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Abstract

Particle-based simulation methods are used to model a wide range of complex phe-
nomena and to solve time-dependent problems of various scales. Effective visualiza-
tions of the resulting state will communicate subtle changes in the three-dimensional
structure, spatial organization, and qualitative trends within a simulation as it
evolves. We present two algorithms targeting upcoming, highly parallel multicore
desktop systems to enable interactive navigation and exploration of large particle
datasets with global illumination effects. Monte Carlo path tracing and texture
mapping are used to capture computationally expensive illumination effects such as
soft shadows and diffuse interreflection. The first approach is based on precompu-
tation of luminance textures and removes expensive illumination calculations from
the interactive rendering pipeline. The second approach is based on dynamic lumi-
nance texture generation and decouples interactive rendering from the computation
of global illumination effects. These algorithms provide visual cues that enhance the
ability to perform analysis and feature detection tasks while interrogating the data
at interactive rates. We explore the performance of these algorithms and demon-
strate their effectiveness using several large datasets.
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1 Introduction

Particle methods are commonly used to simulate complex phenomena in a wide
variety of scientific domains. Using these techniques, computational scientists
model such phenomena as a system of discrete particles that obey certain laws
and possess certain properties. Particle-based simulation methods are partic-
ularly attractive because they can be used to solve time-dependent problems
on scales from the atomic to the cosmological.
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Fig. 1. Global illumination in particle visualization. Shadows help to disambiguate
the relative position of objects in complex particle datasets (left). Although the
crude approximation to indirect illumination used by local shading models tends to
obscure geometric detail in shadowed regions, these details can be restored by using
more advanced shading models (right).

Frequently, millions of particles are required to capture the behavior of a
system accurately. Such massive simulations lead to very large, very complex
datasets, making interactive visualization a difficult task. Moreover, the need
to simultaneously visualize both the large- and small-scale features within the
data further exacerbate these issues.

An effective particle visualization method will communicate subtle changes in
the three-dimensional structure, spatial organization, and qualitative trends
within the data as a simulation evolves, as well as enable interactive navigation
and exploration of the data through interactivity. However, as particle-based
simulations continue to grow in size and complexity, effective visualization of
the resulting state becomes increasingly problematic. First, these datasets are
difficult to visualize interactively because of their size. An effective visualiza-
tion algorithm must be capable of rendering such a large number of particles
efficiently. Second, the intricacies of complex data are difficult to convey sensi-
bly. Particle methods often simulate complex objects with subtle features that
interact in complex ways, and detecting the salient features within the data is
a critical step in correctly interpreting the simulation results. Unfortunately,
the proper way to communicate this information is not well-understood by the
visualization or perception communities.

A recent psychophysical study has demonstrated that advanced illumination
effects can aid attempts to comprehend important features within complex
particle datasets [8]. In contrast to purely local models, advanced shading
models such as ambient occlusion and physically based diffuse interreflection
provide more accurate approximations to the light transport equation [11,12]
and capture illumination effects that can enhance the perception of complex
shapes with subtle features (see Fig. 1).

Unfortunately, advance shading models that simulate global effects are com-
putationally expensive, and current algorithms are not particularly well-suited
to interactive use. We introduce two algorithms that alleviate these issues and
make global illumination effects practical for interactive particle visualization.

The first approach, which we call precomputed luminance textures (PLTs),
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overcomes the computational limitations of advanced shading models by re-
moving the illumination calculation from the interactive rendering pipeline. In
a preprocessing phase, the illumination across each particle is sampled using
Monte Carlo path tracing and the results are stored in a luminance texture.
To reduce the memory requirements imposed by this approach, either vector
quantization (VQ) or principal component analysis (PCA) is used to compress
the textures into a more manageable representation. During interactive ren-
dering, the compressed textures are reconstructed (if necessary) and mapped
to the particles, providing an approximation to the illumination in the scene.
This simple, effective process enables the interactive navigation and explo-
ration of large particle datasets with effects from advanced shading models.

