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Abstract

Numerical solutions to elastohydrodynamic lubrication problems have been computed
for the last half century. Over the past decade multilevel techniques have been success-
fully applied in several solvers and significant speed-ups achieved. The aim of numerical
research in this field is to develop techniques in order to calculate accurate solutions to
demanding industrial problems as efficiently as possible.

In this work the numerical solver, previously developed by Nurgat, is examined. De-
spite being successful in achieving converged results on a single grid, there were some
unresolved issues relating to the multigrid performance. These problems are explained
and the necessary modifications to the method used are detailed.

There is much current interest in obtaining results to transient elastohydrodynamic
lubrication problems. These are examined in detail and the justification for the methods
used are discussed. Example results for industrially relevant cases, such as variation of
lubricant entrainment, oscillation of the applied load and the presence of surface defects
are considered.

In many other fields, adaptation in both space and time is used to increase performance
and accuracy. However, these techniques are not currently used for elastohydrodynamic
lubrication problems. It is shown that they can be successfully applied and substantial
benefits accrued.

A method of variable timestepping has been introduced and results are presented
showing that not only is it as accurate as fixed time stepping methods, but that the com-
putational work required to obtain these solutions is significantly reduced. Local error
control on each individual timestep is also implemented.

Adaptation of the spatial mesh is also developed. By developing a hierarchy of refined
meshes within the multigrid structure it is seen how significantly fewer computational
points are used in the most expensive numerical calculations. This, in turn, means that
the computational time required is reduced. Different criteria for adaptation are explained
and results presented showing the relative levels of accuracy and speed-up achieved.
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Chapter 1

| ntroduction

1.1 Introduction

Elastohydrodynamic Lubrication, hereinafter referred to as EHL, is a topic which is con-
cerned with understanding and modelling lubrication problems in which solid metal sur-
faces deform under large loads. The problems considered occur most commonly in com-
bustion engines, although the ideas apply to many other regimes.

An engine is comprised of large numbers of individual elements, many of which are
in motion relative to each other. Surfaces will therefore be in contact. Elementary me-
chanics demands that when such a motion is occurring then there will be a frictional force
opposing the movement. The friction not only reduces the efficiency of the component,
since work must be done to overcome friction, but also increases the wear.

In order to reduce the frictional force, a lubricant (oil) is applied between the surfaces.
This separates the two contacting surfaces only slightly, but this is enough to stop them
impacting upon each other. Friction is reduced to a tenth of the dry contact (unlubricated)
case, and thus the wear is also dramatically reduced. This situation is called hydrodynamic
lubrication. This is illustrated in Figure 1.1 with oil flow from left to right.

One particular component of interest is the journal bearings of a car. In this situation
a very large pressure is applied over a very small surface area. Once the pressure exceeds
about 0.3 GPa (i.e. 3x108 Pascals) the contact behaviour moves from being hydrody-
namically lubricated to the elastohydrodynamic regime. Elastohydrodynamic lubrication
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OIL
FLOW

Cavitation
region

Figure 1.1: Representation of a hydrodynamically lubricated contact

(EHL) is different from hydrodynamic problems because here there is actual deformation
of the contacting surfaces. This may sound unlikely but pressures in a journal bearing
or gear commonly reach up to 3 GPa. Assuming pressure is force over area, this would
correspond to three elephants balancing on the end of a pen!

With such a wide range of operating pressures in the contact, it is not difficult to un-
derstand that the properties of the lubricant itself will change across the contact. It is,
however, of great importance to lubricant manufacturers that the oils being developed
are as efficient as possible for the operating conditions for which they are intended. It
is therefore necessary for designers of both lubricants and components to obtain perfor-
mance results for a variety of lubricants in different operating conditions.

The range of scales in EHL problems is great. Applied loads cause pressure distri-
butions across the contact of the order of giga-Pascals, minimum film thickness are in
the micrometre range, and lubricant molecules pass through the contact in a hundredth
of a second. This illustrates how difficult it is to conduct physical experiments into the
behaviour of EHL contacts. That consistent results are achievable at all is a great ac-
complishment, and a testament to the skills of those people whose experimental work
pioneered the techniques now used, described in Section 1.2.

It is now the case that research into EHL problems involves a combination of exper-
iments and numerical simulations. Assuming that accurate computer software (code) is
available, then solutions to numerous EHL test cases may be obtained at minimal ex-
pense. The more efficient the code, the quicker results may be obtained and used. The
development of these numerical techniques is charted in Section 1.3, where emphasis is
placed on those techniques with some bearing on this work.

To summarise a century of work by many outstanding engineers in a few pages is
somewhat difficult. There are several comprehensive reviews already in the literature,
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notably those of Dowson [30], Dowson and Ehret [31] and Jacobson [76]. The follow-
ing two sections provide the highlights and notable milestones in the study of EHL. In
Section 1.4 the rest of this thesis is outlined.

1.2 History of EHL Research

All work in fluid film lubrication can be traced back to the 1880s, when a combina-
tion of experiments was followed by a unifying mathematical theory. In 1886 Osborne
Reynolds [121] formulated equations derived from the Navier-Stokes equations, to de-
scribe the pressure distribution for an applied load on a given geometry, relating the pres-
sure to the speed of the moving surfaces. This work was itself an attempt to explain the
results of the experimental work of Beauchamp Tower [137, 138] which was the first to
detect high pressures in the lubricant film. This pressure variation was also the conclu-
sion of Nicoli Petrov [116], after he had conducted friction experiments on railway axle
bearings, at about the same time.

Despite initial success in the application of the Reynolds Equation to the design of
journal bearings, e.g. [105], in 1916 the case of trying to model lubrication in gears
caused problems. Martin [100] considered an isoviscous lubricant between two smooth
rigid cylinders, representing the gear teeth. A relationship between the operating condi-
tions and the minimum lubricant film thickness was obtained. However, applying known
physical values into the formula, a film thickness of 0.01 um was predicted, which was
significantly less than the known surface roughness of gears at around 0.4-0.8 um. This,
therefore, meant that there must have been other factors involved in the near wearless
operation of gears than simply the model developed thus far.

This impasse was not resolved quickly. For over 30 years, two possible themes were
investigated into what the missing link could be. It was assumed to be either due to the
elastic deformation of the solids, or due to the viscosity-pressure characteristics of the
lubricant. Work was carried out independently on each of these ideas. Deformation was
shown to have some effect, e.g. [103], but the simultaneous calculation of both elasticity
and hydrodynamic equations was too complex for a numerical problem at that time. The
viscosity-pressure work, e.g. [102] also produced larger film thickness values than those
predicted by Martin, but still not nearly enough to obtain numerical results consistent with
experiments.

The work of Ertel [39] and Grubin [54] combined the analytical solution of the de-
formation of a dry contact [67] with the viscosity-pressure effects calculated using the
exponential viscosity-pressure relation of Barus [11]. The minimum film thickness for-
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Figure 1.2: Typical solution for pressure and film thickness in an EHL line contact

mula obtained was only valid in a very limited parameter region, but this was the most
major advance since the formulation of the Reynolds equation.

The first solution of the full numerical line contact elastohydrodynamic lubrication
problem was presented by Petrusevich in 1951 [117]. This work also used the Barus
viscosity-pressure relation, although only three solutions were obtained. It was also the
first to show what has since become known as the Petrusevich pressure spike, itself an
important factor in the development of subsurface stresses and on the life of rolling con-
tacts [34]. The Petrusevich spike is shown in Figure 1.2 where the typical features of an
EHL contact are shown. Lubricant entrainment is from left to right, and the inlet is as-
sumed to be fully flooded. In the centre of the contact, known as the contact region, there
is a near Hertzian pressure profile, with the pressure spike towards the outflow. From the
end of the contact region the pressure solution is zero in what is known as the cavitation
region. This is where the lubricant film is no longer contiguous; bubbles of air at (near)
ambient pressure are present in the oil film, as can be seen in the experimental results
shown in Figure 5.5. In terms of the geometry of the surfaces, it can be clearly seen that
in the elastohydrodynamically lubricated case the parabolic shape on the contact has been
deformed. The roller has flattened out across the contact area, with a constriction present
in the outflow where the pressure drops steeply.

With the computing power available at that time, obtaining numerical solutions to the
two dimensional point contact EHL problem was simply not possible due to the added
mathematical difficulties involved. In the mid-1960s two attempts had been made using
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Figure 1.3: Contour plot of a typical solution for film thickness across an EHL circular
point contact

the Grubin approach [4, 23], but full solutions did not appear until the 1970s. Ranger
et al. concluded their 1975 solution paper [120] by indicating that the two limitations on
obtaining solutions were the “computer capacity” available, and the “ignorance of the re-
lationship between pressure, viscosity and density”. The effect of ellipticity in the point
contact was investigated by Hamrock and Dowson [60-64], in which expressions for cen-
tral and minimum film thickness were developed. These were found to be in reasonable
agreement with experimental results. The formulae obtained are given as Equations (2.30)
and (2.31) respectively. Work was also conducted at this time on the problem of starved
lubrication where the inlet region is not fully flooded [63, 120].

Examples of point contact problem solutions will be seen throughout the rest of this
work. This early work established that there are several physical features not present in
the line contact case. These will be shown in depth in Section 4.3 but most notable is
the change in deformation shape from that predicted in the line contact case. In point
contacts the minimum film thickness is not found on the centreline but on each of the two
sidelobes which develop to form a horseshoe shape. This is characteristic of point contact
EHL problems. An example solution is shown in Figure 1.3 which shows a contour plot of
the central region. It can be seen that away from the centre of the contact the film shape is
undeformed from the original parabolic profile. Inside the centre of the contact, the large
flat central region is again visible, with the horseshoe replacing the film thickness dip of
the line contact case.

Once the ability to solve two dimensional EHL problems had been established, at-
tention returned to the models of the lubricant used. Now-a-days probably the most es-
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tablished viscosity model used is that of Roelands [123], a more complicated version of
the Barus equation. All models used must only be expected to be accurate within certain
parameter ranges, because the number of variables required for modelling real life lubri-
cants is far too large to try to model all fluids with one simple equation. This is especially
true when using non-Newtonian lubricant models.

The study of Non-Newtonian fluids is known as rheology and “rheology is a difficult
subject” [10]. Lubricants are typically non-Newtonian because they often contain long
molecular polymer chains or additive suspensions, both of which affect their flow charac-
teristics. Non-Newtonian behaviour of a fluid exists whenever the rate of shear is not pro-
portional to the shear stress, or there are non-zero normal stresses. There are three main
viscoelastic effects which govern the behaviour of non-Newtonian fluids, namely shear-
thinning, variation of extensional viscosity and fluid memory. Shear-thinning is when the
viscosity of the fluid reduces with increasing rate of shear in a steady shear flow [10]. A
common example of this is how paint gets easier to stir, the more you stir it. Extensional
flows are non-Newtonian whenever the fluid flow is not a shear flow and this is important
in such cases as polymer processing. The extensional viscosity may increase or decrease
with increasing rate of strain, being called tension-thickening or tension-thinning respec-
tively. This subject is considered in detail by Petrie [115]. Fluid memory is the idea that
a fluid’s behaviour at any moment is not just related to the conditions it is experiencing at
that moment, but also to its previous states. Again, see [10] for examples.

The choice of rheological model to use is very much fluid dependent. Many fluids
are Newtonian in their characteristics, whilst the behaviour of others varies dramatically
with the operating conditions. The simplest elastic non-Newtonian models include those
of Maxwell [101] and Oldroyd [114], the latter of which includes shear thinning. There
are many more detailed or specialised viscoelastic models; however there have been very
few applied to EHL modelling, besides those detailed below.

