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Abstract

Numerical solutions to elastohydrodynamic lubrication problems have been computed

for the last half century. Over the past decade multilevel techniques have been success-

fully applied in several solvers and significant speed-ups achieved. The aim of numerical

research in this field is to develop techniques in order to calculate accurate solutions to

demanding industrial problems as efficiently as possible.

In this work the numerical solver, previously developed by Nurgat, is examined. De-

spite being successful in achieving converged results on a single grid, there were some

unresolved issues relating to the multigrid performance. These problems are explained

and the necessary modifications to the method used are detailed.

There is much current interest in obtaining results to transient elastohydrodynamic

lubrication problems. These are examined in detail and the justification for the methods

used are discussed. Example results for industrially relevant cases, such as variation of

lubricant entrainment, oscillation of the applied load and the presence of surface defects

are considered.

In many other fields, adaptation in both space and time is used to increase performance

and accuracy. However, these techniques are not currently used for elastohydrodynamic

lubrication problems. It is shown that they can be successfully applied and substantial

benefits accrued.

A method of variable timestepping has been introduced and results are presented

showing that not only is it as accurate as fixed time stepping methods, but that the com-

putational work required to obtain these solutions is significantly reduced. Local error

control on each individual timestep is also implemented.

Adaptation of the spatial mesh is also developed. By developing a hierarchy of refined

meshes within the multigrid structure it is seen how significantly fewer computational

points are used in the most expensive numerical calculations. This, in turn, means that

the computational time required is reduced. Different criteria for adaptation are explained

and results presented showing the relative levels of accuracy and speed-up achieved.
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Chapter 1

Introduction

1.1 Introduction

Elastohydrodynamic Lubrication, hereinafter referred to as EHL, is a topic which is con-

cerned with understanding and modelling lubrication problems in which solid metal sur-

faces deform under large loads. The problems considered occur most commonly in com-

bustion engines, although the ideas apply to many other regimes.

An engine is comprised of large numbers of individual elements, many of which are

in motion relative to each other. Surfaces will therefore be in contact. Elementary me-

chanics demands that when such a motion is occurring then there will be a frictional force

opposing the movement. The friction not only reduces the efficiency of the component,

since work must be done to overcome friction, but also increases the wear.

In order to reduce the frictional force, a lubricant (oil) is applied between the surfaces.

This separates the two contacting surfaces only slightly, but this is enough to stop them

impacting upon each other. Friction is reduced to a tenth of the dry contact (unlubricated)

case, and thus the wear is also dramatically reduced. This situation is called hydrodynamic

lubrication. This is illustrated in Figure 1.1 with oil flow from left to right.

One particular component of interest is the journal bearings of a car. In this situation

a very large pressure is applied over a very small surface area. Once the pressure exceeds

about 0.3 GPa (i.e. 3×108 Pascals) the contact behaviour moves from being hydrody-

namically lubricated to the elastohydrodynamic regime. Elastohydrodynamic lubrication

1
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Figure 1.1: Representation of a hydrodynamically lubricated contact

(EHL) is different from hydrodynamic problems because here there is actual deformation

of the contacting surfaces. This may sound unlikely but pressures in a journal bearing

or gear commonly reach up to 3 GPa. Assuming pressure is force over area, this would

correspond to three elephants balancing on the end of a pen!

With such a wide range of operating pressures in the contact, it is not difficult to un-

derstand that the properties of the lubricant itself will change across the contact. It is,

however, of great importance to lubricant manufacturers that the oils being developed

are as efficient as possible for the operating conditions for which they are intended. It

is therefore necessary for designers of both lubricants and components to obtain perfor-

mance results for a variety of lubricants in different operating conditions.

The range of scales in EHL problems is great. Applied loads cause pressure distri-

butions across the contact of the order of giga-Pascals, minimum film thickness are in

the micrometre range, and lubricant molecules pass through the contact in a hundredth

of a second. This illustrates how difficult it is to conduct physical experiments into the

behaviour of EHL contacts. That consistent results are achievable at all is a great ac-

complishment, and a testament to the skills of those people whose experimental work

pioneered the techniques now used, described in Section 1.2.

It is now the case that research into EHL problems involves a combination of exper-

iments and numerical simulations. Assuming that accurate computer software (code) is

available, then solutions to numerous EHL test cases may be obtained at minimal ex-

pense. The more efficient the code, the quicker results may be obtained and used. The

development of these numerical techniques is charted in Section 1.3, where emphasis is

placed on those techniques with some bearing on this work.

To summarise a century of work by many outstanding engineers in a few pages is

somewhat difficult. There are several comprehensive reviews already in the literature,
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notably those of Dowson [30], Dowson and Ehret [31] and Jacobson [76]. The follow-

ing two sections provide the highlights and notable milestones in the study of EHL. In

Section 1.4 the rest of this thesis is outlined.

1.2 History of EHL Research

All work in fluid film lubrication can be traced back to the 1880s, when a combina-

tion of experiments was followed by a unifying mathematical theory. In 1886 Osborne

Reynolds [121] formulated equations derived from the Navier-Stokes equations, to de-

scribe the pressure distribution for an applied load on a given geometry, relating the pres-

sure to the speed of the moving surfaces. This work was itself an attempt to explain the

results of the experimental work of Beauchamp Tower [137, 138] which was the first to

detect high pressures in the lubricant film. This pressure variation was also the conclu-

sion of Nicoli Petrov [116], after he had conducted friction experiments on railway axle

bearings, at about the same time.

Despite initial success in the application of the Reynolds Equation to the design of

journal bearings, e.g. [105], in 1916 the case of trying to model lubrication in gears

caused problems. Martin [100] considered an isoviscous lubricant between two smooth

rigid cylinders, representing the gear teeth. A relationship between the operating condi-

tions and the minimum lubricant film thickness was obtained. However, applying known

physical values into the formula, a film thickness of 0.01 µm was predicted, which was

significantly less than the known surface roughness of gears at around 0.4–0.8 µm. This,

therefore, meant that there must have been other factors involved in the near wearless

operation of gears than simply the model developed thus far.

This impasse was not resolved quickly. For over 30 years, two possible themes were

investigated into what the missing link could be. It was assumed to be either due to the

elastic deformation of the solids, or due to the viscosity-pressure characteristics of the

lubricant. Work was carried out independently on each of these ideas. Deformation was

shown to have some effect, e.g. [103], but the simultaneous calculation of both elasticity

and hydrodynamic equations was too complex for a numerical problem at that time. The

viscosity-pressure work, e.g. [102] also produced larger film thickness values than those

predicted by Martin, but still not nearly enough to obtain numerical results consistent with

experiments.

The work of Ertel [39] and Grubin [54] combined the analytical solution of the de-

formation of a dry contact [67] with the viscosity-pressure effects calculated using the

exponential viscosity-pressure relation of Barus [11]. The minimum film thickness for-



Chapter 1 4 Introduction

0

0.2

0.4

0.6

0.8

1

1.2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5In
cr

ea
si

ng
 p

re
ss

ur
e 

an
d 

fil
m

 th
ic

kn
es

s

Distance through contact

Pressure

Contact /
Film shape

Figure 1.2: Typical solution for pressure and film thickness in an EHL line contact

mula obtained was only valid in a very limited parameter region, but this was the most

major advance since the formulation of the Reynolds equation.

The first solution of the full numerical line contact elastohydrodynamic lubrication

problem was presented by Petrusevich in 1951 [117]. This work also used the Barus

viscosity-pressure relation, although only three solutions were obtained. It was also the

first to show what has since become known as the Petrusevich pressure spike, itself an

important factor in the development of subsurface stresses and on the life of rolling con-

tacts [34]. The Petrusevich spike is shown in Figure 1.2 where the typical features of an

EHL contact are shown. Lubricant entrainment is from left to right, and the inlet is as-

sumed to be fully flooded. In the centre of the contact, known as the contact region, there

is a near Hertzian pressure profile, with the pressure spike towards the outflow. From the

end of the contact region the pressure solution is zero in what is known as the cavitation

region. This is where the lubricant film is no longer contiguous; bubbles of air at (near)

ambient pressure are present in the oil film, as can be seen in the experimental results

shown in Figure 5.5. In terms of the geometry of the surfaces, it can be clearly seen that

in the elastohydrodynamically lubricated case the parabolic shape on the contact has been

deformed. The roller has flattened out across the contact area, with a constriction present

in the outflow where the pressure drops steeply.

With the computing power available at that time, obtaining numerical solutions to the

two dimensional point contact EHL problem was simply not possible due to the added

mathematical difficulties involved. In the mid-1960s two attempts had been made using
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Figure 1.3: Contour plot of a typical solution for film thickness across an EHL circular
point contact

the Grubin approach [4, 23], but full solutions did not appear until the 1970s. Ranger

et al. concluded their 1975 solution paper [120] by indicating that the two limitations on

obtaining solutions were the “computer capacity” available, and the “ignorance of the re-

lationship between pressure, viscosity and density”. The effect of ellipticity in the point

contact was investigated by Hamrock and Dowson [60–64], in which expressions for cen-

tral and minimum film thickness were developed. These were found to be in reasonable

agreement with experimental results. The formulae obtained are given as Equations (2.30)

and (2.31) respectively. Work was also conducted at this time on the problem of starved

lubrication where the inlet region is not fully flooded [63, 120].

Examples of point contact problem solutions will be seen throughout the rest of this

work. This early work established that there are several physical features not present in

the line contact case. These will be shown in depth in Section 4.3 but most notable is

the change in deformation shape from that predicted in the line contact case. In point

contacts the minimum film thickness is not found on the centreline but on each of the two

sidelobes which develop to form a horseshoe shape. This is characteristic of point contact

EHL problems. An example solution is shown in Figure 1.3 which shows a contour plot of

the central region. It can be seen that away from the centre of the contact the film shape is

undeformed from the original parabolic profile. Inside the centre of the contact, the large

flat central region is again visible, with the horseshoe replacing the film thickness dip of

the line contact case.

Once the ability to solve two dimensional EHL problems had been established, at-

tention returned to the models of the lubricant used. Now-a-days probably the most es-
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tablished viscosity model used is that of Roelands [123], a more complicated version of

the Barus equation. All models used must only be expected to be accurate within certain

parameter ranges, because the number of variables required for modelling real life lubri-

cants is far too large to try to model all fluids with one simple equation. This is especially

true when using non-Newtonian lubricant models.

The study of Non-Newtonian fluids is known as rheology and “rheology is a difficult

subject” [10]. Lubricants are typically non-Newtonian because they often contain long

molecular polymer chains or additive suspensions, both of which affect their flow charac-

teristics. Non-Newtonian behaviour of a fluid exists whenever the rate of shear is not pro-

portional to the shear stress, or there are non-zero normal stresses. There are three main

viscoelastic effects which govern the behaviour of non-Newtonian fluids, namely shear-

thinning, variation of extensional viscosity and fluid memory. Shear-thinning is when the

viscosity of the fluid reduces with increasing rate of shear in a steady shear flow [10]. A

common example of this is how paint gets easier to stir, the more you stir it. Extensional

flows are non-Newtonian whenever the fluid flow is not a shear flow and this is important

in such cases as polymer processing. The extensional viscosity may increase or decrease

with increasing rate of strain, being called tension-thickening or tension-thinning respec-

tively. This subject is considered in detail by Petrie [115]. Fluid memory is the idea that

a fluid’s behaviour at any moment is not just related to the conditions it is experiencing at

that moment, but also to its previous states. Again, see [10] for examples.

The choice of rheological model to use is very much fluid dependent. Many fluids

are Newtonian in their characteristics, whilst the behaviour of others varies dramatically

with the operating conditions. The simplest elastic non-Newtonian models include those

of Maxwell [101] and Oldroyd [114], the latter of which includes shear thinning. There

are many more detailed or specialised viscoelastic models; however there have been very

few applied to EHL modelling, besides those detailed below.

Newtonian models have been effective in modelling EHL film thickness, which de-

pends primarily upon conditions in the inlet to the contact. However, they greatly over-

estimate the friction in a contact because the shear stresses are not accurately predicted

in the high pressure/shear flow in the Hertzian zone using these models. The first pub-

lished difficulties with a Newtonian model came in 1959 when experimental work by

Smith [134] reported that the lubricant acted as a plastic solid in the contact area. Use of

the Ree-Eyring model to deal with the non-linear relationship between shear stress and

shear rate has been developed in many studies, e.g. [9, 40, 81] and still continues today.

This work includes using Ree-Eyring models for line contacts, e.g. by Chang et al. [25],

for circular contacts, e.g. by Kim and Sadeghi [85], and a related model for line contact
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cases by Lee and Hamrock [87]. Other models used include the White-Metzner model

[153] which Scales [127] successfully compared to experimental friction results, building

upon the work of Walters’ group at Aberystwyth on journal bearings [122]. This model

explicitly included fluid memory effects on macroscopic friction, including their variation

with local conditions in the contact (extensional effects were assumed to be negligible in

the shear dominated flows considered). The notion that the lubricant changes phase to a

solid at very high pressures, leading to a breakdown in film continuity under shear and

hence rendering the Reynolds Equation invalid in certain regions, has been explored by

Ehret et al. [37] in a plug flow model. Ehret’s work allowed slip conditions at the bound-

ary, and a good agreement was obtained between experimental and numerical results for

the regimes he considered.

Besides the viscosity-pressure relation, another important physical factor is that of

thermal effects. At the high pressures existing in EHL contacts there can be significant

temperature changes over the surfaces, and through the lubricant film. These effects have

been included in some of the rheological studies mentioned above, however they deserve

a separate consideration too. The temperature in the inlet region of an EHL contact is very

important to the resulting film thickness profile across the rest of the contact [53], and this

heat is conducted almost entirely to the contacts [29]. Under sliding conditions, rather

than pure rolling, the temperature rise across the contact can be as much as 100
◦

C [5].

The components used in engines and machinery are real surfaces which have not been

specially prepared before each use, and therefore are not perfectly smooth. This may not

be a great revelation, knowing that the roughness of the gears in Martin’s work [100] was

known to be larger than the minimum hydrodynamic film thickness predicted, however

the ability to model rough contacts is now growing in importance. Applications, such

as computer hard drives, are continuously reducing the lubricant film width, and hence

the effect of surface asperities is becoming more important in estimating the life of com-

ponents. In cases where the surface roughness is of at least the same magnitude as the

elastohydrodynamic film thickness, then it is well known that the components may op-

erate as though lubricated with a fluid film. This is because the surface roughness will

generate pressures great enough to flatten the asperities to leaving only smooth ripples on

the surface. This is known as micro-elastohydrodynamic lubrication.

Accurately measuring surface roughness is a topic which is both limited and defined

by the accuracy of the measuring equipment. Today, it is the effective roughness that

is being investigated. Work by Venner et al. [141, 143], Chang et al. [26, 27], Ai and

Cheng [2] and Hooke [71, 72], investigated line contact problems with either ridges or

waviness patterns passing through the contact. The effect of different slide to roll ratios
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was also investigated. Point contact cases with dents, ridges, and/or waviness patterns,

were solved initially in steady state by Lubrecht et al. [97], but more importantly for

transient analyses by Venner and Lubrecht [142, 144], Ai and Cheng [1] and Ehret et

al. [38]. Recent work by Venner and collaborators [94,98,146] has been investigating the

amplitude reduction of waviness in both line and point contacts. As with all simulations

of real life phenomena it is important to ensure that the assumptions made in the models

are valid when compared to experimental results. Comparisons against the experimental

work of Kaneta et al. [83, 84] have been done in some of the work mentioned above.

However, in the conclusion of his analysis on the validity of the use of Newtonian models

in these cases, Greenwood [51] highlights that “there is considerable danger that these

beautiful calculations are only of mathematical interest”. He does, however, leave open

the question of which lubricant model to use to successfully reproduce the experimen-

tal results from [82] where dimples not associated with surface defects appeared in the

solution, but only when the steel ball was stationary and the glass disc was mobile.

1.3 Numerical Methods

With analytic solutions to EHL problems only possible in extremely limited regions

for very basic models, the ability to obtain solutions to these problems numerically be-

came essential. The complexity of problems available for consideration has always been

constrained by the computing power available. The early numerical work of Petruse-

vich [117] led to many different solution methods for the line contact case. However, the

highly computationally expensive two dimensional cases, such as will be considered in

this work, were not solved until the early 1970s, e.g. [120].

The main area in which there is a choice of numerical methods available is in the

solution of the Reynolds Equation. It will be shown later that, for the Newtonian fluids to

be considered here, the other governing equations are mathematically relatively simple to

solve – even if not always computationally cheap. The Reynolds Equation, however, is a

highly non-linear partial differential equation which gives the pressure distribution for a

given geometry.

The elastic deformation of the surfaces, by definition, gives the geometry of the con-

tact. This deformation is governed by the pressure distribution over the contact and hence

there is a very important counterpoint between the solution of these two equations. One

method, which will be the one applied here, is to solve them each in turn, and then iterate

the process to obtain converged solutions of both pressure and geometry.

Gauss-Seidel relaxation has been widely used for solving the Reynolds Equation. Ex-
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amples can be found for the line contact case in Hamrock and Jacobson [65], and for point

contacts in Hamrock and Dowson [60], Chittenden et al. [28], and Zhu and Cheng [158].

This method is unstable for highly loaded contacts [140]. Under-relaxation does alleviate

this, but reduces the speed of convergence, which can already be slow.

The Newton-Raphson method has been used to solve for both pressure and geometry

simultaneously. First described by Okamura [113], this method inverts the Jacobian ma-

trix of all the solution variables to obtain new approximations. This does, however, lead

to very expensive calculations, since for a domain of N points, the inversion will require

O(N3) operations and O(N2) computational storage space. Other drawbacks include the

near singularity of the Jacobian matrix for very high loads and the difficulties posed by

the varying location of the cavitation boundary across the domain [95]. Use is therefore

mainly confined to lightly loaded line contact problems, although some advancements

have been made since [24, 66, 74, 86, 111, 125].

The inverse methods of Ertel [39] were first applied to EHL line contact problems

by Dowson and Higginson in 1959 [32], from which a formula for predicting minimum

film thickness was developed. Point contact solutions followed in the 1980s by Evans and

Snidle [41,42]. The method operates by comparing the geometry obtained by solving the

elasticity equation for a given pressure distribution, with the geometry obtained by solving

the Reynolds equation for the geometry rather than the pressure. The difference between

these two results is used to correct the pressure. This method requires solution of a cubic

equation for the geometry, where the correct one of the three roots must be selected. This

method is not based on strong mathematical principles, but inspired guesswork. It is

also only stable in highly loaded situations, meaning another solver must be used in the

non-contact region [41, 42]. It does, however, allow solutions to extremely highly loaded

situations to be obtained. Computationally, this method approaches O(N3) operations and

is therefore undesirable for large systems.

Finite differences are not the only numerical approach that can be used. Using finite

elements has enabled many demanding, highly non-linear problems to be solved on un-

structured grids up to many dimensions, in fields such as computational fluid dynamics,

e.g. [90], and solid mechanics, e.g. [160]. Finite element techniques have been applied to

EHL problems since the early 1970s. Line contacts were first considered by Taylor and

O’Callaghan [136] and Rohde and Oh [124] and point contacts by Oh and Rohde [112].

Whilst these techniques are not widely used to solve EHL problems today, there is still

research being done, e.g. [36].

The finite element techniques used so far appear to have been mainly restricted to

the use of the Galerkin method, see for example [112, 159]. A disadvantage of this ap-
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proach is that it is analogous to using central difference approximations to the convective

terms [78], and would require additional artificial viscosity in practice. There are several

similar possible extensions to this method which may prove better for solving EHL prob-

lems, namely Petrov-Galerkin, streamline diffusion and Galerkin least squares [77]. In

these cases the amount of artificial viscosity introduced is related to the resolution of the

mesh, and adds extra stability to the scheme. This is particularly important in convection-

diffusion problems when there is a high mesh Peclet number [77]. The use of exponential

fitting for a coarse mesh to obtain optimal amounts of artificial viscosity is also a possi-

bility, see, for example, [77].

Without going into great detail there are some other methods deserving of mention,

which have been employed in solving EHL problems. The effective influence Newton

method of Wang [151] uses a small region around each point in the domain to calcu-

late each new pressure solution. In contrast, the homotopy method, used by Schlijper et

al. [129], uses a full solve including all points in the Jacobian matrix rather than just a

well chosen selection. Although the homotopy does lead to very long computing times,

it is a very powerful and reliable technique. Preconditioning techniques have been used

successfully in variational methods, as proposed by Verstappen [149]. Wavelet precon-

ditioning has also been attempted for line contact solutions by Ford et al. [45] but the

extension of this technique to two dimensions is currently unclear.

The above methods all have drawbacks, either in their applicability to both highly and

lightly loaded cases, or in their computational complexity. Limiting the computational

work became a necessity. Lubrecht [95,96] extended the Gauss-Seidel relaxation methods

to include multigrid techniques for both line and point contacts. Multigrid techniques

are described by Briggs [22] and explained in detail by Brandt [16], Hackbusch [58]

and Wesseling [152]. Whilst greatly accelerating convergence of results, the deformation

calculation remained O(N2).

The multigrid methods of Lubrecht did not attempt to make the Gauss-Seidel scheme

applicable to high loads. In 1991, Venner [140] introduced a new relaxation method.

This considered the lightly and heavily loaded regions of the domain separately. In the

non-contact region the Gauss-Seidel scheme was still applied, and solved in a line sense.

