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Abstract

The underlying pathophysiology of ischemia and its
electrocardiographic consequences are poorly under-
stood, resulting in unreliable diagnosis of this disease.
This limited knowledge of underlying mechanisms suggests
a data driven approach, which seeks to identify patterns in
the ECG that can be linked statistically to underlying be-
havior and conditions of ischemic stress. The gold stan-
dard ECG metrics for evaluating ischemia monitor verti-
cal deflections within the ST segment. However, ischemia
influences all portions of the electrogram. Another metric
that targets the QRS complex during ischemia is Conduc-
tion Velocity (CV). An even more inclusive, data driven ap-
proach is known as “Laplacian Eigenmaps” (LE), which
can identify trajectories, or “manifolds”, that respond to
different spatiotemporal consequences of ischemic stress,
and these changes to the trajectories on the manifold may
serve as a clinically relevant biomarker. On this study,
we compared the LE- and CV-based markers against two
gold standards for detecting ischemic stress, both derived
from the ST segment. We evaluated the response time
and fidelity of each biomarker using a Time to Threshold
(TTT) and Contrast Ratio (CR) measure, over 51 episodes
recorded as cardiac electrograms from a canine model of
controlled ischemia. The results show that metrics de-
signed to monitor regions beyond the ST segment can per-
form at least as well, if not better, than traditional ST seg-
ment based metrics.

1. Introduction

The motivation for this research is the persistently poor
performance of ECG based methods in diagnosing acute
ischemia in the settings of stress testing and the emer-
gency department [1]. Diagnosis based on ECG has both
a long history and a compelling rationale; ischemia gener-
ates changes in cardiac electrical behavior that should be

visible in the ECG. However, identification of robust mark-
ers of ischemia remains challenging. Traditional biomark-
ers of ischemia, such as upward or downward shifts in
the ST segment, are thought to be driven by the differ-
ences in transmembrane potentials between healthy and
ischemic regions. This potential difference gives rise to
injury currents which drive diagnostic ST-segment shifts.
However, ischemia affects more than the plateau of the ac-
tion potential, suggesting that additional metrics could re-
veal ischemic stress earlier and with a greater robustness
than current clinical standards. [2] A clear candidate for
such a marker is the spread of excitation, which our ex-
perimental preparation allowed us to estimate in three di-
mensions via transmural multielectrode needles. The re-
sulting three-dimensional (3D) view allowed conduction
velocity (CV) to be estimated throughout the region sam-
pled by the electrodes. However, conduction velocity only
captures the spread of activation in the QRS complex. An
even broader approach is to evaluate the entire QRST and
for this we employed a machine learning technique known
as Laplacian Eigenmaps (LE)[3]. LE is an algorithm that
utilizes the entire QRST over all available leads nonlin-
early projected onto a lower dimensional parameter space
from which differentiating features can be extracted. We
applied LE to quantify changes in this lower dimensional
space, or LE space, to produce what we call the LE met-
ric. We then evaluated the CV- and LE-metrics against two
ST-based metrics to quantify their performance in detect-
ing acute myocardial ischemia.

2. Methods

2.1. Experimental data collection

The cardiac electrograms used for this study were col-
lected over 15 in situ canine experiments during which we
induced 51 episodes of acute myocardial ischemia. Each
ischemic episode, or intervention, lasted 8 minutes with
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a 30-minute downtime to allow the tissue to recover be-
fore subsequent episodes. Anywhere from 3-8 interven-
tions were performed per animal, using ischemic protocols
designed to produce a graded increase in either supply- or
demand-based ischemia in the tissue perfused by the left
anterior descending (LAD) artery. Supply-based ischemia
was produced by maintaining an elevated heart rate and
incrementally reducing blood flow in the LAD over the
course of the intervention. Demand-based ischemia was
produced by holding a diminished flow rate in the LAD
constant while the heart rate was increased. The electro-
cardiographic response to ischemia was measured using
25–40 transmural plunge needles, each consisting of 10
unipolar electrodes.

2.2. ST-derived Metrics

To measure ST-segment shifts, we used the ST40% po-
tential averaged across all samples in a 10 ms window cen-
tered at the time instant 40% of the duration from the end
of the QRS to the peak of the T wave. This computation
was repeated for each electrode across every run in the ex-
periment. For a more detailed analysis of the ST40% met-
ric, see Aras et al. [4] We compared these results to those
based on the ST40 shift, measured at the time instant 40 ms
after the end of the QRS, averaged across a 10-millisecond
window.

