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Abstract. We present a framework for hypothesis testing of differences
between groups of DTI fiber tracts. An anatomical, tract-oriented coordi-
nate system provides a basis for estimating the distribution of diffusion
properties. The parametrization of sampled, smooth functions is nor-
malized across a population using DTI atlas building. Functional data
analysis, an extension of multivariate statistics to continuous functions is
applied to the problem of hypothesis testing and discrimination. B-spline
models of fractional anisotropy (FA) and Frobenius norm measures are
analyzed jointly. Plots of the discrimination direction provide a clinical
interpretation of the group differences. The methodology is tested on a
pediatric study of subjects aged one and two years.

1 Introduction

The diffusion properties of white matter tracts measured by DTI provide a novel
and important source of information for group comparison and regression in clin-
ical neuroimaging studies. Significant challenges remain in the development of
an automatic framework for testing significance of group differences in a manner
which provides clinically relevant results. Previous work has shown the impor-
tance of modeling the diffusion properties of a fiber tract as functions sampled
by arc length along the axis of the bundle [1, 2]. The major challenge in applying
this type of analysis is the need for a consistent parametrization of fiber bundles
across a large population of images. Deformable registration has been proposed
as a method of mapping a population to a reference atlas coordinate system [3–5].
Most of the analysis using atlas building has focused on independent voxelwise
tests, which can be challenging to interpret and require sophisticated multiple
comparison correction. Most studies have also analyzed fractional anisotropy
(FA) or mean diffusivity (MD) values independently. We propose to combine
the anatomically relevant coordinate system of tract statistics with the popu-
lation coordinate system provided by atlas building. The combination of the
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tract coordinate system with atlas building provides an automated, clinically in-
terpretable framework for understanding group differences. The closest related
work has been done using nonlinear registration and projection onto a skele-
ton representation of FA [6]. Another proposed approach uses fiber clustering to
compute correspondence across a population [7].

We use deformable registration to estimate and remove shape variability in a
population of images. Analysis of shape normalized fiber bundles is performed in
an anatomically relevant coordinate system based on fiber tractography. The at-
las normalized diffusion measures are treated as a continuous smooth function of
arc length, and statistical tests are applied for the joint analysis of the orthogonal
FA and Frobenius norm measures. The framework provides a single multivariate
hypothesis test between groups eliminating the need for multiple comparison
correction and incorporating the joint information of tensor anisotropy and size.
Visualization of the linear discriminant provides a clinically meaningful interpre-
tation of the group differences as shown in an example study of pediatric images.
Fig. 1 shows an overview of the analysis procedure.
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Fig. 1. Schematic overview of the tract analysis procedure.

2 Atlas Parametrization and Fiber Extraction

Atlas building based on diffeomorphic registration estimates a set of transfor-
mations such that each image in the population can be mapped into the atlas
coordinate system. In the DTI atlas building framework, each tensor image Ii
is mapped into a common atlas space by a transformation Ti with inverse T−1

i

using appropriate measures to account for reorientation and interpolation of ten-
sors. For the study presented here, the procedure of Goodlett et al. based on the
atlas building procedure of Joshi et al. is applied [4, 8]. In our framework, images
from two groups are combined to produce a single pooled atlas. Our assumption



is that the overall topology of the images in the two groups are similar enough
to allow all images to be combined into one atlas, but differences may occur in
the diffusion properties of fiber tracts. Thus, we use registration to normalize
the image shapes and perform statistics on the diffusion properties of the nor-
malized fiber bundles. The set of tensor images are averaged in atlas space to
produce an atlas tensor image with improved signal-to-noise ratio (SNR). The
average tensor volume allows reliable extraction of tracts even in populations of
images with low SNR such as pediatric images. The diffeomorphic transforms
guaranteed by the atlas building procedure allow atlas tracts to be mapped back
into each individual subject.

Fiber tracts are extracted in the average tensor image using a standard
Runge-Kutta streamline integration technique based on the principal eigenvector
field. Source and target regions are manually developed to extract each bundle
of interest. For each subject, the data within the fiber bundle is modeled as
a sampled function of arc length using a method similar to that described in
Corouge et al. [1]. The result of the procedure is a set of sampled functions
parametrized by arc length tj ∈ [−a, b] from the atlas fiber tract. The atlas-
normalized parametrization of the curves is possible because of the smooth,
invertible nature of the transformations Ti, T−1

i . That is the samples from each
subject are obtained by FAi(Ti(tj)) for each sample point tj in the atlas tract.
A sampled function is created for each tensor scalar measure such as fractional
anisotropy, mean diffusivity (MD), Frobenius norm ‖D‖, etc. For the purpose
of this work we chose FA and the Frobenius norm as orthogonal anisotropy and
size measures respectively [9]. Fig. 2 shows the sampled curves extracted for the
genu fiber bundle for our example study.