The second approach, which we call dynamic luminance textures (DLTs), lazily
evaluates advanced illumination effects by decoupling high quality rendering
from interactive display. During rendering, requests for computationally ex-
pensive illumination effects are generated for the currently visible particles. A
Monte Carlo path tracer satisfies these requests by sampling the illumination
across the requested particles and storing the results in luminance textures.
These textures are cached throughout a given interactive session and reused by
the interactive renderer when appropriate. Textures are generated and stored
for only visible particles, so the memory required by this approach is consid-
erably less than that of the PLT approach. As a result, dynamically generated
textures need not be compressed.

These algorithms offer not only enhanced visual cues, but also provide a
testbed for future studies examining the perceptual impact of advanced shad-
ing modes on an interactive particle visualization process.

2 Background and Related Work

Our algorithms are motivated by the need to visualize data from a particle-
based simulation technique called the material point method (MPM) [21,22].
MPM is a particle-in-cell simulation technique that is particularly well-suited
to problems with high deformations and complex geometries. Although we
evaluate our algorithms using MPM data from simulations of structural me-
chanics problems, both approaches are applicable to particle data from other
simulation methods and other application domains as well.

Particle visualization. Investigators typically use particle visualization to
assist efforts in data analysis and feature detection, as well as in debugging ill-
behaved solutions. One approach to particle visualization projects the particle
values to a grid, and the transformed data is then visualized using techniques
such as isosurface rendering [16] and direct volume rendering [14].

Grid-based representations are suitable for some, but not all, particle visu-
alization tasks. The limited resolution of the grid itself can be problematic:
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fine structural details within the data may be lost. To alleviate this issue, the
grid can be refined, either uniformly or adaptively. However, investigators are
often interested in simultaneously examining both the large- and small-scale
structures within the data, so grid-based visualization techniques may not be
appropriate. Moreover, interpolation may hide features or problems present in
the original particle data, and isosurface extraction can be a time-consuming
task, particularly for large datasets.

Particles can also be represented directly by simple, iconic shapes called glyphs.
For many applications, a sphere or an ellipsoid is a natural representation of an
individual particle. Glyph-based representations are able to preserve the fine
details within the data while maintaining the large-scale three-dimensional
structure of the entire domain. This representation is particularly useful for
the data analysis and code development tasks that investigators often perform.

Several efforts have explored techniques to render large numbers of spheres
efficiently, from rasterization on massively parallel processors [13], visualiza-
tion clusters [15], programmable graphics hardware [9], and special-purpose
hardware [28], to interactive ray tracing on tightly coupled supercomputers [3]
and highly parallel multicore systems [7]. The algorithms we describe in this
work target upcoming, highly parallel multicore desktop systems.

Interactive global illumination. Interactively rendering images of complex
environments with full global illumination computed in every frame currently
remains out of reach. However, several algorithms offer alternatives for effi-
cient computation of global illumination effects. These techniques generally
query data structures that store illumination samples of the environment, or
maintain interactivity by limiting the number of paths traced in each frame.

For example, systems based on ray tracing or rasterization can include global
illumination by precomputing and storing the effects, and later using the re-
sults during interactive rendering. Such an approach requires a representation
of the precomputed solution that is appropriate for use in an interactive ren-
derer. Several such representations have appeared in the literature, ranging
from illumination maps [1] and grid-based structures [6] to representations in
complex bases like spherical harmonics [19] and non-linear wavelets [17].

Advanced illumination effects can also be sampled lazily during interactive
rendering, and the samples can then be cached and reused when appropriate.
As with precomputation, this method requires a representation of the com-
puted results that is suitable for caching, as well as the ability to reuse the
cached samples. Additionally, these techniques require the ability to detect
out-of-date samples that must be recomputed. Methods such as the irradiance
volume [6], the render cache [26], and several others utilize this approach.

Other algorithms decouple parts of the rendering process to facilitate better
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user interaction and faster image generation [2,26]. Typically these methods
decompose the interactive pipeline into two asynchronous components: an in-
teraction loop that responds to user input, and a high quality rendering engine
that continually updates the image as quickly as possible. These approaches
provide a responsive environment with which the user interacts, but maintain
image quality by employing an expensive rendering engine.

The PLT and DLT algorithms described in this work leverage these ideas to
make computationally expensive global illumination effects practical for an
interactive particle visualization process.

