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Abstract

Diffusion tensor imaging (DTI) provides a unique source of information about the

underlying tissue structure of brain white matter in vivo, including both the geom-

etry of major fiber bundles as well as quantitative information about tissue prop-

erties as represented by measures such as tensor orientation, anisotropy, and size.

This paper presents a method for statistical comparison of fiber bundle diffusion

properties between populations of diffusion tensor images. Unbiased diffeomorphic

atlas building is used to compute a normalized coordinate system for populations

of diffusion images. The smooth invertible nature of the transformations between

each subject and the atlas provides spatial normalization for the comparison of tract

statistics. Diffusion properties, such as fractional anisotropy (FA) and tensor size,

of fiber tracts are modeled as multivariate functions of arc length. Hypothesis test-

ing of tract models is performed non-parametrically with permutation testing based

on the Hotelling T 2 statistic. The linear discriminant embedded in the T 2 metric

provides an intuitive, localized interpretation of detected differences. The proposed

methodology was tested on a clinical study of neurodevelopment. In a study of one
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and two year old subjects, a significant increase in FA and a correlated decrease

in Frobenius norm was found in several tracts. Significant differences in neonates

were found in the splenium tract between controls and subjects with isolated mild

ventriculomegaly (MVM) demonstrating the potential of this method for clinical

studies.

Key words: Diffusion tensor imaging; Registration; Tract modeling;

Neurodevelopment; Statistical Modeling

1 Introduction

Clinical neuroimaging studies increasingly rely on diffusion tensor imaging

(DTI) for new insights into the tissue structure of brain white matter in vivo.

Traditional structural magnetic resonance imaging (MRI) provides little con-

trast withing the white matter, which is displayed as a homogeneous volume

without information about the underlying tissue orientation and microstruc-

ture. DTI, on the other hand, provides information about the axon bundles of

the white matter such as preferred orientation, myelination, and density as re-

flected in measures of the diffusion tensor for each voxel (Basser and Pierpaoli,

1996). The diffusion tensor incorporates information about the preferred fiber

orientation in the principal eigenvector as well as information about local tis-

sue structure in measures of anisotropy and tensor size. This paper addresses

the problem of normalizing geometric models of white matter bundles and

making statistical inference about differences in diffusion properties.

∗ Corresponding author.
Email address: gcasey@sci.utah.edu (Casey B. Goodlett).
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Most approaches to group analysis in the clinical DTI literature have relied

on voxel based morphometry (VBM) or manually drawn regions of interest.

An overview of the differences between VBM and ROI analysis in DTI pop-

ulation studies was described by Snook et al. (2007). Voxel based analysis

methods are characterized by alignment of images to a template followed by

independent hypothesis tests per voxel which are smoothed and corrected for

multiple comparisons. Voxelwise analysis has been applied in DTI studies of

autism (Barnea-Goraly et al., 2004), schizophrenia (Burns et al., 2003), and

Alzheimer’s disease (Sydykova et al., 2007). The major challenge in VBM anal-

ysis is the need for complex multiple comparison correction and the need for

smoothing methods which can make localization of changes challenging to in-

terpret (Jones et al., 2005a). Other studies have used manually drawn regions

of interest (ROIs) for group comparison of DTI properties. Within the ROIs,

diffusion properties such as FA or mean diffusivity (MD) are averaged to cre-

ate a single statistic. Examples of studies using ROI methods can be found in

normal development (Bonekamp et al., 2007; Gilmore et al., 2007a; Hermoye

et al., 2006), schizophrenia (Kubicki et al., 2005), and Krabbe disease (Guo

et al., 2001). The major drawback of ROI analysis is the time consuming na-

ture of manual identification of regions, especially the ability to identify the

long curved structures common in DTI fiber tracts. Our method improves on

previous methods in the ability to perform automatic processing through the

use of high dimensional registration as well as the ability to focus on testing

specific hypotheses regarding tracts of interest using a novel method for joint

analysis of tensor shape measures in a tract model.