The high pressures in the contact region mean that the elastic deformation dominates the

problem here, and so Venner proposed the use of a distributive relaxation scheme in this

area of the domain.

Venner’s method of using different numerical schemes to solve the Reynolds Equa-

tion in different parts of the domain has been expanded by several other authors. Nur-

gat [108, 110] applied a Jacobi line scheme instead of the distributive scheme, in the
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contact region. Ehret et al. [38] used the same schemes as Venner except a pointwise

Gauss-Seidel scheme was applied on the cavitation boundary.

Before leaving the solution methods which have been used for the Reynolds Equation,

it would be remiss not to mention a common alternative solve applied in the cavitation re-

gion. Usually the pressure here is constrained to be non-negative by setting all calculated

negative pressures to be identically zero, the so-called cavitation condition imposed using

a Christopherson approach [35]. A penalty function approach was proposed by Wu [157]

and has been used since in work such as Schlijper et al. [129].

It is interesting to note, at this point, that the cavitation region in EHL is modelled

in a very different manner to cases of modelling full journal bearings, e.g. [88, 89]. In

that field the fluid in the cavitated region must be modelled since it will later become

inlet lubricant. Possible approaches are described in Gwynllyw et al. [57] and include the

modelling of the cavitation region as a continuous film of lubricant, just with a very low

viscosity.

The computational work of the deformation calculation is the largest part of the nu-

merical solve. This is particularly important for two dimensional cases. The idea of

multilevel multi-integration was developed by Brandt and Lubrecht [17]. This success-

fully reduces the deformation calculation from O(N2) to O(N lnN). The first published

EHL solutions using this method include Venner [140] and Venner et al. [147]. Multilevel

multi-integration has recently been compared to Fast Fourier Transforms for analysis of

rough surfaces [119] and was found to be faster when maximum or even moderate accu-

racy was specified. The use of superconvergence [150] for solving this integration could

be possible, although there would need to be much work done in order to produce results

that were much more efficient that those using multi-integration.

1.4 The Layout of this Thesis

The intention of this work is to continue the development of a fast, efficient numerical

solver for EHL problems. It has been built upon the previous work by Nurgat [108]

whose work was primarily concerned with a new numerical scheme, used to obtain the

solution of the Reynolds Equation. This scheme is accurate enough to be employed here,

however other results from [108] suggested that it was possible to improve parts of the

solver. These issues will be addressed in the subsequent chapters.

The general problem, described in Section 1.1, will be formulated in a strict mathe-

matical sense in Chapter 2. The governing equations will be described, although deriva-

tions of these well known results will not be presented. These equations will then be
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non-dimensionalised. The various non-dimensional parameters used to characterise EHL

cases will be quantified in relation to the physical characteristics of the real life prob-

lem. This chapter is concluded by presenting the steady state discretisation of the non-

dimensional equations.

It was explained in Section 1.3 that the use of multilevel techniques had greatly im-

proved the efficiency of EHL solvers since their introduction to the field fifteen years ago.

It will be especially necessary for the multigrid work of Chapter 4 to have an understand-

ing of the processes involved, and hence in Chapter 3 the multigrid methods used will be

explained. Also in this chapter, the multilevel multi-integration process, employed in this

work, is described.

The numerical solver used is described in Chapter 4. The different types of equations

to be solved for an EHL solution require different numerical techniques to be used. These

schemes are explained, along with how the multilevel techniques of Chapter 3 are applied

in the algorithm. Example steady state solutions to a circular point contact EHL problem

are shown, and the difficulties posed for numerical solvers are highlighted.

The aforementioned improvements to the solver of Nurgat [108] are also explained

in Chapter 4. The scheme developed by Goodyer et al. [49] to improve the convergence

of Nurgat’s solver is described, alongside results showing its effectiveness. This is then

followed by details of the changes made to the solver in order that the convergence prob-

lems experienced by the code of Nurgat, are now avoided. The chapter is concluded by a

comprehensive set of results showing how the multigrid solver which has been developed

does now obtain fast, numerically accurate results. The efficiency of the solver has also

been shown by comparing single grid results to multigrid results. Finally, results have

been shown detailing some of the possible performance increases that may be obtained

by using parallelism in the solver.

In Chapter 5 the numerical solver will be extended to transient problems. Again it

has been possible to make dramatic improvements on the preliminary attempts of Nur-

gat [108]. At the start of the chapter the steady state EHL problem of Chapter 2 is refor-

mulated as a transient Differential-Algebraic one, before being discretised. The changes

made to the solution method between steady state and transient cases are outlined. A

wide selection of examples is then presented, encompassing the range of problems tack-

led today. These examples will be used to show how the solver is developed further for

maximum efficiency and accuracy. Results will be compared to both other numerical, and

experimental results which are available.

Variable timestepping for EHL problems has not, to the best of the author’s knowl-

edge, been previously attempted. It will be shown in Section 5.7 that it is possible to apply
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the same techniques used in ODE problems to the highly non-linear PDE EHL problem.

It will be shown that results from variable timestep runs are of similar accuracy to those

of fixed step cases, and can be achieved in considerably less computational time, as larger

timesteps will be taken during periods of the solve with linear behaviour, and smaller

timestep sizes when the non-linear effects are dominating.

Adaptive meshing is an idea which has been used for EHL problems only once [93,

99]. Apparently this was a great success although it has not been attempted by the authors

since, whose work has concentrated on the development of multilevel multi-integration.

In Chapter 6 this idea is revived and combined with the solver developed thus far, without

negating the speed-ups achieved by the use of multilevel multi-integration. Results are

presented showing both the accuracy of the achieved results, and the decrease in the com-

putational work. Finally a transient example is presented showing how adaptive meshes

can be used in combination with variable timestepping.

This work will be concluded in Chapter 7 where the advances made are summarised.

Possible future work is described here, in relation to further developments of both the

grid adaptation and solver parallelism, in addition to the solution of more complicated

transient EHL cases.

The computational timings given in Chapters 4 to 6 are intended for comparison with

each other only. The code has been optimised in the same manner for all results. With

the exception of the parallel results of Section 4.6.3 all timings have all been calculated

on a single R10000 processor of an Silicon Graphics Origin 2000 shared memory ma-

chine, hence some small scale variation is possible on identical runs (see, for example,

Table 4.7). The timings have been provided solely to show the performance increases

achieved, rather than as a benchmark of optimum performance.

Throughout the production of this work the computational code used to generate the

results has been refined and improved to achieve better efficiency, and hence results be-

tween separate sections may appear to have different times for the same example, and

hence for each section a control case will be given against which the other results should

be compared, rather than those in previous chapters.



Chapter 2

Governing Equations

2.1 Introduction

In this chapter the mathematical model governing EHL calculations will be presented.

The only results presented in subsequent chapters will be for circular point contact prob-

lems, but reference will be made to the extra difficulties by moving from one to two

dimensional cases, hence, where relevant, the differences to the equations will be high-

lighted.

The EHL problem is governed by two main groups of equations; that is those con-

cerned with the physical model of the lubricant used, and those concerned with the EHL

problem itself. The latter set is split up as follows:

• The Reynolds Equation. This governs the pressure distribution across the contact,

for given geometry and lubricant properties.

• The Film Thickness Equation. For a given pressure distribution across the contact

this defines the elastic deformation, and hence new geometry of the surfaces.

• The Force Balance Equation. This is a conservation law ensuring that the applied

load across the contact is fixed, at any time.

The applications that EHL calculations are now used in mean that the properties of the

actual lubricant can be as important as the physical operating conditions, such as loading.

In the development of new oils, the lubricant industry needs to be able to analyse how

14
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Figure 2.1: Representation of the domain of an EHL problem

the desired properties can be obtained, without manufacturing real lubricants with those

properties. The need for accurate rheological models is now very important. Bearing

these things in mind, however, much of this detail is not needed for this work. The overall

solution properties are similar between the different models and this work is concerned

with the actual numerical solution techniques used rather than the real world applicability

of the solutions obtained. The techniques developed will be independent of the fluid

model employed and hence an isothermal generalised Newtonian model will be used.

This, then, only requires equations for the density and viscosity of the lubricant, which

are both non-linear in terms of the pressure.

The equations described above will be presented in the first few sections of this chap-

ter. They will be non-dimensionalised, using Hertzian [67] parameters, in Section 2.7.

The relationships between these parameters and the non-dimensional ones of Moes [106]

and Hamrock and Dowson [60] will also be presented in this section.

Before any numerical results of EHL problems can be calculated, it is necessary to

discretise the equations. In Section 2.8 the steady state discretisation schemes used, are

presented for the regular mesh, finite difference calculations carried out in Chapter 4. The

discretisation for transient problems will be shown in Chapter 5.

2.2 Solution Domain

The circular point contact EHL problem can be considered as that of a spherical bearing

on a plane, as shown in Figure 2.1. Coordinate axes directions are taken as shown, with the

origin taken to be the point on the plane closest to the centre of the ball. The convention

taken throughout this work will be that surface 1 refers to the ball, and surface 2 to the

plane. This is only important in cases of sliding. This is when the speeds of the two

surfaces differ. Lubricant entrainment is taken as parallel to the x-axis in the x-y plane.
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The z-direction is one of the primary variables in the calculation, since it represents the

geometry of the contact, h. There is assumed to be no variation of lubricant properties in

this direction for the cases considered here. This is because the pressure gradient across

the film in the z direction can be shown to be of the order of h/l and h�l, where l is

the representative length of the contact [33]. If a viscoelastic model was employed then

these gradients could be significant and would also have to be taken into account, hence a

modified Reynolds Equation would have to be used.

The contact being represented need not necessarily be a ball and plate, however it

is possible to reduce the real geometry to this arrangement. Throughout the rest of this

chapter the word reduced will be taken to mean ‘the quantity obtained when the geometry

is transformed to the ball and plane scenario’. This will be applied to both the ‘reduced

radius’ of the ball considered as well as the combined physical properties of the surfaces

and loading conditions. Inside the contact area the undeformed geometry of the ball will

be taken as parabolic in both x and y directions. Since only circular, rather than elliptical,

contacts are being considered then this geometry will be axially symmetric about the z-

axis.

2.3 The Reynolds Equation

The Reynolds Equation defines the pressure distribution of an applied load for a given

geometry. It was derived from the Navier-Stokes equations by Osborne Reynolds in 1886.

It therefore only applies to Newtonian (and generalised Newtonian) lubricants. Using

Cartesian coordinates (x, y), and time t it is given by

∂
∂x

(

ρh3

12η
∂ p
∂x
−ρh

(u1 +u2)

2

)

+
∂
∂y

(

ρh3

12η
∂ p
∂y
−ρh

(v1 + v2)

2

)

− ∂ (ρh)

∂ t
= 0, (2.1)

where p is the pressure

h is the geometry, or film thickness

ρ is the density of the lubricant

η is the viscosity of the lubricant

u1 and u2 are the speeds of the two surfaces in x-direction

and v1 and v2 are the speeds of the two surfaces in y-direction
Choosing lubricant flow parallel to the x-axis, and assuming no flow velocity variation
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across the contact, then Equation (2.1) may be rewriten as

∂
∂x

(

ρh3

η
∂ p
∂x

)

+
∂
∂y

(

ρh3

η
∂ p
∂y

)

−6us
∂ (ρh)

∂x
−12

∂ (ρh)

∂ t
= 0, (2.2)

where the entrainment velocity, us is defined by us = u1 +u2.

This equation is referred to as having three different parts. The first two terms involv-

ing the second derivatives of pressure are called the Poiseuille terms. The wedge term is

the other spatial derivative whilst the squeeze term is the temporal derivative.

The Reynolds Equation has no in-built concept of giving physical solutions for pres-

sure, and hence in much of the region beyond the centre of the contact, it will be satisfied

by negative solutions of pressure. In actuality, at the point of the outflow where this

occurs, air pockets will have been formed in the lubricant. This can be seen in an inter-

ferometry picture such as shown in Figure 5.5. This physical effect means Equation (2.2)

must be solved as a free boundary problem.

2.4 The Film Thickness Equation

The film thickness is the separation of the two surfaces in the contact. In elastohydro-

dynamic cases it is assumed that these surfaces are allowed to deform. This deformation

is therefore dependent on the pressure applied; more particularly, the pressure distribution

across the whole contact. This, therefore, is very dependent on the type of contact being

modelled.

The dominant, underlying shape of the contact will be assumed to be the original

parabolic shape of the contact. The presence of a lubricant - even in a hydrodynamic

case, with no deformation - will separate the contacts by an extra scalar quantity, referred

to as the central offset film thickness, h00. The final term describing the film thickness is

the deformation which, in the reduced geometry, is all taken to be in the curved surface

rather than the plane.

In one dimension (i.e. the line contact case) the film thickness equation is given by

h(x) = h00 +
x2

2Rx
− 4

πE ′

∫ ∞

−∞
ln

∣

∣

∣

∣

x− x′

x0

∣

∣

∣

∣

p(x′)dx′, (2.3)

whereas in two dimensions, for the point contact case, it is

h(x,y) = h00 +
x2

2Rx
+

y2

2Ry
− 2

πE ′

∫ ∞

−∞

∫ ∞

−∞

p(x′,y′)dx′dy′
√

(x− x′)2 +(y− y′)2
, (2.4)
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where E ′ is the reduced elastic modulus of the contact

and Rx and Ry are the reduced radii of curvature in the x and y directions.
In this work only circular contacts will be considered, so Rx = Ry.

2.5 The Lubricant Model

In the EHL problem there are very large changes in the pressures in the lubricant over

very small distances. It is therefore important to use models of the lubricant which can

accurately model this behaviour. When codes, such as the one developed here, are applied

to model real life situations then it is often to investigate particular properties of the oils.

Much research is currently being done into the use of non-Newtonian models, as outlined

in Section 1.2, however, for this work, generalised Newtonian models will suffice.

2.5.1 Density Equation

The density model that will be used throughout this work, except where stated, is that of

Dowson and Higginson [33]. This commonly used model takes account of compressibil-

ity of the lubricant and is given by

ρ(p) = ρ0
0.59×109 +1.34p

0.59×109 + p
, (2.5)

where ρ0 is the density at ambient pressure. This relationship is locally pressure depen-

dent in that there is no knowledge of the pressure distribution from the surrounding areas

affecting the density at any given point. An alternative expression sometimes seen in the

literature is

ρ(p) = ρ0

(

1+
0.59×10−9p

1+1.7×10−9p

)

, (2.6)

although the two are almost mathematically identical.

2.5.2 Viscosity Equation

The viscosity of the lubricant is very important in EHL contacts. For high pressure cases

it is necessary to use an accurate model which applies at pressures of up to at least 1 GPa.

The usual Newtonian model used is that of Roelands [123]. This has recently been tested

further against experimental results and has shown to be a good comparison up to loads

of 400 MPa, however beyond this point the correlation is not always as accurate [52].

It is, however, still much better at higher loads than the previously employed model of
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Figure 2.2: Relative viscosity (η/η0) against pressure

Barus [11] (1893) which only had a linear dependence on pressure inside the exponential

term. Using the Roelands model, the viscosity is defined by

η(p) = η0e

{

α p0
zi

[

−1+
(

1+ p
p0

)zi
]}

, (2.7)

where η0 is the viscosity at ambient pressure

p0 is a constant (typically 1.98×108)

zi is the pressure viscosity index, taken as zi = 0.68

and α is the pressure viscosity coefficient given by

α =
1
η

[

∂η
∂ p

]

p=0
. (2.8)

Once again, it is clear that this relationship depends on the pressure. This is shown in

Figure 2.2 where the relative viscosity, η/η0, is plotted against increasing pressure, up to

1 GPa.

2.6 The Force Balance Equation

The Force Balance Equation is needed to ensure conservation of applied force over the

contact. This is because the load applied across the contact must be completely carried by

the lubricant film, since it is assumed that the fluid film does not break down to give even
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a partially dry contact. For the point contact case this is expressed as

∫ ∞

−∞

∫ ∞

−∞
p(x,y)dxdy = F (2.9)

where F is the applied load.

2.7 Non-dimensionalisation

For isothermal point contact EHL problems the system of dimensional equations to be

solved is defined by equations (2.2), (2.4), (2.5), (2.7), and (2.9). The orders of numbers

in these equations vary dramatically, from O(109) for the pressure, down to O(10−8)

for the minimum film thickness. To numerically compute solutions, without incurring

artifacts from the floating point arithmetic of the computer used, non-dimensionalisation

is highly advisable.

In the process of non-dimensionalisation, dimensionless quantities may also be com-

puted. These values are commonly used to characterise the individual case being studied.

These relations are explored in Sections 2.7.1 and 2.7.2.

The first parameters to be introduced are the maximum Hertzian pressure, and the

Hertzian radius, which are derived from Hertz’s theory for dry contacts [67]. This as-

sumes a pressure distribution of

p(x,y) =







ph

√

1− x
a

2− y
a

2 ∣

∣x2 + y2
∣

∣< a.

0 otherwise.
(2.10)

The contact has now been assumed to be circular rather than generally elliptical, i.e. Rx =

Ry. The maximum Hertzian pressure, ph is given by

ph =
3F

2πa2 , (2.11)

and the Hertzian radius, a, by

a3 =
3FRx

2E ′
. (2.12)

Using Equations (2.11) and (2.12), along with the density and viscosity at ambient

pressure, the EHL system described in Sections 2.3 to 2.6 can be non-dimensionalised.

This is done by substituting into the equations the dimensionless variables:

X =
x
a

Y =
y
a

ρ =
ρ
ρ0

η =
η
η0
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P =
p
ph

H =
hRx

a2 T =
tus(0)

2a
.

The Reynolds Equation (2.2) becomes

∂
∂X

(

ρH3

η
∂P
∂X

)

+
∂

∂Y

(

ρH3

η
∂P
∂Y

)

−λ
us

us(0)

∂ (ρH)

∂X
−λ

∂ (ρH)

∂T
= 0, (2.13)

where the dimensionless parameter λ is given by

λ =
6η0R2

xus(0)

a3 ph
. (2.14)

Defining another dimensionless quantity, ε , by

ε =
ρH3

ηλ
, (2.15)

means that the non-dimensional Reynolds Equation, (2.13) can be rewritten as

∂
∂X

(

ε
∂P
∂X

)

+
∂

∂Y

(

ε
∂P
∂Y

)

− us

us(0)

∂ (ρH)

∂X
− ∂ (ρH)

∂T
= 0. (2.16)

Assuming oil entrainment in the positive X direction, this has boundary conditions given

by P(X=−∞) = P(Y=∞) = P(Y=−∞) = 0 and a free boundary cavitation condition en-

suring P≥ 0 inside the domain.

The Film Thickness Equation (2.4) non-dimensionalises to give

H(X ,Y) = H00 +G (X ,Y)+
2

π2

∫ ∞

−∞

∫ ∞

−∞

P(X ′,Y ′)dX ′dY ′
√

(X−X ′)2 +(Y −Y ′)2
, (2.17)

for given undeformed surface geometry G (X ,Y ). Assuming smooth surfaces, as in most

of the examples to follow, this is given by

G (X ,Y) =
X2

2
+

Y 2

2
. (2.18)

Non-dimensionalising the Force Balance equation (2.9) removes explicit dependence

on the applied force to give

∫ ∞

−∞

∫ ∞

−∞
P(X ,Y)dXdY =

2π
3

. (2.19)
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Finally, the density and viscosity take the form:

ρ(P) =
0.59×109 +1.34phP

0.59×109 + phP
, (2.20)

and

η(P) = e

{

α p0
zi

[

−1+
(

1+
phP
p0

)zi
]}

. (2.21)

2.7.1 Moes Parameters

The EHL problem described thus far, can be characterised by a reduced number of non-

dimensional variables which relate to the wide ranges of physical parameters available in

experiments. The two common sets used for point contact cases, such as used here, are

the Moes parameters, M and L, described in this section, and the Hamrock and Dowson

parameters described in Section 2.7.2. These parameters are defined differently between

line and point contact cases, but since only the point contact case will be used in this work,

this will be all that is presented. More detailed descriptions of the relationships between

these sets are provided, for example, in [140]. The examples presented in the rest of this

work will, for those cases using the expressions for density and viscosity described in

Section 2.5, always be presented in terms of both the Moes and the Hamrock and Dowson

parameters.

There are six physical parameters that are to be reduced: α , E ′, η0, Rx, F and us.

These can be combined, as in Equations (2.11) and (2.12), to get expressions for ph and

a respectively. Also defining

α = α ph, (2.22)

and recalling Equation (2.14) for λ , the Moes parameters, M and L [106, 107] may then

be defined by:

α =
L
π

(

3M
2

) 1
3

, (2.23)

and

λ =

(

128π3

3M4

)

1
3

. (2.24)
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2.7.2 Hamrock and Dowson

Dowson and Higginson [33] characterised the line contact problem in terms of three non-

dimensional parameters, W , U , and G, for load, speed, and material parameters respec-

tively. In 1976, Hamrock and Dowson [60] similarly defined the following relations for

circular point contact problems:

G = αE ′. (2.25)

U =
η0us

2E ′Rx
(2.26)

W =
F

E ′R2
x

(2.27)

These parameters may be related to the Moes parameters using the expressions

M = W (2U)−
3
4 , (2.28)

and

L = G(2U)
1
4 . (2.29)

Clearly, to relate three parameters to just two will require one of G, U and W , to be chosen

as fixed.