3 Luminance Textures

Texture mapping is a well-known technique in computer graphics that is used
to add surface detail to the objects in a scene without explicitly modeling these
details. Typically, an image (texture) is applied (mapped) to a surface in a
process similar to pasting a decal onto the surface. Texture mapping often
reduces the level of geometric detail that must be explicitly modeled while
producing visually compelling results by encoding these details in an image.

Illumination maps [1] are simply texture maps that encode computationally
expensive illumination effects such as diffuse or specular interreflection. These
texture maps are created by computing the light that reaches a particular
point in the scene and storing the result in the texel that maps to that point.
In this way, global illumination effects can be computed and applied to the
objects, adding illumination detail to the scene.

3.1 Perceptual Concerns

Shadows have been shown to provide important visual cues about the relative
position of the objects within a scene. Understanding spatial relationships
within complex particle datasets is a fundamental task in the data analysis
process, but concerns about the use of shadows arise for two reasons. First,
when used with local shading models, shadows often introduce ambiguities
that result from the crude approximation to indirect illumination employed by
these models. Second, discontinuities in shading resulting from hard shadows
can be mistakenly interpreted as discontinuities in the underlying data.

We use soft shadows from area light sources to alleviate these concerns. Al-
though soft shadows require integration of the incident illumination over the
area of the light sources, Monte Carlo path tracing easily captures soft shadows
in addition to other global illumination effects like indirect illumination.

The second potential artifact arises from the interplay of color mapping and
illumination effects from advanced shading models. Color mapping is an effec-
tive way to communicate pertinent information beyond the spatial organiza-
tion of objects within complex datasets [24]. Scalar values from the simulation
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Fig. 2. Generating luminance textures. Jittered samples in the (u, v) parameter space
of the texture are mapped to the particle surfaces. Rays originating at these points
are traced through the scene, and the results are stored in the corresponding texel.

data associated with each particle are assigned a color that is used as the
surface color during shading to convey these values. When color mapping is
used, effects from color bleeding become a concern with shading models that
include diffuse interreflection. For example, a white particle may appear pink
if it reflects light from a nearby red particle. The reflection of red light from a
white surface may misrepresent the values associated with the white particle,
resulting in confusion or misinterpretation during data analysis.

To mitigate this issue, the algorithms we describe ignore the color of a par-
ticle during illumination computation and consider only reflected luminance.
Luminance is simply the amount of light that passes through or is emitted
from a particular area within a given solid angle, and does not account for
the chromaticity of a surface; that is, luminance acts only as an indicator of
how bright a surface appears. By computing only reflected luminance, our
particle visualization algorithms avoid the potential problems associated with
color bleeding. Moreover, both the color map and the particular data value
used to determine surface color can be changed during rendering because these
elements do not affect the reflected luminance within a scene.

3.2 Texture Generation

Luminance textures are simply illumination maps that store reflected lumi-
nance as described above. To compute the luminance textures, jittered samples
in the (u, v) parameter space of a particular texture are generated and mapped
to the current particle, as illustrated in Fig. 2. Rays originating at these points
are traced through the scene according to the user-specified shading model,
and the resulting luminance values are stored in the corresponding texel. This
process continues until a texture has been generated for each particle.

We use a straightforward latitude-longitude mapping from the (u, v) parame-
ter space of the textures to the world space coordinates of the particle surfaces.
This mapping was chosen because of its simplicity and low overhead. We have
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found that a relatively low resolution texture (16 × 16 texels) with a small
number of samples per texel (typically 25–49 samples) and 8-bit luminance
values capture the illumination adequately. A uniform area mapping [20] may
permit fewer samples to be used; however, for 16× 16 textures, at most 65%
more samples would be required under the current mapping to achieve an
equivalent or better sampling density for all texels.

3.3 Texture Compression

Luminance textures may require a large amount of memory, even for rela-
tively low resolution textures. For example, using a 16× 16 texture and 8-bit
luminance values, the textures for a single time step consisting of one mil-
lion particles will consume over 244 MB of memory, or more than 20 times
that consumed by the particle positions. The requirements for datasets with
multiple time steps quickly become prohibitive.