Segmenting anatomically known fiber bundles remains an important challenge

for DTI analysis. The most common approach, fiber tractography, integrates
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the field of tensor principal eigenvector to create streamlines which sample

anatomical fiber bundles (Basser et al., 2000). Corouge et al. (2006), Jones

et al. (2005b), and Lin et al. (2006) proposed to analyze the diffusion properties

of fiber tracts as a function of arc length. More recent work has focused on

volumetric segmentation methods which also allow data within the tract to

be reduced to a function of arc length (Fletcher et al., 2007; Melonakos et al.,

2007). These methods emphasize the need to understand diffusion properties

in the context of geometric models of fiber bundles.

The major challenge in implementing tract oriented statistics in population

studies is finding a consistent spatial parametrization within and between pop-

ulations. Defining anatomically equivalent ROIs to seed tractography for large

population studies is time consuming, error prone, and often requires signifi-

cant post-processing such as cleaning and clustering. Furthermore, even given

tractography seeds for each image, the natural variability of brain size and

shape prohibits an automatic consistent parametrization for arc length mod-

els of diffusion. To solve both the needs for tract segmentation in individual

cases as well as shape normalization for fiber tracts, we apply a population

based registration method. Jones et al. (2002) and Xu et al. (2003) initially

described the advantages of spatial normalization for DTI population studies.

Recent work has focused on the use of unbiased methods for mapping tensor

images to a common coordinate system (Zhang et al., 2007; Peyrat et al.,

2007). A reference atlas of fiber bundles visible in DTI was produced by Mori

et al. (2005). Xu et al. (2008) highlighted the need for smooth invertible map-

pings in a registration framework. Other work on DTI atlas building has used

the geometry information contained within tractography results rather than

image registration to build a population model (O’Donnell and Westin, 2007).
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In our framework, atlas building for DTI creates a global spatial normalization

which can be used to parametrize tract oriented measures across a population.

In work closely related to the proposed methodology, Yushkevich et al. (2008)

propose a method for statistical analysis along the two-dimensional medial

manifolds of fiber tracts for specific tracts of interest after unbiased group

alignment. On the tract medial axis, permutation tests are applied to detect

clusters of pointwise differences between MD of groups. Another approach pro-

posed by Smith et al. (2006), tract-based spatial statistics, is a global approach

for analysis of diffusion properties using non-linear registration to a template

combined with a skeletonization of FA voxels. FA values are globally projected

onto the skeleton followed by pointwise hypothesis tests on the skeleton. Our

method differs from these primarily in the use of statistical analysis that in-

corporate multivariate tensor measure and tract-oriented statistics for a single

hypothesis test per-tract.

This paper present a method for group comparison of DTI that combines

a method for high-dimensional diffeomorphic registration with a statistical

framework for detecting and understanding differences between the diffusion

properties of fiber tracts. The emphasis of the DTI atlas building procedure is

to model and normalize the geometry of fiber bundles to analyze differences

of diffusion properties between groups. A schematic overview of the procedure

is shown in Fig. 1. Atlas building is performed based on a feature which is

sensitive to the medial location of brain white matter. The diffusion properties

of fiber bundles are modeled as continuous spatial functions of arc length,

where the tract functions are multivariate functions which map arc length to

orthogonal measures of tensor shape. Statistics appropriate to populations of

continuous functions is applied for hypothesis testing and discrimination. The
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Fig. 1. Schematic overview of the tract analysis procedure. A population of images

is first mapped into an atlas which is used to generate a template fiber tract. Inverse

transformations are used to map the template tract back into the individual subjects

to collect along tract measurements of tensor properties. The parametrization given

by the atlas is used to compute statistics on the spatial functions.

key contributions of this paper are the use of atlas building to parametrize

fiber tract statistics and a method for statical inference in populations of

tract oriented diffusion statistics. The proposed methodology was evaluated

on a large pediatric study of normal development and comparison in neonates

of controls to MVMs who are at higher risk for mental illness.