Newtonian models have been effective in modelling EHL film thickness, which de-
pends primarily upon conditions in the inlet to the contact. However, they greatly over-
estimate the friction in a contact because the shear stresses are not accurately predicted
in the high pressure/shear flow in the Hertzian zone using these models. The first pub-
lished difficulties with a Newtonian model came in 1959 when experimental work by
Smith [134] reported that the lubricant acted as a plastic solid in the contact area. Use of
the Ree-Eyring model to deal with the non-linear relationship between shear stress and
shear rate has been developed in many studies, e.g. [9, 40, 81] and still continues today.
This work includes using Ree-Eyring models for line contacts, e.g. by Chang et al. [25],
for circular contacts, e.g. by Kim and Sadeghi [85], and a related model for line contact
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cases by Lee and Hamrock [87]. Other models used include the White-Metzner model
[153] which Scales [127] successfully compared to experimental friction results, building
upon the work of Walters” group at Aberystwyth on journal bearings [122]. This model
explicitly included fluid memory effects on macroscopic friction, including their variation
with local conditions in the contact (extensional effects were assumed to be negligible in
the shear dominated flows considered). The notion that the lubricant changes phase to a
solid at very high pressures, leading to a breakdown in film continuity under shear and
hence rendering the Reynolds Equation invalid in certain regions, has been explored by
Ehret et al. [37] in a plug flow model. Ehret’s work allowed slip conditions at the bound-
ary, and a good agreement was obtained between experimental and numerical results for
the regimes he considered.

Besides the viscosity-pressure relation, another important physical factor is that of
thermal effects. At the high pressures existing in EHL contacts there can be significant
temperature changes over the surfaces, and through the lubricant film. These effects have
been included in some of the rheological studies mentioned above, however they deserve
a separate consideration too. The temperature in the inlet region of an EHL contact is very
important to the resulting film thickness profile across the rest of the contact [53], and this
heat is conducted almost entirely to the contacts [29]. Under sliding conditions, rather
than pure rolling, the temperature rise across the contact can be as much as 100° C [5].

The components used in engines and machinery are real surfaces which have not been
specially prepared before each use, and therefore are not perfectly smooth. This may not
be a great revelation, knowing that the roughness of the gears in Martin’s work [100] was
known to be larger than the minimum hydrodynamic film thickness predicted, however
the ability to model rough contacts is now growing in importance. Applications, such
as computer hard drives, are continuously reducing the lubricant film width, and hence
the effect of surface asperities is becoming more important in estimating the life of com-
ponents. In cases where the surface roughness is of at least the same magnitude as the
elastohydrodynamic film thickness, then it is well known that the components may op-
erate as though lubricated with a fluid film. This is because the surface roughness will
generate pressures great enough to flatten the asperities to leaving only smooth ripples on
the surface. This is known as micro-elastohydrodynamic lubrication.

Accurately measuring surface roughness is a topic which is both limited and defined
by the accuracy of the measuring equipment. Today, it is the effective roughness that
is being investigated. Work by Venner et al. [141, 143], Chang et al. [26, 27], Ai and
Cheng [2] and Hooke [71, 72], investigated line contact problems with either ridges or
waviness patterns passing through the contact. The effect of different slide to roll ratios
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was also investigated. Point contact cases with dents, ridges, and/or waviness patterns,
were solved initially in steady state by Lubrecht et al. [97], but more importantly for
transient analyses by Venner and Lubrecht [142, 144], Ai and Cheng [1] and Ehret et
al. [38]. Recent work by Venner and collaborators [94,98,146] has been investigating the
amplitude reduction of waviness in both line and point contacts. As with all simulations
of real life phenomena it is important to ensure that the assumptions made in the models
are valid when compared to experimental results. Comparisons against the experimental
work of Kaneta et al. [83, 84] have been done in some of the work mentioned above.
However, in the conclusion of his analysis on the validity of the use of Newtonian models
in these cases, Greenwood [51] highlights that “there is considerable danger that these
beautiful calculations are only of mathematical interest”. He does, however, leave open
the question of which lubricant model to use to successfully reproduce the experimen-
tal results from [82] where dimples not associated with surface defects appeared in the
solution, but only when the steel ball was stationary and the glass disc was mobile.

1.3 Numerical Methods

With analytic solutions to EHL problems only possible in extremely limited regions
for very basic models, the ability to obtain solutions to these problems numerically be-
came essential. The complexity of problems available for consideration has always been
constrained by the computing power available. The early numerical work of Petruse-
vich [117] led to many different solution methods for the line contact case. However, the
highly computationally expensive two dimensional cases, such as will be considered in
this work, were not solved until the early 1970s, e.g. [120].

The main area in which there is a choice of numerical methods available is in the
solution of the Reynolds Equation. It will be shown later that, for the Newtonian fluids to
be considered here, the other governing equations are mathematically relatively simple to
solve — even if not always computationally cheap. The Reynolds Equation, however, is a
highly non-linear partial differential equation which gives the pressure distribution for a
given geometry.

The elastic deformation of the surfaces, by definition, gives the geometry of the con-
tact. This deformation is governed by the pressure distribution over the contact and hence
there is a very important counterpoint between the solution of these two equations. One
method, which will be the one applied here, is to solve them each in turn, and then iterate
the process to obtain converged solutions of both pressure and geometry.

Gauss-Seidel relaxation has been widely used for solving the Reynolds Equation. Ex-
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amples can be found for the line contact case in Hamrock and Jacobson [65], and for point
contacts in Hamrock and Dowson [60], Chittenden et al. [28], and Zhu and Cheng [158].
This method is unstable for highly loaded contacts [140]. Under-relaxation does alleviate
this, but reduces the speed of convergence, which can already be slow.

The Newton-Raphson method has been used to solve for both pressure and geometry
simultaneously. First described by Okamura [113], this method inverts the Jacobian ma-
trix of all the solution variables to obtain new approximations. This does, however, lead
to very expensive calculations, since for a domain of N points, the inversion will require
©0(N®) operations and ¢'(N2) computational storage space. Other drawbacks include the
near singularity of the Jacobian matrix for very high loads and the difficulties posed by
the varying location of the cavitation boundary across the domain [95]. Use is therefore
mainly confined to lightly loaded line contact problems, although some advancements
have been made since [24,66,74,86,111,125].

The inverse methods of Ertel [39] were first applied to EHL line contact problems
by Dowson and Higginson in 1959 [32], from which a formula for predicting minimum
film thickness was developed. Point contact solutions followed in the 1980s by Evans and
Snidle [41,42]. The method operates by comparing the geometry obtained by solving the
elasticity equation for a given pressure distribution, with the geometry obtained by solving
the Reynolds equation for the geometry rather than the pressure. The difference between
these two results is used to correct the pressure. This method requires solution of a cubic
equation for the geometry, where the correct one of the three roots must be selected. This
method is not based on strong mathematical principles, but inspired guesswork. It is
also only stable in highly loaded situations, meaning another solver must be used in the
non-contact region [41,42]. It does, however, allow solutions to extremely highly loaded
situations to be obtained. Computationally, this method approaches ¢’(N2) operations and
is therefore undesirable for large systems.

Finite differences are not the only numerical approach that can be used. Using finite
elements has enabled many demanding, highly non-linear problems to be solved on un-
structured grids up to many dimensions, in fields such as computational fluid dynamics,
e.g. [90], and solid mechanics, e.g. [160]. Finite element techniques have been applied to
EHL problems since the early 1970s. Line contacts were first considered by Taylor and
O’Callaghan [136] and Rohde and Oh [124] and point contacts by Oh and Rohde [112].
Whilst these techniques are not widely used to solve EHL problems today, there is still
research being done, e.g. [36].

The finite element techniques used so far appear to have been mainly restricted to
the use of the Galerkin method, see for example [112, 159]. A disadvantage of this ap-
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proach is that it is analogous to using central difference approximations to the convective
terms [78], and would require additional artificial viscosity in practice. There are several
similar possible extensions to this method which may prove better for solving EHL prob-
lems, namely Petrov-Galerkin, streamline diffusion and Galerkin least squares [77]. In
these cases the amount of artificial viscosity introduced is related to the resolution of the
mesh, and adds extra stability to the scheme. This is particularly important in convection-
diffusion problems when there is a high mesh Peclet number [77]. The use of exponential
fitting for a coarse mesh to obtain optimal amounts of artificial viscosity is also a possi-
bility, see, for example, [77].

Without going into great detail there are some other methods deserving of mention,
which have been employed in solving EHL problems. The effective influence Newton
method of Wang [151] uses a small region around each point in the domain to calcu-
late each new pressure solution. In contrast, the homotopy method, used by Schlijper et
al. [129], uses a full solve including all points in the Jacobian matrix rather than just a
well chosen selection. Although the homotopy does lead to very long computing times,
it is a very powerful and reliable technique. Preconditioning techniques have been used
successfully in variational methods, as proposed by Verstappen [149]. Wavelet precon-
ditioning has also been attempted for line contact solutions by Ford et al. [45] but the
extension of this technique to two dimensions is currently unclear.

The above methods all have drawbacks, either in their applicability to both highly and
lightly loaded cases, or in their computational complexity. Limiting the computational
work became a necessity. Lubrecht [95,96] extended the Gauss-Seidel relaxation methods
to include multigrid technigues for both line and point contacts. Multigrid techniques
are described by Briggs [22] and explained in detail by Brandt [16], Hackbusch [58]
and Wesseling [152]. Whilst greatly accelerating convergence of results, the deformation
calculation remained &'(N2).

The multigrid methods of Lubrecht did not attempt to make the Gauss-Seidel scheme
applicable to high loads. In 1991, Venner [140] introduced a new relaxation method.
This considered the lightly and heavily loaded regions of the domain separately. In the
non-contact region the Gauss-Seidel scheme was still applied, and solved in a line sense.
The high pressures in the contact region mean that the elastic deformation dominates the
problem here, and so Venner proposed the use of a distributive relaxation scheme in this
area of the domain.

Venner’s method of using different numerical schemes to solve the Reynolds Equa-
tion in different parts of the domain has been expanded by several other authors. Nur-
gat [108, 110] applied a Jacobi line scheme instead of the distributive scheme, in the
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contact region. Ehret et al. [38] used the same schemes as Venner except a pointwise
Gauss-Seidel scheme was applied on the cavitation boundary.

Before leaving the solution methods which have been used for the Reynolds Equation,
it would be remiss not to mention a common alternative solve applied in the cavitation re-
gion. Usually the pressure here is constrained to be non-negative by setting all calculated
negative pressures to be identically zero, the so-called cavitation condition imposed using
a Christopherson approach [35]. A penalty function approach was proposed by Wu [157]
and has been used since in work such as Schlijper et al. [129].

It is interesting to note, at this point, that the cavitation region in EHL is modelled
in a very different manner to cases of modelling full journal bearings, e.g. [88,89]. In
that field the fluid in the cavitated region must be modelled since it will later become
inlet lubricant. Possible approaches are described in Gwynllyw et al. [57] and include the
modelling of the cavitation region as a continuous film of lubricant, just with a very low
Viscosity.

The computational work of the deformation calculation is the largest part of the nu-
merical solve. This is particularly important for two dimensional cases. The idea of
multilevel multi-integration was developed by Brandt and Lubrecht [17]. This success-
fully reduces the deformation calculation from ¢(N?) to ¢(NInN). The first published
EHL solutions using this method include Venner [140] and Venner et al. [147]. Multilevel
multi-integration has recently been compared to Fast Fourier Transforms for analysis of
rough surfaces [119] and was found to be faster when maximum or even moderate accu-
racy was specified. The use of superconvergence [150] for solving this integration could
be possible, although there would need to be much work done in order to produce results
that were much more efficient that those using multi-integration.

1.4 TheLayout of thisThesis

The intention of this work is to continue the development of a fast, efficient numerical
solver for EHL problems. It has been built upon the previous work by Nurgat [108]
whose work was primarily concerned with a new numerical scheme, used to obtain the
solution of the Reynolds Equation. This scheme is accurate enough to be employed here,
however other results from [108] suggested that it was possible to improve parts of the
solver. These issues will be addressed in the subsequent chapters.