Hamrock and Dowson [64] later calculated expressions for central and minimum film

thickness in an elliptic contact, in terms of G, U and W . These are

Hcen = 2.69U0.67G0.53W−0.067 (1−0.61e−0.73κ) , (2.30)

Hmin = 3.63U0.68G0.49W−0.073
(

1− e−0.68κ
)

, (2.31)

for ellipticity ratio κ .

2.8 Discretisation

In order to solve the EHL system given by Equations (2.16) to (2.21) by a numerical

scheme, it is first necessary to discretise them. In this section these discrete equations will

be built up from first principles. This process requires that a set of sample points inside

the domain are chosen at which the equations will be satisfied. The more points chosen,

the closer the points will be to each other and hence the more accurate the solution. How-

ever, as the number of mesh points increases, so does the amount of computational work
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required to solve the system.

In this work the domain X∈[Xa,Xb], Y∈[Ya,Yb] is represented by a regularly spaced

mesh of NX x NY nodes. It is then a simple matter to relate ui, j to being the value of

solution variable u at the mesh point (i, j) where 1 ≤ i ≤ NX , 1 ≤ j ≤ NY . Here the

coordinates of point (i, j) are easily calculated by

Xi = Xa +(i−1)∆X , (2.32)

and

Yj = Ya +( j−1)∆Y, (2.33)

where ∆X and ∆Y are the mesh point spacings in the X and Y directions respectively.

The numerical solution method used in this work to solve the Reynolds Equation (2.16)

is that of finite differences. Using this technique requires only the solutions at the mesh

points, and numerical derivatives are calculated using neighbouring solutions. The sim-

plest method of doing this is by using a first order backward difference scheme. This

defines the derivative of solution variable u at mesh point (i, j) by

du
dx

∣

∣

∣

∣

(i, j)
≈

u(i, j)−u(i−1, j)

∆x
, (2.34)

i.e. the gradient between (i, j) and its upstream neighbour (i− 1, j). Similarly the first

order forward difference scheme is given by

du
dx

∣

∣

∣

∣

(i, j)
≈

u(i+1, j)−u(i, j)

∆x
. (2.35)

These two equations form the basic building blocks for all finite difference schemes.

There are several schemes commonly employed to solve the Reynolds Equation. The

simplest steady state version - used throughout Chapter 4 - is first order, and is defined by

using backward differences. Equation (2.16)becomes:

εi− 1
2 , j

(

Pi−1, j−Pi, j
)

+ εi+ 1
2 , j

(

Pi+1, j−Pi, j
)

(∆X)2

+
εi, j− 1

2

(

Pi, j−1−Pi, j
)

+ εi, j+ 1
2

(

Pi, j+1−Pi, j
)

(∆Y )2

−ρi, jHi, j−ρi−1, jHi−1, j

∆X
= 0, (2.36)
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where

εi+ 1
2 , j =

εi+1, j + εi, j

2
,

εi− 1
2 , j =

εi−1, j + εi, j

2
,

εi, j+ 1
2
=

εi, j+1 + εi, j

2
,

and εi, j− 1
2
=

εi, j−1 + εi, j

2
. (2.37)

The boundary conditions are prescribed with all exterior boundaries having P=0, and the

line j=1 being a symmetry condition in the Y direction.

An alternative steady state formulation is the second order upstream discretisation

used by Venner and Lubrecht, e.g. [145]:

εi− 1
2 , j

(

Pi−1, j−Pi, j
)

+ εi+ 1
2 , j

(

Pi+1, j−Pi, j
)

(∆X)2

+
εi, j− 1

2

(

Pi, j−1−Pi, j
)

+ εi, j+ 1
2

(

Pi, j+1−Pi, j
)

(∆Y )2

−3ρi, jHi, j−4ρi−1, jHi−1, j +ρi−2, jHi−2, j

2∆X
= 0, (2.38)

This is valid for all points in the domain with i>2. For i=2 the first order scheme of

Equation (2.36) is used. The only difference between Equations (2.36) and (2.38) is the

order of the derivatives used in the discretisation of the wedge term.

Transient discretisations are undertaken in similar fashions, and will be considered in

Chapter 5.

Assuming that the undeformed surfaces have geometry, G , given by Equation (2.18),

then the Film Thickness Equation (2.17) is discretised to give:

Hi, j = H00 +
Xi

2

2
+

Yj
2

2
+

NX

∑
k=1

NY

∑
l=1

Ki, j,k, lPk, l (2.39)

where Xi and Yj are as defined by Equations (2.32) and (2.33) respectively, and K is the

kernel matrix. The kernel is the analytic solution of the double integral required for the

deformation calculation given by:

Ki, j,k, l =
2

π2

{

∣

∣Xp
∣

∣sinh−1
(

Yp

Xp

)

+
∣

∣Yp
∣

∣sinh−1
(

Xp

Yp

)
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−|Xm|sinh−1
(

Yp

Xm

)

−
∣

∣Yp
∣

∣sinh−1
(

Xm

Yp

)

−
∣

∣Xp
∣

∣sinh−1
(

Ym

Xp

)

−|Ym|sinh−1
(

Xp

Ym

)

+ |Xm|sinh−1
(

Ym

Xm

)

+ |Ym|sinh−1
(

Xm

Ym

)}

(2.40)

where

Xp = Xi−Xk +
∆X
2

,

Xm = Xi−Xk−
∆X
2

,

Yp = Yj−Yl +
∆Y
2

,

and Ym = Yj−Yl−
∆Y
2

. (2.41)

The Force Balance Equation (2.19) discretises to give:

∆X∆Y
NX

∑
i=1

NY

∑
j=1

Pi, j =
2π
3

. (2.42)

The equations for density and viscosity are pointwise calculations, Equations (2.20) and (2.21)

respectively, and are thus simply discretised to give

ρ i, j =
0.59×109 +1.34phPi, j

0.59×109 + phPi, j
, (2.43)

and

η i, j = e

{

α p0
zi

[

−1+
(

1+
phPi, j

p0

)zi
]}

. (2.44)

with all symbols as defined previously.



Chapter 3

Multilevel Techniques

3.1 Introduction

Multilevel techniques are used to provide solutions of the same accuracy significantly

faster than could be achieved on just one very fine grid. These techniques have been

around since the late 1970s [16], being developed primarily for boundary value problems.

The field of multilevel techniques goes far beyond just multigrid. Other areas operating on

a multiscale basis include wavelet transforms (such as used in [45]) and multi-resolution,

e.g. [15].

Since their introduction, multigrid use has increased dramatically, from such fields as

disparate as quantum chemistry and electrostatics [12] to hurricane tracking [46]. Their

first application to EHL problems came in 1986 with the work of Lubrecht et al. [95].

Since this time they have become generally accepted as an effective method for getting

EHL solutions quickly.

The two multilevel techniques to be used in this work are explained in this chapter.

First Multigrid is explained in Section 3.3. It will be seen in Chapter 4 how this accelerates

convergence of the numerical solver for the Reynolds Equation. Section 3.3 includes

examples of different types of multigrid cycles, and explains the advantages of using a

full multigrid start. Secondly, Multilevel Multi-Integration is considered in Section 3.4.

This is used to greatly reduce the computational time spent in calculating the surface

deformation. Both multigrid and multi-integration are explained in terms of their general

27
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- -

Grid level k Grid level k−1 Grid level k−2

Figure 3.1: Hierarchy of grids

methods and properties although only those aspects of the theory used in later chapters

will be explained in detail. There are several common pieces of notation between the two

techniques which will be described, first, in Section 3.2.

There are now several detailed books on the application of multilevel methods. For

multigrid, the tutorial by Briggs [22] is a good introduction to the subject and has recently

been updated to include more advanced techniques. A more detailed look at multigrid

is provided by Hackbusch [58], Trottenberg et al. [139], and by Wesseling [152]. Both

multigrid and multilevel multi-integration for EHL problems are described in detail by

Venner and Lubrecht in [145]. This chapter provides a summary of the techniques utilised

in the solver described in Chapter 4.

3.2 Multilevel Formulation

In Chapter 2 a discrete system of mathematical equations has been presented. The aim is

to obtain the solution of this system as efficiently as possible on a fine mesh. Assuming

that this fine mesh is a regular grid and has (2k+1) x (2k+1) points, then it can be referred

to as grid k. A hierarchy of grids with decreasing values of k as shown in Figure 3.1 may

then be defined. Grid points on a coarser grid l are separated by a distance 2k−lδ k where

δ k is the separation of points on grid k, in the appropriate direction. Hence all points on

grid k−1 will have coincident points on grid k, with the additional points on grid k being

the mid-points between coincident points.

Rather than just referring to a solution vector, u say, it will be necessary to define a

solution vector for each individual grid level. Hence on grid k such a solution will be

represented by uk. The operators employed for transferring solutions from one grid to

another will be explained in Section 3.3.3.



Chapter 3 29 Multilevel Techniques

3.3 Multigrid

This work is not intended to cover multigrid techniques in their entirety. There are numer-

ous works devoted to providing a more thorough investigation, e.g. [22,58,152]. However,

it is necessary to explain the basic methods being used before continuing to solve the EHL

problem. Only those parts used in this solver will be explained here.

The motivation for the use of multigrid techniques is briefly outlined in Section 3.3.1.

Although there are various types of multigrid method (see e.g. [58]), the only one of

interest in this work is the Full Approximation Scheme (FAS). This is because, as has been

shown in Chapter 2, EHL problems are inherently very non-linear, and hence the simple

Correction Scheme cannot be employed. The FAS will be explained in Section 3.3.2.

It will be shown that the method of transfer of both solutions and errors between grids

will be important to the usefulness and efficiency of the scheme. The operators used will

be presented in Section 3.3.3. The types of multigrid cycle used, as well as the mechanics

of the process (the correction scheme), will explained in Section 3.3.4. Finally, the use

of the Full Multigrid algorithm to obtain a good initial solution on the finest mesh will be

outlined in Section 3.3.5.

3.3.1 Introduction to Multigrid

Consider a simple case where the system to be solved is given by the one-dimensional

equation

L u = f , (3.1)

where L is the differential operator defining the system, and f is the right hand side

function. This system needs to be solved in order to obtain a vector u, an approximation

to the discretised numerical solution, on a regular mesh of N points (where N = 2k +1 for

some k), separated by distance δxk. Hence, this problem can now be represented as

L
kuk = f k. (3.2)

At any particular stage, a solution vector ũk will have been calculated, which is an ap-

proximate solution to Equation (3.1) with an error, ek , such that

uk = ũk + ek. (3.3)

The solution is relaxed iteratively to obtain new solutions which are (hopefully) better

than the previous one. The aim of the solution process is to reduce this error to below
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(a)

(b)

(c)

(a) Low frequency component (b) High frequency component (c) Two-phase error

Figure 3.2: Example of errors of different frequencies.

some pre-specified tolerance level.

It has been shown (e.g. [22,140] as well as Section 4.6.1.1) that the relaxation schemes

used to solve EHL problems are very good at reducing high frequency errors, but very

slow at reducing low frequency errors. This idea is illustrated in Figure 3.2 where a high

frequency sine wave is imposed on a low frequency one. Standard single grid smoothing

techniques would quickly eliminate errors of similar frequencies to the mesh spacing, but

the lower frequency error components could be almost unchanged.

Multigrid is a technique to try and combat this problem. Given that the smoother is

able to reduce errors of the frequency of the grid size, then lower frequency errors can be

reduced by using a (coarser) grid with similar order to that of the error. In the case shown

in Figure 3.2 a coarser grid with mesh spacing four times more than that used to reduce

the fine grid error, would be appropriate.

3.3.2 Full Approximation Scheme (FAS)

From Equation (3.2) the residual, rk, of the system can be calculated from

rk = f k−L
kũk, (3.4)

for an approximation ũk to uk. Substituting for f k from Equation (3.2) gives

rk = L
kuk−L

kũk. (3.5)
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The non-linearity of the operator L k means this cannot be directly factorised. However,

using Equation (3.3) enables us to define the residual as

rk = L
k(ũk + ek)−L

kũk, (3.6)

which can be reordered to give

L
k(ũk + ek) = L

kũk + rk. (3.7)

Consider now a coarser grid, grid j. To represent Equation (3.7) in the same form as

(3.2), i.e.

L
jû j = f̂ j, (3.8)

it is necessary to define û j by

û j = I j
k ũk + e j, (3.9)

The term f̂ j in Equation (3.8) is called the FAS right hand side, and is given by

f̂ j = L
j(I j

k ũk)+ I j
k rk, (3.10)

and I j
k is an inter-grid transfer operator from grid k to grid j, to be described in Sec-

tion 3.3.3.

The solution û j to Equation (3.8) can be approximated by u j which can then be used

to calculate the coarse grid approximation to the error by

ẽ j = u j− I j
k ũk. (3.11)

This is then used to update the fine grid solution in the following manner:

ũk← ũk + Ik
j (u

k− I j
k ũk). (3.12)

3.3.3 Grid Transfer

It is now necessary to define the operators for transferring solutions between grids. To

move to a coarser grid a coarsening or restriction operator is needed. The transfer from

grid k to grid k− 1 will be denoted by Ik−1
k . Similarly, moving to a finer grid needs a

prolongation operator, denoted by Ik
k−1. These operators will be defined in terms of sten-

cils describing how the new pointwise solution is constructed. Efficient multigrid solvers

are very reliant on the choice of correct intergrid operators. It is especially important for
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Figure 3.3: Injection coarsening operator, Ik−1
k
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Figure 3.4: Full weighting coarsening operator, Ik−1
k

linear problems that the two operators are transposes of each other.

To define a coarsening operator there are two common choices. Either injection or full

weighting. The easiest of these is injection which is simply direct transfer of the solution

at coincident points between fine and coarse grids. This stencil is given mathematically,

in two dimensions, for the coarse grid points, by

Ik−1
k =







0 0 0

0 1 0

0 0 0






, (3.13)

and shown in Figure 3.3. Full weighting involves a weighted average of the surrounding

fine grid points:

Ik−1
k =

1
16







1 2 1

2 4 2

1 2 1






, (3.14)

illustrated in Figure 3.4. Full weighting can be more desirable because the highest fre-

quency components are not represented on the coarser grids, improving the Coarse Grid

Correction process.
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Figure 3.5: Prolongation operator, Ik
k−1

The prolongation operator to be used linearly interpolates the coarse grid function to

the fine mesh, hence at coincident points injection will be used, whilst at other points

linear interpolation of either two or four coarse grid points will be employed. This is

shown in Figure 3.5 and given by

Ik
k−1 =

1
4







1 2 1

2 4 2

1 2 1






. (3.15)

This is the transpose of the coarsening operator described by Equation (3.14).

3.3.4 Multigrid Cycles

The multigrid process is the combination of the individual tools described above. Assum-

ing that the same iterative process can be used to solve the coarse grid system as the fine

grid system, then the finest grid will be used to smooth the highest frequency errors, and

progressively coarser grids used to smooth errors of progressively lower frequencies, be-

fore returning to get an updated solution on the finest mesh. The smoothing cycles done

before coarsening are called pre-smooths and those done after prolongation and correction

of the solution are referred to as post-smooths.

The simplest multigrid cycle is the V-cycle. An example of this is shown in Figure 3.6

which shows one cycle over four levels of mesh. An initial approximation on the finest

grid has ν1 pre-smooths before being coarsened. This is then repeated until the coarsest

mesh is reached where ν0 smoothing cycles are done. The solution on the next finer mesh

is then corrected according to Equation (3.12) before having ν2 post-smooths. Again this

process is repeated until a corrected, smoothed solution is reached on the finest mesh.

This V-cycle is known as a V(ν1,ν2)-cycle. Typical values for ν1 and ν2 are three or less,

although ν0 may be much larger in order to obtain a much better coarse grid representation
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Figure 3.6: A multigrid V-cycle
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Figure 3.7: A multigrid W-cycle

of the solution.

An alternative multigrid cycle is the W(ν1,ν2)-cycle. This is where two coarse grid

correction cycles are used to correct the solution on each grid rather than just the one of

the V-cycle. An example, again on four levels, is shown in Figure 3.7. The advantage of

the W-cycle over the V-cycle is that there are twice as many coarse grid corrections for

each level per multigrid cycle.

3.3.5 Full Multigrid

The process of Full Multigrid (FMG) is designed to eliminate the large errors which

would exist on the fine grid, before it is first used. Solutions, especially for the EHL point

contact problem solved here, become more computationally expensive to calculate, the

more mesh points there are present in the domain. Hence the ability to use a solution
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Figure 3.8: Full multigrid, with one V-cycle per level

prolonged from a coarser grid as an initial approximation will be clearly advantageous.

FMG uses the same multigrid techniques and V- or W-cycles as described above in

Section 3.3.4, but applied as shown in Figure 3.8. This example demonstrates just one V-

cycle per level, but there will usually be several to obtain a reasonably converged solution.

At the end of each set of V-cycles this solution is then prolonged up to a new finest grid.

For the EHL problem it will be seen in Chapter 4 how beneficial this is compared to simply

starting off with the Hertzian approximation, given by Equation (2.10), to the pressure on

the finest grid level employed.

3.4 Multilevel Multi-Integration

Multilevel multi-integration is a multiscale technique designed to significantly speed up

the evaluation of integrals. In this work it will be employed for calculation of the defor-

mation of the surfaces, given mathematically by the double integral in Equation (2.17).

Besides its use in EHL, it also has applications in integral equations, integro-differential

equations, elasticity problems and acoustic problems. The process behind the deriva-

tion and application of these techniques is explained by Brandt, Lubrecht and Venner

in [17, 19, 140, 145] in much greater detail than need be provided here.

In one space dimension, a general example would be to solve the following integral:

w(x) =
∫

Ω

K(x,y)u(y)dy, (3.16)

where the domain Ω = (a,b). The function K is referred to as the kernel and its discretised

form as the kernel matrix. Multi-integration is applicable in situations where the kernel is
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a dense rather than a sparse matrix. This means that Equation (3.16) actually represents

a full matrix-vector multiplication. Multi-integration for higher dimensional cases than

the one dimensional case to be considered here, is applied by using the same algorithms

described below, applied separately to each dimension.

This method is only possible where the kernel itself has sufficient smoothness prop-

erties. For the EHL point contact problem being considered in this work it is necessary

to remember that Equation (2.40) is, in fact, singular around the point (i, j). Therefore K

is not smooth around this point, although far enough away it is smooth enough to apply

multi-integration techniques. This means that applying multi-integration over the whole

domain Ω will not be correct, unless the region around the singularity, Ωsing is corrected

afterwards.

Assume now that Equation (3.16) is discretised on a regular mesh of nh
x points, sepa-

ration δxh = (b−a)/(nh
x−1), for grid level h. The single grid method for calculating this

multi-summation at each xh
i = a+(i−1)δ h

x , for i = 1, . . . ,nx is

wh
i = wh(xh

i ) =
nh

x

∑
j=1

Khh
i, j u

h
j , (3.17)

where Khh
i, j is the discretised kernel and uh

i is the approximation to uh(xi) Hence for every

point in Ω, this calculation is O(nh
x) meaning that the evaluation of the summation for the

whole domain is O
(

(nh
x)

2
)

.

Outside the influence of any singularity, multi-integration is defined by two stages

for the formulation of the coarse grid equation. First, an approximation to wh
i must be

calculated including only summation of coarse grid points (Equations (3.18) to (3.22) ).

Then the second dimension of the kernel matrix will be included using the knowledge that

it displays similar behaviour (Equations (3.23) to (3.26) ).

For ease of notation let grid H be grid h−1, i.e. one level coarser, with coarse grid

indices I and J coincident with fine grid indices i and j respectively. Only two levels

will be considered for the formulation of multi-integration, although it will be shown how

these techniques can be applied iteratively, similar to the ideas of multigrid.

Consider first the coarse grid kernel, KhH
i,J , being the fine grid kernel evaluated at

coarse grid points. This is therefore, clearly, just the fine grid values injected upwards by

KhH
i,J ≡ Khh

i,2J−1. The fine grid kernel can then be approximated by using an interpolation

of a high enough order, defined by

K̃hh
i, j ≡

[

Ih
HKhH

i,·
]

j
, (3.18)
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where the dot (·) refers to interpolation in the y direction (the dummy variable in Equa-

tion 3.16) ), and the final j is the new index.

It is then possible to rewrite Equation (3.17) as

wh
i =

nh
x

∑
j=1

K̃hh
i, j u

h
j +

nh
x

∑
j=1

(

Khh
i, j − K̃hh

i, j

)

uh
j , (3.19)

which can be broken down as follows. Only coarse grid points have been used to construct

K̃hh
i, j and hence at coincident fine grid points

(

Khh
i, j − K̃hh

i, j

)

≡ 0. This just leaves the non-

coincident points, which will have an interpolation error of Khh
i, j−K̃hh

i, j which is of the order

of K(2p)(ξ ) where 2p is the order of the interpolation, and K(2p)(ξ ) is the 2pth derivative

of K at some point ξ in Ω. The assumption that the kernel is sufficiently smooth compared

to u means that the discretisation error is large enough for the interpolation error to be

discounted. Thus, Equation (3.19) becomes

wh
i ≈ w̃h

i =
nh

x

∑
j=1

K̃hh
i, j u

h
j =

nh
x

∑
j=1

[

Ih
HKhH

i,·
]

j
uh

j =
nH

x

∑
J=1

KhH
i,J

[

(

Ih
H

)T
uh
·

]

J
, (3.20)

where the adjoint of the interpolation matrix, known as the anterpolation matrix is given

by
(

Ih
H

)T
. Hence, defining a coarse grid representation of the fine grid solution by

uH
J ≡

[

(

Ih
H

)T
uh
·

]

J
, (3.21)

the coarse grid integration, Equation (3.20) is reduced to

wh
i ≈ w̃h

i =
nH

x

∑
J=1

KhH
i,J uH

J , (3.22)

which is an approximation to the fine grid integration without increasing the complexity

of the algorithm from O(nh
x).