Particles within some local vicinity typically exhibit similar illumination pat-
terns, so we explore two texture compression schemes that exploit this redun-
dancy. One is based on vector quantization, the other on principal component
analysis.

Vector quantization. VQ maps k-dimensional vectors in the space Rk to
a set of k-dimensional vectors C = {ci : i = 1, 2, . . . , N}. The set of vectors
C is called the codebook, and each ci is a codeword. Associated with each
codeword is a Voronoi region defined by:

Vi = {x ∈ Rk : ‖x− ci‖ ≤ ‖x− cj‖ ∀i 6= j}.

We use VQ to compress the luminance textures by treating each texture as
a k-dimensional vector, where k corresponds to the product of the width and
height of the texture.

There are two basic steps to compressing textures using VQ. First, vector
pairs that minimize the distortion among the input vectors are found. The
distortion is simply a measure of the distance between two vectors, x and y:

d(x, y) =
k∑

i=1

(xi − yi)
2.

Next, the minimum distortion pair is merged by computing the centroid of its
vectors. The set of vectors that remain is then used in subsequent iterations.
These steps are repeated until the desired number of codewords or a user-
specified error threshold has been reached.

Principal component analysis. Texture compression based on PCA is an-
other alternative. PCA uses statistical techniques to compute an orthonormal
set of basis vectors in which the textures, treated as k-dimensional vectors,
can be expressed. By storing only a subset of these vectors, the mean vector,
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(a) Uncompressed vs. VQ

(b) Uncompressed vs. PCA

Fig. 3. Comparing compression schemes. VQ and PCA are both effective compres-
sion schemes. The first column shows the original textures, the second column de-
picts the textures compressed with VQ (a) and PCA (b), and the third column
is a difference image of the results. There is little noticeable difference among the
images, even though the texture data has been reduced by a factor of four.

and the associated per-object coefficients, an approximation to the original
collection of textures can be reconstructed during interactive rendering.

The algorithm consists of three basic steps. First, the mean vector, mx =
E{x}, and the covariance matrix, Cx = E{(x−mx)(x−mx)

T}, are computed.
An ordered set of (λi, ei) pairs, where λi is the eigenvalue that corresponds to
the eigenvector ei, are computed from Cx using singular value decomposition.
These eigenvectors serve as the basis vectors. Finally, the per-object coeffi-
cients are determined by computing the dot product of each input vector with
each basis vector.

Using these compression schemes, reasonable reconstructions of the original
textures can be obtained while dramatically and efficiently reducing the stor-
age requirements. Though compression introduces an additional element of
approximation, we have not found this approximation to be noticeable (see
Fig. 3).

3.4 Using Luminance Textures

Any particle visualization system capable of applying luminance textures to
the particles can be used for interactive rendering. Texture mapping proceeds
by calculating the appropriate (u, v) texture space coordinate of a visible point,
querying the four values required to bilinearly interpolate the final luminance
value at that point, and multiplying the resulting value by the color of the
particle.
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Fig. 4. Visualizations of a particle dataset using PLTs. The size and depth of the
crack in this dataset are difficult to judge under Lambertian shading and shadows
(left), but become more clear with diffuse interreflection captured by luminance
textures (right).

Compressed textures impose some additional computations. VQ maps the
original textures to a smaller set of codeword vectors using an integer index.
In this case, the four luminance values are obtained by first determining the
index of the codeword to which the texture of a particular particle has been
mapped. The appropriate values of the codeword are then interpolated, and
texture mapping proceeds normally. This simple indexing operation imposes
no measurable impact on rendering performance with respect to using un-
compressed luminance textures. In contrast, PCA computes an orthonormal
basis that represents the axes of variation within the original textures, so the
appropriate texels must be reconstructed before interpolating their values and
assigning a color to the given pixel. Reconstruction requires a dot product be-
tween the per-object coefficients and the basis vectors. While this additional
computation introduces some overhead, the impact on interactive performance
is relatively small.

Fig. 4 compares the results of typical visualization using Lambertian shading
and shadows with those obtained using luminance textures. The size and depth
of the crack in this dataset become much more clear with diffuse interreflection
effects captured by luminance textures.