2 DTI Atlas Building

Comparison of diffusion properties in populations of diffusion tensor images re-

quires a method for identifying corresponding regions of anatomy. We have ex-

tended a high-dimensional, unbiased registration procedure developed by Joshi

et al. (2004) using a feature image that is sensitive to the geometry of brain

white matter and is similar in spirit to methods proposed in the literature

for modeling white matter by its medial sheet (Smith et al., 2006; Kindlmann
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et al., 2007). The goal of the atlas building procedure is to provide spatial nor-

malization for analysis of diffusion values at corresponding locations. Further

reference on the DTI atlas building procedure is described by Goodlett et al.

(2006).

Diffusion tensors are estimated for each subject from the diffusion weighted

images using weighted least squares tensor estimation (Salvador et al., 2005).

The atlas building procedure is initialized by affine registration of the baseline

image of each subject to a T2 weighted atlas using normalized mutual infor-

mation. Skull stripping is performed by applying a segmentation tool on the

baseline image to create a mask of non-brain regions. After affine alignment

and skull stripping, a feature image is computed for each subject. Given a

tensor image I and the corresponding FA image FA, the feature image C is

defined as the maximum absolute eigenvalue of the Hessian of the FA image.

The Hessian is computed by convolution of the FA image with a set of Gaus-

sian second derivatives with a fixed aperture. The σ value for the kernel is

chosen empirically to be proportional to the size of white matter structures in

the brain. For example, a smaller value is used for neonates than for adults.

Figure 2 shows the FA image of a tensor field and the corresponding struc-

tural image C. We apply the atlas building procedure of Joshi et al. (2004) to

the set of feature images using the parameters of the affine registration as an

initialization. The result of the atlas building procedure is a set of invertible

transformations which map each subject tensor image to an atlas coordinate

system.

We choose the feature image C over alternative image match metrics for two

main reasons. First, we observe that C is a good detector of major fiber bun-

dles which occur as tubular or sheet-like structures. Callosal fibers form a thin
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Fig. 2. The top row shows axial, sagittal, and coronal slices of the FA image from a

DTI scan of a 1 year old subject. The bottom row shows the result of the structural

operator on the FA image taken at σ = 2.0mm. Major fiber bundles such as the

corpus callosum, fornix, and corona radiata are highlighted, while the background

noise is muted.

swept U; the corona radiate is a thin fan; the cingulum is a tubular bundle,

and C serves as a strong feature detector for all types of these thin structures.

Consequently, C optimizes correspondence of fiber tracts better than the base-

line image, because C has the strongest response at the center of major fiber

bundles, while the baseline image has the strongest signal in the cerebro-spinal

fluid (CSF). Secondly, we use C instead of a full tensor metric or FA itself in

order to minimize overfitting the diffeomorphic registration by using the same

feature for registration that will be used for statistical comparison.

After nonlinear transformations have been computed for each feature image,

they are applied to the corresponding tensor images. Methods appropriate for
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tensor processing are used to resample the tensor fields in the atlas space. Ten-

sors are reoriented using the finite strain approximation proposed by Alexan-

der et al. (2001). Given the results of Peyrat et al. (2007), we have chosen to

use the finite strain over the preservation of principal diffusion direction model

as we are not modeling mechanical transformations of the anatomy. During

resampling, tensors are interpolated using Riemannian methods first proposed

by Pennec et al. (2006) and Fletcher and Joshi (2007). For efficiency we employ

the Log–Euclidean approximation of the Riemannian metric on the space of

diffusion tensors (Arsigny et al., 2006). After all images are transformed into

the atlas space, the transformed images are averaged using the Log-Euclidean

method to produce a tensor atlas. The result of the atlas building procedure,

as illustrated in Fig. 3, is a tensor image which represents the population mean

and a set of smooth, invertible transformations between the atlas space and

each subject image.