Applying a similar process to the x direction allows this integration to be reduced still

further. Similar to Equation (3.18) the fine grid kernel may be approximated in the x

direction to K̂hh
i, j , by

K̂hh
i, j ≡

[

Ih
HKHh
·, j

]

j
, (3.23)
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with all symbols defined as before. Therefore, Equation (3.17) can be rewritten as

wh
i =

[

Ih
HwH
·
]

i
+

nh
x

∑
j=1

(

Khh
i, j − K̂hh

i, j

)

uh
j , (3.24)

where

wH
I ≡

nH
x

∑
j=1

KHh
I, j uh

j . (3.25)

Again, as KHh
I, j is an injection of the coincident fine points onto the coarser mesh, then

(

Khh
i, j − K̂hh

i, j

)

≡ 0 at these points. Also, if K is sufficiently smooth in the x direction,

the interpolation error should be sufficiently small to neglect the summation in Equa-

tion (3.24) completely, thus becoming:

wh
i ≈

[

Ih
HwH
·
]

i
. (3.26)

Therefore, provided K is sufficiently smooth in both x and y directions, combining

Equations (3.22) and (3.26) gives:

wh
i ≈

[

Ih
HwH
·
]

i
≈



Ih
H

nH
x

∑
J=1

KhH
·,J uH

J





i

, (3.27)

which defines multi-integration for smooth kernels.

If, however, the kernel is singular, and hence not smooth in a region Ωsing ⊂Ω then a

different expression for wh
i is required. To build this up the coincident and non-coincident

points between grids h and H in the x direction will be considered separately.

Considering, first, the coincident points in the x direction, Equation (3.19) can be

rewritten as

wh
i =

nh
x

∑
j=1

K̃hh
i, j u

h
j + ∑

(i, j)∈Ωsing

(

Khh
i, j − K̃hh

i, j

)

uh
j + ∑

(i, j)/∈Ωsing

(

Khh
i, j − K̃hh

i, j

)

uh
j . (3.28)

Since only coincident points are being calculated, in the smooth region, as before, the

final term’s sum can be considered to be zero. Note also that at these points,

nh
x

∑
j=1

K̃hh
i, j u

h
j =

nH
x

∑
J=1

K̃HH
I,J uh

j = wH
I . (3.29)
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Hence,

wh
i = wH

I + ∑
(i, j)∈Ωsing

(

Khh
i, j − K̃hh

i, j

)

uh
j . (3.30)

For non-coincident points in the x direction, recalling Equation (3.24) and reducing

the smooth part of the domain as before, then the value of wh
i is given by

wh
i =

[

Ih
HwH
·
]

i
+ ∑

(i, j)∈Ωsing

(

Khh
i, j − K̃hh

i, j

)

uh
j . (3.31)

Therefore the fine grid solution of the integration in Equation (3.16) can be approx-

imated using multi-integration by first calculating the coarse grid multi-summation, and

then correcting around the singularity, as given by Equation (3.30), before interpolating

the coarse grid multi-summation to the non-coincident points on the fine grid, and cor-

recting again, as given by Equation (3.31).

The problem of deciding which points (i, j) are in Ωsing, thus requiring correction,

is important both in terms of solution accuracy (by having enough points) and optimal

efficiency (by not having too many). For each point i in the one dimensional example

above, the region requiring correction may be defined by Ωi
sing = { j ∈Ω : |i− j|< m}.

The choice of the radius, m, is problem dependent. In [17] Brandt and Lubrecht showed

that, for the kernel of the EHL line contact problem, m∼ lnn, should be used. For the two

dimensional circular point contact EHL case, Equation (2.40) this linear idea per point

was extended to give a rectangular shape, hence it is corrected over a (2m1 +1)× (2m2 +

1) rectangle. They found that taking m1 ∼ lnnx in the interpolation direction, and m2 = 2

perpendicular to the interpolation, then the algorithm maintains its O(N lnN) efficiency.

Elliptic problems were considered by Wijnant in [154] where the different directions have

different weights, meaning that the area requiring correction has different sizes in the X

and Y directions, for ellipticity κ 6= 1.

Multi-integration need not — and should not — just be restricted to evaluation of

the multi-summation on one level coarser. It may be applied recursively, provided that

the kernel matrix still has sufficient smoothness properties on the coarser grids. This

is illustrated in Figure 3.9 where four levels of grid are used for the multi-integration

process. The larger the number of coarser grids which are used, then the greater the

possible speed up, although there is no point in going beyond a grid with
√

N points,

where N is the number of the points on the finest level, because this summation is already

O(N), which is the same order as the intergrid operators required to coarsen further.
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Figure 3.9: Multilevel multi-integration being applied over four levels



Chapter 4

Solving EHL Problems

4.1 Introduction

EHL problems have been calculated numerically since the first results of Petrusevich [117]

in 1951. Industry demands results for EHL calculations quickly, to assist in the design

and analysis of the performance and wear of components and lubricants. The enormous

advances in computing power over the last half century have enabled more and more

demanding problems to drive current research. The speed of the code is obviously an

important issue. Since first being applied to EHL problems less than fifteen years ago, by

Lubrecht at al. [95, 96], multigrid has been widely recognised as the way forward for ob-

taining quick numerical solutions. The multilevel multi-integration technique of Brandt

and Lubrecht [17] in 1990, for solving the film thickness equation decreased the solu-

tion time still further by reducing the order of the deformation calculation from O(N2) to

O(N logN) where N is the number of mesh points in the computational domain.

The equation system which needs to be solved is that described in Chapter 2. Once

discretised on the required mesh, various different techniques need to be employed to ob-

tain an accurate numerical approximation to the solution. These techniques are described

in Section 4.2.

An example of a steady state EHL problem solution is presented in Section 4.3. This

is, as with the entirety of this work, for a two dimensional circular point contact problem.

This example is provided to show the typical solution profiles, and highlight some of the

41
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numerical difficulties in obtaining solutions.

This work aims to build on the numerical techniques already used in EHL. With this

in mind, the methods used to solve the equations presented in Chapter 2 are described

in Section 4.2. This work has been developed around an earlier attempt by Nurgat [108]

which was based on the FDMG Multigrid Software [133]. This solver is outlined in

Section 4.4. The multigrid results obtained by Nurgat for steady state problems [108,110]

were similar to those he obtained using a single grid scheme. These were, in turn, similar

to the published results of Ehret et al. [38], Venner [140] and Wang [151]. The solver

described in [108] did, however, have a number of deficiencies in the accuracy of the

solutions obtained, some of which are highlighted in [110]. In Section 4.5 these problems

will be explained in detail before describing the series of improvements employed to avoid

them, including those of Goodyer et al. described in [49]. The improvement in accuracy

is shown using a series of examples.

The performance of the solver is very important, and any alterations to the solution

scheme must be justified by an increase in performance, but without a loss of accuracy.

These factors are considered in Section 4.6 where the advantages of the multilevel tech-

niques described in Chapter 3 are illustrated. Also considered in Section 4.6.3 are per-

formance benefits which may be obtained by the application of parallel computing to the

problem.

4.2 Solution Scheme

The numerical solution of the EHL problems considered here requires the solution of the

system of partial differential integro-equations outlined in Chapter 2. The solution scheme

for this system needs to be convergent and stable, as well as being as quick as possible.

For the lubricant models being used, the solution of Equations (2.43) and (2.44) for the

density and viscosity respectively, is a simple pointwise calculation at every node in the

mesh. However more complicated algorithms are necessary to obtain accurate converged

solutions for the other equations.

The finite difference solution methods used to solve the finite difference form of the

Reynolds Equation (2.36) will be explained in Section 4.2.1. The Film Thickness Equa-

tion (2.39) will be solved using the multilevel techniques described in Section 3.4, and

these will be applied in Section 4.2.2. Finally, the solution scheme for the Force Balance

Equation will be discussed in Section 4.2.3.
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Figure 4.1: Example plot of ε/(∆X)2 used to locate the edge of the contact region

4.2.1 Numerical Solution of the Reynolds Equation

The EHL point contact problem has three very distinct regions of interest. These are

the contact region, where the pressure is very high; the non-contact region, where the

pressure is very small; and the cavitation region where the Reynolds Equation (2.16) is

not valid because a negative, hence non-physical, pressure would be predicted. To solve

the discretised Reynolds Equation numerically (for pressure) these three regions need

different mathematical schemes to be employed. There are various papers considering

these options, such as [38, 108], so only the methods used in this work will be described

here.

The first step is to decide on where the boundary between the contact and non-contact

region is located. We do this in the manner described by Venner [140]. Here the criterion

used is based on the value of ε from Equation (2.15). From Figure 4.1 it can be seen that

where ε/(∆X)2 = 0.3 it is a good correlation to the area inside the contact region.

In the non-contact region the Gauss-Seidel line scheme is used. This region has low

pressures and hence there is very little deformation of the surface. This means that the

previously calculated values for the film thickness are still valid approximations and hence

the most recent pressure information can be used for updating the pressure.

In the contact region, the pressures are very large and hence large deformations of

the surfaces occur. The wedge term, ∂ρH
∂X , is dominant here and thus there is a very

close relationship between the solutions of pressure and film thickness. This means that

only current information for film thickness, density and viscosity, should be used in this
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area. There are two schemes which have been commonly used: the distributed relaxation

scheme, developed by Venner [140], and the Jacobi line relaxation of Nurgat et al. [108,

110]. It is the Jacobi line scheme which is used here. Several Newton iterations of the

Gauss-Seidel scheme are typically done before updating the contact region.

In both the contact and non-contact regions the smoothing process will take place

subject to a relaxation parameter limiting the size of changes made to the solution. These

parameters will typically be different between the two regions, and will need controlling

to ensure that solutions converge and optimum performance is achieved.

The Reynolds Equation does not hold in the cavitation region. However it is important

that this region is not ignored totally because the code may move mesh points “in and out”

of the cavitation region as it tries to compute the free boundary position. There are several

options available in the treatment of this region. The method used here is to calculate the

pressure solution only at pressure-positive points by imposing a cavitation condition. This

means that for any negative pressures calculated, these values are set to be zero, following

the Christopherson approach used by Dowson and Taylor [35].

4.2.2 Numerical Solution of the Film Thickness Equation

The discretised film thickness equation (2.39) to be solved for smooth circular contact

cases, is

Hi, j = H00 +
X2

i

2
+

Y 2
j

2
+

NX

∑
k=1

NY

∑
l=1

Ki, j,k, lPk, l (4.1)

with the matrix K defined as in Equation (2.40). This has three parts. The quadratic terms,

representing the undeformed parabolic geometry, are clearly defined for every point in

the mesh. The central offset film thickness, H00, is a scalar displacement variable which

will be calculated as described in Section 4.2.3. The third term, the double sum, is the

deformation term. Hence for every point in the mesh, the film thickness is based on a

multi-summation of all the other points in the mesh.

Calculating the double sum is computationally a very expensive process. For instance,

a single deformation calculation on a 257x129 (half) grid would have 257×129×257×257≈
2×109 multiplications. Unsurprisingly this leads to very long run times for problems on

these fine grids (see Section 4.6.2 for details). This high calculation time was one of the

inhibiting factors in the solution of point contact EHL problems.

The smoothness of the kernel matrix allows the use of Multilevel Multi-Integration, as

described in Section 3.4. The work of Brandt and Lubrecht [17] for line and point contact

kernel matrices was extended to the actual solution of EHL problems in [147], and for
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elliptic EHL problems by Wijnant [154]. The implementation used here has been done

using the details from Venner and Lubrecht [145]. An optimised version of the multi-

summation algorithm was developed by Fairlie [43], and the difference in performance

will also be compared in Section 4.6.2.

4.2.3 Numerical Solution of the Force Balance Equation

The Force Balance Equation (2.19) is a conservation law for pressure. This means that

any pressure solution from the Reynolds Equation must also satisfy this equation. The

difference between the calculated sum of pressures and the non-dimensional ‘target’ of
2π
3 , may be used to relax the central offset film thickness, H00 in the manner described

by Venner [140]. This solves both the problems of how to include the Force Balance

Equation, and how to calculate the correct value of H00.

The relaxation for H00 is therefore defined by:

H00←H00 + c

(

2π
3
−∆X∆Y

NX

∑
i=1

NY

∑
j=1

Pi, j

)

, (4.2)

where c is a small relaxation parameter, typically of the order of 0.05, although different

values may be chosen on different grid levels; finer grids tend to require smaller relaxation

parameters. Venner and Lubrecht [145] show how they reduce this relaxation parameter

when using multigrid W-cycles rather than V-cycles.

4.3 Example Solutions

The EHL problem described thus far is characterised by various physical parameters.

These represent a particular set of operating conditions, for particular materials in con-

tact with a particular lubricant. These inputs are then combined to give a set of non-

dimensional parameters which may be used to characterise the solution, as described in

Section 2.7.

In this section, a particular set of input parameters will be represented to show typ-

ical solutions for the variables across the domain. The non-dimensional quantities they

correspond to are shown in Table 4.1. Employing the Dowson and Higginson density

equation (2.20) and the Roelands viscosity equation (2.21) implies a Newtonian model of

fluid behaviour.

The solution for the pressure obtained across the domain is shown in Figure 4.2 where,

as in all of the examples to follow, unless otherwise stated, lubricant entrainment is from
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Parameter Value
Viscosity index, α 2.1×10−8 Pa
Maximum Hertzian pressure, ph 0.64 GPa
Material parameter, G 4729
Load parameter, W 4.7×10−7

Speed parameter, U 1.0×10−11

Moes parameter, M 50
Moes parameter, L 10

Table 4.1: Non-dimensional parameters for an example EHL solution

Figure 4.2: Example pressure solution across an EHL point contact. Non-dimensionalised
range: 0→ 1.03
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Figure 4.3: Example pressure solution along the centreline of an EHL point contact

left to right, parallel to the X -axis. This shows the three solution areas. Most noticeable is

the contact area, in a unit radius circular area about (0,0). The profile along the centreline

is shown in Figure 4.3. These pictures also show the Petrusevich pressure ridge/spike.

This is a physical feature which is only present for Newtonian lubricants. Although it

does not appear smooth in the picture it is a continuous smooth ridge. The saw-tooth

behaviour seen is due to the resolution of the grid used to generate the figures.

On the right hand side of Figure 4.3 the cavitation region is clearly visible. This

is where the Reynolds equation had calculated a negative solution, representing a non-

continuous film of lubricant in the outflow of the contact, and the pressure has been set

to zero. The rest of the domain is the non-contact region, where the pressure is low, but

non-zero.

The film thickness is shown in Figure 4.4 where there is clear deformation from the

undeformed parabolically circular shape. The centreline solution is plotted in Figure 4.5.

Notable parts of this solution are the relative flatness of the contact inside the contact area,

that the minimum film thickness is not found on either centreline, and that a constriction

in film thickness at the outflow occurs after the pressure spike at the end of the contact

region.

Solution plots for density and viscosity are shown in Figures 4.6 and 4.7 respectively.

These show exactly how much the properties of the lubricant change across the contact.

The dependence upon the pressure is very clear with the influence of the pressure ridge

being observed in both cases.
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Figure 4.4: Example film thickness solution across an EHL point contact. Minimum
non-dimensionalised film thickness: 0.14
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Figure 4.5: Example film thickness solution along the centreline of an EHL point contact
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Figure 4.6: Example density solution across an EHL point contact. Non-dimensionalised
range 1→ 1.18

Figure 4.7: Example viscosity solution across an EHL point contact. Non-
dimensionalised range: 1→ 33500
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4.4 Solution Algorithm

The code used here to solve EHL point contact problems has been developed on that of

Nurgat [108] which was itself built on the FDMG software of Shaw [133]. This is a finite

difference multigrid code. The choice of V- or W-multigrid cycles is left to the user. What

follows is a description of Nurgat’s code.

Referring back to the schematics from Chapter 3, Figures 3.6 to 3.8, on each grid

level the code will perform one (or more) relaxations. Each smooth consists of one, or

more, iterations of a solver for each of the five discrete equations in the system, namely

Equations (2.36, 2.39, 2.42, 2.43, and 2.44).

First, the Reynolds Equation (2.36) is solved to give a new solution for pressure.

The system to be solved has an inherently full Jacobian matrix, but the most significant

contributions come from the terms with pressure derivatives. This, combined with the

strong directionality of the problem, allows the update of pressure to be solved using just

a tridiagonal Jacobian matrix, for the first order discretisation of Equation (2.36).

Once a new pressure solution has been obtained, the Force Balance Equation (2.42) is

relaxed to obtain a new corrected value for H00 as shown by Equation (4.2). This is then

used in the calculation of the film thickness distribution. Finally, the density and viscosity

solutions are updated.

Using the multigrid techniques of Chapter 3, the coarsest grid is used first, before

progressing to the finest grid using the Full Multigrid (FMG) technique. After arriving on

the finest grid for the first time, the chosen multigrid cycle is employed until a solution

of sufficient accuracy is reached. For coarsening on boundaries, injection of the pressure

solution was used, as described in Venner [140].

The initial approximation is usually the Hertzian pressure profile, described in Equa-

tion (2.10), although it is possible to use a continuation solution from a previously run

case. This technique is especially useful in highly loaded cases where good solutions can

be computationally expensive to obtain. Another technique employed is rather than hav-

ing the non-contact region identically zero, as in Equation (2.10), it is set to an arbitrary

small value, to ensure it is not mistaken for the cavitation region on the first smooth. This

first solve of the Reynolds Equation gives a sensible ‘shape’ and position for the cavitation

boundary.
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Iterations Hcent Hmin RMSRES ΣP ∆Pm

1 0.1950 0.1110 3.9001E-04 2.0832 2.091E-02
5 0.1928 0.1040 1.7222E-04 2.1144 2.884E-03

10 0.1927 0.1038 1.1407E-04 2.1196 2.693E-03
15 0.1927 0.1038 9.5991E-05 2.1201 2.630E-03
20 0.1927 0.1038 9.1076E-05 2.1202 2.621E-03

Table 4.2: Nurgat et al. Multigrid Test Problem One, M=99 & L=16.

Iterations Hcent Hmin RMSRES ΣP ∆Pm

1 0.4612 0.3076 1.3773E-02 2.0842 1.377E-02
5 0.4529 0.3057 1.6256E-04 2.0909 8.322E-04

10 0.4526 0.3054 7.3911E-05 2.0904 2.452E-04
15 0.4525 0.3053 4.3010E-05 2.0905 2.251E-04
20 0.4525 0.3053 3.6674E-05 2.0905 2.236E-04
25 0.4525 0.3053 3.6051E-05 2.0905 2.234E-04

Table 4.3: Nurgat et al. Multigrid Test Problem Two, M=20 & L=10.

4.5 Improvements to Nurgat’s Scheme

4.5.1 Why are Improvements Needed?

The scheme described above is that implemented in [108–110]. It was shown in these

works that this does give results for central and minimum film thickness which are similar

to the previously published work of Ehret et al. [38], Venner [140] and Wang [151].

However it is clear from the results shown in [110] (reproduced here as Tables 4.2 and 4.3)

that although the sum of pressures has converged, it has done so to an incorrect value.

The value for the sum of the pressures (ΣP), should be 2π
3 , which is 2.0943, correct to

four decimal places. This result is important because not only is the sum of pressures the

Force Balance condition, but it is also used to relax the central offset film thickness which

is then used in the film thickness calculation.

The RMSRES column shows the calculated root mean square residual for the Reynolds

Equation. This is only for a given film thickness solution, hence an error in the film thick-

ness may not stop these being small. However it can also be seen that these residuals are

not falling to machine precision with increased cycles.

These test problems were not especially heavily loaded - Test Problem Two had a

maximum Hertzian pressure of only 0.58 GPa. As the loading is increased the ‘con-

verged’ solution becomes further from the correct sum of pressures, hence further from

the true solution. This can be seen by considering the differences between Test Cases

One and Two, where the maximum Hertzian pressure in Test Case One is 1.2 GPa. The
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Figure 4.8: Multigrid Stalling exhibited by the code of Nurgat
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Figure 4.9: Multigrid Stalling Saw-tooth behaviour

convergence rate of the solver appears to slow down until it reaches a ‘stalling point’ be-

yond which further multigrid cycles do not improve the accuracy of the solution. This is

illustrated in Figure 4.8 which shows the level of the root mean square of the residuals

(on the finest grid) falling steadily until it reaches the stalling point. It is clearly seen that

no amount of further multigrid iterations will produce a more accurate solution.

Figure 4.8 does show that once the solution has reached this particular level, the mag-

nitude of the residual exhibits saw-tooth behaviour. This is enlarged in Figure 4.9 where

an indication of the reason behind this stalling is shown. The problem is that the process

of making the coarse grid correction to the fine grid solution is adding errors which are

equally balanced by the smoothing carried out on the finest grid. Looking again at Ta-

bles 4.2 and 4.3 the final column, ∆Pm highlights this, being as it is the change in pressure

solution over a multigrid cycle: the same changes are being made each time.
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Figure 4.10: Residual levels across the half domain showing errors on the cavitation
boundary are not reduced.