(a) Genu atlas tract
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(b) All FA curves
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(c) All norm curves

Fig. 2. (a) Genu tract extracted from the tensor atlas colored by FA value. The diffusion
values are sampled along the atlas-normalized arc length for each individual in the study
for FA and Frobenius norm values. The sampled FA and Frobenius norm functions for
the two groups are shown in (b) and (c) respectively. The one year old subjects are the
dashed red lines and the two year old subjects are the solid blue lines. The spikes in the
center of the Frobenius norm functions are likely partial voluming with the ventricles.



3 Functional Data Analysis

Image sampling as well as the fiber tract extraction process create a sampled
representation of the fiber bundle diffusion properties. However, there exists a
continuous underlying biology which generates these samples. Therefore, statis-
tical analysis of the sampled diffusion functions must account for the underly-
ing continuity and spatial correlation of the samples. We compute statistics of
the diffusion curves as an infinite-dimensional extension to multivariate statis-
tics known as functional data analysis [10]. The simplest extensions of ordinary
statistics to the functional setting are the sample mean function f̄(t) and the
sample variance-covariance function v(s, t), which is the bivariate function given
by

f̄(t) =
1
N

N∑
i=1

fi(t), and v(s, t) =
1

N − 1

N∑
i=1

(fi(s)− f̄i(s))(fi(t)− f̄i(t)) (1)

The diagonal of the function, v(t, t), is the pointwise variance. Hypothesis
testing and discriminant analysis of the space of functions has an inherent high
dimension low sample size problem, because of the infinite dimensional space
of continuous functions. Regularization methods are, therefore, essential in the
computation of functional statistics. To enforce regularity, B-spline fitting and
functional principal components analysis (PCA) is used for data driven smooth-
ing where the number of retained PCA modes acts as a smoothing parameter.

In order to make computations tractable smooth basis functions are fit to the
sampled diffusion curves. B-splines were selected as basis functions due to the
nonperiodic nature of the data, the compact support of the B-spline basis, and
the ability to enforce derivative continuity. A large number of B-spline bases are
first fit to the sampled functions using a least squares approach. The number of
basis functions is chosen subjectively to maintain local features while providing
some smoothing. Computation of the mean function is computed by the sam-
ple mean of the B-spline coefficients. Computation of the variance-covariance
function requires accounting for mapping between basis coefficients and func-
tion values. Let fi(t) be the B-spline function fit to the samples from subject i.
In matrix notation we express all functions fi(t) as a matrix of coefficients C
times the basis functions φ

f(t) = Cφ(t). (2)

Similarly, the variance-covariance function of f(t) can be written as

v(s, t) =
1

N − 1
φ(s)T CT Cφ(t). (3)

Principal component analysis (PCA) of the functions fi(t) decomposes v(s, t)
into the orthogonal unit eigenfunctions ξ(t) which satisfy∫

v(s, t)ξ(t)dt = λ ξ(s). (4)



The B-Spline basis is not orthonormal resulting in a non-symmetric eigenvalue
problem to solve (4). As shown in Ramsay and Silverman [10], this minimization
can solved by the symmetric eigenvalue problem for the basis coefficients b, with
the change of variable W1/2u = b as

W1/2CTCW1/2u = λu, (5)

where W is the matrix of basis function inner products with entries

Wij =
∫
φi(t)φj(j). (6)

In our analysis we consider jointly the analysis of FA and tensor norm functions
with basis coefficients C1 and C2 respectively. We therefore compute PCA from
the eigenanalysis of Σ, where

Σij = W1/2CT
i CjW1/2, and

Σ =
[
Σ11 Σ12

Σ21 Σ22

]
.

(7)

Hypothesis testing and discriminant analysis is performed on the projection
into the first K PCA modes, where K serves as a smoothing parameter. Let xi

and yi be the projection of the curves from the two population of functions fi(t)
and gi(t) into the PCA space. In this space the basis mapping has already been
incorporated and standard multivariate analysis can be applied. The normal
parametric hypothesis test for mean differences is the Hotelling T 2 statistic,

T 2 =
nxny

nx + ny
(x̄− ȳ)S−1(x̄− ȳ)T (8)

where S is the pooled covariance matrix. In order to relax the normality assump-
tions associated with the parametric test, we apply a permutation test based on
the T 2 statistic to compute the p-value.