The general problem, described in Section 1.1, will be formulated in a strict mathe-
matical sense in Chapter 2. The governing equations will be described, although deriva-
tions of these well known results will not be presented. These equations will then be
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non-dimensionalised. The various non-dimensional parameters used to characterise EHL
cases will be quantified in relation to the physical characteristics of the real life prob-
lem. This chapter is concluded by presenting the steady state discretisation of the non-
dimensional equations.

It was explained in Section 1.3 that the use of multilevel techniques had greatly im-
proved the efficiency of EHL solvers since their introduction to the field fifteen years ago.
It will be especially necessary for the multigrid work of Chapter 4 to have an understand-
ing of the processes involved, and hence in Chapter 3 the multigrid methods used will be
explained. Also in this chapter, the multilevel multi-integration process, employed in this
work, is described.

The numerical solver used is described in Chapter 4. The different types of equations
to be solved for an EHL solution require different numerical techniques to be used. These
schemes are explained, along with how the multilevel techniques of Chapter 3 are applied
in the algorithm. Example steady state solutions to a circular point contact EHL problem
are shown, and the difficulties posed for numerical solvers are highlighted.

The aforementioned improvements to the solver of Nurgat [108] are also explained
in Chapter 4. The scheme developed by Goodyer et al. [49] to improve the convergence
of Nurgat’s solver is described, alongside results showing its effectiveness. This is then
followed by details of the changes made to the solver in order that the convergence prob-
lems experienced by the code of Nurgat, are now avoided. The chapter is concluded by a
comprehensive set of results showing how the multigrid solver which has been developed
does now obtain fast, numerically accurate results. The efficiency of the solver has also
been shown by comparing single grid results to multigrid results. Finally, results have
been shown detailing some of the possible performance increases that may be obtained
by using parallelism in the solver.

In Chapter 5 the numerical solver will be extended to transient problems. Again it
has been possible to make dramatic improvements on the preliminary attempts of Nur-
gat [108]. At the start of the chapter the steady state EHL problem of Chapter 2 is refor-
mulated as a transient Differential-Algebraic one, before being discretised. The changes
made to the solution method between steady state and transient cases are outlined. A
wide selection of examples is then presented, encompassing the range of problems tack-
led today. These examples will be used to show how the solver is developed further for
maximum efficiency and accuracy. Results will be compared to both other numerical, and
experimental results which are available.

Variable timestepping for EHL problems has not, to the best of the author’s knowl-
edge, been previously attempted. It will be shown in Section 5.7 that it is possible to apply
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the same techniques used in ODE problems to the highly non-linear PDE EHL problem.
It will be shown that results from variable timestep runs are of similar accuracy to those
of fixed step cases, and can be achieved in considerably less computational time, as larger
timesteps will be taken during periods of the solve with linear behaviour, and smaller
timestep sizes when the non-linear effects are dominating.

Adaptive meshing is an idea which has been used for EHL problems only once [93,
99]. Apparently this was a great success although it has not been attempted by the authors
since, whose work has concentrated on the development of multilevel multi-integration.
In Chapter 6 this idea is revived and combined with the solver developed thus far, without
negating the speed-ups achieved by the use of multilevel multi-integration. Results are
presented showing both the accuracy of the achieved results, and the decrease in the com-
putational work. Finally a transient example is presented showing how adaptive meshes
can be used in combination with variable timestepping.

This work will be concluded in Chapter 7 where the advances made are summarised.
Possible future work is described here, in relation to further developments of both the
grid adaptation and solver parallelism, in addition to the solution of more complicated
transient EHL cases.

The computational timings given in Chapters 4 to 6 are intended for comparison with
each other only. The code has been optimised in the same manner for all results. With
the exception of the parallel results of Section 4.6.3 all timings have all been calculated
on a single R10000 processor of an Silicon Graphics Origin 2000 shared memory ma-
chine, hence some small scale variation is possible on identical runs (see, for example,
Table 4.7). The timings have been provided solely to show the performance increases
achieved, rather than as a benchmark of optimum performance.

Throughout the production of this work the computational code used to generate the
results has been refined and improved to achieve better efficiency, and hence results be-
tween separate sections may appear to have different times for the same example, and
hence for each section a control case will be given against which the other results should
be compared, rather than those in previous chapters.



Chapter 2

Governing Equations

2.1 Introduction

In this chapter the mathematical model governing EHL calculations will be presented.
The only results presented in subsequent chapters will be for circular point contact prob-
lems, but reference will be made to the extra difficulties by moving from one to two
dimensional cases, hence, where relevant, the differences to the equations will be high-
lighted.

The EHL problem is governed by two main groups of equations; that is those con-
cerned with the physical model of the lubricant used, and those concerned with the EHL
problem itself. The latter set is split up as follows:

e The Reynolds Equation. This governs the pressure distribution across the contact,
for given geometry and lubricant properties.

e The Film Thickness Equation. For a given pressure distribution across the contact
this defines the elastic deformation, and hence new geometry of the surfaces.

e The Force Balance Equation. This is a conservation law ensuring that the applied
load across the contact is fixed, at any time.

The applications that EHL calculations are now used in mean that the properties of the
actual lubricant can be as important as the physical operating conditions, such as loading.
In the development of new oils, the lubricant industry needs to be able to analyse how

14



Chapter 2 15 Governing Equations

>

\

4
{/

ST
TSISISTS
y I PetetatateteN
. SISISISISISISN
RS
zA ot e et et et oot
‘ PSS ISITITISIY
‘ RSISISISISISISIY
: ESISISISISISISTY
PSISISISISIe s
1656565656565 %
0550540565055
RSISISISISISTY
RESTSISISISISY
REISITSISISTY
ISISISISIS,
SIS

2%

/
30
0
Y

Figure 2.1: Representation of the domain of an EHL problem

the desired properties can be obtained, without manufacturing real lubricants with those
properties. The need for accurate rheological models is now very important. Bearing
these things in mind, however, much of this detail is not needed for this work. The overall
solution properties are similar between the different models and this work is concerned
with the actual numerical solution techniques used rather than the real world applicability
of the solutions obtained. The techniques developed will be independent of the fluid
model employed and hence an isothermal generalised Newtonian model will be used.
This, then, only requires equations for the density and viscosity of the lubricant, which
are both non-linear in terms of the pressure.

The equations described above will be presented in the first few sections of this chap-
ter. They will be non-dimensionalised, using Hertzian [67] parameters, in Section 2.7.
The relationships between these parameters and the non-dimensional ones of Moes [106]
and Hamrock and Dowson [60] will also be presented in this section.

Before any numerical results of EHL problems can be calculated, it is necessary to
discretise the equations. In Section 2.8 the steady state discretisation schemes used, are
presented for the regular mesh, finite difference calculations carried out in Chapter 4. The
discretisation for transient problems will be shown in Chapter 5.

2.2 Solution Domain

The circular point contact EHL problem can be considered as that of a spherical bearing
on aplane, as shown in Figure 2.1. Coordinate axes directions are taken as shown, with the
origin taken to be the point on the plane closest to the centre of the ball. The convention
taken throughout this work will be that surface 1 refers to the ball, and surface 2 to the
plane. This is only important in cases of sliding. This is when the speeds of the two
surfaces differ. Lubricant entrainment is taken as parallel to the x-axis in the x-y plane.
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The z-direction is one of the primary variables in the calculation, since it represents the
geometry of the contact, h. There is assumed to be no variation of lubricant properties in
this direction for the cases considered here. This is because the pressure gradient across
the film in the z direction can be shown to be of the order of h/l and h«l, where | is
the representative length of the contact [33]. If a viscoelastic model was employed then
these gradients could be significant and would also have to be taken into account, hence a
modified Reynolds Equation would have to be used.

The contact being represented need not necessarily be a ball and plate, however it
is possible to reduce the real geometry to this arrangement. Throughout the rest of this
chapter the word reduced will be taken to mean ‘the quantity obtained when the geometry
is transformed to the ball and plane scenario’. This will be applied to both the ‘reduced
radius’ of the ball considered as well as the combined physical properties of the surfaces
and loading conditions. Inside the contact area the undeformed geometry of the ball will
be taken as parabolic in both x and y directions. Since only circular, rather than elliptical,
contacts are being considered then this geometry will be axially symmetric about the z-
axis.

2.3 TheReynolds Equation

The Reynolds Equation defines the pressure distribution of an applied load for a given
geometry. It was derived from the Navier-Stokes equations by Osborne Reynolds in 1886.
It therefore only applies to Newtonian (and generalised Newtonian) lubricants. Using
Cartesian coordinates (X, y), and time t it is given by

9 (ph3dp hw) i (ph3dp h(V1+V2))_5(Ph):0, @2.1)

x ay ot

nax P2

12n oy 2

where p is the pressure
h is the geometry, or film thickness
p is the density of the lubricant
n is the viscosity of the lubricant
up and uy are the speeds of the two surfaces in x-direction

and v and v, are the speeds of the two surfaces in y-direction
Choosing lubricant flow parallel to the x-axis, and assuming no flow velocity variation
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across the contact, then Equation (2.1) may be rewriten as

d (ph®dp\ 9 (ph®dp d(ph) .. d(ph)
o) oy (5 o) el <o @2

where the entrainment velocity, us is defined by us = ug + us.

This equation is referred to as having three different parts. The first two terms involv-
ing the second derivatives of pressure are called the Poiseuille terms. The wedge term is
the other spatial derivative whilst the squeeze term is the temporal derivative.

The Reynolds Equation has no in-built concept of giving physical solutions for pres-
sure, and hence in much of the region beyond the centre of the contact, it will be satisfied
by negative solutions of pressure. In actuality, at the point of the outflow where this
occurs, air pockets will have been formed in the lubricant. This can be seen in an inter-
ferometry picture such as shown in Figure 5.5. This physical effect means Equation (2.2)
must be solved as a free boundary problem.

2.4 TheFilm Thickness Equation

The film thickness is the separation of the two surfaces in the contact. In elastohydro-
dynamic cases it is assumed that these surfaces are allowed to deform. This deformation
is therefore dependent on the pressure applied; more particularly, the pressure distribution
across the whole contact. This, therefore, is very dependent on the type of contact being
modelled.

The dominant, underlying shape of the contact will be assumed to be the original
parabolic shape of the contact. The presence of a lubricant - even in a hydrodynamic
case, with no deformation - will separate the contacts by an extra scalar quantity, referred
to as the central offset film thickness, hgg. The final term describing the film thickness is
the deformation which, in the reduced geometry, is all taken to be in the curved surface
rather than the plane.

In one dimension (i.e. the line contact case) the film thickness equation is given by

XZ 4 00
h()—hoo—i—z—Rx—E/ In

p(x')dx’, (2.3)

whereas in two dimensions, for the point contact case, it is

x,y') dx'dy’

ZR 2Ry ITE’/ / \/x X2+ (y— y)

h(x,y) = hoo + (2.4)



Chapter 2 18 Governing Equations

where E’ is the reduced elastic modulus of the contact

and Ry and Ry are the reduced radii of curvature in the x and y directions.
In this work only circular contacts will be considered, so Ry = Ry.

2.5 ThelLubricant Mode

In the EHL problem there are very large changes in the pressures in the lubricant over
very small distances. It is therefore important to use models of the lubricant which can
accurately model this behaviour. When codes, such as the one developed here, are applied
to model real life situations then it is often to investigate particular properties of the oils.
Much research is currently being done into the use of non-Newtonian models, as outlined
in Section 1.2, however, for this work, generalised Newtonian models will suffice.

2.5.1 Density Equation

The density model that will be used throughout this work, except where stated, is that of
Dowson and Higginson [33]. This commonly used model takes account of compressibil-
ity of the lubricant and is given by

0.59 x 10%+1.34p

PP =P 551005 p

(2.5)

where pg is the density at ambient pressure. This relationship is locally pressure depen-
dent in that there is no knowledge of the pressure distribution from the surrounding areas
affecting the density at any given point. An alternative expression sometimes seen in the
literature is

-9
0.59x1077p ) ’ (2.6)

1+1.7x10%
although the two are almost mathematically identical.

