
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Figure 4.3. Time step 700
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4.5 Applying the Nullspace Filter

In order to help in the explanation of how the nullspace filter is applied to our PIC

solution, the method will be rewritten in terms of vectors and matrices.

4.5.1 Vector-Based Form of Formulation 2

Let utp and ρtp be the vectors containing the particle values for u and ρ at time step

t and let uti and ρti be the analogous vectors for the nodal values. The first step in the

formulation is to map particle values to the nodes.

1. ρti =
∑n

p=1 Sipρ
t
p

This step is easily written in terms of a mapping matrix, but unlike the individual particle

version, we first need to construct the matrix Sip. It is important to remember that this

needs to be done after each iteration because the mapping is dependent on particle position.

The building of the matrix will be handled by the function buildSip(xp,xi) that takes as

its inputs a vector containing the particle positions and vector with node positions. Now

the first two steps of the new formulation look like this,

1. Sip = buildSip(particlest,nodes)

2. ρti = Sipρ
t
p

Step two of the formulation involves taking the gradient of the nodal basis functions and a

time integration step.

2. ut+1
p = utp + cdth (ρti+1 − ρti)

We can rewrite the gradient portion of this equation as a matrix, D, with dimension n by

m, which calculates the gradient across the nodes and maps it to the particles. For example

if we define the gradient as,
1

h
(ρti+1 − ρti), (4.49)

then the matrix form can be written as

dρtp = Dρti. (4.50)

The updated matrix form for the steps are then written as follows:

3. dutp = Duti

4. ut+1
p = utp + cdtdρtp
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The same idea is applied to next three steps of the formulation. The final step in the

formulation is to advance the particles. This is simply rewritten in vector form where v is

a vector with all the same entries of u0.

5. xt+1
p = xtp + vdt.

For completeness, here is the rewritten formulation in terms of vectors and matrices,

1. Sip = buildSip(utp,nodes)

2. uti = Sipu
t
p

3. dutp = Duti

4. ρt+1
p = ρtp + cdtdutp

5. ρt+1
i = Sipρ

t+1
p

6. dρt+1
p = Dρt+1

i

7. ut+1
p = utp + cdtdρt+1

p

8. xt+1
p = xtp + vdt.

4.5.2 Updated Formulation

With Formulation 2 written in vector form, we can now take a look at how the nullspace

noise can be filtered out during each computation cycle. As was seen in the previous

chapter, nullspace noise can be injected any time a value goes from node to particle. When

the interpolation is linear, the noise tends to be minimal, but in the cases when the piecewise

constant gradient calculated using nodal values is mapped to a particle, then there tends to

be more nullspace noise. There are two points in Formulation 2 when this occurs. The first

is when the gradient of ui is calculated, dutp = Duti, and the second is when the gradient

at ρi is calculated, dρt+1
p = Dρt+1

i . If after applying the D operator, the vectors dui and

dρi contain a component that is in the null space of Sip, then that contribution is a result

of the D operator.

Here are the updated formulations with the calculated residual vectors. The vectors ru1

and rρ1 are the null space components dutp and dρtp.

1. Sip = buildSip(xtp,nodes)

2. uti = Sipu
t
p
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3. dutp = Duti

4. ru1 = getRes(dutp,Sip)

5. ρt+1
p = ρtp + cdt(dutp − ru1)

6. ρt+1
i = Sipρ

t+1
p

7. dρt+1
p = Dρt+1

i

8. rρ1 = getRes(ρt+1
p ,Sip)

9. ut+1
p = utp + cdt(dρt+1

p − rρ1)

10. xt+1
p = xtp + vdt

4.5.3 Comparison of Filtered and Nonfiltered Formulations

Figures 4.4, 4.5, and 4.6 are snapshots from a simulation that was run comparing

Formulation 2 without the nullspace filter and Formulation 2 with the nullspace filter.