2.3. 3D Conduction Velocity

3D conduction velocity (CV) estimation was performed
throughout the region of tissue sampled by the plunge nee-
dles for each run over the course of each experiment. A
tetrahedral mesh was created based on the electrode loca-
tions as the nodes using Delaunay criteria implemented in
the custom software SCIRun (SCI Institute). Any tetra-
hedra with poor aspect ratio was removed from the mesh.
For each face of each tetrahedral element, the CV was es-
timated using the edge lengths, differences in activation
times, and the angles that separate the edges by extending
to three dimensions the triangulation technique outlined in
Cantwell et al.. [5] The algorithm assumed a planar wave
moving through the face and the resulting CV vector was
averaged across the four faces to produce a single repre-
sentative vector for the entire tetrahedron. We then defined
a “CV metric” as the difference between the CV measured
during rest and the CV during the ischemic intervention, a
metric of the change in conduction velocity over each run
in the experiment.

2.4. Laplacian Eigenmaps

Laplacian Eigenmaps (LE) is a dimensionality reduc-
tion method that is capable of reducing many simultaneous

time signals into a trajectory on a manifold of lower dimen-
sionality. In our implementation, as described in detail in
Erem et al.[3], each time point measured across the entire
set of electrodes corresponds to a single location on the
manifold. These trajectories were obtained by computing
a matrix of inverse exponentials of pairwise Euclidean dis-
tances between all input points, and then taking its singular
value decomposition (SVD). The inverse exponentials are
scaled to emphasize local relationships in the data. The
SVD determined and ranks the significance of the coordi-
nates in the lower dimensional space. We defined three rel-
evant coordinates to be the second through fourth columns
of the right singular vector matrix (the first column was
ignored because it is constant.) The manifold coordinates
were learned using the beats recorded during the initial rest
period before the first intervention was induced. Once the
coordinate space was identified, it was populated with sub-
sequent beats over repeated episodes of induced ischemia,
as seen in Fig. 1B. [6] [3]

Figure 1. Laplacian Eigenmap manifolds. A.) This man-
ifold consists of a single trajectory corresponding to a run
during the rest period, before the induction of ischemia.
The progression of the ECG and its relation to the tra-
jectory are shown by the black arrow. B.) This manifold
shows several runs mapped into the same manifold space.
Each trajectory corresponds to a single run during the in-
tervention. C.) This final manifold shows the trajectory of
the run taken at rest (white) and the final run of the in-
tervention (red) with all other trajectories set to be trans-
parent. The blue arrow corresponded to the point on the
trajectory that showed the greatest sensitivity to the under-
lying ischemic stress.

The manifold produced by this analysis consisted of a
single trajectory for every run in the experiment. As pro-
gressively ischemic runs were mapped into the manifold
space, large regions of the trajectories responded to the
underlying stress state. To determine which point on the
trajectory responded most robustly, we measured the Eu-
clidean distance between each point on the healthy trajec-
tory and its corresponding point on each subsequent trajec-
tory for each run in the experiment. The trajectory point
that showed the greatest CR was chosen as the LE metric
for that intervention. The magnitude of movement along
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the blue arrow, seen in Fig. 1C, was used as the LE metric.
[7]

2.5. Measures of Metric Quality

Two measures were developed to quantify how early
each metric was able to detect ischemia and the robustness
with which each metric responded. These metrics are cal-
culated on the representative beats we extracted over the
course of the experiments. We will refer to each extracted
beat as a ’run”, defined here as the first representative beat
per continuous recording (typically 3 s in duration taken
every 15 seconds during the ischemic interventions and
every ten minutes during the rest periods). We captured
80–300 such runs over the course of each experiment. To
follow the progression of metrics over the experiments, we
defined “run-metric plots”, continuous plots of each met-
ric over one or more intentions (see Figure 2). We also
defined the Time to Threshold (TTT) as a measure of how
early each metric responds and the Contrast Ratio (CR) as
the magnitude of the response with respect to the mean
amplitude at rest extracted from the run-metric plots.

TTT = Ar +
Am−Ar

3

Contrast Ratio (CR): = Am

Ar
,

where Ar is the mean value at rest or control of any
metric and Am is the maximum value of the metric.