P(P) = po (1+

2.5.2 Viscosity Equation

The viscosity of the lubricant is very important in EHL contacts. For high pressure cases
it is necessary to use an accurate model which applies at pressures of up to at least 1 GPa.
The usual Newtonian model used is that of Roelands [123]. This has recently been tested
further against experimental results and has shown to be a good comparison up to loads
of 400 MPa, however beyond this point the correlation is not always as accurate [52].
It is, however, still much better at higher loads than the previously employed model of
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Figure 2.2: Relative viscosity (1 /no) against pressure

Barus [11] (1893) which only had a linear dependence on pressure inside the exponential
term. Using the Roelands model, the viscosity is defined by

r’(p) = noe{%[_lJr(lJrP%)Zi]}, (2.7)

where g is the viscosity at ambient pressure
P is a constant (typically 1.98 x 108)
Z; is the pressure viscosity index, taken as zj = 0.68
and o is the pressure viscosity coefficient given by

_1[on
a= n {ﬂ)} p:O. (2.8)

Once again, it is clear that this relationship depends on the pressure. This is shown in
Figure 2.2 where the relative viscosity, 1 /no, is plotted against increasing pressure, up to
1 GPa.

2.6 TheForceBalance Equation

The Force Balance Equation is needed to ensure conservation of applied force over the
contact. This is because the load applied across the contact must be completely carried by
the lubricant film, since it is assumed that the fluid film does not break down to give even
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a partially dry contact. For the point contact case this is expressed as

[ [ pexyyaxay=F 29

where F is the applied load.

2.7 Non-dimensionalisation

For isothermal point contact EHL problems the system of dimensional equations to be
solved is defined by equations (2.2), (2.4), (2.5), (2.7), and (2.9). The orders of humbers
in these equations vary dramatically, from ¢(10°) for the pressure, down to ¢(10~%)
for the minimum film thickness. To numerically compute solutions, without incurring
artifacts from the floating point arithmetic of the computer used, non-dimensionalisation
is highly advisable.

In the process of non-dimensionalisation, dimensionless quantities may also be com-
puted. These values are commonly used to characterise the individual case being studied.
These relations are explored in Sections 2.7.1 and 2.7.2.

The first parameters to be introduced are the maximum Hertzian pressure, and the
Hertzian radius, which are derived from Hertz’s theory for dry contacts [67]. This as-
sumes a pressure distribution of

X2 _y2? 2 2
pixy) = PrVi—a —a FHy<a (2.10)
0

otherwise.

The contact has now been assumed to be circular rather than generally elliptical, i.e. Ry =
Ry. The maximum Hertzian pressure, py, is given by

3F
= _ 2.11
Ph 212’ ( )
and the Hertzian radius, a, by
3FR
3 X
a’ = T (2.12)

Using Equations (2.11) and (2.12), along with the density and viscosity at ambient
pressure, the EHL system described in Sections 2.3 to 2.6 can be non-dimensionalised.
This is done by substituting into the equations the dimensionless variables:

P n

P:% ’7:%

X = Y =

D <

X
a
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Ph a2 2a

The Reynolds Equation (2.2) becomes

O (PHIOPN L 0 (PHTOPY 5 us o(pH) ,0(oH) 5 (515
oX \ n oX oy \'n oy us(0) aXx oT

where the dimensionless parameter A is given by

6noRZus(0)
== X7 2.14
2pr (2.14)
Defining another dimensionless quantity, &, by
_pH
£= A (2.15)

means that the non-dimensional Reynolds Equation, (2.13) can be rewritten as

9 (0P\ 0 (0P us d(pH) (pH) _
X (Sax)+av (gav) 0 ox ot ° (2.16)

Assuming oil entrainment in the positive X direction, this has boundary conditions given
by P(X=—) = P(Y =) = P(Y=—00) = 0 and a free boundary cavitation condition en-
suring P > 0 inside the domain.

The Film Thickness Equation (2.4) non-dimensionalises to give

H(X,Y) = Hoo +9(X,Y) + nZ/ / ¢X X/ )dx;dY;/) 2.17)

for given undeformed surface geometry ¢ (X,Y ). Assuming smooth surfaces, as in most
of the examples to follow, this is given by

2 2
%(x,v):%+%. (2.18)

Non-dimensionalising the Force Balance equation (2.9) removes explicit dependence
on the applied force to give

/w /w P(X,Y)dXdY = 2?71 (2.19)
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Finally, the density and viscosity take the form:

_ 0.59 x 10% +1.34p,,P
p(P) = 9 - )
0.59 x 10% + py,P

(2.20)

and ap orP\ 4
m(P) = R [ ()]} (2.21)

2.7.1 Moes Parameters

The EHL problem described thus far, can be characterised by a reduced number of non-
dimensional variables which relate to the wide ranges of physical parameters available in
experiments. The two common sets used for point contact cases, such as used here, are
the Moes parameters, M and L, described in this section, and the Hamrock and Dowson
parameters described in Section 2.7.2. These parameters are defined differently between
line and point contact cases, but since only the point contact case will be used in this work,
this will be all that is presented. More detailed descriptions of the relationships between
these sets are provided, for example, in [140]. The examples presented in the rest of this
work will, for those cases using the expressions for density and viscosity described in
Section 2.5, always be presented in terms of both the Moes and the Hamrock and Dowson
parameters.

There are six physical parameters that are to be reduced: a, E’, ng, Ry, F and us.
These can be combined, as in Equations (2.11) and (2.12), to get expressions for p, and
a respectively. Also defining

o = apnp, (2.22)

and recalling Equation (2.14) for A, the Moes parameters, M and L [106, 107] may then
be defined by:
() 229
5 , .
and

B\ 3
A:(%%J. (2.24)
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2.7.2 Hamrock and Dowson

Dowson and Higginson [33] characterised the line contact problem in terms of three non-
dimensional parameters, W, U, and G, for load, speed, and material parameters respec-
tively. In 1976, Hamrock and Dowson [60] similarly defined the following relations for
circular point contact problems:

G = aFE’ (2.25)
_ Nous

Uu = SER, (2.26)

w o= (2.27)
~ E'RZ '

These parameters may be related to the Moes parameters using the expressions

Nlw

M =W (2U)" 4, (2.28)

and

TSN

L=G(2U)4. (2.29)

Clearly, to relate three parameters to just two will require one of G, U and W, to be chosen
as fixed.

Hamrock and Dowson [64] later calculated expressions for central and minimum film
thickness in an elliptic contact, in terms of G, U and W. These are

HCEI’] — 2.69U 0.67GO.53W —0.067 (1 . 0.616_0'73’() 7 (230)
Hpin = 3.63U0-88G049yy —0.073 <1 _ e—O.68K> , (2.31)

for ellipticity ratio K.

2.8 Discretisation

In order to solve the EHL system given by Equations (2.16) to (2.21) by a numerical
scheme, it is first necessary to discretise them. In this section these discrete equations will
be built up from first principles. This process requires that a set of sample points inside
the domain are chosen at which the equations will be satisfied. The more points chosen,
the closer the points will be to each other and hence the more accurate the solution. How-
ever, as the number of mesh points increases, so does the amount of computational work
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required to solve the system.

In this work the domain X €[Xa,Xpl, Y €[Ya,Yp] is represented by a regularly spaced
mesh of Nx x Ny nodes. It is then a simple matter to relate u; j to being the value of
solution variable u at the mesh point (i,j) where 1 <i < Ny, 1 < j < Ny. Here the
coordinates of point (i, j) are easily calculated by

Xi = Xa+ (i — 1)AX, (2.32)

and
Yi =Ya+(j—1)AY, (2.33)

where AX and AY are the mesh point spacings in the X and Y directions respectively.

The numerical solution method used in this work to solve the Reynolds Equation (2.16)
is that of finite differences. Using this technique requires only the solutions at the mesh
points, and numerical derivatives are calculated using neighbouring solutions. The sim-
plest method of doing this is by using a first order backward difference scheme. This
defines the derivative of solution variable u at mesh point (i, j) by

du

aup UG, j) —Ui-1,j)
dx

~ , (2.34)
(i.1) AX

I.e. the gradient between (i, j) and its upstream neighbour (i — 1, j). Similarly the first
order forward difference scheme is given by

du

aul Wi ) — UG, )
dx

~ . (2.35)
(i.1) AX

These two equations form the basic building blocks for all finite difference schemes.

There are several schemes commonly employed to solve the Reynolds Equation. The
simplest steady state version - used throughout Chapter 4 - is first order, and is defined by
using backward differences. Equation (2.16)becomes:

g 1 (R-1j—PRj)+&,1; (R —Rj)
(AX)?
& -1 (Pj-1—Pj) TE .1 (Rj+1—PR,j)
(4 )2
P iHi = picg jHi—
AX

0, (2.36)



Chapter 2 25 Governing Equations

where

Eit1jTé&j
E. 1 =—F,
1+3,] 2
8._; =,
| 27] 2

& j+1 1 &, |
& i 1=——F5—,
I, ]+5 2

Ej-1718]

and £ 1= — (2.37)

The boundary conditions are prescribed with all exterior boundaries having P=0, and the
line j=1 being a symmetry condition in the Y direction.

An alternative steady state formulation is the second order upstream discretisation
used by Venner and Lubrecht, e.g. [145]:

& 1 (Pvj—Pij) +&,1 (P —PRij)

(8X)2
&-1 (Pui-1—Pj) +8& 11 (R —Pj)
! @vy
3pi,jHi,j —4pi—1,jHi—1,j +pi—2 jHi—2,]
B— T LI~ o 2.38
SAX : (2.38)

This is valid for all points in the domain with i>2. For i=2 the first order scheme of
Equation (2.36) is used. The only difference between Equations (2.36) and (2.38) is the
order of the derivatives used in the discretisation of the wedge term.

Transient discretisations are undertaken in similar fashions, and will be considered in
Chapter 5.

Assuming that the undeformed surfaces have geometry, ¢, given by Equation (2.18),
then the Film Thickness Equation (2.17) is discretised to give:

Xi2 sz Nx Ny
Hi j =Hoo+ = + 2 Ki. 2.
ij 00 + 2 + 2 +|<Zl|; I7]7k,|Pk,| ( 39)

where X; and Y; are as defined by Equations (2.32) and (2.33) respectively, and K is the
kernel matrix. The kernel is the analytic solution of the double integral required for the
deformation calculation given by:

Ki,j k1 = % {\Xp}smh‘l (;—";) +[Yp|sinh (:((_s)
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o1 (Y .1 (X
— |Xen| sinh ™2 (X—:’n) —|Yp|sinh™* (Y_:)
1 (Y 1 (X
— [Xp| sinh ™ (X_n;) — Y| sinh~? (Y—;)
1 Ym - Xm
+ [Xm[sinh™ { o= | +[Ym|sinh™ | o= (2.40)
m Ym
where
AX
Xp =X — Xy + 50
AX
Xm=Xi—Xk—7,
AY
Yp_YJ—Y|+7,
AY

The Force Balance Equation (2.19) discretises to give:

Nx Ny 21
. 2.42
3 ( )

AXAY Zl lehj ==
i=1]=

The equations for density and viscosity are pointwise calculations, Equations (2.20) and (2.21)
respectively, and are thus simply discretised to give

~0.59x10%+1.34pyP, |

D= 2.4
Pi.j 0.59 x 10%+ ppP (243)

and -
M. :e{%{_l+<l+php—‘;]> ” (2.44)

with all symbols as defined previously.
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Multilevel Techniques

3.1 Introduction

Multilevel techniques are used to provide solutions of the same accuracy significantly
faster than could be achieved on just one very fine grid. These techniques have been
around since the late 1970s [16], being developed primarily for boundary value problems.
The field of multilevel techniques goes far beyond just multigrid. Other areas operating on
a multiscale basis include wavelet transforms (such as used in [45]) and multi-resolution,
e.g. [15].