4 Particle Visualization Algorithms

Our interactive particle visualization algorithms leverage the luminance tex-
tures described above to make the use of computationally expensive global
illumination effects practical for interactive rendering.

4.1 Precomputed Luminance Textures

Precomputed luminance textures overcome the computational limitations of
advanced shading models by removing expensive illumination calculations
from the interactive rendering pipeline. In a preprocessing phase, the illumina-
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Fig. 5. Using PLTs with programmable graphics hardware. Precomputed luminance
textures that have been compressed with PCA can be reconstructed and applied to
the particles during interactive rendering using multipass fragment processing.

tion across each particle is sampled using Monte Carlo path tracing and stored
in a luminance texture. To reduce the memory requirements imposed by this
approach, either vector quantization (VQ) or principal component analysis
(PCA) is used to compress the textures into a more manageable representa-
tion as described above. Then, during interactive rendering, the textures are
mapped to the particles, approximating the illumination in the scene.

We have implemented two interactive particle visualization systems that sup-
port PLTs, one based on programmable graphics hardware, the other on in-
teractive ray tracing.

Programmable graphics hardware. We extend the interactive particle vi-
sualization system described by Gribble et al. [9] to support PCA compressed
PLTs. Using multipass fragment processing, texture coordinates are computed
for each particle, and the PLTs are reconstructed from the compressed repre-
sentation to produce the final image (see Fig. 5).

Interactive ray tracing. We also extend the basic particle visualization
components of the Real-Time Ray Tracer (RTRT) [18] to support PLTs. RTRT
efficiently determines the currently visible particles by traversing a multilevel
grid, and the PLTs are then applied to these particles during shading.

PLT results. The datasets depicted in Table 1 are used to quantify the
performance of the PLT approach. The results reported in this section were
gathered by rendering 1024 × 1024 images using a 16 core Opteron machine
with 2.4 GHz processors and 64 GB of physical memory.

Textures were generated using physically based diffuse interreflection, 16× 16
texels, and 49 samples per texel with 16 threads on the test machine. Pre-
processing times are reasonable, despite the unoptimized path tracing engine
used in our current implementation (see Table 2, Appendix A).

The size of the resulting texture collections motivates the need for texture
compression. Many simulations contain tens or hundreds of time steps, so the
memory demands imposed by the PLT approach will quickly overwhelm all
but the most resourceful machines. To alleviate this issue, textures are com-
pressed using either VQ or PCA and a user-specified compression ratio. Both
VQ and PCA are effective compression schemes (see Table 3, Appendix A).
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Table 1
Particle datasets used to evaluate our algorithms. These datasets exhibit a wide
variety of sizes and geometric complexity, and each represents a single time step of
the full simulation. We evaluate our algorithms using the viewpoints shown below.

Bullet-2 Bullet-7 Cylinder-6 Cylinder-22

# particles 569523 549128 214036 212980

Data size 13.04 MB 12.57 MB 6.53 MB 6.50 MB

Fireball-10 Fireball-12 JP8-128 JP8-173

# particles 954903 951449 834271 809533

Data size 14.57 MB 14.52 MB 22.28 MB 21.62 MB

Although textures compressed with VQ exhibit a lower mean distortion than
those compressed with PCA, this quality comes at a price: VQ requires tens
of hours to achieve even moderate compression ratios. Fortunately, execution
times for PCA compression are very reasonable, typically just tens of seconds.
Though the mean distortion exhibited by the PCA compressed textures is
somewhat higher, this error does not have a noticeable impact (see Fig. 3).

Finally, we examine the impact of PLTs on interactive visualization perfor-
mance using RTRT. Lambertian shading with shadows serves as the baseline.
Frame rates were measured by rendering a series of 100 frames at 1024× 1024
resolution with 16 threads on the test machine. Rendering performance im-
proves by a factor of 1.14–1.91 when using PLTs (see Table 4, Appendix A).
Our technique captures both shadows and diffuse interreflection during tex-
ture generation, which obviates the need for shadow computations during
interactive rendering.