4.5.2 Alterations to Solution Scheme

4.5.2.1 The Stalling Problem

The problems described above are not normally associated with multigrid techniques.

However, the EHL problem is highly non-linear and requires the FAS method to be used,

as described in Section 3.3.2. The main cause of problems is the presence of the cavitation

region. This is, as has been previously stated, considered to be a free boundary whose

position must be allowed to move. Therefore, the coarse mesh solution may be inherently

different to the fine mesh solution on the edge of the cavitation region because the position

of the free boundary may move half a coarse mesh cell (one fine cell). This means that

when interpolating back, the new solution is introducing an error at this boundary. This

is shown in Figure 4.10 which shows the pointwise residual levels across the half domain

at two separate stages in the solution process - both after returning from the coarse grid

correction (CGC) process. The more prominent, bolder surface shows the early stages of

convergence where residual levels across the whole domain are noticeable. The lower,

lighter surface shows that most of the error has been smoothed away except that exactly

the same error is reappearing on the cavitation boundary. This error is then smoothed

away on the fine grid but is reintroduced the next time the CGC is made. This means

there is a stage when the errors smoothed away on the finest grid are equally balanced by

the errors added to the solution by the CGC process.

It was seen in [108] that the solver of Nurgat did successfully obtained converged

solutions when applied only to the finest grid. Attention was therefore drawn to the cor-
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Figure 4.11: Ratio of effective smoothing rates between multigrid cycles and fine grid
smooths

rections being made at each level throughout the CGC process. A method for combating

this was proposed by Goodyer et al. [49]. This made use of both the muligrid scheme and

the Nurgat solver.

In the method of [49] multigrid cycles were initially used to reduce the errors in the

calculated solution down to the point where stalling occurs. At this point it was proposed

that the use of the coarsest grid be dropped, and that multigrid cycles be continued on the

rest of the grid levels. This in turn could reach a new (lower) stalling point at which this

new coarsest grid was deemed ‘too coarse’. How many grids needed to be dropped was

problem specific, but to obtain solutions with residuals at the level of machine precision

it was not uncommon to reach a point where only the finest grid was used.

An important issue with this method is the choice of when to stop using grids. This

cut-off point is determined by a number of factors. This most obvious of these is deter-

mined by the ratio between the reduction in residual size from the CGC process to that

which would have been expected by smoothing on the fine grid alone. Clearly if this pro-

cess is not providing an improved solution quicker than would be accomplished without

the use of multigrid, then there is something wrong with the multigrid process being used.

This ratio is illustrated in Figure 4.11 where it is plotted against the number of fine grid

smooths, for a three grid level example. It can be seen that initially multigrid is very effec-

tive in reducing the fine grid residual level. However this soon decays to the point where

it starts becoming detrimental (20 iterations). Since this ratio has dropped below 1, the

coarsest grid is removed from future use. Again the multigrid is seen to be immediately

effective, although this usefulness, too, is eventually limited, with the grid being removed

just before 40 iterations. The code then proceeds just using the finest grid, hence the ratio

is identically 1.



Chapter 4 55 Solving EHL Problems

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 200 400 600 800 1000 1200

R
oo

t M
ea

n 
S

qu
ar

e 
R

es
id

ua
l

Fine Grid Iteration

New method
Old method

Figure 4.12: Root mean square residual levels in a thermal viscoelastic case with sliding,
using the multigrid grid-elimination method of Goodyer et al. [49]

These modifications to the multigrid method of [108] meant that numerically more

accurate solutions to steady state EHL problems could be obtained. It should be noted that

the multi-integration solve is still done over the same number of grid levels irregardless

of the removal of coarse grids from the multigrid process.

Results showing the convergence of this code were presented by Goodyer et al. in [49].

One of those cases for which the new method was demonstrated was for a thermal visco-

elastic example with sliding, reproduced here as Figure 4.12. It is clear that the elimi-

nation of the grids has enabled convergence to be continued beyond the previous stalling

point, towards machine precision.

This method greatly improved the code of Nurgat, since the dropping of grids lessens

the change at the cavitation boundary. However this method does also remove much of

the speed-ups possible due to the use of multigrid. Ideally a cavitation boundary treatment

was needed without losing the benefits of multigrid.

4.5.2.2 Cavitation Boundary Treatment

The cavitation boundary is a physical constraint on the problem, rather than a mathemat-

ical one. Any pressure calculated to be negative is set to be identically zero, as described

by Dowson and Taylor [35]. Any pressures at zero are not being allowed to change to

their ‘true’ value, as far as the Reynolds Equation is concerned. The line solver will be

calculating a negative solution which will feed back into the positive pressures.

On the finest grid this will not be a problem because the solution will converge to a

solution which defines a particular value of the free boundary. However on all coarser
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grids this boundary will almost certainly not be in the same position. Over several levels

of grids the boundary may move considerably between solutions on different grids.

There are several issues concerning the treatment of this boundary during the transfer

of solutions between grids. It is particularly important in the prolongation process because

if no change is made near the boundary, then the fine grid boundary is unmoved.

The formulation of the Right Hand Side function for the coarser grids must also ensure

that there are no contributions from inside the cavitation region. In fact, this very issue

has recently been discussed by Venner and Lubrecht in [145] where they, too, talk about

the possibility of “a narrow band around the cavition (sic) boundary where [the residuals]

remain fixed at a certain level and do not converge because of this switching back and

forth between cavitated and non-cavitated”. Their solution is as described here – not

allowing coarser grids to move a fine grid cavitation boundary, or allowing transfer of

information about residuals in the cavitation region to affect the solution in the rest of the

domain.

The treatment of the cavitation boundary as only being free to be updated on the finest

grid meant that stalling no longer ever occurred. The region from one fine cell before

the boundary was only ever updated on the finest grid. This means that these points will

never receive multigrid speed ups in convergence, however nor will they ever be wrongly

cavitated. Results showing the multigrid convergence will be presented in Section 4.6.1.

4.5.2.3 H00 Relaxation

The third major area where improvements were necessary in the code was in the relaxation

of H00. It was explained in Section 4.2.3 that the Force Balance Equation was included

into the equation system being solved by adding a contribution of the difference between

the desired and calculated values for the total pressure.

Once again, when applied on only one (fine) grid, this method converged on the nu-

merically accurate value of H00. However when applied in the multigrid framework of

Nurgat [108] this calculated value was different to the single grid method. In this code

a single value of H00 was calculated which was relaxed on all levels. This is shown in

Figure 4.13 where the black dots indicate the levels on which multigrid smooths occur,

the circles indicate Force Balance relaxations, and the arrows indicate the transfer of H00

between levels.

The problem with this method can be easily demonstrated by considering the ideal

example where the solution on the finest grid has zero numerical error, thus having the

correct H00 value. That the pressure solutions – and hence the sum of the pressures –

on coarser grids will be different to those on the finest can be easily seen by considering
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Figure 4.13: H00 strategy applied by Nurgat
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Figure 4.14: Difference in pressure solutions between grid level 3 (17×9 points) and
grid 5 (65×33) on a half domain

the difference in the level of refinement. This is demonstrated in Figure 4.14 where two

half domain solutions for pressure are plotted. It can be seen that on the coarser grid the

true shape of the pressure in the contact area is only an approximation to the fine grid.

The coarse grid pressure has been calculated using a coarsening operator of the fine grid

solution. That this approximation could have the same sum of discretised pressures is

unrealistic, since the coarsened solution on a grid is not the same as the true solution on

that grid. If the coarsest grid is then used to recalculate H00 which is then used on a finer

grid, an error will have been introduced into the solution.

Several different strategies to combat this problem were proposed by Goodyer et

al. [49]. These revolved around the idea that the value of H00 on grid k could not be

changed by pressure solutions on any grid j with j<k. Two of these are demonstrated

in Figure 4.15. In Method (a) the value of H00 is kept independent between the grids.

In Method (b) the fine grid value is transferred onto the coarser grid. However when the

solution is being prolonged back up to this grid the H00 value used is that previously cal-

culated on the grid. It was shown in [49] that these two methods both produced results of

optimal accuracy on the finest grid, rather than those of the method shown in Figure 4.13,

however Method (b) had a higher rate of convergence.

Since the publication of [49] further work has been done into the solution of the Force

Balance Equation. It has been realised that none of the methods described in either [108]
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Method (a) Keep each grids’ H00 values independent

Method (b) Transfer fine grid H00 values down to coarsest, but not propogate back up

Figure 4.15: H00 strategies considered by Goodyer et al. [49]

nor [49] was accurately satisfying the coarse grid problem. The value of H00 was always

being relaxed with the aim of having the total sum of non-dimensional pressures being
2π
3 on every grid. However neither of these two previous works had made the necessary

correction to the applied load being relaxed upon, based on the difference between the

fine and coarsened pressure solutions. Hence, although relaxation on the finest grid, say

k, would be given, as in Equation (4.2), by

H00← H00 + c
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− (∆X)k (∆Y )k

Nk
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Nk
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 , (4.3)

with (∆X)k and (∆Y )k being the mesh spacings in the X and Y directions respectively on

grid k, on grid k−1 Equation (4.3) should then become

H00 ← H00 + c
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, (4.4)

where Pi, j is Pi, j after the coarsening procedure, before any pre-smooths have been done.

When this process is applied iteratively, a series of corrections to the sum of pressure are
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produced. These can be written as

τk−1 = τk +(∆X)k (∆Y )k
Nk
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Y
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i, j− (∆X)k−1 (∆Y )k−1

Nk−1
X

∑
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∑
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i, j , (4.5)

and then may be used to define the correction to the Force Balance Equation on any grid

by

H00← H00 + c
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3
− (∆X)k (∆Y )k

Nk
X

∑
i=1

Nk
Y

∑
j=1

Pk
i, j + τk



 . (4.6)

Using this method it is not necessary to relax as often as before, and relaxation can simply

be done on the coarsest grid used. The correction terms mean that the ‘target’ sum of

pressures will always be 2π
3 on the finest grid.

4.5.3 Summary

In this section several problems with the multigrid method used by Nurgat [108] have

been explained. They have been broken down into three distinct parts and the corrections

implemented have been explained. Now that the accurate treatment of the relaxation of

the Force Balance Equation has been implemented, and with more careful treatment of

the cavitation region it has been possible to eliminate the phenomenon of stalling. The

success of these modifications will be shown in the next section.

It is important to note, however, that the EHL problem is very sensitive to other prob-

lem dependent issues. These include making a good choice of relaxation parameters used

in each region for the solution of the Reynolds equation. This is to ensure that conver-

gence occurs as quickly as possible, but that the non-linear solver does not diverge. The

choice of domain size is sometimes difficult because the wide range of operating condi-

tions modelled. A balance has to be made between having a sufficiently small domain for

highly loaded examples, and having a sufficiently large inlet region. It is also important

to make sure that the coarsest grid used is “sufficiently fine” [145] to be able to be useful

in accurately representing the solution. The success of these improvements will be seen

in the next section.

4.6 Performance of the Code

In considering the performance of the EHL code it is important to characterise how much

improvement is being made. It is well known that the multilevel techniques employed
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Parameter Test Case 3 Test Case 4
Viscosity index, α 2.2×10−8 Pa−1 2.2×10−8 Pa−1

Viscosity at ambient pressure, η0 0.04 Pa s 0.04 Pa s
Maximum Hertzian pressure, ph 0.45 G Pa 0.97 G Pa
Material parameter, G 4972 4972
Load parameter, W 1.63×10−7 1.63×10−6

Speed parameter, U 8.18×10−12 8.18×10−12

Moes parameter, M 20 200
Moes parameter, L 10 10

Table 4.4: Non-dimensional parameters for multigrid performance benchmarking

have performance as described in Chapter 3, but in this section it will be shown how

these techniques combine within the solver employed here. Especially considering that

alterations to the standard multigrid method have been made, the benefits of multigrid

(Section 4.6.1) and multilevel multi-integration (Section 4.6.2) will be examined sepa-

rately.

The EHL point contact problem is being solved on increasingly fine meshes and the

computation time increases dramatically with every extra level of finest mesh added. De-

spite the high computational cost of EHL problems parallel computers do not appear to

have been used to reduce the run times. The availability of multiprocessor machines for

relatively cheap cost is growing with the introduction of commercially available Linux

Beowulf clusters. In Section 4.6.3 parallelism is introduced and explained, with speed-up

results presented.

4.6.1 Benefits of Multigrid

The multigrid techniques described in Chapter 3 have been applied to the EHL problem by

various authors, e.g. [38,145,154], and over the course of this chapter the implementation

of Nurgat [108] has been further refined.

There are various parts to the multigrid solution process that can be quantified. In [145]

Venner and Lubrecht have presented a series of benchmarks for their code. Detailed re-

sults for residual levels at each iteration, as well as calculated values for central and min-

imum film thickness, and H00, are provided for an incompressible lubricant using the

Barus viscosity-pressure equation. There are also some more limited results provided for

the model described in Chapter 2.

A similar investigation of the performance of the code used in this work is provided

here for the two test cases shown in Table 4.4. Comparisons will be made to [145] where

possible. The computational timings of some selected cases will also be presented to
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Iteration Level 3 Level 4 Level 5 Level 6
1 5.2×10−1 1.1×10−1 5.2×10−2 3.2×10−2

100 1.8×10−5 4.1×10−3 8.8×10−3 3.6×10−3

200 6.8×10−9 2.6×10−5 3.9×10−3 3.0×10−3

300 8.5×10−12 2.6×10−7 1.4×10−3 2.5×10−3

400 1.1×10−14 4.5×10−10 2.0×10−4 2.1×10−3

500 8.5×10−16 2.8×10−12 2.6×10−5 1.5×10−3

600 8.5×10−16 2.1×10−14 3.5×10−6 9.5×10−4

Table 4.5: Root mean square residual levels during single grid convergence of Test Case 3

Iteration Level 3 Level 4 Level 5 Level 6
1 8.8×100 2.4×100 1.1×100 1.4×102

100 2.9×10−2 4.5×10−3 9.1×10−3 3.7×10−3

200 2.2×10−3 9.0×10−6 4.0×10−3 3.1×10−3

300 4.6×10−4 4.0×10−9 1.3×10−3 2.6×10−3

400 1.9×10−5 3.3×10−12 1.6×10−4 2.1×10−3

500 6.3×10−7 1.3×10−14 1.9×10−5 1.5×10−3

600 1.9×10−8 3.6×10−16 2.3×10−6 9.7×10−4

Table 4.6: Root mean square residual levels during single grid convergence of Test Case 4

demonstrate the multigrid performance. These cases were all run without use of multilevel

multi-integration in order to demonstrate the effectiveness of multigrid alone.

The calculations were carried out on a domain X∈[-4.5,1.5], Y∈[-3.0,3,0]. The relax-

ation parameters used, except where stated, were 0.4 for the relaxation of the Reynolds

Equation, and 0.1 for the Force Balance Equation relaxation of H00.

4.6.1.1 Single Grid Performance

The performance of multigrid must be compared to the performance on only one fine

grid. The two test cases were run on single grids between levels 3 (half domain 17×9

points) and level 6 (129×65). Each case has the Hertzian pressure profile, given by Equa-

tion (2.10), as the initial approximation. The relaxation parameter of the Force Balance

Equation for H00, c in Equation (4.6), was 0.05 on all levels other than Level 3 where it

was set to be 0.1 for Test Case 3 and 0.25 for Test Case 4. This value was lower for the

coarsest grid on Test Case 4 because the higher loading of the problem makes good coarse

solutions initially harder to obtain.

The root mean square of the residual level of the Reynolds Equation is a good measure

of the convergence of the solution. In Tables 4.5 and 4.6 these are shown at various points

for each of the two test cases. The overall convergence properties are shown graphically
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Figure 4.16: Convergence of the residual during single grid convergence of Test
Case 3 (left) and 4 on levels 3 to 6
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Figure 4.17: Reynolds Equation relaxation factor increasing through convergence, Test
Case 4, grid 5

in Figures 4.16.

From these results it can be seen that as the grid being used gets finer the errors in the

solution become harder to smooth away. This is consistent with the known properties of

the smoothing methods used, and is the reason why multigrid was first applied to EHL

problems.

A notable difference between the results presented above and those on page 196 of

Venner and Lubrecht [145], is that the convergence rates on the finer grids do improve

from their behaviour over the first 100-200 iterations. This is because of another modi-

fication to the Reynolds Equation solution scheme introduced by Goodyer et al. in [49].

During the later stages of convergence, the solution is requiring smaller changes to be

made in each update. This means that the relaxation parameter used can be increased

since the solution is now stable. It has been allowed to increase in 0.1 intervals up to a

maximum of 0.9. Figure 4.17 shows how the relaxation factor increased on grid 5 for
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Level 3 Level 4 Level 5 Level 6
Test Case 3 21.5 132.6 1379.4 16666.5
Test Case 4 21.8 139.1 1417.0 17227.6

Table 4.7: Computational time (s) for 600 smooths on a single fine grid

Test Case 4, and comparative convergence rates with and without increasing this factor

are shown in Figure 4.18.

The computational time required to obtain solutions is clearly directly proportional

to the number of iterations taken. Table 4.7 shows the computational time to obtain a

solution after 600 smooths on these single grids. It is clear that single grid smooths on

Level 7 and above would not be feasible in a realistic time, and that the results obtained

would also not show any noticeable convergence.

4.6.1.2 Multigrid Performance

The theory that the use of multigrid provides convergence at a far greater rate than would

have been previously obtainable on a single fine grid, has been explained in Chapter 3.

Here, by comparison with the single grid results provided above, this speed-up will be

quantified for the code used in this work.

The root mean square residual levels for the two test cases are shown in Tables 4.8

to 4.11. For each case, the results are shown for both V- and W-cycles. For the W-cycles

the technique of halving the relaxation factor of the Force Balance Equation for H00, used

in the code of Venner and Lubrecht [145], has been adopted. Calculated values for central

and minimum film thickness are also presented in Tables 4.12 to 4.15. Each solution has

been calculated with a coarsest level of grid 3 with 17×9 points in the half domain.

These results emphasise exactly how multigrid solutions converge significantly faster
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Iteration Level 5 Level 6 Level 7
1 3.7×10−2 1.2×10−2 3.8×10−3

2 8.9×10−3 4.8×10−3 2.4×10−3

3 2.9×10−3 1.9×10−3 1.1×10−3

4 1.1×10−3 6.7×10−4 4.5×10−4

5 7.1×10−4 3.1×10−4 1.8×10−4

6 5.5×10−4 2.0×10−4 8.5×10−5

7 4.1×10−4 1.5×10−4 5.7×10−5

8 3.2×10−4 1.1×10−4 4.3×10−5

9 2.4×10−4 8.5×10−5 3.3×10−5

10 1.8×10−4 6.8×10−5 2.6×10−5

20 1.3×10−5 6.0×10−6 4.9×10−6

30 7.0×10−7 2.8×10−7 6.3×10−7

40 2.7×10−8 2.1×10−8 8.6×10−8

Table 4.8: Root mean square residual levels during multigrid V(3,1)-cycle convergence
of Test Case 3

Iteration Level 5 Level 6 Level 7
1 3.0×10−2 1.1×10−2 4.4×10−3

2 8.1×10−3 3.4×10−3 1.7×10−3

3 2.0×10−3 8.5×10−4 6.3×10−4

4 8.7×10−4 3.0×10−4 2.8×10−4

5 5.9×10−4 1.5×10−4 6.1×10−5

6 4.4×10−4 1.1×10−4 3.1×10−5

7 3.6×10−4 1.0×10−4 3.1×10−5

8 2.9×10−4 1.0×10−4 2.9×10−5

9 2.4×10−4 1.7×10−4 3.2×10−5

10 2.1×10−4 1.3×10−4 3.0×10−5

20 1.7×10−5 3.1×10−6 1.7×10−6

30 1.2×10−6 2.8×10−7 2.5×10−7

40 5.1×10−8 3.0×10−8 4.1×10−8

Table 4.9: Root mean square residual levels during multigrid W(3,1)-cycle convergence
of Test Case 3
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Iteration Level 5 Level 6 Level 7†

1 7.3×10−2 2.1×10−2 9.9×10−3

2 1.5×10−2 5.3×10−3 2.6×10−3

3 5.1×10−3 2.5×10−3 1.2×10−3

4 7.7×10−3 1.3×10−3 5.9×10−4

5 1.8×10−3 7.4×10−4 3.1×10−4

6 1.3×10−3 4.8×10−4 1.8×10−4

7 9.5×10−4 3.3×10−4 1.3×10−4

8 6.9×10−4 2.4×10−4 1.1×10−4

9 5.0×10−4 1.7×10−4 9.5×10−5

10 3.6×10−4 1.3×10−4 8.2×10−5

20 1.1×10−5 6.3×10−6 1.5×10−5

30 9.8×10−7 6.4×10−7 3.5×10−6

40 6.5×10−8 8.6×10−8 8.4×10−7

† H00 relaxation parameter, c=0.05.