Since their introduction, multigrid use has increased dramatically, from such fields as
disparate as quantum chemistry and electrostatics [12] to hurricane tracking [46]. Their
first application to EHL problems came in 1986 with the work of Lubrecht et al. [95].
Since this time they have become generally accepted as an effective method for getting
EHL solutions quickly.

The two multilevel techniques to be used in this work are explained in this chapter.
First Multigrid is explained in Section 3.3. It will be seen in Chapter 4 how this accelerates
convergence of the numerical solver for the Reynolds Equation. Section 3.3 includes
examples of different types of multigrid cycles, and explains the advantages of using a
full multigrid start. Secondly, Multilevel Multi-Integration is considered in Section 3.4.
This is used to greatly reduce the computational time spent in calculating the surface
deformation. Both multigrid and multi-integration are explained in terms of their general

27
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Grid level k Grid level k — 1 Grid level k — 2

Figure 3.1: Hierarchy of grids

methods and properties although only those aspects of the theory used in later chapters
will be explained in detail. There are several common pieces of notation between the two
techniques which will be described, first, in Section 3.2.

There are now several detailed books on the application of multilevel methods. For
multigrid, the tutorial by Briggs [22] is a good introduction to the subject and has recently
been updated to include more advanced techniques. A more detailed look at multigrid
is provided by Hackbusch [58], Trottenberg et al. [139], and by Wesseling [152]. Both
multigrid and multilevel multi-integration for EHL problems are described in detail by
Venner and Lubrecht in [145]. This chapter provides a summary of the techniques utilised
in the solver described in Chapter 4.

3.2 Multilevel Formulation

In Chapter 2 a discrete system of mathematical equations has been presented. The aim is
to obtain the solution of this system as efficiently as possible on a fine mesh. Assuming
that this fine mesh is a regular grid and has (2K+1) x (2K+1) points, then it can be referred
to as grid k. A hierarchy of grids with decreasing values of k as shown in Figure 3.1 may
then be defined. Grid points on a coarser grid | are separated by a distance 2%~! 53X where
5 is the separation of points on grid k, in the appropriate direction. Hence all points on
grid k—1 will have coincident points on grid k, with the additional points on grid k being
the mid-points between coincident points.

Rather than just referring to a solution vector, u say, it will be necessary to define a
solution vector for each individual grid level. Hence on grid k such a solution will be
represented by uK. The operators employed for transferring solutions from one grid to
another will be explained in Section 3.3.3.
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3.3 Multigrid

This work is not intended to cover multigrid techniques in their entirety. There are numer-
ous works devoted to providing a more thorough investigation, e.g. [22,58,152]. However,
it is necessary to explain the basic methods being used before continuing to solve the EHL
problem. Only those parts used in this solver will be explained here.

The motivation for the use of multigrid techniques is briefly outlined in Section 3.3.1.
Although there are various types of multigrid method (see e.g. [58]), the only one of
interest in this work is the Full Approximation Scheme (FAS). This is because, as has been
shown in Chapter 2, EHL problems are inherently very non-linear, and hence the simple
Correction Scheme cannot be employed. The FAS will be explained in Section 3.3.2.

It will be shown that the method of transfer of both solutions and errors between grids
will be important to the usefulness and efficiency of the scheme. The operators used will
be presented in Section 3.3.3. The types of multigrid cycle used, as well as the mechanics
of the process (the correction scheme), will explained in Section 3.3.4. Finally, the use
of the Full Multigrid algorithm to obtain a good initial solution on the finest mesh will be
outlined in Section 3.3.5.

3.3.1 Introduction to Multigrid

Consider a simple case where the system to be solved is given by the one-dimensional
equation

ZLu=f, (3.1)

where £ is the differential operator defining the system, and f is the right hand side
function. This system needs to be solved in order to obtain a vector u, an approximation
to the discretised numerical solution, on a regular mesh of N points (where N = 2X+1 for
some k), separated by distance dxK. Hence, this problem can now be represented as

LUk = K (3.2)

At any particular stage, a solution vector G* will have been calculated, which is an ap-
proximate solution to Equation (3.1) with an error, €K, such that

k

uk = g

+ek. (3.3)

|2

The solution is relaxed iteratively to obtain new solutions which are (hopefully) better
than the previous one. The aim of the solution process is to reduce this error to below
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Figure 3.2: Example of errors of different frequencies.

some pre-specified tolerance level.

It has been shown (e.g. [22,140] as well as Section 4.6.1.1) that the relaxation schemes
used to solve EHL problems are very good at reducing high frequency errors, but very
slow at reducing low frequency errors. This idea is illustrated in Figure 3.2 where a high
frequency sine wave is imposed on a low frequency one. Standard single grid smoothing
techniques would quickly eliminate errors of similar frequencies to the mesh spacing, but
the lower frequency error components could be almost unchanged.

Multigrid is a technique to try and combat this problem. Given that the smoother is
able to reduce errors of the frequency of the grid size, then lower frequency errors can be
reduced by using a (coarser) grid with similar order to that of the error. In the case shown
in Figure 3.2 a coarser grid with mesh spacing four times more than that used to reduce
the fine grid error, would be appropriate.

3.3.2 Full Approximation Scheme (FAS)
From Equation (3.2) the residual, r*, of the system can be calculated from

K= K _kgk, (3.4)
for an approximation G to uX. Substituting for ¥ from Equation (3.2) gives

K= Rk — Rk, (3.5)
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The non-linearity of the operator .Z¥ means this cannot be directly factorised. However,
using Equation (3.3) enables us to define the residual as

= (0" + ) — 2k, (3.6)
which can be reordered to give
LK+ ) = 2Rk, 3.7)

Consider now a coarser grid, grid j. To represent Equation (3.7) in the same form as
(3.2), i.e.
Zlgl = fl, (3.8)

it is necessary to define G/ by
al =1ja+el, (3.9)

The term f1 in Equation (3.8) is called the FAS right hand side, and is given by
fl=2ia)ad) +10r, (3.10)

and Ili is an inter-grid transfer operator from grid k to grid j, to be described in Sec-
tion 3.3.3.

The solution ! to Equation (3.8) can be approximated by T} which can then be used
to calculate the coarse grid approximation to the error by

=g 1gk, (3.11)

Iy

This is then used to update the fine grid solution in the following manner:

k

0 g k< - 1) av). (3.12)

3.3.3 Grid Transfer

It is now necessary to define the operators for transferring solutions between grids. To
move to a coarser grid a coarsening or restriction operator is needed. The transfer from
grid k to grid k — 1 will be denoted by Il'(“l. Similarly, moving to a finer grid needs a
prolongation operator, denoted by Il'(‘_l. These operators will be defined in terms of sten-
cils describing how the new pointwise solution is constructed. Efficient multigrid solvers
are very reliant on the choice of correct intergrid operators. It is especially important for
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Figure 3.4: Full weighting coarsening operator, I'k“1

linear problems that the two operators are transposes of each other.

To define a coarsening operator there are two common choices. Either injection or full
weighting. The easiest of these is injection which is simply direct transfer of the solution
at coincident points between fine and coarse grids. This stencil is given mathematically,
in two dimensions, for the coarse grid points, by

|k—1

A (3.13)

o O O
o -k O
o O O

and shown in Figure 3.3. Full weighting involves a weighted average of the surrounding
fine grid points:

(3.14)

. 1
k-1 _ =
k 16 2

1

N AN
RN

illustrated in Figure 3.4. Full weighting can be more desirable because the highest fre-
guency components are not represented on the coarser grids, improving the Coarse Grid
Correction process.
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Figure 3.5: Prolongation operator, £ ,

The prolongation operator to be used linearly interpolates the coarse grid function to
the fine mesh, hence at coincident points injection will be used, whilst at other points
linear interpolation of either two or four coarse grid points will be employed. This is
shown in Figure 3.5 and given by

(3.15)

x~
=
|
Bl
N
N AN
R N

This is the transpose of the coarsening operator described by Equation (3.14).

3.3.4 Multigrid Cycles

The multigrid process is the combination of the individual tools described above. Assum-
ing that the same iterative process can be used to solve the coarse grid system as the fine
grid system, then the finest grid will be used to smooth the highest frequency errors, and
progressively coarser grids used to smooth errors of progressively lower frequencies, be-
fore returning to get an updated solution on the finest mesh. The smoothing cycles done
before coarsening are called pre-smooths and those done after prolongation and correction
of the solution are referred to as post-smooths.

The simplest multigrid cycle is the V-cycle. An example of this is shown in Figure 3.6
which shows one cycle over four levels of mesh. An initial approximation on the finest
grid has vy pre-smooths before being coarsened. This is then repeated until the coarsest
mesh is reached where vy smoothing cycles are done. The solution on the next finer mesh
is then corrected according to Equation (3.12) before having v, post-smooths. Again this
process is repeated until a corrected, smoothed solution is reached on the finest mesh.
This V-cycle is known as a V(v1,v,)-cycle. Typical values for v; and vy are three or less,
although vg may be much larger in order to obtain a much better coarse grid representation
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Figure 3.6: A multigrid V-cycle
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Figure 3.7: A multigrid W-cycle

of the solution.

An alternative multigrid cycle is the W(vy,v2)-cycle. This is where two coarse grid
correction cycles are used to correct the solution on each grid rather than just the one of
the V-cycle. An example, again on four levels, is shown in Figure 3.7. The advantage of
the W-cycle over the V-cycle is that there are twice as many coarse grid corrections for
each level per multigrid cycle.

3.3.5 Full Multigrid

The process of Full Multigrid (FMG) is designed to eliminate the large errors which
would exist on the fine grid, before it is first used. Solutions, especially for the EHL point
contact problem solved here, become more computationally expensive to calculate, the
more mesh points there are present in the domain. Hence the ability to use a solution
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Figure 3.8: Full multigrid, with one V-cycle per level

prolonged from a coarser grid as an initial approximation will be clearly advantageous.

FMG uses the same multigrid techniques and V- or W-cycles as described above in
Section 3.3.4, but applied as shown in Figure 3.8. This example demonstrates just one V-
cycle per level, but there will usually be several to obtain a reasonably converged solution.
At the end of each set of V-cycles this solution is then prolonged up to a new finest grid.
For the EHL problem it will be seen in Chapter 4 how beneficial this is compared to simply
starting off with the Hertzian approximation, given by Equation (2.10), to the pressure on
the finest grid level employed.

3.4 Multilevel Multi-Integration

Multilevel multi-integration is a multiscale technique designed to significantly speed up
the evaluation of integrals. In this work it will be employed for calculation of the defor-
mation of the surfaces, given mathematically by the double integral in Equation (2.17).
Besides its use in EHL, it also has applications in integral equations, integro-differential
equations, elasticity problems and acoustic problems. The process behind the deriva-
tion and application of these techniques is explained by Brandt, Lubrecht and Venner
in [17,19, 140, 145] in much greater detail than need be provided here.
In one space dimension, a general example would be to solve the following integral:

Wi = [ Koey)u(y)dy (3.16)
Q

where the domain Q = (a,b). The function K is referred to as the kernel and its discretised
form as the kernel matrix. Multi-integration is applicable in situations where the kernel is
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a dense rather than a sparse matrix. This means that Equation (3.16) actually represents
a full matrix-vector multiplication. Multi-integration for higher dimensional cases than
the one dimensional case to be considered here, is applied by using the same algorithms
described below, applied separately to each dimension.

This method is only possible where the kernel itself has sufficient smoothness prop-
erties. For the EHL point contact problem being considered in this work it is necessary
to remember that Equation (2.40) is, in fact, singular around the point (i, j). Therefore K
is not smooth around this point, although far enough away it is smooth enough to apply
multi-integration techniques. This means that applying multi-integration over the whole
domain Q will not be correct, unless the region around the singularity, Qgng is corrected
afterwards.