The tensor atlas provides an image with improved signal-to-noise ratio (SNR)

that is used to create template fiber tracts. The diffusion tensors obtained

from averaging across the population can be integrated in streamline trac-

tography approaches with significantly less outliers than in noisy individual

images. After creation of the template fiber diffusion, tensor statistics from the

individual cases are mapped into the atlas providing a consistent parametriza-

tion of fiber tract statistics. For each subject in the population, a fiber bundle

is created using the geometry of the template atlas tract but replacing the

diffusion properties with those mapped from the subject. These tracts with

corresponding geometry but varying diffusion properties are then compared

in a novel statistical framework.
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Fig. 3. Data from each subject is mapped into the atlas space using a diffeomorphic

transformation. Image resampling techniques appropriate for tensor images allow

the full diffusion information to be transformed.

3 Functional Analysis of Tract Properties

After spatial normalization of tensor images, corresponding values of diffusion

properties within a fiber tract can be compared. In previous work this has been

accomplished primarily through voxel based tests that require sophisticated

smoothing and multiple comparison correction. While this type of analysis

is effective for hypothesis generation, the results are often challenging to in-

terpret, and extremely strong differences are necessary to overcome multiple

comparison correction. We propose to use a semi-parametric b-spline model

of multivariate statistics along specific fiber bundles of interest as the basis
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(a) Fiber bundle (b) Arc length Function

Fig. 4. The diffusion properties within a fiber bundle (a) are summarized as a

function of arc length (b). For example, the FA value along the cross-section at

points A,B,C,D,E are averaged and become the value of the function at the points

A,B,C,D,E along the x-axis of the arc length function.

for group analysis.

3.1 Modeling of fiber tract properties

The diffusion properties of fiber tracts are modeled as smooth functions of

arc length. In this model we reduce the diffusion data in a fiber bundle to a

function of arc length for each tensor measure of interest. As illustrated in

Fig. 4, tensor measures in a bundle are averaged at each cross-section along

the bundle and to produce a function of arc length. In our framework tem-

plate fiber bundles are computed in the tensor atlas using tractography, and

the improved signal-to-noise ratio of the atlas allows reliable extraction of

fiber bundles. The template fiber is warped back into the individual subject

images to collect the diffusion data as shown in Fig. 1. Figure 6 shows an

example of the template genu and splenium fiber bundles from a study and

the individual functions produced for this bundle. Because the geometry of

the individual fiber bundles are the same in atlas space, the data from each

subject is parametrized consistently.

11



We have chosen to focus our analysis of diffusion properties on measures of ten-

sor shape for two primary reasons. First, tensor orientation is an unstable mea-

surement due to approximations of tensor reorientation during deformation.

More importantly, however, invariant measures such as anisotropy and size

can be linked more easily to changes in tissue properties. The most commonly

used measurements of tensor shape are FA and MD to measure anisotropy

and size respectively. However, it has been shown by Ennis and Kindlmann

(2006) that FA and MD are not orthogonal. The non-orthogonality implies

that differences in FA have different meanings depending on the magnitude of

the MD. In this framework we have chosen to use FA because of its common

usage in the literature. As a measure orthogonal to FA, the Frobenius norm

of the tensor D is used as a measure of tensor size and is defined as

‖D‖ =

√√√√ 3∑
i=1

3∑
j=1

D2
ij =

√
λ2

1 + λ2
2 + λ2

3. (1)

The mean diffusivity of the tensor, by comparison, is given by the sum of the

eigenvalues rather than the sum of squared eigenvalues.