3. Results

3.1. Time to Threshold and Contrast Ratio

Figure 2. LE and ST40% run-metric plots for the same
ischemic episode. Each metric has been normalized to put
the metrics on a common scale. A.) The LE metric over
time. B.) The ST40% metric over time. Magenta line:
Average value at rest (Ar) . Orange line: Maximal value
during intervention (Am). Green line: Automatically de-
termined threshold.

Table 1 shows the values of TTT and CR for all the met-
rics we compared. Of the 51 interventions evaluated, the
LE metrics detected ischemia earlier than the ST40% met-
ric in 42 of the episodes with a mean decrease in detection
time of 36.4 s. The ST40% metric detected ischemia ear-
lier than the CV metric in 38 of the episodes with an av-
erage difference of 32.7 s. A comparison of the two tradi-
tional metrics showed no meaningful differences in perfor-
mance. The results for CR, showed that both LE and CV
metrics exhibited a greater degree of contrast from base-
line levels ( 5.5 and 5.9 for LE and CV, respectively) than
the two ST segment based metrics (3.5 and 3.6 for ST40
and ST40%).

Table 1. Evaluating the TTT and CR of Four Metrics De-
signed to Detect Ischemic Stress

Metric TTT (s) CR
ST40% 262.8 3.6
ST40 264.2 3.5
CV 290.5 5.9
LE 226.5 5.5

3.2. Conduction Velocity During Acute Is-
chemia

While the purpose of this study was to evaluate how
various metrics compared in detecting ischemic stress, the
computation of CV throughout the transmural extent also
allowed us to measure the influence of ischemia on con-
duction velocity. The proarrhythmic vulnerability induced
in ischemic tissue is well known but poorly understood
and has yet to be measured in three dimensions through-
out even a reasonably sized region of the myocardium.
As seen in Table 2, the healthy CVs of 61 cm/s and is-
chemic CVs of 47 cm/s were comparable to the one- and
two-dimensional measures reported in the literature. [2]
The framework for measuring CV proposed here will be
utilized in future studies to investigate the vulnerabilities
created by acute myocardial ischemia.

Table 2. Conduction Velocity During Acute Myocardial
Ischemia

Tissue State Conduction Velocity (cm/s)
Healthy 61.1± 12
Ischemic 46.6± 11

4. Discussion and Conclusions

Traditional means of detecting and diagnosing ischemia
have relied on amplitude shifts within the ST segment,
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which are not unique to ischemia. The goal of this re-
search was to identify metrics capable of robustly detect-
ing ischemia with a short response time. For this end, we
first developed the CV metric designed to use the 3D archi-
tecture provided by our transmural needles to estimate the
activation wavefront as it moves through the myocardium.
Clearly this metric can only be calculated when transmu-
ral measurements are available. In addition we applied the
LE metric as a data driven approach that does not presume
a bias based on any mechanisms. This approach is also
attractive as it has the potential to maintain sensitivity to
ischemia as one moves from the needles to the epicardium
and the torso surface. We found that while the LE met-
ric was less robust than the CV metric, it was the earli-
est responding metric of those considered. Furthermore,
we found that the heart rate adjusting metric, ST40%, per-
formed similarly to the metric that did not account for heart
rate variability, ST40. The similarity of the ST-metrics
may suggest that adjusting for heart rate may be unnec-
essary for earlier detection of ischemia. The ST-metrics
had lower CRs than both the LE- and CV-metrics, suggest-
ing regions beyond the ST segment could be used in con-
junction with traditional metrics to detect ischemia with
greater robustness. The early and robust detection of is-
chemic stress by the LE metric prompts further study into
its performance on epicardial and torso potentials to assess
its clinical viability.

The CV metric leverages the changes seen in the spread
of activation, as measured by the activation time of the
extracellular electrogram, which corresponds well to the
upstroke of the action potential. While we could detect
changes in activation, the CV metric we derived did not
respond as quickly to ischemic stress as ST-segment based
metrics. The ability to measure the development of is-
chemia in 3D and monitor how it influences the CV of
the surrounding myocardium provides a platform for fu-
ture studies. The reasons for the earlier response of the
LE metric is unclear as the physiological basis driving the
changes seen in the LE space have not yet been clearly
identified. The fact that the entire signal is used to learn
the LE manifold coordinates may suggest its performance
is due to its ability to be sensitive to any and all changes
seen in the electrograms.
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