4.2 Dynamic Luminance Textures

Our second algorithm, which we call dynamic luminance textures (DLTs), is
motivated by lazy evaluation of global illumination effects. As before, we use
texture maps to capture global illumination effects, but these effects are now
computed on-the-fly during interactive rendering.
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Fig. 6. Interactive rendering and asynchronous texture generation. The interactive
rendering engine responds to user input, displays the currently visible particles,
and generates luminance texture requests for these particles on-the-fly. The texture
generation engine asynchronously satisfies these requests as quickly as possible.

Advanced illumination effects are evaluated lazily by decoupling high qual-
ity rendering from interactive display. Requests for computationally expensive
effects such as soft shadows and diffuse interreflection are generated for the
currently visible particles during interactive rendering. These requests are sat-
isfied asynchronously by a Monte Carlo path tracing engine. The illumination
across the visible particles is sampled and the results are stored in dynami-
cally allocated luminance textures. These textures are cached throughout an
interactive session and reused when appropriate.

Interactive rendering engine. The interactive front-end is responsible for
responding to user input and displaying the currently visible particles. During
rendering, the status of the texture corresponding to a visible particle is de-
termined by first querying the luminance texture cache. If the texture is valid,
it is applied to the particle. Otherwise, a request is submitted to the texture
cache and the particle is temporarily shaded using the Lambertian shading
model (see Fig. 6).

The Manta interactive ray tracing system [4] serves as the front-end in our
current implementation. A front-end based on graphics hardware, similar to
the one described above, could be modified to support DLTs as well.

Texture generation engine. Textures are generated using the process de-
scribed above. However, the engine is implemented using either a collection
of dedicated threads or a per-frame callback mechanism (see Fig. 7). In either
case, when work is available, requests are dequeued and memory is allocated
for the textures as necessary. When complete, the status of the corresponding
entries in the texture cache is updated, and the textures become available for
use in subsequent frames.

Using dedicated threads potentially reduces the latency between texture re-
quests and completion because they continually satisfy outstanding requests
and update the texture cache as quickly as possible; however, this approach
will limit the achievable frame rate because the total number of threads in the
system must be divided between texture generation and interactive rendering.
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Fig. 7. The texture generation engine. Texture generation requests are processed
either by a collection of dedicated threads (left) or by a per-frame callback executed
within the interactive rendering pipeline (right).

Generating textures using a callback mechanism also imposes an upper bound
on the achievable frame rate. For example, if each thread dedicates 1

30
seconds

to texture generation, the frame rate will necessarily be less than 30 frames per
second. Similarly, this approach places a lower bound on the texture generation
latency; in this example, the minimum latency will be 1

30
seconds.

Luminance texture cache. The luminance texture cache manages the state
related to dynamically generated textures. In particular, the cache stores com-
pleted textures and makes the results available for use by the interactive front-
end.

Requests for new luminance textures are also managed by the cache, and are
communicated to the texture generation engine via the request queue. When
the interactive front-end encounters a visible particle, the cache is queried
concerning the state of the corresponding texture. If the texture is invalid,
a prioritized request is submitted to the queue and awaits processing. The
following heuristic determines the priority of each request:

P (x) = f(T (x)−D(x)),

where the priority P (x) of a request for particle x is a function of the differ-
ence between the time T (x) that request is generated and the distance D(x)
from the particle to the current viewpoint. This simple metric biases request
ordering towards recently encountered particles that are close to the current
viewpoint. While several other priority metrics can be used, this heuristic pro-
duces enough randomization to avoid distracting artifacts and ensures that
recently encountered particles are given preference.

DLT results. The datasets depicted in Table 1 are used to quantify the
performance of the DLT approach. The results reported in this section were
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gathered by rendering 512×512 images using a 16 core Opteron machine with
2.6 GHz processors and 64 GB of physical memory.

The DLT approach generates and caches textures for only the particles that
are visible throughout an interactive session. The number of visible particles
is significantly less than the total number of particles in each dataset (ranging
from 2.38% to roughly 12%; see Table 5, Appendix A). Thus, the memory
consumed by uncompressed PLTs can be reduced by factor of 8.24–42.03 using
uncompressed, dynamically generated luminance textures. These requirements
are thus comparable to those of PCA compressed PLTs.