3.2 Statistics of tract models

The population of multivariate functions produced by the fiber tract model

requires a new method for statistical inference. Image sampling as well as the

fiber tract extraction process create a sampled representation of the fiber bun-

dle diffusion properties. However, there exists a continuous underlying biology

which generates these samples. Therefore, statistical analysis of the sampled

diffusion functions must account for the underlying continuity and spatial cor-

relation of the samples. We compute statistics of the diffusion curves as an

infinite dimensional extension to multivariate statistics known as functional
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data analysis (Ramsay and Silverman, 2005). The simplest extensions of ordi-

nary statistics to the functional setting is the sample mean function f̄(t) given

by

f̄(t) =
1

N

N∑
i=1

fi(t), (2)

and the sample variance-covariance function, which is the bivariate function,

v(s, t) =
1

N − 1

N∑
i=1

(fi(s)− f̄i(s))(fi(t)− f̄i(t)). (3)

The diagonal of the function, v(t, t), is the pointwise variance of the popula-

tion of functions. Hypothesis testing and discriminant analysis of the space of

functions has an inherent high-dimension, low-sample-size problem because of

the infinite-dimensional space of continuous functions. Regularization meth-

ods are, therefore, essential in the computation of functional statistics. To

enforce regularity, B-spline fitting and functional principal components anal-

ysis (PCA) is used for data-driven smoothing, where the number of retained

PCA modes acts as a smoothing parameter.

In order to make computations tractable, smooth basis functions are fit to the

sampled diffusion curves. B-splines were selected as basis functions due to the

nonperiodic nature of the data, the compact support of the B-spline basis,

and the ability to enforce derivative continuity. A large number of B-spline

bases are first fit to the sampled functions using a least squares approach.

The number of basis functions is chosen empirically to maintain local fea-

tures while providing some smoothing. Computation of the mean function is

computed by the sample mean of the B-spline coefficients. Computation of

the variance-covariance function is more complex and requires accounting for

the mapping between basis coefficients and function values. Let fi(t) be the

B-spline function fit to the samples from subject i. Following the notation of

13



Ramsay and Silverman (2005), in matrix notation, we express all functions

fi(t) as a matrix of coefficients C times the basis functions φ, so that

f(t) = Cφ(t). (4)

Assuming the functions have been centered about the sample mean, the variance-

covariance function of f(t) can be written as

v(s, t) =
1

N − 1
φ(s)T CT Cφ(t). (5)

PCA of the functions fi(t) decomposes v(s, t) into the orthogonal unit eigen-

functions ξ(t) which satisfy

∫
v(s, t)ξ(t)dt = λ ξ(s). (6)

Equation (6) can be solved numerically by rewriting in terms of the basis

functions φ as

φ(s)T CT Cφ(t)φ(t)T b = λφ(s)T b (7)

Defining W is the matrix of basis function inner products with entries

Wij =
∫
φi(t)φj(t), (8)

Equation (7) can be simplified in the matrix form,

1

N − 1
CT CWb = λb. (9)

The B-Spline basis is not orthonormal resulting in a non-symmetric eigen-

value problem to solve (9). This minimization can be solved by the symmetric

eigenvalue problem for the basis coefficients b, with the change of variable

W1/2u = b:

1

N − 1
W1/2CTCW1/2u = λu. (10)
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In our analysis we consider a joint analysis of FA and Frobenius norm functions

with basis coefficients C1 and C2 respectively. We therefore compute PCA

from the eigenanalysis of Σ, where

Σij = W1/2CT
i CjW

1/2, and

Σ =


Σ11 Σ12

Σ21 Σ22

 .
(11)

Hypothesis testing and discriminant analysis is performed on the projection

of the data onto the first K PCA modes, where K serves as a smoothing

parameter. An example of the PCA modes for Genu tracts from one and two

year old subjects is shown in Fig. 5. In this work, K is chosen to maintain

90% of the variability of the variance-covariance matrix. Let xi and yi be the

projection of the curves from two population of functions onto the PCA space.

In this space the basis mapping has already been incorporated and standard

multivariate analysis can be applied. The normal parametric hypothesis test

for mean differences is the Hotelling T 2 statistic,

T 2 =
nxny

nx + ny

(x̄− ȳ)S−1(x̄− ȳ)T (12)

where S is the pooled covariance matrix. In order to relax the normality as-

sumptions associated with the parametric test, we apply a permutation test

based on the T 2 statistic to compute p-values (Nichols and Holmes, 2002).