As can be seen by Figure 4.5 at time step 700, the method without the nullspace filter is

showing the results of the numerical nullspace noise. On the other hand, it is shown in

Figure 4.6 that the method with the nullspace filter is still stable.

4.6 Cauchy Momentum Equation

This section will consider solving the Cauchy Momentum Equation,

ρ
Dv

Dt
= ∇ · σ + b, (4.51)

In what follows, body forces, b, will be ignored and as in the previous cases, only one space

dimension will be considered. Equation 4.51 now becomes,

ρ
Dv

Dt
=
∂σ

∂x
. (4.52)

Stress will be defined as,

σ = E
∂u

∂x
, (4.53)

where E is Young’s modulus and is a constant.
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Figure 4.4. Initial time step
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4.6.1 Full Particle PIC

Let us explore one possible “full particle” PIC method. Substituting Equation 4.53 into

Equation 4.52 gives,

ρ
Dv

Dt
=

∂

∂x

(
E
∂u

∂x

)
. (4.54)

Also, ρ will be constant throughout the domain. After rearranging of terms and setting

c =
√
E/ρ, we get

Dv

Dt
= c2∂

2u

∂x2
. (4.55)

By noting, Du
Dt = v, we can form the following set of coupled equations that gives us the

standard 1d wave equation in Lagrangian form,

Du

Dt
= v

Dv

Dt
= c2∂

2u

∂x2

 =⇒ D2u

Dt2
= c2∂

2u

∂x2
(4.56)

If u(x, 0) = f(x) and v(x, 0) = 0, then we have d’Alembert’s formula as the analytic solution

to the problem.

The formulation of the “full particle” PIC method will follow the basic steps of mapping

particle displacement and velocity to the nodes, computing acceleration at the nodes using

a second order finite difference stencil, updating the velocity at the nodes using the accel-

eration, and updating velocity and displacement at the particles. In a step-by-step form,

we get,

1. uti =
∑np

p=1 Sipu
t
p

2. vti =
∑np

p=1 Sipv
t
p

3. ati = c2

h2
(uti+1 − 2uti + uti−1)

4. vt+1
i = vti + dt ∗ ati

5. vt+1
p = vtp + dt

∑np
p=1 Sipa

t
i

6. ut+1
p = utp + dt

∑np
p=1 Sipv

t+1
i .
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4.6.2 Analysis of Full Particle PIC

As in the “full particle” PIC formulations of the gas dynamics problem, the method will

be rewritten in terms of the nodal values for ui. Beginning with

ut+1
i =

np∑
p=1

St+1
ip ut+1

p (4.57)

we then substitute in ut+1
p to get,

ut+1
i =

np∑
p=1

St+1
ip ut+1

p

=

np∑
p=1

St+1
ip (utp + dt

np∑
p=1

Stipv
t+1
i )

=

np∑
p=1

St+1
ip utp + dt

np∑
p=1

St+1
ip Stipv

t+1
i

= uti +

np∑
p=1

(St+1
ip − S

t
ip)u

t
p + dt

np∑
p=1

St+1
ip Stipv

t+1
i .

If the following condition holds
np∑
p=1

Sip = 1 (4.58)

then we get the following

ut+1
i = uti +

np∑
p=1

(St+1
ip − S

t
ip)u

t
p + dt

np∑
p=1

St+1
ip

np∑
p=1

Stipv
t+1
i

= uti +

np∑
p=1

(St+1
ip − S

t
ip)u

t
p + vt+1

i dt.

Similarly, for vi we get,

vt+1
i =

np∑
p=1

St+1
ip vt+1

p

=

np∑
p=1

St+1
ip (vtp + dt

np∑
p=1

Stipa
t
i)

= vti +

np∑
p=1

(St+1
ip − S

t
ip)v

t
p + dt

np∑
p=1

St+1
ip

np∑
p=1

Stipa
t
i

= vti +

np∑
p=1

(St+1
ip − S

t
ip)v

t
p + atidt.
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Now substitute in for ai

vt+1
i = vti +

np∑
p=1

(St+1
ip − S

t
ip)v

t
p + atidt,

= vti +

np∑
p=1

(St+1
ip − S

t
ip)v

t
p +

c2dt

h2
(uti+1 − 2uti + uti−1).