The T 2 statistic is proportional to the group mean differences projected on
the Fisher linear discriminant (FLD),

ω = S−1(x̄− ȳ)T . (9)

The linear discriminant, therefore, provides a direction for interpreting the group
differences. The coefficients of the discriminant can be expanded into the original
function basis so that FLD(t) = φ(t)ω is a function whose inner product with
the original data provides maximal separation between the groups.

4 Pediatric Data Application and Validation

We have tested the methodology on a study of pediatric DTI images. A popula-
tion of 22 one year old subjects and 30 two year old subjects were chosen from



a database of pediatric DTI. In this example we expected to find large differ-
ences between the two groups, and the purpose of this study is to illustrate the
methodology rather than to determine clinical results. Each image was acquired
with 2x2x2mm3 isotropic voxels, 10 repetitions of a six direction protocol, and
a b-value of 1000s/mm2. We selected as representative fiber bundles the genu of
the corpus callosum and the left motor tract. An atlas was computed from the
combined set of 52 images, and tractography was performed to extract the two
tracts.

Sampled functions of FA and tensor norm parametrized by atlas-normalized
arc length were computed in the genu and left motor tracts. For the genu curves, a
B-spline basis with 60 basis functions was used to provide preliminary smoothing
and smooth curve estimation. For the motor tract, 80 basis functions were used.
Functional joint PCA of FA and Frobenius norm was then estimated for the
whole population. The number of PCA modes was selected to retain 90% of the
total variance. For this study 7 and 11 PCA modes were retained for the genu
and motor tracts respectively. The mean function plus the first two principal
modes for the genu tract are shown below in Fig. 3.
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(a) Genu mean functions
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(b) Genu PCA mode 1
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(c) Genu PCA mode 2

Fig. 3. Visualization of the PCA modes for the joint analysis of FA and Frobenius norm
in the genu tract. The (a) mean functions for the combined population are shown with
(b) the first and (c) second PCA modes. The first PCA mode accounts for a large
percentage of the variability and shows an overall constant change in FA and an anti-
correlated constant change in norm.

The Hotelling T 2 statistic was then computed in PCA space. The genu tract
test was extremely significant with a T 2 statistic of 133.1 and parametric p-value
of 3.3e-8. The motor tract was also extremely significant with T 2 statistic of 93.8
and a parametric p-value of 2.7e-6. In this case there was such a large difference
between groups that the permutation test did not result in any permutations
with a statistic greater than the original. The p-values are uncommonly low
because of the strong differences in the test data and the relatively large sample
size. Visualization of the discriminant direction provides an interpretation of the
detected differences and is shown in Fig. 4. The discriminant direction for the
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(a) Genu discriminant functions
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(b) Data functions projected on FLD
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(c) Motor tract discriminant functions
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(d) Data functions projection on FLD

Fig. 4. Linear discriminants from one to two years for the (a) genu and (c) left motor
tracts expanded into original functional basis. These are the functions integrated with
the original data that maximally separate the groups. In the genu tract the FA values
increase from one to two years, and the Frobenius norm values decrease. For the motor
tract, the results are similar for FA, but the norm increases at the base of the tract and
decreases towards the top. The projection of the (b) genu and (d) motor tract curves
onto the discrimination direction shows the strong separation between the groups.

genu tract shows the difference from one to two year old groups is caused by an
overall increase in FA and correlated decrease in Frobenius norm. Furthermore,
the increased value of FA in the center of the tract indicates the central region
of the tract provides more discriminative power between the two groups. These
results are similar to differences which have been found between neonates and one
year old subjects in the same tract [11]. The results in the motor tract indicate a
similar constant increase in FA across the whole tract, and the Frobenius norm
increases towards the inferior region of the tract, and decreases at a specific
location in the superior region of the tract.

5 Conclusions and Discussion

Computing fiber tract statistics as a function of arc length provides a sensitive
mechanism for detecting and understanding changes in fiber tract properties be-



tween populations. Our framework avoids the problems of multiple comparison
correction by providing a single nonparametric hypothesis test for each fiber
bundle. Furthermore, the discrimination information contained within the hy-
pothesis test can be visualized to provide a clinically relevant interpretation of
the group differences. The framework presented here is closely related to previ-
ous work on shape analysis using PCA, and we intend to explore in more detail
how tools from shape analysis can be applied to this problem. We are currently
applying the methodology to a study of Schizophrenia in adults.
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