The T 2 statistic is proportional to the difference between group means pro-

jected onto the subspace given by the Fisher linear discriminant (FLD),

ω = S−1(x̄− ȳ)T . (13)
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Fig. 5. Visualization of the PCA modes for the joint analysis of FA and Frobenius

norm are shown on the top and bottom rows respectively. The (a) mean functions

for the combined population are shown with (b) the first and (c) second PCA modes.

The first PCA mode accounts for a large percentage of the variability and shows

constant changes FA with a corresponding anti-correlated change in Frobenius norm.

The linear discriminant, therefore, provides a direction for interpreting the de-

tected group differences of the hypothesis test. The coefficients of the discrimi-

nant can be expanded into the original function basis so that FLD(t) = φ(t)ω

is a function whose inner product with the original data provides maximal sep-

aration between the groups. This function, FLD(t), describes the localized

changes of tensor parameters between the two groups.

4 Experiments

The registration framework of Section 2 along with the analysis method of

Section 3 was applied to a clinical study of neurodevelopment. We have evalu-

ated the effect of normal development on fiber tract properties from age one to

two in cross-sectional populations. We have also performed hypothesis tests

for differences between neonate control subjects and neonates with isolated

mild ventriculomegaly (MVM).
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4.1 Normal Development in Cross-Section from One to Two Years

The proposed methodology was evaluated on a cross-sectional study of normal

development including subjects at one and two years of age. This was chosen

as a test case because of the expected large differences in diffusion properties

due to normal development. In this case the p-value of the hypothesis testing

framework of Section 3 is less relevant as large changes are expected, but

the discriminant direction provides localized information about the change in

diffusion properties across age.

Subjects were imaged on a Siemens 3T Allegra scanner using a DTI proto-

col with 10 repetitions of a baseline image plus 6 diffusion weighted gradient

directions using a b-value of 1000s/mm2 and a voxel size of 2x2x2mm3. Af-

ter image acquisition each repetition of the sequence were corrected for head

motion by registration of the baseline images. The atlas building procedure of

Section 2 was applied to a database of 49 healthy controls including 22 one

year old subjects and 27 two year old subjects. The transformations were ini-

tialized to a template T2 atlas specific built from a set of two year old images.

The feature image for atlas building was computed with a Gaussian kernel

width of σ = 2.0mm, and atlas building was performed in a multi-resolution

framework.

After registration and averaging, the atlas tensor image was used to iden-

tify four tracts of interest: genu, splenium, left cortico-spinal tract, and right

cortico-spinal tract. A standard tractography algorithm using Runge-Kutta in-

tegration of the principal eigenvector field was used to extract the fiber tracts.

Fibers were tracked from manually drawn seed regions in the atlas image and
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constrained to pass through a manually drawn target region. For tractography

in the atlas image a minimum FA threshold of 0.08 was used. As mentioned

in Section 2, the atlas image provides improved SNR which allows lower FA

thresholds than typically used for processing of single images. The atlas image

and the four template tracts are shown in Fig. 10.

After generation of the atlas template tracts, data from the individual subject

images was mapped on to these tracts using the transformations created during

atlas building. Tract oriented functions were then computed for each subject

using an origin defined in the atlas. Thirty b-spline control points were used to

fit each function, and the resulting functions for the genu, splenium, and the

left and right cortico-spinal tracts are shown in Figs. 6 and 7. After evaluation