We can now combine the two equations, ut+1
i and vt+1

i ,

ut+1
i = uti +

np∑
p=1

(St+1
ip − S

t
ip)u

t
p + vt+1

i dt,

= uti +

np∑
p=1

(St+1
ip − S

t
ip)u

t
p + vtidt+

np∑
p=1

(St+1
ip − S

t
ip)v

t
p + atidt

2.

Knowing that

uti = ut−1
i +

np∑
p=1

(Stip − St−1
ip )ut−1

p + vtidt (4.59)

we can arrive at vtidt,

vtidt = uti − ut−1
i −

np∑
p=1

(Stip − St−1
ip )ut−1

p . (4.60)

After substituting for vti and rearranging some terms, we get the following finite difference

scheme at the nodes,

ut+1
i − 2uti + ut−1

i

dt2
= c2u

t
i+1 − 2uti + uti−1

h2
+ S, (4.61)

where

S =
1

dt2

np∑
p=1

(St+1
ip − S

t
ip)(u

t
p + vtpdt)− (Stip − St−1

ip )ut−1
p . (4.62)

4.6.2.1 Von Neumann Analysis of Full Particle PIC
Formulation

Again, we set the particle velocity to zero and use Von Neumann analysis. Let ξ,

ξ = aGteiβj , (4.63)

represent the error at the nodes for u. Substituting in ξ for the u gives us the following,

aGt+1eiβj − 2aGteiβj + aGt−1eiβj

dt2
= c2aG

teiβ(j+1) − 2aGteiβj + aGteiβ(j−1)

h2
, (4.64)

Canceling out terms gives the following,

G− 2Gt +Gt−1

dt2
= c2G

teiβ(j+1) − 2Gteiβj +Gteiβ(j−1)

h2
. (4.65)
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Letting k = cdt
h gives the following set of equations,

G2 − 2Gγ + 1 = 0, γ = 1− 2k2 sin2(β/2). (4.66)

and solving for the the growth term, G, gives,

G = γ ±
√
γ2 − 1. (4.67)

If k ≤ 1 then |γ| ≤ 1 and
√

1− γ2 is real for all β and then we get,

G = γ ± i
√

1− γ2

|G| =
√
γ2 + (1− γ2)

= 1.

It can be seen that Von Neumann analysis gives a sufficient condition for stability at the

nodes; what is left to be determined is what happens with the term S. If particles do not

move, then St+1
ip = Stip = St−1

ip and S = 0; beyond that, it is difficult to determine what

instabilities may arise without applying further analysis to the term S found in Equation

4.61.



CHAPTER 5

COMPARISON OF METHODS

Now that we have covered the different approaches used by some particle methods,

devised a means for dealing with the “ringing instabilities”, and looked at the underlying

stability of the different methods, we can compare the different approaches to see which

performs better and under what conditions. We have looked at both the gas dynamics and

the Cauchy momentum problems. We have seen that both can be reduced down to the

standard wave equation for which we have a known solution in the d’Alembert formula. By

imposing periodic boundary conditions and an initial condition that is also periodic at the

boundaries, we have a true solution that we can compare against. For this chapter, the

model problem, give the initial and boundary conditions, with a defined analytic solution

will be used. Three different methods that incorporate the different approaches to the

problem will be used and compared. Then the results are shown how each method performed

against the analytic solution.

5.1 Cauchy Momentum Equation

For clarity, here is the set of equations that we will be solving,

Du

Dt
= v, (5.1)

ρ
Dv

Dt
=
∂σ

∂x
, (5.2)

with σ = Eux and Young’s modulus, E, being constant.