We also examine the impact of DLTs on interactive visualization performance
using Manta and per-frame callbacks for texture generation. Lambertian shad-
ing with shadows serves as the baseline. Frame rates were measured by render-
ing a series of 100 frames at 512× 512 resolution with 16 threads on the test
machine. The operations required to maintain the luminance texture cache
reduce performance by roughly a factor of three (see Table 6, Appendix A).
Performance drops by an additional factor of 2.81–6.06 while outstanding tex-
ture generation requests are processed, but still permits fluid interaction with
the data. However, when all outstanding requests have been satisfied, per-
formance increases dramatically, achieving frame rates that are a factor of
1.10–1.58 higher than Lambertian shading with shadows.

Finally, Fig. 8 summarizes the scaling characteristics of the DLT algorithm.
While the number of textures generated in each frame scales roughly linearly
with the number of threads, interactive performance does not improve sub-
stantially when using a large number of threads. The operations imposed by
texture generation and cache updates constitute a bottleneck and do not per-
mit interactive rendering performance to scale efficiently. Once these requests
have been satisfied, however, the algorithm scales to 16 threads with approx-
imately 80% efficiency.

5 Conclusions and Future Work

The algorithms described above make perceptually beneficial effects from
global illumination practical for an interactive visualization process. Using
these methods, investigators can interact with the whole dataset and achieve
a better understanding of the state of each particle, as well as its relationship
to the full computational domain. In fact, informal feedback from applica-
tion scientists indicates that the results of these algorithms enhance the data
analysis tasks necessary for understanding complex particle datasets.

Discussion. The implementations described above do not leverage coherent
grid traversal for particle visualization (PCGT) [7]; instead, they are based
on highly optimized single ray traversal for multilevel grids [18]. Although
RTRT does not facilitate packet-based ray tracing, Manta has been explicitly
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Fig. 8. Average efficiency achieved by the DLT algorithm. Frame rates do not im-
prove while servicing texture generation requests, but the algorithm scales efficiently
once these requests have been satisfied.

designed for such algorithms, and we have begun to explore the impact of
PCGT on our algorithms.

Using PCGT to determine the currently visible particles is straightforward,
and our algorithms simply proceed as described above. The performance im-
provements we observe are commensurate with the packet-based traversal
scheme [7]. However, the constraints of PCGT limit its utility in texture gen-
eration: performance is dependent on packets of highly coherent rays, which
Monte Carlo path tracing tends not to produce. We are currently investigating
coherent path tracing using SIMD ray stream tracing [25], which extracts and
exploits the coherence in arbitrarily sized groups of arbitrary rays.

Computing an accurate solution to the light transport equation at highly in-
teractive rates currently remains out of reach, even on multicore platforms
like the test machines used to evaluate our algorithms. However, with the ad-
vent of massively multicore processors like the CELL Broadband Engine [10],
it is only a matter of time before compute power exceeding that of the test
machines is available on commodity desktop systems. Our algorithms are de-
signed for such highly parallel architectures, and can be adapted to future
systems in a straightforward manner. The anticipated architectures thus sug-
gest that these algorithms may facilitate interactive particle visualization with
global illumination effects on a single, very inexpensive processor.

Future work. Some aspects of these algorithms warrant further investigation.
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For example, improving the performance of texture generation by aggressive
optimization of the path tracing engine would be valuable. As noted above,
methods for coherent path tracing offer one promising direction. Texture level-
of-detail could also be used to reduce texture generation time for perceptually
unimportant particles. Such an approach would require a human behavior
model incorporating factors from both space navigation [5] and visual atten-
tion [23]. Additionally, alternate representations for storing illumination effects
may provide more accurate or more compact results. Spherical harmonics is
just one of several alternatives that could be explored.

As discussed above, the memory required by the DLT approach is significantly
less than that required by uncompressed PLTs, so we have not explored texture
compression in this context. However, there is nothing inherent to the algo-
rithm that precludes the use of texture compression with dynamically gener-
ated textures. Incremental compression schemes, for example, those based on
PCA [27,29], could be used to further reduce the DLT memory requirements.