Assume now that Equation (3.16) is discretised on a regular mesh of nf? points, sepa-
ration 6x" = (b —a)/(nf — 1), for grid level h. The single grid method for calculating this
multi-summation at each x!' = a+ (i —1)&, fori=1,...,nyis

w=w(e) = Y KIS (3.17)
=1

where KM is the discretised kernel and ul? is the approximation to u"(x;) Hence for every
point in Q, this calculation is ﬁ’(nQ) meaning that the evaluation of the summation for the
whole domain is & ((nf)?).

Outside the influence of any singularity, multi-integration is defined by two stages
for the formulation of the coarse grid equation. First, an approximation to Wih must be
calculated including only summation of coarse grid points (Equations (3.18) to (3.22)).
Then the second dimension of the kernel matrix will be included using the knowledge that
it displays similar behaviour (Equations (3.23) to (3.26) ).

For ease of notation let grid H be grid h—1, i.e. one level coarser, with coarse grid
indices | and J coincident with fine grid indices i and j respectively. Only two levels
will be considered for the formulation of multi-integration, although it will be shown how
these techniques can be applied iteratively, similar to the ideas of multigrid.

Consider first the coarse grid kernel, K{"}, being the fine grid kernel evaluated at
coarse grid points. This is therefore, clearly, just the fine grid values injected upwards by
KM = KM, _;. The fine grid kernel can then be approximated by using an interpolation
of a high énough order, defined by
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where the dot (-) refers to interpolation in the y direction (the dummy variable in Equa-
tion 3.16) ), and the final j is the new index.
It is then possible to rewrite Equation (3.17) as

h h
wh X~h & (obh Ehh) h
I :ZK i Z(Ki7j_Ki7j>uj’ (319)

which can be broken down as follows. Only coarse grid points have been used to construct
KI'" and hence at coincident fine grid points <KIhT — K,hT) = 0. This just leaves the non-
coincident points, which will have an interpolation error of K" — KM which is of the order
of K(2P)(&) where 2p is the order of the interpolation, and K(Zp)(f) is the 2pth derivative
of K at some point ¢ in Q. The assumption that the kernel is sufficiently smooth compared
to u means that the discretisation error is large enough for the interpolation error to be
discounted. Thus, Equation (3.19) becomes

mzmzzﬁmzzwmﬂﬂprmRmhi, (3.20)

where the adjoint of the interpolation matrix, known as the anterpolation matrix is given
by (IH)T. Hence, defining a coarse grid representation of the fine grid solution by

Ut = [(l,ﬁ)TuPL, (3.21)

the coarse grid integration, Equation (3.20) is reduced to

nH
w2 W = ;&Nm (3.22)
=1

which is an approximation to the fine grid integration without increasing the complexity
of the algorithm from &(n).

Applying a similar process to the x direction allows this integration to be reduced still
further. Similar to Equation (3.18) the fine grid kernel may be approximated in the x
direction to KI J, by

chh — | hyHh
kM= |IfK! ],-’ (3.23)
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with all symbols defined as before. Therefore, Equation (3.17) can be rewritten as

nQ
wf =[] + 5 (KPR . (3.24)
=1
where
i
w! = > Kb, (3.25)

Again, as Kﬁjh is an injection of the coincident fine points onto the coarser mesh, then
(K{‘Jh— thﬁ‘) = 0 at these points. Also, if K is sufficiently smooth in the x direction,
the interpolation error should be sufficiently small to neglect the summation in Equa-
tion (3.24) completely, thus becoming:

wh ~ [IHWHL . (3.26)

Therefore, provided K is sufficiently smooth in both x and y directions, combining
Equations (3.22) and (3.26) gives:

r1H
ol = [ihwt] ~ |1 JZ KM | (3.27)
| —1 i
which defines multi-integration for smooth kernels.

If, however, the kernel is singular, and hence not smooth in a region Qgng C Q then a
different expression for wih is required. To build this up the coincident and non-coincident
points between grids h and H in the x direction will be considered separately.

Considering, first, the coincident points in the x direction, Equation (3.19) can be
rewritten as

=1 (i,])€Qsing (i,])¢Qsing

Since only coincident points are being calculated, in the smooth region, as before, the
final term’s sum can be considered to be zero. Note also that at these points,

m ne
ZK{}? "= Jz K ul = wi'. (3.29)
= =1
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Hence,

w=wi+ Y <K|h? - KPT) uf. (3.30)
(1.1/€04ng

For non-coincident points in the x direction, recalling Equation (3.24) and reducing
the smooth part of the domain as before, then the value of wih is given by

h_ [IHWHL + (i j)eZQ (Ki'j? - K{jﬁ‘) uf. (3.31)
) sing

Therefore the fine grid solution of the integration in Equation (3.16) can be approx-
imated using multi-integration by first calculating the coarse grid multi-summation, and
then correcting around the singularity, as given by Equation (3.30), before interpolating
the coarse grid multi-summation to the non-coincident points on the fine grid, and cor-
recting again, as given by Equation (3.31).

The problem of deciding which points (i, j) are in Qgng, thus requiring correction,
is important both in terms of solution accuracy (by having enough points) and optimal
efficiency (by not having too many). For each point i in the one dimensional example
above, the region requiring correction may be defined by Qising ={jeQ:|i—j]<m}
The choice of the radius, m, is problem dependent. In [17] Brandt and Lubrecht showed
that, for the kernel of the EHL line contact problem, m ~ Inn, should be used. For the two
dimensional circular point contact EHL case, Equation (2.40) this linear idea per point
was extended to give a rectangular shape, hence it is corrected over a (2m1 +1) x (2my +
1) rectangle. They found that taking m; ~ Inny in the interpolation direction, and my = 2
perpendicular to the interpolation, then the algorithm maintains its &'(N InN) efficiency.
Elliptic problems were considered by Wijnant in [154] where the different directions have
different weights, meaning that the area requiring correction has different sizes in the X
and Y directions, for ellipticity k # 1.

Multi-integration need not — and should not — just be restricted to evaluation of
the multi-summation on one level coarser. It may be applied recursively, provided that
the kernel matrix still has sufficient smoothness properties on the coarser grids. This
is illustrated in Figure 3.9 where four levels of grid are used for the multi-integration
process. The larger the number of coarser grids which are used, then the greater the
possible speed up, although there is no point in going beyond a grid with /N points,
where N is the number of the points on the finest level, because this summation is already
O'(N), which is the same order as the intergrid operators required to coarsen further.
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Figure 3.9: Multilevel multi-integration being applied over four levels



Chapter 4

Solving EHL Problems

4.1 Introduction

EHL problems have been calculated numerically since the first results of Petrusevich [117]
in 1951. Industry demands results for EHL calculations quickly, to assist in the design
and analysis of the performance and wear of components and lubricants. The enormous
advances in computing power over the last half century have enabled more and more
demanding problems to drive current research. The speed of the code is obviously an
important issue. Since first being applied to EHL problems less than fifteen years ago, by
Lubrecht at al. [95, 96], multigrid has been widely recognised as the way forward for ob-
taining quick numerical solutions. The multilevel multi-integration technique of Brandt
and Lubrecht [17] in 1990, for solving the film thickness equation decreased the solu-
tion time still further by reducing the order of the deformation calculation from ¢'(N?2) to
O'(N logN) where N is the number of mesh points in the computational domain.

The equation system which needs to be solved is that described in Chapter 2. Once
discretised on the required mesh, various different techniques need to be employed to ob-
tain an accurate numerical approximation to the solution. These techniques are described
in Section 4.2.

An example of a steady state EHL problem solution is presented in Section 4.3. This
is, as with the entirety of this work, for a two dimensional circular point contact problem.
This example is provided to show the typical solution profiles, and highlight some of the

41
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numerical difficulties in obtaining solutions.

This work aims to build on the numerical techniques already used in EHL. With this
in mind, the methods used to solve the equations presented in Chapter 2 are described
in Section 4.2. This work has been developed around an earlier attempt by Nurgat [108]
which was based on the FDMG Multigrid Software [133]. This solver is outlined in
Section 4.4. The multigrid results obtained by Nurgat for steady state problems [108,110]
were similar to those he obtained using a single grid scheme. These were, in turn, similar
to the published results of Ehret et al. [38], Venner [140] and Wang [151]. The solver
described in [108] did, however, have a number of deficiencies in the accuracy of the
solutions obtained, some of which are highlighted in [110]. In Section 4.5 these problems
will be explained in detail before describing the series of improvements employed to avoid
them, including those of Goodyer et al. described in [49]. The improvement in accuracy
is shown using a series of examples.

The performance of the solver is very important, and any alterations to the solution
scheme must be justified by an increase in performance, but without a loss of accuracy.
These factors are considered in Section 4.6 where the advantages of the multilevel tech-
niques described in Chapter 3 are illustrated. Also considered in Section 4.6.3 are per-
formance benefits which may be obtained by the application of parallel computing to the
problem.

4.2 Solution Scheme

The numerical solution of the EHL problems considered here requires the solution of the
system of partial differential integro-equations outlined in Chapter 2. The solution scheme
for this system needs to be convergent and stable, as well as being as quick as possible.
For the lubricant models being used, the solution of Equations (2.43) and (2.44) for the
density and viscosity respectively, is a simple pointwise calculation at every node in the
mesh. However more complicated algorithms are necessary to obtain accurate converged
solutions for the other equations.

The finite difference solution methods used to solve the finite difference form of the
Reynolds Equation (2.36) will be explained in Section 4.2.1. The Film Thickness Equa-
tion (2.39) will be solved using the multilevel techniques described in Section 3.4, and
these will be applied in Section 4.2.2. Finally, the solution scheme for the Force Balance
Equation will be discussed in Section 4.2.3.
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Figure 4.1: Example plot of £/(AX)? used to locate the edge of the contact region

4.2.1 Numerical Solution of the Reynolds Equation

The EHL point contact problem has three very distinct regions of interest. These are
the contact region, where the pressure is very high; the non-contact region, where the
pressure is very small; and the cavitation region where the Reynolds Equation (2.16) is
not valid because a negative, hence non-physical, pressure would be predicted. To solve
the discretised Reynolds Equation numerically (for pressure) these three regions need
different mathematical schemes to be employed. There are various papers considering
these options, such as [38, 108], so only the methods used in this work will be described
here.

The first step is to decide on where the boundary between the contact and non-contact
region is located. We do this in the manner described by Venner [140]. Here the criterion
used is based on the value of € from Equation (2.15). From Figure 4.1 it can be seen that
where £/(AX)? = 0.3 it is a good correlation to the area inside the contact region.

In the non-contact region the Gauss-Seidel line scheme is used. This region has low
pressures and hence there is very little deformation of the surface. This means that the
previously calculated values for the film thickness are still valid approximations and hence
the most recent pressure information can be used for updating the pressure.

In the contact region, the pressures are very large and hence large deformations of
the surfaces occur. The wedge term, ‘?—XH, is dominant here and thus there is a very
close relationship between the solutions of pressure and film thickness. This means that
only current information for film thickness, density and viscosity, should be used in this
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area. There are two schemes which have been commonly used: the distributed relaxation
scheme, developed by Venner [140], and the Jacobi line relaxation of Nurgat et al. [108,
110]. It is the Jacobi line scheme which is used here. Several Newton iterations of the
Gauss-Seidel scheme are typically done before updating the contact region.

In both the contact and non-contact regions the smoothing process will take place
subject to a relaxation parameter limiting the size of changes made to the solution. These
parameters will typically be different between the two regions, and will need controlling
to ensure that solutions converge and optimum performance is achieved.

The Reynolds Equation does not hold in the cavitation region. However it is important
that this region is not ignored totally because the code may move mesh points “in and out”
of the cavitation region as it tries to compute the free boundary position. There are several
options available in the treatment of this region. The method used here is to calculate the
pressure solution only at pressure-positive points by imposing a cavitation condition. This
means that for any negative pressures calculated, these values are set to be zero, following
the Christopherson approach used by Dowson and Taylor [35].