Given that we are dealing with a linear stress model, E being constant, there are two

approaches that can be taken to finding the gradient of stress. The first is to use the values

of stress in the gradient calculation and the second approach is to rewrite the gradient of

stress in terms of displacement,

∂σ

∂x
=

∂

∂x

(
E
∂u

∂x

)
, (5.3)

= E
∂2u

∂x2
. (5.4)
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Both approaches will be explored here.

5.1.1 Parameters and Initial Conditions

The initial conditions and parameters for the numerical solutions are as follows. The

spatial domain is −.5 < x < .5, node spacing is h = .01, and the initial particle distribution

is two particles evenly spaced between nodes. Particle masses are mp = 1 and initial velocity

is v(x, 0) = 0, where initial vp = v(xp, 0). The initial displacement is u(x, 0) = .001e−60x2

where up = u(xp, 0). The Young’s modulus is E = .0001 and the initial strain is ux(x, 0) =

−.12e−60x2 where uxp = ux(xp, 0).

5.1.2 The Analytic Solution

Given that the initial velocity is zero, the analytic solution to the problem becomes,

u(x, t) = .0005
(
e−60(x−.01t)2 + e−60(x+.01t)2

)
. (5.5)

At each time step, tn = dt ∗ n, where n is the nth time step, unp = u(xnp , t
n). With this

linear elastic model, the displacements, up, are small in comparison to the node spacing;

consequently, few particles cross over nodes.

5.1.3 Method 1 - Full Particle PIC

Method 1 is a “full particle” PIC method where the values for displacement are used

instead of the values for stress in the gradient of stress calculation. The first step is to

compute the mass at the nodes. Given that mp = 1, we get the following,

mi =
∑
p

φipmp, (5.6)

=
∑
p

φip. (5.7)

The second and third steps are to map displacements and velocities to the nodes,

ui =
∑
p

φipup. (5.8)

vi =

∑
p φipmpvp

mi
. (5.9)

The fourth and fifth step is to calculate the force and acceleration at the nodes,

fi = E

(
ui+1 − 2ui + ui−1

h2

)
(5.10)

ai =
fi
mi
. (5.11)
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Step six updates the velocity at the nodes,

vn+1
i = vni + aidt. (5.12)

Steps seven, eight, and nine update velocity, displacement, and position at the particles,

respectively:

vn+1
p = vnp + dt

∑
i

φipai, (5.13)

un+1
p = unp + dt

∑
i

φipvi, (5.14)

xn+1
p = xnp + dt

∑
i

φipvi. (5.15)

5.1.4 Method 2 - Full Particle PIC

Method 2 differs from Method 1 in that stress is calculated from particle strains. As

with Method 1, this is a “full particle” PIC method. The first step in this method is the

same as Method 1, to map particle masses to the nodes. The second step is to map the

strain values to the nodes using,

uxi =
∑
p

φipuxp, (5.16)

where uxi is the strain at the nodes and uxp is strain at the particles. The third step is to

calculate accelerations at the particles,

ap = E
∑
i

∇φipuxi
mi

. (5.17)

The fourth step is to remove the nullspace noise from the gradient of stress calculation as

described in sections 3.5.2-3.5.6 of Chapter 3. For brevity, we will simply define the process

as removeNull(),

ap = removeNull(Sip, ap). (5.18)

The fifth and sixth steps are to update velocity, displacement, and position of the particles.

vn+1
p = vnp + dtap, (5.19)

un+1
p = unp + dtvp, (5.20)

xn+1
p = xnp + dtvp. (5.21)

Step nine is to map the velocities to the nodes,

vn+1
i =

∑
p φipv

n+1
p mp

mi
. (5.22)
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Step ten is calculate the velocity gradients at the particles

vxp =
∑
i

∇φipvi. (5.23)

The final step is to update strain at the particles,

un+1
xp = unxp + vxpdt. (5.24)

5.1.5 Method 3 - Material Point Method

Method 3 is an implementation of the Material Point Method. Like the other two

methods, the first step is to map particle masses to the nodes. The second step is to map

velocity to the nodes. The third is to calculate force at the nodes,

fi = E
∑
p

∇φipuxp. (5.25)