of the variance-covariance matrix for each tract, the number of PCA modes for

the tract was selected to maintain 90% of the variance resulting in between 6-

10 PCA modes per tract. Permutation testing over the Hotelling T 2 statistics

was run for each tract, and the FLD associated with the null permutation was

computed for visualization. The resulting p-values as well as the maximum

and average pointwise differences of diffusion measures between groups along

the tract are summarized in Table 1. All the tracts indicate a general trend of

increase in FA and a correlated decrease in Frobenius norm from one to two

year old groups. Figure 8 shows a visualization of the discriminant function

for the genu tract that indicates an increase in FA and a correlated decrease

in Frobenius norm from the one year to two year old groups with the effect

focused in the center of the tract and trailing off as the tract enters the grey

matter regions of the cortex. In the cortico-spinal tracts there is some evidence

of localized changes. Figure 9 shows the mean functions for the two groups and

the discriminant direction. The discriminant indicates that FA increases from
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(f) Norm curves

Fig. 6. (a) Genu and (d) splenium tracts extracted from the tensor atlas with color

indicating mean FA value. The diffusion values are sampled along the atlas-normal-

ized arc length for each individual in the study for FA and Frobenius norm values.

The sampled FA and Frobenius norm functions for the two groups are shown in (b),

(c), (e), (f). The one year old subjects are the dashed red lines and the two year

old subjects are the solid blue lines. The spikes in the center of the Frobenius norm

functions for the genu are likely due to partial voluming with the fluid spaces.

one to two years in regions of the tract inferior of the callosal fibers, while the

FA decreases in regions at the callosal fibers and above. This localized change

could indicate a possible increase in orientation complexity or crossing fibers

during development.
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(d) Right cortico-spinal
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Fig. 7. (a) Left and (d) right cortico-spinal tracts in the one and two year old

population. The tracts are sampled from inferior to superior along the tract to

produce the sampled functions in (b),(c), (e), and (f).

4.2 Hypothesis Testing Between Controls and MVMs in Neonate Imaging

Prenatal MVM is a condition characterized by enlargement of the lateral ven-

tricles diagnosed by ultrasound and has been associated with increased risk

of neuropsychatric disorders (Gilmore et al., 1998). Previous investigation of

DTI quantities in MVM have found significant a decrease in FA from controls

in manually identified regions of splenium as well as significant increase in

MD in regions of the genu, splenium, and cortico-spinal tracts (Gilmore et al.,

2007b).

The atlas building method described in Section 2 was applied to a database of

114 images including 85 controls, 13 MVMs, 12 offsprings of schizophrenics,

and 4 offsprings of bi-polar. Transformations were initialized to a neonate
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Table 1

Tract differences from one to two years

Tract p-value FA Frobenius norm

max avg max avg

Genu <.0001 .067 .025 -4.0×10−4 -1.6×10−4

Splenium .0024 .053 .022 -2.6×10−4 -1.4×10−4

Left cortico-spinal .0004 .036 .014 -1.9×10−4 -0.9×10−4

Right cortico-spinal .0002 .049 .023 -1.3×10−4 -0.7×10−4

The table provides p-values for the hypothesis test of differences between one and

two year old subjects. Columns 3-4 and 5-6 show the maximum and average point-

wise differences between the mean functions of the two groups.
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(a) Genu mean functions
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Fig. 8. (a) The mean functions for the genu tract one and two year old groups

along with (b) the linear discriminant which describes the function that maximizes

separation between the groups. Here, the FA values increase from one to two years,

and the Frobenius norm values decrease in a correlated manner. The FA changes

are localized towards the center of the tract and are less informative at both the

left and right ends of the tract.
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(a) Left cortico-spinal mean functions
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Fig. 9. (a) The mean functions of the left cortico-spinal tract for the one and two year

old groups along with (b) the linear discriminant which describes the function which

maximizes separation between the groups. Here FA increases in regions inferior of

the callosal fibers and decreases as the tract passes near the corpus callosum. This

could indicate increased interaction and crossing between fibers in this region.

specific template with T2 weighting. The resulting images were upsampled

by 20% to prevent data loss during the non-rigid registration. The feature

image was computed at σ = 1.5mm for each subject, and the atlas building

procedure was applied in a multi-resolution framework using three levels. After

diffeomorphic registration of each tensor image, an atlas tensor image was

created by averaging the deformed images. In atlas tensor image, tracts were

computed for the genu, splenium, and left and right cortico-spinal tract.