4.2.2 Numerical Solution of the Film Thickness Equation

The discretised film thickness equation (2.39) to be solved for smooth circular contact

cases, is
2 Y2 Nx Ny

X
Hi j =Hoo+ =2 + = Ki. | 4.1
ij 00 + 2 + 2 +k§1|§1 |7]7k7IPk7I ( )

with the matrix K defined as in Equation (2.40). This has three parts. The quadratic terms,
representing the undeformed parabolic geometry, are clearly defined for every point in
the mesh. The central offset film thickness, Hqo, is a scalar displacement variable which
will be calculated as described in Section 4.2.3. The third term, the double sum, is the
deformation term. Hence for every point in the mesh, the film thickness is based on a
multi-summation of all the other points in the mesh.

Calculating the double sum is computationally a very expensive process. For instance,
a single deformation calculation on a 257x129 (half) grid would have 257 x 129 x 257 x 257 ~
2 x 10° multiplications. Unsurprisingly this leads to very long run times for problems on
these fine grids (see Section 4.6.2 for details). This high calculation time was one of the
inhibiting factors in the solution of point contact EHL problems.

The smoothness of the kernel matrix allows the use of Multilevel Multi-Integration, as
described in Section 3.4. The work of Brandt and Lubrecht [17] for line and point contact
kernel matrices was extended to the actual solution of EHL problems in [147], and for
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elliptic EHL problems by Wijnant [154]. The implementation used here has been done
using the details from Venner and Lubrecht [145]. An optimised version of the multi-
summation algorithm was developed by Fairlie [43], and the difference in performance
will also be compared in Section 4.6.2.

4.2.3 Numerical Solution of the Force Balance Equation

The Force Balance Equation (2.19) is a conservation law for pressure. This means that
any pressure solution from the Reynolds Equation must also satisfy this equation. The
difference between the calculated sum of pressures and the non-dimensional ‘target’ of
%", may be used to relax the central offset film thickness, Hqo in the manner described
by Venner [140]. This solves both the problems of how to include the Force Balance
Equation, and how to calculate the correct value of Hp.

The relaxation for Hyg is therefore defined by:

21 Nx Ry
Hoo < Hoo +¢C ?—AXAYZZPH , (42)
i=1j=

where c is a small relaxation parameter, typically of the order of 0.05, although different
values may be chosen on different grid levels; finer grids tend to require smaller relaxation
parameters. Venner and Lubrecht [145] show how they reduce this relaxation parameter
when using multigrid W-cycles rather than V-cycles.

4.3 Example Solutions

The EHL problem described thus far is characterised by various physical parameters.
These represent a particular set of operating conditions, for particular materials in con-
tact with a particular lubricant. These inputs are then combined to give a set of non-
dimensional parameters which may be used to characterise the solution, as described in
Section 2.7.

In this section, a particular set of input parameters will be represented to show typ-
ical solutions for the variables across the domain. The non-dimensional quantities they
correspond to are shown in Table 4.1. Employing the Dowson and Higginson density
equation (2.20) and the Roelands viscosity equation (2.21) implies a Newtonian model of
fluid behaviour.

The solution for the pressure obtained across the domain is shown in Figure 4.2 where,
as in all of the examples to follow, unless otherwise stated, lubricant entrainment is from
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Parameter Value
Viscosity index, a 2.1x107% Pa
Maximum Hertzian pressure, pn 0.64 GPa
Material parameter, G 4729
Load parameter, W 4.7x1077
Speed parameter, U 1.0x10-11
Moes parameter, M 50
Moes parameter, L 10

Table 4.1: Non-dimensional parameters for an example EHL solution

i

i

il
i

Figure 4.2: Example pressure solution across an EHL point contact. Non-dimensionalised
range: 0— 1.03



Chapter 4 47 Solving EHL Problems

1.2
)
>
7 1
4
o
= 0.8 |
Q
0
< 0.6 |
S
(2]
o 0.4 |
£
o
& 0.2t
(@]
Z
0

25 -2 -15 -1 -05 0 05 1 15
Distance along centreline

Figure 4.3: Example pressure solution along the centreline of an EHL point contact

left to right, parallel to the X-axis. This shows the three solution areas. Most noticeable is
the contact area, in a unit radius circular area about (0,0). The profile along the centreline
is shown in Figure 4.3. These pictures also show the Petrusevich pressure ridge/spike.
This is a physical feature which is only present for Newtonian lubricants. Although it
does not appear smooth in the picture it is a continuous smooth ridge. The saw-tooth
behaviour seen is due to the resolution of the grid used to generate the figures.

On the right hand side of Figure 4.3 the cavitation region is clearly visible. This
is where the Reynolds equation had calculated a negative solution, representing a non-
continuous film of lubricant in the outflow of the contact, and the pressure has been set
to zero. The rest of the domain is the non-contact region, where the pressure is low, but
non-zero.

The film thickness is shown in Figure 4.4 where there is clear deformation from the
undeformed parabolically circular shape. The centreline solution is plotted in Figure 4.5.
Notable parts of this solution are the relative flatness of the contact inside the contact area,
that the minimum film thickness is not found on either centreline, and that a constriction
in film thickness at the outflow occurs after the pressure spike at the end of the contact
region.

Solution plots for density and viscosity are shown in Figures 4.6 and 4.7 respectively.
These show exactly how much the properties of the lubricant change across the contact.
The dependence upon the pressure is very clear with the influence of the pressure ridge
being observed in both cases.
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Figure 4.4: Example film thickness solution across an EHL point contact. Minimum
non-dimensionalised film thickness: 0.14
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Figure 4.5: Example film thickness solution along the centreline of an EHL point contact
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4.4 Solution Algorithm

The code used here to solve EHL point contact problems has been developed on that of
Nurgat [108] which was itself built on the FDMG software of Shaw [133]. This is a finite
difference multigrid code. The choice of V- or W-multigrid cycles is left to the user. What
follows is a description of Nurgat’s code.

Referring back to the schematics from Chapter 3, Figures 3.6 to 3.8, on each grid
level the code will perform one (or more) relaxations. Each smooth consists of one, or
more, iterations of a solver for each of the five discrete equations in the system, namely
Equations (2.36, 2.39, 2.42, 2.43, and 2.44).

First, the Reynolds Equation (2.36) is solved to give a new solution for pressure.
The system to be solved has an inherently full Jacobian matrix, but the most significant
contributions come from the terms with pressure derivatives. This, combined with the
strong directionality of the problem, allows the update of pressure to be solved using just
a tridiagonal Jacobian matrix, for the first order discretisation of Equation (2.36).

Once a new pressure solution has been obtained, the Force Balance Equation (2.42) is
relaxed to obtain a new corrected value for Hgg as shown by Equation (4.2). This is then
used in the calculation of the film thickness distribution. Finally, the density and viscosity
solutions are updated.

Using the multigrid techniques of Chapter 3, the coarsest grid is used first, before
progressing to the finest grid using the Full Multigrid (FMG) technique. After arriving on
the finest grid for the first time, the chosen multigrid cycle is employed until a solution
of sufficient accuracy is reached. For coarsening on boundaries, injection of the pressure
solution was used, as described in Venner [140].

The initial approximation is usually the Hertzian pressure profile, described in Equa-
tion (2.10), although it is possible to use a continuation solution from a previously run
case. This technique is especially useful in highly loaded cases where good solutions can
be computationally expensive to obtain. Another technique employed is rather than hav-
ing the non-contact region identically zero, as in Equation (2.10), it is set to an arbitrary
small value, to ensure it is not mistaken for the cavitation region on the first smooth. This
first solve of the Reynolds Equation gives a sensible ‘shape’ and position for the cavitation
boundary.
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Iterations Hcent Hmin RMSRES 2P APy
1 0.1950 0.1110 3.9001E-04 2.0832 2.091E-02
5 0.1928 0.1040 1.7222E-04 2.1144 2.884E-03
10 0.1927 0.1038 1.1407E-04 2.1196 2.693E-03
15 0.1927 0.1038 9.5991E-05 2.1201 2.630E-03
20 0.1927 0.1038 9.1076E-05 2.1202 2.621E-03

Table 4.2: Nurgat et al. Multigrid Test Problem One, M=99 & L=16.

Iterations Hcent Hmin RMSRES 2P APy
1 0.4612 0.3076 1.3773E-02 2.0842 1.377E-02
5 0.4529 0.3057 1.6256E-04 2.0909 8.322E-04
10 0.4526 0.3054 7.3911E-05 2.0904 2.452E-04
15 0.4525 0.3053 4.3010E-05 2.0905 2.251E-04
20 0.4525 0.3053 3.6674E-05 2.0905 2.236E-04
25 0.4525 0.3053 3.6051E-05 2.0905 2.234E-04

Table 4.3: Nurgat et al. Multigrid Test Problem Two, M=20 & L=10.
4.5 Improvementsto Nurgat’'s Scheme

45.1 Why are Improvements Needed?

The scheme described above is that implemented in [108-110]. It was shown in these
works that this does give results for central and minimum film thickness which are similar
to the previously published work of Ehret et al. [38], Venner [140] and Wang [151].
However it is clear from the results shown in [110] (reproduced here as Tables 4.2 and 4.3)
that although the sum of pressures has converged, it has done so to an incorrect value.
The value for the sum of the pressures (2P), should be %" which is 2.0943, correct to
four decimal places. This result is important because not only is the sum of pressures the
Force Balance condition, but it is also used to relax the central offset film thickness which
is then used in the film thickness calculation.

The RMSRES column shows the calculated root mean square residual for the Reynolds
Equation. This is only for a given film thickness solution, hence an error in the film thick-
ness may not stop these being small. However it can also be seen that these residuals are
not falling to machine precision with increased cycles.

These test problems were not especially heavily loaded - Test Problem Two had a
maximum Hertzian pressure of only 0.58 GPa. As the loading is increased the ‘con-
verged’ solution becomes further from the correct sum of pressures, hence further from
the true solution. This can be seen by considering the differences between Test Cases
One and Two, where the maximum Hertzian pressure in Test Case One is 1.2 GPa. The
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Figure 4.8: Multigrid Stalling exhibited by the code of Nurgat
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Figure 4.9: Multigrid Stalling Saw-tooth behaviour

convergence rate of the solver appears to slow down until it reaches a “stalling point’ be-
yond which further multigrid cycles do not improve the accuracy of the solution. This is
illustrated in Figure 4.8 which shows the level of the root mean square of the residuals
(on the finest grid) falling steadily until it reaches the stalling point. It is clearly seen that
no amount of further multigrid iterations will produce a more accurate solution.

Figure 4.8 does show that once the solution has reached this particular level, the mag-
nitude of the residual exhibits saw-tooth behaviour. This is enlarged in Figure 4.9 where
an indication of the reason behind this stalling is shown. The problem is that the process
of making the coarse grid correction to the fine grid solution is adding errors which are
equally balanced by the smoothing carried out on the finest grid. Looking again at Ta-
bles 4.2 and 4.3 the final column, APy, highlights this, being as it is the change in pressure
solution over a multigrid cycle: the same changes are being made each time.
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Figure 4.10: Residual levels across the half domain showing errors on the cavitation
boundary are not reduced.

45.2 Alterations to Solution Scheme
4.5.2.1 The Stalling Problem

The problems described above are not normally associated with multigrid techniques.
However, the EHL problem is highly non-linear and requires the FAS method to be used,
as described in Section 3.3.2. The main cause of problems is the presence of the cavitation
region. This is, as has been previously stated, considered to be a free boundary whose
position must be allowed to move. Therefore, the coarse mesh solution may be inherently
different to the fine mesh solution on the edge of the cavitation region because the position
of the free boundary may move half a coarse mesh cell (one fine cell). This means that
when interpolating back, the new solution is introducing an error at this boundary. This
is shown in Figure 4.10 which shows the pointwise residual levels across the half domain
at two separate stages in the solution process - both after returning from the coarse grid
correction (CGC) process. The more prominent, bolder surface shows the early stages of
convergence where residual levels across the whole domain are noticeable. The lower,
lighter surface shows that most of the error has been smoothed away except that exactly
the same error is reappearing on the cavitation boundary. This error is then smoothed
away on the fine grid but is reintroduced the next time the CGC is made. This means
there is a stage when the errors smoothed away on the finest grid are equally balanced by
the errors added to the solution by the CGC process.