Although the number of texture requests satisfied in a given frame scales
roughly linearly with the number of texture generation threads, analysis indi-
cates that the luminance texture cache represents a bottleneck in our current
implementation. A decentralized caching scheme in which each thread man-
ages some part of the cache may help to alleviate the bottleneck, particularly
as more and more processing cores become available.

Parts of this work were funded by the DOE ASC program.
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Appendix A

The tables below present detailed results concerning various aspects of our
interactive particle visualization algorithms. The main body of the text refer-
ences these tables where appropriate.

Table 2
Texture generation statistics. Texture sizes (MB) and run times (hh:mm) for the test
datasets. Preprocessing times are reasonable, despite the unoptimized path tracing
engine used in our current implementation.

Dataset # particles Texture size Run time

Bullet-2 569523 139.04 1:27

Bullet-7 549128 134.06 1:13

Cylinder-6 214036 52.26 0:24

Cylinder-22 212980 52.00 0:26

Fireball-10 954903 233.13 3:53

Fireball-12 951449 232.39 6:07

JP8-128 834271 203.68 2:01

JP8-173 809533 197.64 2:07

Table 3
Texture compression statistics for JP8-173 using VQ/PCA. VQ typically leads to a
lower mean distortion than PCA, but requires tens of hours to achieve the desired
compression ratios. PCA typically requires just tens of seconds, however.

Ratio # textures Run time Distortion

2:1 126979 / 122 21 h / 15 s 11.63 / 91.22

4:1 57165 / 55 34 h / 12 s 29.81 / 109.86

16:1 4171 / 10 30 h / 10 s 59.33 / 210.63
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Table 4
Impact of PLTs on interactive visualization performance. Rendering performance
improves by a factor of 1.14–1.91 when using PLTs. (The PCA compressed PLTs
used in these tests store eight basis textures.)

Dataset Lambertian Uncompressed VQ PCA Speedup

Bullet-2 5.21 6.89 6.89 6.15 1.32/1.18

Bullet-7 6.01 7.82 7.82 6.87 1.30/1.14

Cylinder-6 3.60 6.57 6.57 5.89 1.82/1.64

Cylinder-22 3.12 5.34 5.34 4.88 1.71/1.56

Fireball-10 1.54 2.91 2.91 2.79 1.89/1.81

Fireball-12 0.67 1.28 1.28 1.25 1.91/1.87

JP8-128 0.73 1.12 1.12 1.11 1.53/1.52

JP8-173 0.73 1.11 1.11 1.01 1.52/1.38

Table 5
Memory requirements for our algorithms. The memory, in megabytes, consumed
by DLTs is 8.24–42.03 times less than that consumed by uncompressed PLTs, and
are thus comparable to the requirements of PCA compressed PLTs that store eight
basis textures.

Dataset # particles % visible DLT PLT PCA

Bullet-2 569523 4.53% 6.31 139.04 4.35

Bullet-7 549128 2.38% 3.19 134.06 4.19

Cylinder-6 214036 11.64% 6.34 52.26 1.64

Cylinder-22 212980 11.93% 6.21 52.00 1.63

Fireball-10 954903 8.07% 18.84 233.13 7.29

Fireball-12 951449 7.32% 17.01 232.39 7.26

JP8-128 834271 7.66% 15.61 203.68 6.37

JP8-173 809533 8.91% 17.62 197.64 6.18
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Table 6
Impact of DLTs on interactive visualization performance. Operations related to the
DLT caching mechanisms reduce performance by roughly a factor of three, and
texture generation has an additional impact. However, once outstanding texture
generation requests have been satisfied, frame rates improve significantly.

Dataset Lambertian Query only Outstanding Completed

Bullet-2 46.13 17.44 5.20 72.95

Bullet-7 26.22 13.63 3.59 37.75

Cylinder-6 29.84 9.23 2.74 39.59

Cylinder-22 26.56 8.50 2.46 37.90

Fireball-10 59.17 21.44 3.54 65.37

Fireball-12 44.92 16.75 3.11 55.24

JP8-128 25.71 9.55 3.40 38.79

JP8-173 24.78 8.85 2.85 35.81
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