Step four is to use the calculated force to calculate the acceleration at the nodes,

ai = − fi
mi
. (5.26)

The fifth step is to update the velocity at the node,

vn+1
i = vni + aidt. (5.27)

Steps six, seven, and eight are to update the velocity, displacement, and position at the

particles

vn+1
p = vnp + dt

∑
i

Sipai, (5.28)

un+1
p = unp + dt

∑
i

Sipv
n+1
i , (5.29)

xn+1
p = xnp + dt

∑
i

Sipv
n+1
i . (5.30)

Step nine is to compute the velocity gradient at the particles,

vxp =
∑
i

∇φipvn+1
i . (5.31)

The final step is to update the strain values at the particles,

un+1
xp = unxp + dtvxp. (5.32)

In MPM strain can be updated either at the beginning of the calculation cycle or at the

end [1].
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5.1.6 Results

Numerical simulations were run using all three methods. All runs used had the same

initial and boundary conditions. The calculations were run for a total of 10000 time steps.

Figure 5.1 shows a plot of the relative error growth over the 10000 time steps. As can

be seen, the MPM version performed best in terms of the relative error growth. What is

interesting is that the method where the gradient of strain is calculated implicitly performs

the poorest of the three in terms of error growth. The difference being displacement is used

in method 1 to calculate acceleration versus methods 2 and 3, which use strain.

5.1.7 Ringing Instability in Strain Calculation

Steps nine and ten of the MPM formulation have the potential for a “ringing instability”.

Figure 5.2 shows the initial values for both displacement and strain. Figure 5.3 shows time

step 2000 where there is visible “ringing instability” in the strain plot. The null space

filter can be applied between steps nine and ten. Figures 5.4 and 5.5 show a side-by-side

comparison of the unfiltered and filtered version. As can be seen, the nullspace filter smooths

out the “ringing instabilities” found in the strain calculations. Figure 5.6 shows the results

of the error calculation for both cases. The unfiltered method is more accurate. More needs

to done to understand the reasons for this, but one hypothesis is that the smoothing caused

by the filter has an averaging affect that reduces the accuracy.
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CHAPTER 6

CONCLUSION

In this thesis, we briefly reviewed some of the key methods and concepts in the field

of PIC-like particle methods. We have studied different methods of computing gradients

in particle methods. How gradients are computed can play a key role in the stability of

particle methods. It has been shown that the “ringing instability” comes about as numerical

“noise” is introduced in the nullspace of the mapping from particles to nodes. Two methods

were introduced to suppress the “ringing instabilities”. The first used the SVD of the

mapping matrix to define a basis for a nullspace from which the nullspace component of the

particle vector could be removed. While the SVD method works well for small problems,

its computational complexity and lack of scalability makes it impractical for large multicore

simulations. The second method removes the nullspace “noise” by mapping particle values

to the nodes, which by definition removes the nullspace, and then interpolates the values

back to the nodes. This method removes the noise locally and scales to multicore systems.

We have also shown that the underlying nodal scheme plays a key role in the stability of

the particle method. By writing a particle method in terms of its nodal values, methods of

analysis used in finite difference methods can be used to analyze the stability of a particle

method. It was shown that a slight change in a nodal scheme can turn a method that is

unstable to one that shows sufficient conditions for stability.

Lastly, we used the Cauchy momentum equation as a test model to compare differ-

ent particle methods. By ignoring the external body force, imposing periodic boundary

conditions, and using linear elastic model for stress, we were able to use the d’Alembert

formulation as the analytic solution to compare against. The MPM method performed the

best in this test problem. It was also shown that the “ringing instability” did occur in

the strain updates and the nullspace noise filter was used to smooth out the instabilities.

As an open question, it is unclear why the filtered method did not perform as well as the

unfiltered method for the MPM method.
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