It was seen in [108] that the solver of Nurgat did successfully obtained converged
solutions when applied only to the finest grid. Attention was therefore drawn to the cor-
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Figure 4.11: Ratio of effective smoothing rates between multigrid cycles and fine grid
smooths

rections being made at each level throughout the CGC process. A method for combating
this was proposed by Goodyer et al. [49]. This made use of both the muligrid scheme and
the Nurgat solver.

In the method of [49] multigrid cycles were initially used to reduce the errors in the
calculated solution down to the point where stalling occurs. At this point it was proposed
that the use of the coarsest grid be dropped, and that multigrid cycles be continued on the
rest of the grid levels. This in turn could reach a new (lower) stalling point at which this
new coarsest grid was deemed ‘too coarse’. How many grids needed to be dropped was
problem specific, but to obtain solutions with residuals at the level of machine precision
it was not uncommon to reach a point where only the finest grid was used.

An important issue with this method is the choice of when to stop using grids. This
cut-off point is determined by a number of factors. This most obvious of these is deter-
mined by the ratio between the reduction in residual size from the CGC process to that
which would have been expected by smoothing on the fine grid alone. Clearly if this pro-
cess is not providing an improved solution quicker than would be accomplished without
the use of multigrid, then there is something wrong with the multigrid process being used.
This ratio is illustrated in Figure 4.11 where it is plotted against the number of fine grid
smooths, for a three grid level example. It can be seen that initially multigrid is very effec-
tive in reducing the fine grid residual level. However this soon decays to the point where
it starts becoming detrimental (20 iterations). Since this ratio has dropped below 1, the
coarsest grid is removed from future use. Again the multigrid is seen to be immediately
effective, although this usefulness, too, is eventually limited, with the grid being removed
just before 40 iterations. The code then proceeds just using the finest grid, hence the ratio
is identically 1.
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Figure 4.12: Root mean square residual levels in a thermal viscoelastic case with sliding,
using the multigrid grid-elimination method of Goodyer et al. [49]

These modifications to the multigrid method of [108] meant that numerically more
accurate solutions to steady state EHL problems could be obtained. It should be noted that
the multi-integration solve is still done over the same number of grid levels irregardless
of the removal of coarse grids from the multigrid process.

Results showing the convergence of this code were presented by Goodyer et al. in [49].
One of those cases for which the new method was demonstrated was for a thermal visco-
elastic example with sliding, reproduced here as Figure 4.12. It is clear that the elimi-
nation of the grids has enabled convergence to be continued beyond the previous stalling
point, towards machine precision.

This method greatly improved the code of Nurgat, since the dropping of grids lessens
the change at the cavitation boundary. However this method does also remove much of
the speed-ups possible due to the use of multigrid. Ideally a cavitation boundary treatment
was needed without losing the benefits of multigrid.

4.5.2.2 Cavitation Boundary Treatment

The cavitation boundary is a physical constraint on the problem, rather than a mathemat-
ical one. Any pressure calculated to be negative is set to be identically zero, as described
by Dowson and Taylor [35]. Any pressures at zero are not being allowed to change to
their ‘true’ value, as far as the Reynolds Equation is concerned. The line solver will be
calculating a negative solution which will feed back into the positive pressures.

On the finest grid this will not be a problem because the solution will converge to a
solution which defines a particular value of the free boundary. However on all coarser



Chapter 4 56 Solving EHL Problems

grids this boundary will almost certainly not be in the same position. Over several levels
of grids the boundary may move considerably between solutions on different grids.

There are several issues concerning the treatment of this boundary during the transfer
of solutions between grids. It is particularly important in the prolongation process because
if no change is made near the boundary, then the fine grid boundary is unmoved.

The formulation of the Right Hand Side function for the coarser grids must also ensure
that there are no contributions from inside the cavitation region. In fact, this very issue
has recently been discussed by Venner and Lubrecht in [145] where they, too, talk about
the possibility of “a narrow band around the cavition (sic) boundary where [the residuals]
remain fixed at a certain level and do not converge because of this switching back and
forth between cavitated and non-cavitated”. Their solution is as described here — not
allowing coarser grids to move a fine grid cavitation boundary, or allowing transfer of
information about residuals in the cavitation region to affect the solution in the rest of the
domain.

The treatment of the cavitation boundary as only being free to be updated on the finest
grid meant that stalling no longer ever occurred. The region from one fine cell before
the boundary was only ever updated on the finest grid. This means that these points will
never receive multigrid speed ups in convergence, however nor will they ever be wrongly
cavitated. Results showing the multigrid convergence will be presented in Section 4.6.1.

4.5.2.3 Hpy Relaxation

The third major area where improvements were necessary in the code was in the relaxation
of Hpp. It was explained in Section 4.2.3 that the Force Balance Equation was included
into the equation system being solved by adding a contribution of the difference between
the desired and calculated values for the total pressure.

Once again, when applied on only one (fine) grid, this method converged on the nu-
merically accurate value of Hog. However when applied in the multigrid framework of
Nurgat [108] this calculated value was different to the single grid method. In this code
a single value of Hgg was calculated which was relaxed on all levels. This is shown in
Figure 4.13 where the black dots indicate the levels on which multigrid smooths occur,
the circles indicate Force Balance relaxations, and the arrows indicate the transfer of Hyg
between levels.

The problem with this method can be easily demonstrated by considering the ideal
example where the solution on the finest grid has zero numerical error, thus having the
correct Hyp value. That the pressure solutions — and hence the sum of the pressures —
on coarser grids will be different to those on the finest can be easily seen by considering
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Figure 4.13: Hqg strategy applied by Nurgat
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Figure 4.14: Difference in pressure solutions between grid level 3 (17x9 points) and
grid 5 (65x33) on a half domain

the difference in the level of refinement. This is demonstrated in Figure 4.14 where two
half domain solutions for pressure are plotted. It can be seen that on the coarser grid the
true shape of the pressure in the contact area is only an approximation to the fine grid.
The coarse grid pressure has been calculated using a coarsening operator of the fine grid
solution. That this approximation could have the same sum of discretised pressures is
unrealistic, since the coarsened solution on a grid is not the same as the true solution on
that grid. If the coarsest grid is then used to recalculate Hop which is then used on a finer
grid, an error will have been introduced into the solution.

Several different strategies to combat this problem were proposed by Goodyer et
al. [49]. These revolved around the idea that the value of Hpp on grid k could not be
changed by pressure solutions on any grid j with j<k. Two of these are demonstrated
in Figure 4.15. In Method (a) the value of Hgp is kept independent between the grids.
In Method (b) the fine grid value is transferred onto the coarser grid. However when the
solution is being prolonged back up to this grid the Ho value used is that previously cal-
culated on the grid. It was shown in [49] that these two methods both produced results of
optimal accuracy on the finest grid, rather than those of the method shown in Figure 4.13,
however Method (b) had a higher rate of convergence.

Since the publication of [49] further work has been done into the solution of the Force
Balance Equation. It has been realised that none of the methods described in either [108]
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Figure 4.15: Hyg strategies considered by Goodyer et al. [49]

nor [49] was accurately satisfying the coarse grid problem. The value of Hpp was always
being relaxed with the aim of having the total sum of non-dimensional pressures being
%" on every grid. However neither of these two previous works had made the necessary
correction to the applied load being relaxed upon, based on the difference between the
fine and coarsened pressure solutions. Hence, although relaxation on the finest grid, say
k, would be given, as in Equation (4.2), by

2m k kN>k( il K
Hoo < Hoo +cC 3—(&() (AY) le Pli | (4.3)

i=1j=1

with (AX)¥ and (AY )X being the mesh spacings in the X and Y directions respectively on
grid k, on grid k — 1 Equation (4.3) should then become

9 Nklkl
T
Hoo « Hoo+c[3 ((Ax)klAY"lZ ZPkl

+(BX)X(AY) g k=1(AY ) PO
le — (AX)*HAy) le Pi, ||, (44)

=1

where P; j is P j after the coarsening procedure, before any pre-smooths have been done.
When this process is applied iteratively, a series of corrections to the sum of pressure are
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produced. These can be written as

N NNy
Tt = ¢4 (ax) le AXklAYklZZP,J, (4.5)

and then may be used to define the correction to the Force Balance Equation on any grid
by

o NK N
Hoo < Hoo +¢ ?—(AX)"(AY)"ZLZ P+ | (4.6)
i=1j=1
Using this method it is not necessary to relax as often as before, and relaxation can simply
be done on the coarsest grid used. The correction terms mean that the ‘target’” sum of
pressures will always be %" on the finest grid.

453 Summary

In this section several problems with the multigrid method used by Nurgat [108] have
been explained. They have been broken down into three distinct parts and the corrections
implemented have been explained. Now that the accurate treatment of the relaxation of
the Force Balance Equation has been implemented, and with more careful treatment of
the cavitation region it has been possible to eliminate the phenomenon of stalling. The
success of these modifications will be shown in the next section.

It is important to note, however, that the EHL problem is very sensitive to other prob-
lem dependent issues. These include making a good choice of relaxation parameters used
in each region for the solution of the Reynolds equation. This is to ensure that conver-
gence occurs as quickly as possible, but that the non-linear solver does not diverge. The
choice of domain size is sometimes difficult because the wide range of operating condi-
tions modelled. A balance has to be made between having a sufficiently small domain for
highly loaded examples, and having a sufficiently large inlet region. It is also important
to make sure that the coarsest grid used is “sufficiently fine” [145] to be able to be useful
in accurately representing the solution. The success of these improvements will be seen
in the next section.

4.6 Performanceof the Code

In considering the performance of the EHL code it is important to characterise how much
improvement is being made. It is well known that the multilevel techniques employed
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Parameter Test Case 3 Test Case 4
Viscosity index, a 22x108%Pa1]22x108pPa?
Viscosity at ambient pressure, no 0.04 Pas 0.04 Pas
Maximum Hertzian pressure, pn 0.45 GPa 0.97 GPa
Material parameter, G 4972 4972
Load parameter, W 1.63x10~7 1.63x10°°
Speed parameter, U 8.18x10 12 8.18x10 12
Moes parameter, M 20 200
Moes parameter, L 10 10

Table 4.4: Non-dimensional parameters for multigrid performance benchmarking

have performance as described in Chapter 3, but in this section it will be shown how
these techniques combine within the solver employed here. Especially considering that
alterations to the standard multigrid method have been made, the benefits of multigrid
(Section 4.6.1) and multilevel multi-integration (Section 4.6.2) will be examined sepa-
rately.

The EHL point contact problem is being solved on increasingly fine meshes and the
computation time increases dramatically with every extra level of finest mesh added. De-
spite the high computational cost of EHL problems parallel computers do not appear to
have been used to reduce the run times. The availability of multiprocessor machines for
relatively cheap cost is growing with the introduction of commercially available Linux
Beowulf clusters. In Section 4.6.3 parallelism is introduced and explained, with speed-up
results presented.

4.6.1 Benefits of Multigrid

The multigrid techniques described in Chapter 3 have been applied to the EHL problem by
various authors, e.g. [38,145,154], and over the course of this chapter the implementation
of Nurgat [108] has been further refined.

There are various parts to the multigrid solution process that can be quantified. In [145]
Venner and Lubrecht have presented a series of benchmarks for their code. Detailed re-
sults for residual levels at each iteration, as well as calculated values for central and min-
imum film thickness, and Hgg, are provided for an incompressible lubricant using the
Barus viscosity-pressure equation. There are also some more limited results provided for
the model described in Chapter 2.

A similar investigation of the performance of the code used in this work is provided
here for the two test cases shown in Table 4.4. Comparisons 