Table 4.10: Root mean square residual levels during multigrid V(2,1)-cycle convergence
of Test Case 4

Iteration Level 5 Level 6 Level 7
1 1.0×100 3.0×10−1 1.5×10−2

2 3.6×10−2 4.8×10−3 2.1×10−3

3 6.0×10−3 1.7×10−3 7.1×10−4

4 2.7×10−3 7.4×10−4 8.1×10−4

5 1.7×10−3 3.7×10−4 3.2×10−4

6 1.3×10−3 1.9×10−4 1.4×10−4

7 9.3×10−4 1.3×10−4 4.7×10−5

8 7.2×10−4 1.0×10−4 2.0×10−5

9 5.5×10−4 9.8×10−5 1.6×10−5

10 4.3×10−4 9.8×10−5 1.3×10−5

20 1.8×10−5 5.9×10−6 6.8×10−7

30 1.4×10−6 8.7×10−7 1.3×10−7

40 1.3×10−7 1.2×10−8 3.0×10−8

Table 4.11: Root mean square residual levels during multigrid W(2,1)-cycle convergence
of Test Case 4
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Iteration Level 5 Level 6 Level 7
1 0.380 0.383 0.386
2 0.287 0.283 0.280
3 0.297 0.293 0.286
4 0.297 0.289 0.285
5 0.301 0.295 0.289
6 0.289 0.283 0.277
7 0.291 0.285 0.278
8 0.295 0.288 0.283
9 0.298 0.291 0.286

10 0.300 0.294 0.289
20 0.308 0.302 0.297
30 0.308 0.303 0.298
40 0.308 0.303 0.298

Table 4.12: Minimum film thickness during multigrid V(3,1)-cycle convergence of Test
Case 3

Iteration Level 5 Level 6 Level 7
1 0.419 0.428 0.429
2 0.438 0.415 0.408
3 0.467 0.441 0.430
4 0.454 0.437 0.444
5 0.452 0.441 0.424
6 0.448 0.440 0.434
7 0.456 0.444 0.430
8 0.457 0.445 0.437
9 0.459 0.446 0.437

10 0.460 0.447 0.439
20 0.461 0.449 0.441
30 0.461 0.449 0.441
40 0.461 0.449 0.441

Table 4.13: Central film thickness during multigrid V(3,1)-cycle convergence of Test
Case 3
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Iteration Level 5 Level 6 Level 7
2 0.170 0.00685 0.0203
4 0.0131 0.0122 0.0371
6 -0.00366 0.0329 0.0382
8 0.0169 0.0324 0.0383

10 0.0244 0.0315 0.0387
20 0.0343 0.0397 0.0405
30 0.0367 0.0400 0.0406
40 0.0368 0.0400 0.0406

Table 4.14: Minimum film thickness during multigrid W(2,1)-cycle convergence of Test
Case 4

Iteration Level 5 Level 6 Level 7
2 0.339 0.0339 0.0996
4 0.154 0.0806 0.0914
6 0.112 0.0860 0.0886
8 0.0976 0.0865 0.0866

10 0.0925 0.0870 0.0869
20 0.0899 0.0898 0.0871
30 0.0900 0.0898 0.0871
40 0.0900 0.0898 0.0871

Table 4.15: Central film thickness during multigrid W(2,1)-cycle convergence of Test
Case 4
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Level 5 Level 6 Level 7
Test Case 3 - V(3,1)-cycles 471.5 5161.5 71663.5
Test Case 3 - W(3,1)-cycles 556.4 5836.2 78020.1
Test Case 4 - V(2,1)-cycles 368.8 3929.0 54495.6
Test Case 4 - W(2,1)-cycles 443.2 4511.6 58972.9

Table 4.16: Computational time (s) for 40 multigrid cycles

than single grid solutions. Each multigrid iteration has either three or four fine grid

smooths, and there are obviously many more less computationally expensive smooths on

coarser grids, but the reduction in computational time on introducing multigrid is palpable

by comparing Tables 4.7 and 4.16.

Both V- and W-cycles appear to obtain similar convergence results. The W-cycles do

accelerate past an initial slow-down approaching 10 multigrid iterations. This perceived

slow-down is most likely associated with the continued convergence of the Force Balance

Equation rather than a lack of convergence of the Reynolds Equation.

The film thickness results are comparable to those presented in Venner and Lubrecht [145].

The accuracy of the solutions obtained can be gauged by comparing the results obtained

on each grid, to those on the finest mesh. Note that on the finer meshes more accurate

results are obtained with significantly less iterations than to get similarly converged re-

sults on coarser meshes. For example in Table 4.14 it can be seen that the minimum film

thickness is within 10% of the final converged value after only 4 iterations on grid 7 but

takes between 10 and 20 W-cycles on levels 5 and 6.

4.6.1.3 Full Multigrid Performance

The multigrid process accelerates the elimination of errors of different frequencies. The

initial approximation used on the finest mesh in the above results was the Hertzian pres-

sure distribution of Equation (2.10). Whilst this is not a bad estimate of the shape there

will be very large errors in it compared to the true solution. Using the process of Full

Multigrid (FMG), described in Section 3.3.5, it is possible to use the coarser grids to

obtain a much better first estimate on the finest grid. The use of FMG cannot increase

the convergence rate once the fine grid has been reached, but does give the solution a

headstart.

The process of FMG is constrained by the accuracy of the interpolation operator to

each freshly encountered grid. In moving from grid k−1 to grid k, there is very little

point in obtaining a solution that has converged to round off on grid k−1. This is because

the difference between discretisation errors on the grids, and the order of interpolation are
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Iteration 0 cycles 1 cycle 2 cycles 4 cycles 40 cycles
1 7.3×10−2 2.5×10−3 2.4×10−3 2.4×10−3 2.4×10−3

2 1.5×10−2 6.0×10−4 5.1×10−4 4.5×10−4 4.5×10−4

3 5.5×10−3 2.5×10−4 2.1×10−4 1.8×10−4 1.8×10−4

4 2.8×10−3 1.5×10−4 1.4×10−4 1.4×10−4 1.4×10−4

5 2.0×10−3 1.3×10−4 1.5×10−4 1.5×10−4 1.3×10−4

10 3.9×10−4 2.0×10−5 2.2×10−5 2.2×10−5 2.0×10−5

40 8.8×10−8 1.8×10−8 1.4×10−8 1.1×10−8 1.0×10−8

Table 4.17: Residual level with finest grid level 5 with varying numbers of V-cycles in an
FMG start for Test Case 4

Iteration 0 cycles 1 cycle 2 cycles 4 cycles 40 cycles
1 2.7×10−2 6.9×10−4 6.3×10−4 6.0×10−4 6.0×10−4

2 5.6×10−3 2.1×10−4 1.5×10−4 1.2×10−4 1.2×10−4

3 2.5×10−3 9.2×10−5 6.8×10−5 6.1×10−5 6.3×10−5

4 1.3×10−3 5.6×10−5 5.2×10−5 5.2×10−5 5.6×10−5

5 7.4×10−4 5.1×10−5 5.0×10−5 5.3×10−5 5.5×10−5

10 1.5×10−4 9.0×10−6 9.0×10−6 9.9×10−6 1.1×10−5

40 7.2×10−8 7.8×10−9 6.9×10−9 6.9×10−9 6.6×10−8

Table 4.18: Residual level with finest grid level 6 with varying numbers of V-cycles in an
FMG start for Test Case 4

unlikely to come close to maintaining this accuracy, and hence much of the computational

effort done would have been wasted.

To quantify the benefits of the FMG start it is therefore necessary to consider the

reduction in errors due to the use of the algorithm. The highly loaded Test Case 4 has

been used to obtain a series of results using different numbers of multigrid cycles in the

FMG period. These are shown in Tables 4.17, 4.18 and 4.19 for finest level 5, 6 and 7

respectively.

The results show that the use of an FMG start does significantly improve the first

approximation on the finest grid, as can be seen by looking at the residual levels after

just one iteration. Increasing the number of cycles in the FMG start does produce better

results, although beyond two cycles these changes are minimal.

4.6.2 Benefits of Multilevel Multi-Integration

The mathematical basis behind the validity of multilevel multi-integration was first out-

lined by Brandt and Lubrecht in [17], and has been described here in Section 3.4. Results

showing the effectiveness of their algorithm have been presented by themselves and their

co-workers, for different cases in works such as [17, 140, 145, 154]. In this section the
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Iteration 0 cycles 1 cycle 2 cycles 4 cycles 40 cycles
1 1.3×10−2 1.7×10−4 1.7×10−4 1.6×10−4 1.8×10−4

2 3.1×10−3 6.4×10−5 6.2×10−5 5.1×10−5 1.0×10−4

3 1.2×10−3 5.6×10−5 4.9×10−5 5.4×10−5 6.6×10−4

4 7.2×10−4 4.8×10−5 5.1×10−5 3.6×10−5 4.3×10−5

5 3.0×10−4 5.4×10−5 4.5×10−5 4.3×10−5 4.1×10−5

10 7.5×10−5 1.4×10−5 9.1×10−6 9.2×10−6 8.8×10−6

40 2.2×10−5 2.9×10−7 1.7×10−7 2.2×10−7 2.2×10−7

H00 relaxation parameter, c=0.025.

Table 4.19: Residual level with finest grid level 7 with varying numbers of V-cycles in an
FMG start for Test Case 4

Coarsest grid used in multi-integration
Level 3 Level 4 Level 5 Level 6

Level 5 1.9×10−4 7.4×10−5 - -
of 6 1.8×10−4 7.5×10−5 3.7×10−5 -

solution 7 1.8×10−4 9.5×10−5 4.2×10−5 1.9×10−5

Table 4.20: Multilevel Multi-integration maximum errors for a single film thickness cal-
culation

validity and efficiency of the implementation used in this work will be shown.

The multi-summation of Equation (4.1) has a strictly defined value for every point on

the mesh. Use of multi-integration calculates an approximation to this. It is therefore

necessary to compare the results obtained using the multilevel approach to calculate the

error in the solution. This will be done in two instances. First, results for a single film

thickness calculation will be shown. Secondly, a full EHL problem will be solved to

convergence, to investigate any error propagation effects. These investigations will be

done for the multi-integration algorithm used in this work, implemented as in Venner and

Lubrecht [145].

Results for the single solve are presented in Tables 4.20 and 4.21. For each case the

maximum and the root mean square error, compared to the multi-summation case, has

been calculated. The rows refer to which grid level the final solution is on, whilst the

Coarsest grid used in multi-integration
Level 3 Level 4 Level 5 Level 6

Level 5 3.2×10−5 1.2×10−5 - -
of 6 3.5×10−5 1.8×10−5 7.2×10−6 -

solution 7 3.7×10−5 2.1×10−5 1.0×10−5 3.8×10−6

Table 4.21: Multilevel Multi-integration root mean square errors for a single film thick-
ness calculation



Chapter 4 71 Solving EHL Problems

Coarsest grid used in multi-integration
Level 3 Level 4 Level 5 Level 6 Level 7

Level 5 0.14 0.22 2.29 - -
of 6 0.35 0.50 2.30 28.5 -

solution 7 1.14 1.26 3.21 28.2 397

Table 4.22: Multilevel Multi-integration computational times (s) for a single film thick-
ness calculation

Maximum Error RMS Error
Level 5 2.2×10−4 4.0×10−5

of 6 1.5×10−3 1.4×10−4

solution 7 1.0×10−1 8.9×10−3

Table 4.23: Multilevel Multi-integration errors for 20 multigrid V(3,1) cycles

columns refer to the coarsest level used in the multi-integration.

The corresponding computation times are shown in Table 4.22. Since the calculation

time using multi-integration is so short, repeated calculations (100 iterations on levels 3

to 5, 10 on level 6 and 5 on level 7) have been done and the average times shown. The

speed up due to the use of multi-integration is dramatic.

To investigate the error propagation due to multilevel multi-integration, Test Case 3

was reinvestigated using the coarsest grid (level 3) possible. A FMG start comprising of 3

multigrid V-cycles was used, followed by 20 multigrid V(3,1) cycles. The maximum and

root mean square errors are shown in Table 4.23, and the timings are shown in Table 4.24.

It can be seen that the use of multi-integration does not lead to a significant net increase

in the error in the solution compared to using the multi-summation method. The errors

that are present could be smoothed away if desired by a few full multi-summation solves.

It can be seen, however, that for grid 7 two full multi-summations would take longer than

the 20 multigrid cycles previously employed when using multi-integration.

Before closing this section on the performance of the film thickness calculation, it is

interesting to note how much of a difference the optimisation of the code can make to

the computation time. The optimisation being considered here is not that of the compiler

With multi-integration Without multi-integration
Level 5 58 254

of 6 141 2680
solution 7 666 36684

Table 4.24: Multilevel Multi-integration computational times (s) for for 20 multigrid
V(3,1) cycles
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Grid Level Unoptimised code Optimised code
5 2.29 0.67
6 28.5 10.3
7 397 162

Table 4.25: Comparison of computation times for multi-summation using different data
structures

(which does make a very large difference) but in how the code is written down, ordered

and how memory allocation and retrieval is managed. A highly optimised version of the

multi-summation was developed by Fairlie [43] which shows speed-ups of up to three

times for identical results. These differences are shown in Table 4.25. The main differ-

ences between the two implementations are the data structures involved. In the method of

Fairlie only one dimensional arrays are used, e.g. the array of pressures is not represented

as P(i,j) but as P(k) where

k = (j−1)×NX +i, (4.7)

using the FORTRAN array element ordering convention. These are accessed quicker than

the two dimensional arrays in the other version. Implementation of these ideas into the

code used in this work could yield further improvements in performance.

4.6.3 A Preliminary Investigation into the Benefits of

Parallelism

Parallel computing is the utilisation of more than one processor to perform a task. In

terms of a numerical solver, such as in this work, the computational effort required for the

calculations needed is shared between the processors available. Issues which affect the

performance of parallel solvers will not be described in detail here, but the two which are

important are the ideas of minimising communication time, and load balancing.

The chosen method for parallelisation is the Message Passing Interface (MPI) which

allows portability of the code between dedicated parallel machines and networks of work-

stations. There will be one processor chosen as the master which is in charge of all serial

(non-parallel) work. This processor will then communicate the necessary information to

the other (slave) processors, when parallel work is required.

The most computationally expensive part of the numerical calculation, as previously

indicated, is the deformation calculation. Without the use of multilevel multi-integration

the order of this calculation far exceeds that of the other parts of the solver. This, com-



Chapter 4 73 Solving EHL Problems

Grid level
Percentage time evaluating

film thickness
3 26
4 54
5 84
6 95
7 94

Table 4.26: Example percentages of time spent in evaluating the film thickness on each
grid level

bined with the nature of the required calculation, makes the film thickness calculation the

obvious target for parallelisation. Examples of the relative percentages of time spent in

the film thickness calculation on each grid level are shown in Table 4.26 for a sequential

solve.

To parallelise this calculation efficiently, reducing the amount of information be-

ing communicated between processors is very important. By reconsideration of Equa-

tion (4.1):

Hi, j = G (X ,Y )+H00 +
Nx

∑
k=1

Ny

∑
l=1

Ki, j,k,lP
h
i, j, (4.8)

it is clear that the undeformed geometry, G , and the multi-summation kernel, K, are pre-

defined quantities that do not require communicating at every solve, only at initialisation.

The only variables between calls are the calculated values of the central offset film thick-

ness, H00, the current grid (both of which are scalars), and the pressure solution across the

whole domain Ph.

After the relevant information has been communicated to the grid, the work is parti-

tioned between the processors. For regular Cartesian grids, such as are being employed

here, this is relatively simple. The work has been allocated on a purely line based scheme.

Rows of constant j are allocated to the processors in ascending order. This does usually

lead to a small imbalance in the workload on some processors; for example if 65 rows are

allocated to eight processors, then one processor will have an extra line of film thickness

to calculate, but in situations where the ratio of processors to rows is low, this is not a

significant problem.

Once the individual processors have all the relevant information to perform all their

allotted film thickness calculations, they then proceed on their own, until they have fin-

ished. The results are then communicated back to the nominated master processor. Once

all the processors have returned their results, the master then continues with the serial
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Number of processors Solution Time (s) Speed-up
1 168.4 1.00
2 105.5 1.60
4 75.2 2.24
8 59.3 2.84

Table 4.27: Parallel performance on Grid 5

Number of processors Solution Time (s) Speed-up
1 2131.7 1.00
2 1166.3 1.83
4 684.6 3.11
8 439.0 4.86

Table 4.28: Parallel performance on Grid 6

solve until the next film thickness solution is required.

The advantage of parallelism is only evident if the time spent in communicating the

information between processors is more than offset by the reduction in time due to the

reduced scale calculation. The parallelism has been implemented in such a way that it

is grid independent, hence it is even parallelising the film thickness calculation on the

coarsest grid. In the results that follow, times for 10 multigrid cycles are shown. The re-

sults for finer grids, therefore, include the results from the coarser grids too. The timings,

presented in Tables 4.27 to 4.29 were performed without the use of multi-integration. It

can be seen that, as expected, the parallelism is most effective on the finer grids. With

only the film thickness calculation parallelised speed-ups of the same order as the number

of processors used would be unrealistic. These results can be visualised in Figure 4.19

where the increasing effectiveness of parallelism on finer grids is very evident.

4.7 Conclusion

The use of multigrid techniques to solve steady state EHL problems is now well estab-

lished. This thesis is built on the EHL solver developed by Nurgat [108]. Whilst this work

Number of processors Solution Time (s) Speed-up
1 31511 1.00
2 16311 1.93
4 9876 3.19
8 4850 6.50

Table 4.29: Parallel performance on Grid 7
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Figure 4.19: Speed-up comparison between various grids for parallel example

did appear to obtain good solutions, there were some deficiencies in some of the meth-

ods used. Some of these problems had been previously indicated in works such as [109]

although no solutions had been proposed.

The main intention of this chapter was to examine these difficulties in detail, and to

demonstrate that these problems can be initially overcome, and then cured. After explain-

ing the numerical methods used for solving each of the equations, example results for

steady state case were presented.

The problems in the methods of [108] have been explained in detail, and solutions

proposed. First the technique of eliminating the coarsest grid from the multigrid solve, as

presented in [49], was described, with results showing that numerically accurate results

could now be obtained. Further adaptations to the methods used were then shown to en-

sure that the desired multigrid performance can be obtained without any grid elimination.

The validity of the new solution methods has been shown by use of examples considering

not just the physical solution, but also the estimated errors in that solution.

The overall performance of the code has been considered. Results have been presented

showing the relative performance increases due to the use of both multigrid and multilevel

multi-integration.

The idea of parallelism of the code has been introduced and has been shown to be

very beneficial in speeding up the calculation of the deformation equation on fine grids.

Further work is possible here into combining the use of parallelism with multi-integration.

It is, however, unlikely that the method of parallelism will be attempted in this fashion

because multi-integration has meant that the multigrid solver has become a much larger
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percentage of the total work required. Parallel multigrid is now starting to be investigated,

e.g. [139], and these techniques should prove transferable to EHL modelling.



Chapter 5

Solving Transient EHL problems

5.1 Introduction

Many EHL problems of practical interest are transient. The contacts being modelled are

constantly rotating at speed, and there is a flow of oil between them the whole time. The

results presented thus far have only been concerned with the steady state case, where none

of the physical parameters governing the solution are changing. However, in many ap-

plications it is important to model the reaction of the system to changing conditions. For

example, as the teeth of a gear engage, they experience large changes in the applied load

over a short time period, affecting the wear. Similarly, the starting and stopping of the

head in a hard disc drive is becoming more important to model as technological advances

mean that the distance between the two surfaces is continuously being decreased for in-

creased storage. Another very important topic for EHL research is the effect of surface

roughness. When a surface is not completely smooth the asperities will progress through

the contact with the rotation of the surfaces, causing very different surface deformations

to those occuring for smooth surfaces.

Clearly, all these problems need to be solved transiently, because simply solving a

series of steady state problems, such as was done by Lubrecht et al. in [97], will not

include the squeeze effect in the film, where the non-linear behaviour in time becomes

most important. Much research is currently being done into the long term behaviour of

roughness in contacts, and how the amplitude of the asperities is reduced, e.g. [70–73,75,

77
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94, 146].

In this chapter the transient EHL problem will be considered. First, in Section 5.2,

the transient form of the problem to be solved will be stated, before being discretised in

Section 5.3. In Section 5.4 this system will be reformulated as a differential-algebraic

one. The solution methods to be used will be described in Section 5.5. These methods

will then be employed to show solutions for a series of very different example problems

in Section 5.6. In this section, the methods used will be further developed to arrive at a

more robust and efficient solver. The results of these examples will be presented in terms

of solution variables or residual (error) levels, depending on the motivation behind the

considered problem.

Variable timestepping has not, to the best of the author’s knowledge, been previously

employed for EHL problems. When computing accurate solutions on fine meshes, using

a fixed timestep size could lead to many more steps being taken than necessary. Transient

case solutions may not be changing greatly over individual timesteps, and so to restrict

the timestep unduly may well waste computational resources. In Section 5.7 variable

timestepping is introduced in terms of the differential-algebraic nature of the EHL prob-

lem, outlined in Section 5.4. Results are shown emphasising both the increase in per-

formance and the quality of the solutions obtained. This section includes the work of

Goodyer et al. [50] where much of the method was first presented.

5.2 Equations

The governing equations for transient EHL problems are those presented in Chapter 2

as Equations (2.16 - 2.21). Only the Reynolds Equation (2.16) has a transient term, and

hence this is the only equation requiring any modification from the steady state case.