Analysis of tracts was performed on the left and right cortico-spinal tracts,

genu, and splenium. Statistically significant differences were found in the sple-

nium tract but not the genu or cortico-spinal tracts. Figure 11 shows the

discriminant direction for the splenium tract and indicates a decrease in FA

and a correlated increase in Frobenius norm from control subjects to those

with MVM. Results for all analyzed tracts are summarized in Table 2.
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Fig. 10. Template fiber tracts in atlas of neonate subjects overlaid on the FA image

of the atlas.
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Fig. 11. (a) The mean functions for the splenium tract in control and MVM neonates

are shown along with the (b) Fisher linear discriminant. The discriminant indicates

that the significant differences in tract properties are attributed to an decrease in

FA and a increase in Frobenius norm in MVMs.

23



Table 2

Tract differences from neonate controls to MVMs

Tract p-value FA Frobenius norm

max avg max avg

Genu .99 .0086 .0020 1.1×10−4 0.32×10−4

Splenium .0001 .039 -.019 5.7×10−4 2.1×10−4

Left cortico-spinal .24 .016 .00015 1.5×10−4 -0.6×10−4

Right cortico-spinal .80 .022 .0034 8.8×10−5 -2.6×10−5

The table provides p-values for the hypothesis test of differences between controls

and MVMs. Columns 3-4 and 5-6 show the maximum and average pointwise differ-

ences between the mean functions of the two groups.

5 Conclusion and Discussion

We have presented a method for making inferences about group differences in

fiber tract diffusion properties. Our framework combines a method for spatial

normalization of tensor images with a method for quantitative tract analysis.

Within this framework we apply a novel method for joint analysis of ten-

sor shape parameters using statistical inference of populations of multivariate

continuous functions. The statistical framework provides a method for both

hypothesis testing and localizing the differences determined by the hypothesis

test.

There are several limitations to the proposed methodology that should be

noted. First, the atlas building methodology of Section 2 assumes that the

overall appearance of DTI images is sufficiently similar between the two groups

that registration to a single coordinate system is feasible, as is common in
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brain mapping approaches. In studies where subjects with severe geometric

distortions such as tumors are present, this approach is likely not feasible.

Secondly, tracts which are small or inconsistent even among the same group

will be challenging to identify in the atlas. For this reason, we have focused on

large major fiber bundles, where consistency is expected. Finally, the statistical

analysis relies on tensor shape measures to make inference about potential

changes in tissue structure. However, there are several other effects which could

have an impact on the tensor shape besides tissue change. For example, varying

degrees of partial voluming effects can cause differences in total diffusivity that

do not necessarily reflect changes in axon density or myelination (Peled, 2007).

Further studies are necessary to investigate the underlying biological cause of

detected differences in DTI measures.

In this work, we have focused on analysis of the diffusion tensor model rather

than high angular resolution diffusion imaging (HARDI) models. This is done

primarily because of the constraints of currently available clinical data. In the

future we anticipate that some level of higher order modeling will be required

to fully capture the geometry of anatomical fiber bundles and resolve fiber

crossings. The statistical analysis presented in this paper can be readily ex-

tended to more complex information given appropriate measures of diffusion

shape for more complex models. For example the generalized measures pre-

sented by Özarslan et al. (2005) could be used within the same framework.

More advanced tractography methods incorporating HARDI data could also

improve the generation of the template fiber tract.

In summary, we have presented a novel method for detecting and understand-

ing differences between diffusion properties of DTI fiber bundles. The method-

ology is demonstrated on a clinical study of neurodevelopment. In this study
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changes between one and two year populations were assessed and localized in

several key tracts. Previous results from an ROI based study were confirmed

in differences between neonate controls and MVMs.
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