There are two changes to be made from the steady state case solved in Chapter 4. The

first is to scale the contribution from the wedge term, ∂ (ρH)
∂X , of the Reynolds Equation. In

order to do this, a reference speed, ure f , is calculated, related to the original speeds of the

two contact surfaces, where

ure f = u1(T=0)+u2(T=0). (5.1)

This is then used to scale us, the new sum of the roller speeds, where

us(T ) = u1(T )+u2(T ). (5.2)

The other change is the introduction of the squeeze term, ∂ (ρH)
∂T , into the equation. The
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equation to be solved is therefore

∂
∂X

(

ε
∂P
∂X

)

+
∂

∂Y

(

ε
∂P
∂Y

)

−
(

us(T )

ure f

)

∂ (ρH)

∂X
− ∂ (ρH)

∂T
= 0, (5.3)

with all other symbols as defined in Chapter 2.

The other non-dimensional equations to be solved have no transient terms explicitly,

but for completeness they are given by

H(X ,Y ) = H00 +G (X ,Y )+
2

π2

∫ ∞

−∞

∫ ∞

−∞

P(X ′,Y ′)dX ′dY ′
√

(X−X ′)2 +(Y −Y ′)2
, (5.4)

2π
3

=
∫ ∞

−∞

∫ ∞

−∞
P(X ,Y )dXdY, (5.5)

ρ(P) =
0.59×109 +1.34phP

0.59×109 + phP
, (5.6)

and η(P) = e

{

α p0
zi

[

−1+
(

1+
phP
p0

)zi
]}

, (5.7)

with all parameters and functions as defined in Chapter 2. It will be shown in the examples

of Section 5.6 that for variable load cases the left hand side of Equation (5.5) requires

modification, and for surface roughness cases G (X ,Y) will become G (X ,Y,T ).

5.3 Discretisation of the Transient Problem

The finite difference discretisation of the steady state problem was explained in Sec-

tion 2.8. This is the starting basis for the transient discretisations used. Again there is

a choice for the order of discretisation method, but now in both space and time. The first

order scheme uses a similar discretisation of the temporal (squeeze) term as was used for

the wedge term. This extension to Equation (2.36) is therefore given by

εi− 1
2 , j

(

Pn
i−1, j−Pn

i, j

)

+ εi+ 1
2 , j

(

Pn
i+1, j−Pn

i, j

)

(∆X)2

+
εi, j− 1

2

(

Pn
i, j−1−Pn

i, j

)

+ εi, j+ 1
2

(

Pn
i, j+1−Pn

i, j

)

(∆Y )2

−us(T )

ure f

ρn
i, jH

n
i, j−ρn

i−1, jH
n
i−1, j

∆X

−
ρn

i, jH
n
i, j−ρn−1

i, j Hn−1
i, j

∆T
= 0, (5.8)
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where n is the current timestep, and

εi+ 1
2 , j =

εn
i+1, j + εn

i, j

2
,

εi− 1
2 , j =

εn
i−1, j + εn

i, j

2
,

εi, j+ 1
2
=

εn
i, j+1 + εn

i, j

2
,

and εi, j− 1
2
=

εn
i, j−1 + εn

i, j

2
. (5.9)

The boundary conditions are as previously, in Chapter 2, with all exterior boundaries

having P=0, and the line j=1 being a symmetry condition in the Y direction.

The second order upstream discretisation of Equation (2.38) may also be used in the

transient case:

εi− 1
2 , j

(

Pi−1, j−Pi, j
)

+ εi+ 1
2 , j

(

Pi+1, j−Pi, j
)

(∆X)2

+
εi, j− 1

2

(

Pi, j−1−Pi, j
)

+ εi, j+ 1
2

(

Pi, j+1−Pi, j
)

(∆Y )2

−us(T )

ure f

3ρn
i, jH

n
i, j−4ρn

i−1, jH
n
i−1, j +ρn

i−2, jH
n
i−2, j

2∆X

−
3ρn

i, jH
n
i, j−4ρn−1

i, j Hn−1
i, j +ρn−2

i, j Hn−2
i, j

2∆T
= 0, (5.10)

with all symbols as defined previously. This discretisation is that used by Venner and

Lubrecht [145]. Their motivation in developing this scheme was to minimise the total

discretisation error in the characteristic X -T direction, since they claim that the leading

term of the truncation error vanishes, provided both wedge and squeeze terms have coef-

ficient one.

A similar alternative discretisation, used by Wijnant [154], is that of the narrow up-

stream second order scheme. This uses a combination of both temporal and spatial direc-

tions in the formulation of the wedge and squeeze terms. The discretisation also differs

depending on which part of the solution domain is being calculated. This method has ad-

ditional directions for which the leading truncation error term vanishes, for ∆T = ∆X and

∆T = 2∆X . This method again requires the leading coefficients of both the wedge and

squeeze terms to be one. In the examples which follow this will not always be the case,

because the coefficient of the wedge term depends upon the rolling speed of the contact,

which will vary in, for example, the reversal example of Section 5.6.2. This discretisation
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will not, therefore, be considered further here.

For all of the above discretisations, in order to solve the reversal example introduced

in Section 5.6.2, once the entrainment direction has been reversed, the direction of the

discretisation of the wedge term also needs to be changed. For example, when using the

first order discretisation of Equation (5.8) the discretisation becomes:
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)
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2
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i, j

)

+ εi, j+ 1
2

(

Pn
i, j+1−Pn

i, j

)

(∆Y )2

−us(T )

ure f

ρn
i+1, jH

n
i+1, j−ρn

i, jH
n
i, j

∆X

−
ρn

i, jH
n
i, j−ρn−1

i, j Hn−1
i, j

∆T
= 0. (5.11)

The discretisation of Equations (5.4 - 5.7) are as given in Chapter 2, namely

Hi, j = H00 +Gi, j +
NX

∑
k=1

NY

∑
l=1

Ki, j,k, lPk, l, (5.12)

2π
3

= ∆X∆Y
NX

∑
i=1

NY

∑
j=1

Pi, j, (5.13)

ρ i, j =
0.59×109 +1.34phPi, j

0.59×109 + phPi, j
, (5.14)

and η i, j = e

{

α p0
z

[

−1+
(

1+
phPi, j

p0

)z
]}

, (5.15)

with all symbols as defined previously.

5.4 Differential-Algebraic Formulation of the

Transient Problem

The EHL system defined in Section 5.2 once discretised, as in Section 5.3, can be repre-

sented by a system of Differential-Algebraic Equations (DAEs) [20]. There are several

reasons why this representation of the problem will be useful, and these will be explained

below.

Defining the film thickness vector across the whole domain, H, and its multiple by the
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density vector ρ in a pointwise manner by

[H]k = Hi, j for k = i+( j−1)×Nx (5.16)
[

ρH
]

k
= ρ i, jHi, j i = 1, . . . ,Nx

j = 1, . . . ,Ny

and the pressure vector, P, likewise, then the Reynolds Equation (5.3) is given by

F1(P,ρH)−
[

ρH
]′

= 0, (5.17)

the film thickness equation, (5.4), by

F2(P,H) = 0, (5.18)

and the density equation, (5.6), by

F3(P,ρ) = 0, (5.19)

where ′ denotes differentiation in time. These can then be combined to define a DAE

system for UT = (PT,HT,ρT), by:

F(U ,U ′, t) = 0. (5.20)

The classification of a DAE system is given by the index which can give an indication

of the numerical difficulties that could occur when being solved. The index of a DAE is

defined as the minimum number of times that all, or part of (5.20) must be differentiated

with respect to T in order to determine U ′ as a continuous function of U and T [20].

ODEs are, by definition, index zero, and both index zero and index one systems are

generally easier to solve than those with higher index [20]. In the EHL case the DAE

aspect arises from the lack of a temporal derivative of pressure in Equation (5.17). Issues

affecting the differences between solving ODE and DAE systems are discussed in detail

in Brenan et al. [20], in particular why classical solution methods, such as backward

differentiation formulae, cannot be used for all DAE systems.

To find the index of the EHL DAE system given by Equation (5.20), it would be

necessary to first differentiate Equation (5.18) with respect to T to get

∂F2

∂P
dP
dT

+
∂F2

∂H
dH
dT

= 0. (5.21)
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Hence, if
(

∂F2
∂H

)−1
exists, this gives an expression for dH

dT . Similarly, differentiating Equa-

tion (5.19) gives

∂F3

∂P
dP
dT

+
∂F3

∂ρ
dρ
dT

= 0, (5.22)

which gives an expression for dρ
dT provided ∂F3

∂ρ is non-singular.

Noting that Equation (5.17) may also be written as

dρH

dT
= H

dρ
dT

+ρ
dH
dT

= F1(P,ρH), (5.23)

then expressions for P′, H ′ and ρ ′ have been obtained in one differentiation step. Hence,

the index of the transient EHL problem is one, provided both the aforementioned inverses

exist.

The calculation of the density, ρ , is entirely local, leading to a diagonal Jacobian

matrix. This is therefore non-singular provided that none of the diagonal entries are zero.

These entries are given by differentiation of Equation (5.6) with respect to Pi, j, by

∂ρ i, j

∂Pi, j
=

∂
∂Pi, j

(

0.59×109 +1.34phPi, j

0.59×109 + phPi, j

)

(5.24)

=
0.2006×109ph

(

0.59×109 + phPi, j
)2 . (5.25)

The physical constraints on the problem mean that the pressure, P, can never fall below

zero. Hence this matrix is invertible.

The invertibility of ∂H
∂P is much harder to establish. This is because the kernel matrix

K is dense, and hence simple analysis is not possible. It is assumed that the inverse is

non-singular because it is computed when solving using the Newton-Raphson iteration

method [113], however this remains mathematically unproved. During the course of this

work a computational investigation was conducted into the properties of this matrix. It

was seen that the matrices tested were definitely non-singular with eigenvalues less than

one, but definitely non-zero. Unfortunately, due to the very large size of the matrices

involved, it was only possible to investigate cases up to grid size 33×33, which remains

far short of the fine mesh cases of especial interest.

The development of methods for solving DAE problems of the form F(t,y,y′) = 0

has received much attention. Most of this work has been done on solving index zero and

index one problems, including codes such as DASSL [20], SPRINT [14] and LSODI [68].
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These all use strategies based on the Backward Differentiation Formulae of Gear [47], of

which the Backward Euler Method is the simplest example.

When solving DAE systems there are added difficulties for numerical solvers at solu-

tion discontinuities, as discussed by Petzold [118]. This is especially true in relation to

using temporal derivatives over the discontinuity to select a new timestep size. The solver

may believe that the first solution after the discontinuity is still satisfying the convergence

test, possibly increasing the timestep size still further. In fact a different problem entirely

is being solved and the previous timestep should be retaken. This situation must be borne

in mind when variable timestepping for EHL solvers will be introduced in Section 5.7.

5.5 Transient Solution Method

The solution method for transient problems differs slightly from that for steady state cases

because of the addition of the squeeze term to the problem. Physically this causes inter-

esting effects, especially in the way the contacts deform. For example, in the reversal

example below (Section 5.6.2) at the point of reversal there would be no surface rotation.

A steady state solve would then predict zero film thickness, representing the surfaces

impacting upon each other, however the squeeze effects ensure that this never happens.

The starting point for any transient problem is to solve a steady state case for the initial

timestep (T = T0). This is done using the multigrid solver developed in Chapter 4, and

is the equivalent of running in the physical components until all start-up anomalies have

been ironed out. Inclusion of temporal derivatives here should lead to a near identical

solution. Small differences will be due to the temporal derivatives being extended to the

end of the previous multigrid cycle, rather than the current solution, hence a very small

measure of the convergence will be affecting the solution obtained.

Once the initial T = T0 solution has been obtained, a timestep, size ∆T , is taken. In

the method of Nurgat [108] the initial solution at the next timestep was taken to be the

converged solution from the end of the previous step. In Section 5.6.2.1 it will be seen

how this can be improved upon.

The discretised system, Equations (5.8 - 5.15), will then be solved using exactly the

same multigrid solver as was developed in Chapter 4. The multigrid cycles are then

continued until a suitably converged solution is obtained. Only then may the next timestep

be taken.

The efficiency of the time integration method will depend upon how accurate the ini-

tial solution is on each step, and how much work must be done to get the solution accurate

enough. On an individual timestep, the code must be able to decide if the solution has
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converged sufficiently by considering whether further work is likely to provide significant

improvements to the solution. To accomplish this, a strategy, such as the Shampine con-

vergence test [130], must be used. In this test, the iteration cycle per timestep, m, with a

solution H(m)(tn), is continued until

σ
1−σ

∥

∥

∥
H(m+1)(tn)−H(m)(tn)

∥

∥

∥
< 0.33tol, (5.26)

where tol is an error tolerance for the iteration, ‖ · ‖ is a suitable norm (usually the root

mean square), and σ is an estimate of the rate of convergence, defined by

σ =





∥

∥

∥
H(m+1)(tn)−H(m)(tn)

∥

∥

∥

∥

∥

∥
H(1)(tn)−H(0)(tn)

∥

∥

∥





1
m

. (5.27)

This cycle therefore relates the newly calculated solution, H (m+1)(tn), to that of the ini-

tially predicted solution H(0)(tn). It is a measure of the relative change in solution over

the most recent multigrid iteration against that on the first iteration of the current timestep.

Selecting the variable which will be used in the above convergence test is very im-

portant. There is a choice between testing for the convergence of H or P. This has

been illustrated above for H because this is the algebraic variable present in the transient

squeeze term. It is this which is dominant in transient calculations. The difference in the

number of iterations required for convergence, using the same tolerances, is shown in the

example of reversal, below, in Section 5.6.2.2. The accuracy of the solutions obtained is

also compared. The choice of tolerance of the time integration, tol, is also very important

in ensuring the overall accuracy of the solutions obtained. It will also be seen how having

too large a tolerance can lead to anomalous behaviour, and so a balance must be struck

between performance and accuracy.

5.6 Examples

In the field of EHL it is not a trivial matter to experimentally measure the film thickness

across a contact. In transient cases, where physical parameters are changing over very

short time scales, it can be nearly impossible to obtain results directly corresponding to

the conditions that can occur in real systems. Optical interferometry is one commonly

used technique that is employed in EHL test rigs. This works by directing a beam of light

at a glass disc and photographing the light reflected off it. However, this is an expensive

and time consuming process. There may also be purely experimental problems where the
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frequency of the light used corresponds to interference fringes of visible light [128]. Very

high speed cameras are needed to capture these results.

The ability to successfully apply a numerical solver to physical, real world problems

is paramount to it being a worthwhile exercise. In the examples which follow, the re-

sults obtained will be compared to either known experimental results or those from other

numerical solvers whose results have been validated elsewhere.

The first example, shown in Section 5.6.1, is that of a pseudo-steady state case. Here,

no physical parameters are changing and the results at every timestep should be identical

to those from the corresponding (initial) steady state case. This enables the numerical

stability of the solver to be tested in a seemingly trivial case, allowing various numerical

factors to be considered.

The second example is that of reversal of entrainment, solved in Section 5.6.2. This

case corresponds to the oil entrainment slowing down and reversing direction. In real life

this happens with a cam and follower, or in non-involute gears. In addition to the results

for the solution variables being compared to both the experimental and numerical results

of Scales et al. [126,128], using prediction to reduce the initial error at each timestep will

be introduced here. Also in this section the justification will be shown for the choice of

testing for the convergence of the film thickness rather than the pressure in the Shampine

convergence test of Equation (5.26).

A further example which involves variation of a physical parameter governing the sys-

tem is given in Section 5.6.3. This particular case involves the sinusoidal variation of the

applied load, and is an approximation to the kind of vibrational effects which frequently

occur in components. The example chosen from Wijnant [154] is one for which oscilla-

tions at varying frequencies occur. It will be seen that the oscillation frequency governs

how significant effects from the squeeze term will be.

The final set of examples, presented in Section 5.6.4, demonstrate various kinds of

surface defects. These are presented as geometrically perfect deviations from the un-

deformed parabolic shape of the contact, since accurate modelling of a surface requires

extremely fine meshes to try to represent the true geometry. The ‘real’ roughness exists at

a much lower frequency than the short wavelengths of the measured roughness, and hence

representations as will be used, are valid. The transient examples of roughness provided

will be those of a ridge and a dent on the curved surface.
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Parameter Value
Viscosity index 2.1×10−8 Pa−1

Maximum Hertzian pressure 0.45 GPa
Material parameter, G 2961

Load parameter, W 6.58×10−7

Speed parameter, U 1.47×10−11

Moes parameter, M 52.2
Moes parameter, L 6.9

Table 5.1: Non-dimensionalised parameters for reversal example

5.6.1 Pseudo-steady State

The solver initially employed for transient EHL cases was the first attempt of Nurgat [108].

It soon became apparent that this alone was not suitable for these problems. Various

numerical problems were discovered which required important remedies. These are dis-

cussed here through the use of a pseudo-steady state example.

The pseudo-steady state problem is designed to show that, provided the physical con-

ditions defining the problem do not change, then the solution is also unaffected. The

example to be used in this section is the initial steady state solution to the problem de-

scribed below in Section 5.6.2. The non-dimensional quantities are given in Table 5.1.

The inaccuracies with the method, however, apply to all transient problems being solved,

not just any particular case.

Two particular parts of the solution process were causing changes in the numerical

solution between timesteps. These were numerical instabilities due to small changes in the

solution, and too small a system being considered in the Jacobian matrix. The problems

involved with having the timestep size set too small will also be explained.

Considering first the problem of numerical instabilities, Figure 5.1 shows how the root

mean square (RMS) residual of the pressure solution on the finest grid falls until reach-

ing unit round off level (1×10−16) before growing again. This example was run without

multigrid and hence the convergence rate is slower than is the case if multigrid is used.

This allowed the problems with the transient method to be isolated away from any multi-

level effects. The first timestep is taken at 1000 iterations and subsequent ones taken every

25 fine grid iterations. It can be seen that on the first few timesteps there is no impediment

to continuing to reduce the RMS residual level, however the spikey pattern which can be

observed beyond 2000 iterations reveals there is a problem. Each spike is caused at the

time the timestep is taken, and the errors are then smoothed away until the next timestep

is taken. Since the solution is not returning to round-off, a progressively worse solution is

obtained on each step. The actual residual distribution across the computational domain is



Chapter 5 88 Solving Transient EHL problems

1e-16

1e-12

1e-08

0.0001

0 500 1000 1500 2000 2500 3000

R
oo

t m
ea

n 
sq

ua
re

 r
es

id
ua

l

Fine grid iteration number

Figure 5.1: Root mean square residual level falling, then growing in a pseudo-steady state
case

shown in Figure 5.2 which shows very small residual levels. However when a timestep is

taken these are magnified to cause the instabilities shown in Figure 5.1. By introducing a

minimum limit on the size of changes allowed in the Jacobi region of the pressure update

it is then possible to maintain the root mean square residual level at round off, as shown

in Figure 5.3.

In cases with variation in the operating conditions, if the timestep size is chosen to

be too small then this would, as above, be introducing steep temporal gradients into the

solution. This gives rise to the same kind of behaviour as above, although often on a

much larger scale because the residual level will not usually be down at round off when

the time step is taken. This leads to another reason for choosing small values of the under-

relaxation parameters of the Reynolds Equation, especially in the contact region. This will

therefore be coupled with a reduction in the speed of convergence. This minimum level

will need to be borne in mind in Section 5.7 when timestep sizes will be allowed to change

by the code rather than being predefined by the user.

The second, and possibly most crucial, change to the method in [108] was the ex-

pansion of the Jacobian system used in the calculation of the line solve for the Reynolds

Equation. For the first order finite difference scheme, the method previously used by Nur-

gat [108], was always to calculate just a tri-diagonal Jacobian matrix. This had always

given accurate solutions quickly for the steady-state case. However for transient cases it

appears that this approximation is not satisfactory. Extension of the matrix of derivatives

to be a penta-diagonal system does eliminate this problem. This also increases the robust-
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Figure 5.2: Residual level across domain at 1500 iterations in a pseudo-steady state case
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Figure 5.3: Root mean square residual level falling, and remaining at unit round-off in a
pseudo-steady state case
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Parameter Value
Radius of ball 0.0127 m
Applied load 15 N

Initial velocity 0.05 ms−1

Time of reversal 0.1 s
Lubricant viscosity 525 cP at 30

◦
C

Table 5.2: Parameters used to define reversal example

ness of the solver for steady state cases and is consistent with its required use for applying

a second order discretisation scheme, such as Equation (5.10).

Implementing the general scheme of Nurgat’s methods, with the above modifications,

solutions to pseudo-steady state problems can be obtained easily, and more demanding

(and useful) transient problems can be tackled with confidence.

5.6.2 Reversal of Entrainment

The example of reversal of entrainment is typical of one being used in the design of

components for industry. It is most commonly associated with the motion of a cam and

follower, or a non-involute gear, with no change in the applied load. Starting from a

steady state solution, the oil entrainment velocity is linearly decreased from, ure f ms−1,

through 0 ms−1, the point of reversal, until reaching typically−ure f ms−1.

As the point of reversal is reached, a saucer of highly viscous oil forms in the centre of

the contact, seemingly trapped between closures at both ends. This then proceeds across

the domain towards the new outflow before the deformation of the surface takes up its

characteristic horseshoe shape at the reverse side of the contact. This has been shown

experimentally using a steel ball on a glass plate in an optical interferometer to model

a cam and follower in both [128] (reproduced here in Figure 5.5) and [48]. Numerical

results have been shown for both the line contact case, e.g. [69], and for the point contact

case in [126, 128]. A line contact case for the complete cam and tappet problem has

recently been published [104].

It is almost impossible to accurately measure all the physical conditions, time scales,

and lubricant properties in an experimental test rig in order that a corresponding numerical

case may be run. It is also non-trivial to map the resultant interferometry pictures obtained

to real values of lubricant film thickness. In [128] an attempt was made to marry the

experimental results to the numerical ones for known physical conditions. The results

presented below will use the same conditions, to facilitate comparison against both sets.

They are shown in Table 5.2. The lubricant model used is still Newtonian, although
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Figure 5.4: Non-dimensional pressure solution at t = 0 s for reversal example

there is a slight modification to the viscosity-pressure relation, the details of which are

described in [128]. The corresponding values for the non-dimensional parameters are

as given previously in Table 5.1. Using this modified version of the viscosity-pressure

relation the Petrusevich spike is not as evident as in previous examples, although the

pressure along the centreline is disturbed from its smooth shape at the point where the

spike would have been. The pressure solution at t = 0 is shown in Figure 5.4, where the

cavitation region is shown by the dots on the right hand side of the picture.

Results for the problem were generated on both 65×65 and 129×129 mesh point

computational domains. The experimental interferometry film thickness pictures from the

experiments of Scales et al. [128] are shown in Figure 5.5. Images are shown at the initial

solution, at three later times, all after the point of reversal, and finally at the opposing

rolling velocity to the initial conditions. Colour plots of the numerical solver developed

here are shown in Figure 5.6 with the key for the colour plots shown in Figure 5.7,

although this colour mapping does not apply to the interferometry results. It can be clearly

seen that the expected saucer of higher film thickness does progress from right to left

through the contact just after reversal.

For industrial applications there are certain values which are of particular interest to

the user. These monitoring values usually include both the central and minimum film

thickness as well as the central offset film thickness, H00. For the reversal problem cal-

culated above, these values are shown in Figures 5.8 and 5.9, alongside the numerical

results calculated using the homotopy method of [126]. It is clear that there is very good

agreement between the two sets of results, but the computation time was significantly
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Reproduced by permission of Shell Global Solutions

Figure 5.5: Reversal of entrainment experimental film thickness interferometry results
[Scales, Rycroft, Horswill, Williamson] [128]
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(a) t=0.0 s (b) t=0.02 s
(c) t=0.04 s (d) t=0.06 s
(e) t=0.08 s (f) t=0.10 s
(g) t=0.12 s (h) t=0.14 s
(i) t=0.16 s (j) t=0.18 s
(k) t=0.20 s

(j) (k)

Figure 5.6: Film thickness numerical results for reversal of entrainment
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Figure 5.7: Colour key for film thickness plots in Figure 5.6

Reproduced by permission of Shell Global Solutions
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Figure 5.8: Minimum and central film thickness plots compared to previous numerical
results of Scales (shown as points)
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Figure 5.9: Central offset film thickness plot compared to previous numerical results of
Scales (shown as points)
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shorter (hours rather than days) using the method described here.

5.6.2.1 Prediction

The performance of the solver is governed by how quickly a suitably accurate solution can

be obtained. The benefits of the use of multilevel techniques have already been shown in

Chapter 4, but for transient problems there are other factors that can be varied. Theoreti-

cally, if the solver starts a timestep with a solution that is already within the allowed error

tolerances, then no further work should be necessary. Whilst it is necessary to perform

at least two multigrid cycles to establish this, as shown in Section 5.5, the better the ini-

tial approximation on the step, the greater the likelihood of a converged solution being

produced quickly.

Historically, the problems associated with the use of coarser grids in this code, out-

lined in Section 4.5, made the use of the multigrid F-cycle of Brandt, as described in [140],

impractical. In this method at the start of every new timestep the previous fine grid solu-

tion is restricted to the coarsest grid without any smoothing operations being undertaken,

before the FMG algorithm is applied again.

Instead the method employed here is to use linear interpolation of the solutions on the

previous two timesteps as an initial guess for the new fine grid solution. This is done for

the pressure and the film thickness as follows (for the pressure):

Pn+1
i, j = Pn

i, j +
∆Tn+1

∆Tn

(

Pn
i, j−Pn−1

i, j

)

, (5.28)

with H00 similarly predicted. The density and viscosity are pointwise calculations and are

not computationally expensive. Initial approximations for these are therefore calculated

using the predicted pressure.

The advantage of using this prediction can be seen in Figure 5.10 which shows how

the use of prediction reduces the level of the root mean square residual at the start of each

timestep. It can be seen that for much of the solution period the initial solutions using

prediction are over two orders of magnitude better than those without. The reduction

in work is seen by the reduction of the total number of fine grid smooths, showing a

reduction in the number of multigrid cycles required to obtain a converged solution.

5.6.2.2 Convergence

In Section 5.4 the Shampine convergence test, Equation (5.26), was explained. In this test

the convergence of the solution on an individual timestep is estimated by comparing the
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Figure 5.10: Residual level during reversal example, with and without prediction

current approximation obtained to the predicted solution for that step from the end of the

previous step. In an example, such as that of reversal, the first time a timestep is taken the

predicted solution will be the same as the solution at the end of the previous step. This

may mean that convergence is not recognised straight away, since the correct temporal

derivatives are not set up. The same situation will occur at any discontinuity in the physi-

cal behaviour of the example. This situation is discussed in relation to DAE problems by

Petzold [118]. Apart from this situation, this convergence test should highlight non-linear

behaviour in the solution.

In Figures 5.11 to 5.13 the number of multigrid cycles required per timestep are shown

over the course of reversal. Each figure has two curves, showing the effects of testing for

convergence of pressure or film thickness. This required number of iterations increases

when approaching reversal as the non-linear effects dominate. Once the linearity of the

solution change has re-established its prominence, then the required number of iterations

per step falls again.

It was stated that the choice between estimating the convergence of H or P was quite

important. It is, however, necessary to justify any choice in terms of the same overall

solution being obtained using fewer iterations, as well as the known properties of the

system. Three test cases are shown here. In Figures 5.11 and 5.12 prediction has not been

used, with the value of tol in Equation (5.26) being 0.3 and 0.03 respectively. Figure 5.13

was calculated using prediction with tol=0.03. These three figures show the number of

timesteps taken with either H or P being the test variable. It is clear that in all cases

testing for pressure demands fewer iterations for the same tolerance. However, the three
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Figure 5.11: Reversal: Number of multigrid iterations per timestep when testing for pres-
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Figure 5.13: Reversal: Number of multigrid iterations per timestep when testing for pres-
sure or film thickness in the Shampine convergence test with tol=0.03, using prediction

companion graphs, Figures 5.14 to 5.16, show the differences in the calculated solution

values for central, minimum and central offset film thickness, and it can be seen that there

is a significant difference in accuracy between the two methods. Clearly the film thickness

test where more iterations have been done, will be more accurate. In the case of the

higher tolerance prediction-less case this is about a 20% difference in the minimum film

thickness at the point of reversal. Comparing the cases for tol=0.03 shows the advantages

of prediction once again. Not only are fewer cycles required, but the solutions obtained

are also more accurate, as can be seen away from the point of reversal in Figure 5.16 where

the differences between the solutions are very small compared to those in Figure 5.15.

Overall these results confirm that the use of the algebraic variable, H, is preferable.

They do, however, indicate that care must be taken when choosing the tolerance for the

required test, since too few iterations can lead to inaccuracies entering the solution.

5.6.3 Sinusoidally Varying Loads

The applied load across a contact is not always constant. Typical situations include gears

engaging and disengaging, and vibrations of rolling element bearings. This vibrational

behaviour was examined in detail by Wijnant [154] including an investigation of the case

of a sinusoidally varying load. Beyond the first cycle periodic behaviour was observed.

The example which follows is the same as the one presented in Section 5.5.2 of [154].

The applied load, F , is actually included in the solution of the EHL problem in the left
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hand side of Equation (5.5). However, this has already been non-dimensionalised from

view. The results of Wijnant, and hence here, were calculated by instead using

2π
3

(1+A sin(ΩeT )) = ∆X∆Y
Nx

∑
i=1

Ny

∑
j=1

Pi, j, (5.29)

where A is the relative amplitude of the vibrations, and Ωe is the excitation frequency.

Values for the parameters used to solve the problem are shown in Table 5.3.

Three cases were investigated. The first, with Ωe = π
10 , was a very slow oscillation,

Parameter Value
Moes parameter, M 100
Moes parameter, L 5

Viscosity index 2.1×10−8 Pa−1

Maximum Hertzian pressure 0.40 GPa
Material parameter, G 4729

Load parameter, W 1.18×10−7

Speed parameter, U 6.25×10−13

Oscillation amplitude, A 0.1
Excitation frequency, Ωe

π
10 , π , 2π

Table 5.3: Parameters used for sinusoidally varying load transient example, after Wijnant
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Figure 5.17: Central film thickness during sinusoidal load oscillation with Ωe = π
10

which was not considered by Wijnant. It was seen that with this period there were very few

transient effects with an almost steady state solution being obtained at each timestep. Cen-

tral and minimum film thickness results are plotted in Figures 5.17 and 5.18 respectively.

The solution for the minimum film thickness does not appear as smooth as in the cases to

follow. This is because the location of the minimum undergoes large positional changes.

This movement is shown in Figure 5.19 where it can be seen moving over a range of X

and Y points as the loading changes. A selection of results for the film thickness profiles

in and around the contact area are shown in Figure 5.20. Although not a lot of change is

discernible between them, it can be seen that with the changing loading the contact circle

grows and diminishes in size, for example decreasing in radius along the second row and

increasing along the third.

The pictures in Figure 5.20 have been generated by use of the pseudo-interferometry

technique used by Lubrecht, Venner, and Wijnant. For this, the calculated film thickness

is used to calculate pointwise intensities of the image using

I (X ,Y) = 0.5+0.5cos

(

2πH(X ,Y)

Λ

)

, (5.30)

for dimensionless wavelength Λ. This allows easy comparison between numerical results

and experimental interferometry pictures. Throughout this section Λ = 0.06, as in [154],

will be used.

The cases Ωe = π and Ωe = 2π both have significant squeeze effects in the film profile.

A series of pseudo-interference plots of the film thickness for Ωe = 2π is shown in Fig-
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Figure 5.20: Pseudo-interferometry film thickness plots for sinusoidal load oscillation
with Ωe = π

10 at times T = (a) 0.00, (b) 0.25, (c) 0.50, (d) 0.75, (e) 1.00, (f) 1.25, (g) 1.50,
(h) 1.75, (i) 2.00, (j) 2.50, (k) 3.00 and (l) 3.50.
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ure 5.21 where the oscillatory behaviour can be seen beyond T = 1. This is also observed

in the behaviour of both the central and minimum film thickness, shown in Figures 5.22

and 5.23. In this case the movement of the minimum is smooth enough not to display

the behaviour shown in Figure 5.18. It can be seen from Figure 5.24 that the difference

in behaviour between the first and subsequent cycles does not change the profile of H00

in any way. A slight difference in amplitude of the H00 oscillation between the different

frequencies can, however, be observed.

For completeness, centreline pressure solutions are shown in Figure 5.25 where the

steady state pressure solution is included as a guide.

5.6.4 Surface Features

The study of surface features on EHL contacts enables more realistic surface geometries

to be modelled. Even small deviations from a regular smooth parabolic contact can re-

sult in very different behaviour across the contact. The addition of geometrically regular

asperities simulates roughness in a manner which can be easily implemented, and actu-

ally approximates the true surface roughness of real contacts, rather than the microscopic

surface roughness.

The problem of surface roughness is currently receiving large amounts of attention.

This is split between numerical calculations of amplitude reduction, primarily for line

contacts, e.g. [51,70–73,75,94,146], and experimental results such as those of Guangteng

et al. [55, 56]. One of the cases considered in [55] is that of a sputtered surface, i.e. one

with a regular pattern of conical deformations spread over it. A similar case is shown

in Figure 5.26, where three dimensional profiles of pressure and surface geometry are

plotted. Of particular note are the large pressure spikes of almost twice the height of the

smooth surface case, corresponding to the small deformations of the contact. It can also

be seen from the surface profile that on each of the bumps a separate EHL problem is

evident, with individual sidelobes of minimum film thickness.

In this section two examples of transient EHL surface roughness problems will be

solved. These are both based on examples taken from the literature, namely the trans-

verse ridge considered by Venner and Lubrecht [142] and a circular dent passing through

the domain, proposed by Ai and Cheng [1]. The surface deformations will be included

into the mathematical model of Section 5.2 by modifying the undeformed geometry in

Equation (5.4) from G (X ,Y) = X2

2 + Y 2

2 .
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.21: Pseudo-interferometry film thickness plots for sinusoidal load oscillation
with Ωe = 2π at times T = (a) 0.00, (b) 0.25, (c) 0.50, (d) 0.75, (e) 1.00, (f) 1.25, (g) 1.50,
(h) 1.75, (i) 2.00, (j) 2.50, (k) 3.00 and (l) 3.50.
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Figure 5.22: Central film thickness during sinusoidal load oscillation with Ωe = π and
Ωe = 2π
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Figure 5.23: Minimum film thickness during sinusoidal load oscillation with Ωe = π and
Ωe = 2π
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Figure 5.24: H00 variation with sinusoidally varying loads for Ωe = π , Ωe = 2π and
Ωe = π

10

5.6.4.1 Ridge Tracking

Following the experimental work of Kaneta et al. [83], Venner and Lubrecht [142] solved

this transient example of a transverse ridge proceeding from left to right through the do-

main. They also considered the effects of the slide to roll ratio.

The undeformed geometry is given by

G (X ,Y ) =
X2

2
+

Y 2

2
−A ×10

−10
(

X−Xd
W

)2

cos

(

2π
X−Xd

W

)

, (5.31)

where A is the dimensionless amplitude of the ridge,

W is the dimensionless wavelength of the ridge,

and Xd(T ) is the dimensionless position of the ridge given by

Xd(T ) = Xd(0)+
2u2T

us
. (5.32)

The parameters used in the computation of this problem are shown in Table 5.4. They

correspond to a ridge of height 0.2 µm and a width of 0.07 mm, approximately what was

used by Kaneta et al., and precisely what was used by Venner and Lubrecht.

The results are shown in Figure 5.27 for calculated film thickness and pressure. The

film thickness plots are presented, as in Section 5.6.3, using pseudo-interference graphs.

This is to aid the comparison between the numerical results and the monochrome interfer-
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Figure 5.25: Centreline pressure solutions for a sinusoidally varying load with Ωe = 2π
at times T = 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.50, 3.00 and 3.50, with
the dotted line showing the T = 0.00 solution for each case
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Non-dimensional pressure profile

Surface geometry profile

Figure 5.26: Pressure and surface geometry profiles for a sputtering example
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Figure 5.27: Pseudo-interferometry film thickness plots for transverse ridge example with
ridge position, Xd = (a) -1.50, (b) -1.25, (c) -1.00, (d) -0.75, (e) -0.50, (f) -0.25, (g) 0.00,
(h) 0.25, (i) 0.50, (j) 0.75, (k) 1.00, (l) 1.25
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Parameter Value
E ′ 1.17×1011 Pa
α 2.2×10−8 Pa−1

η0 1.22 Pa s
us 0.0215 m s−1

Rx 0.0127 m
a 1.84×10−4 m
ph 0.54×109 Pa

Moes parameter, M 233
Moes parameter, L 5.42

Material parameter, G 2.62×103

Speed parameter, U 8.8×10−12

Load parameter, W 2.0×10−6

Ridge amplitude, A 0.075
Ridge wavelength, W 0.7

Table 5.4: Parameters used for transverse ridge example, after Venner and Lubrecht

ometry pictures of Kaneta. The dimensionless wavelength has been chosen to be Λ = 0.05

for the interferometry formula of Equation (5.30), again for comparison with [142].

Overall, it has been seen that the results presented are visually almost identical to those

of Venner and Lubrecht. These, in turn, had shown good comparison for Kaneta’s experi-

mental results, except locally to the ridge where some differences occurred. These differ-

ences were probably the result of incomplete modelling of the lubricant as an isothermal

Newtonian model was used [142].

5.6.4.2 Dent Tracking

This is similar to the ridge example, although rather than the asperity being convex, it is

concave. Also the deformation of the surface is finite in all directions, with its direction of

travel being along the centreline of the contact. The undeformed geometry of the contact

is given by

G (X ,Y ) =
X2

2
+

Y 2

2
+R (5.33)

where the roughness, R defined by

R =

{

A [1+ cos(πr1)] r1 ≤ 1

0 elsewhere
(5.34)
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Parameter Value
α 2.0×10−8 Pa−1

η0 4.0 Pa s
ph 2.02×109 Pa

Moes parameter, M 578
Moes parameter, L 13.3

Material parameter, G 4616
Speed parameter, U 3.47×10−11

Load parameter, W 1.39×10−5

Ridge amplitude, A 0.02
Radius of dent in X direction, LX 0.30
Radius of dent in Y direction, LX 0.30

Table 5.5: Parameters used for transverse ridge example, after Ai and Cheng

where

r1 =

√

(

X−Xd

LX

)2

+

(

Y
LY

)2

(5.35)

where A is the dimensionless amplitude of the ridge,

LX and LY are the dimensionless radii of the dent in the

X and Y directions respectively,

and Xd(T ) is the dimensionless position of the dent given by Equation (5.32).
Using the parameters of Table 5.5 the example is similar to the one considered by

Ai and Cheng [1]. This is a very heavily loaded case with a conical deformation trav-

elling along the centreline. The amplitude of the deformation shown here is an order of

magnitude larger than that considered in [1]. This provides more noticeable changes in

the solutions obtained. In addition the lubricant model used is that described in Chap-

ter 2 rather than the modified Barus equation used in [1]. The computation domain used

was X∈[-2.5,1.5], Y∈[-2.0:2.0], with multigrid being applied between the finest level of

129×65 points and the coarsest of 17×9 for the half domain. The dent was positioned at

X=-2.5 at T =0.

Three dimensional solution profiles for pressure and film thickness are shown in Fig-

ures 5.28 and 5.29. Only half of the domain has been shown to aid the visualisation of

the dent’s influence on the solution. The centreline solutions for non-dimensionalised

pressure are shown in Figure 5.30. It can be seen that both before and after the dent is

inside the contact region, there is almost no change in the solutions. However as the dent

passes through the high pressure region just that very small surface deformation causes a

significant change in the solution profile.

These results compare well against those of Ai and Cheng for the pure rolling case in-
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(a) Xd = -1.5 (i) Pressure (ii) Film thickness

(b) Xd = -1.0 (i) Pressure (ii) Film thickness

(c) Xd = -0.5 (i) Pressure (ii) Film thickness

Figure 5.28: Pressure and film thickness profiles for dent example with dent position,
Xd = (a) -1.50, (b) -1.00, (c) -0.50



Chapter 5 114 Solving Transient EHL problems

(d) Xd = 0.0 (i) Pressure (ii) Film thickness

(e) Xd = 0.5 (i) Pressure (ii) Film thickness

(f) Xd = 1.0 (i) Pressure (ii) Film thickness

Figure 5.29: Pressure and film thickness profiles for dent example with dent position,
Xd = (d) 0.00, (e) 0.50, (f) 1.00
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Figure 5.30: Centreline pressure solutions for dent example with dent position, Xd = (a) -
2.50, (b) -2.00, (c) -1.50, (d) -1.25, (e) -1.00, (f) -0.75, (g) -0.50, (h) -0.25, (i) 0.00,
(j) 0.25, (k) 0.50, (l) 0.75, (m) 1.00, (n) 1.25, (o) 1.50
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vestigated here. Similar profiles for both pressure and film thickness have been presented,

despite the differences in fluid model used.

5.7 Variable Timestepping

5.7.1 Introduction

Industry is now driving for solutions to be calculated to more realistic EHL problems, in

a fast and robust manner. For transient cases this varies from variable loading and contact

speeds, through complicated rheological behaviour involving fluid memory, to solutions

incorporating surface features. This requires that the solvers being used must be designed

to be extensible to meshes of several thousand points in each direction, and, importantly,

that the solutions can be obtained sufficiently quickly.

The ability to reduce the work needed for individual problems is thus paramount. The

mathematical and numerical analytic techniques behind many existing solvers combine

traditional finite difference meshes with innovative multilevel methods, as has been shown

in the preceding chapters.

In many other application areas in which the rate of change of the solution does not

remain constant with time, it has proved beneficial to vary the timestep to control the error

in the solution [20]. The methods, thus, have obvious applications to EHL calculations.

In Section 5.7.2 this will be examined, and a method for variable timestepping proposed.

Examples of variable timestepping in action will be presented in Section 5.7.3. These will

show the potential speed-up over fixed timestep cases, whilst also highlighting the accu-

racy of the solutions obtained. The example of shock loading in this section demonstrates

a powerful application of variable timestepping where fixed step solves would not be cost

effective.

5.7.2 Changing Timestep Size

For transient numerical calculations the choice of correct timestep size is critical. If the

timestep is too large then important physical features may be missed should they have a

smaller timescale than the stepsize. Also, the calculated result may have larger local errors

than are desirable for an accurate solution some timesteps later. Equally choosing a very

small stepsize, may, at best, lead to a large amount of computational work for very small

changes in the solution; at worst, result in solutions diverging, for example due to the

magnification of temporal gradients. This is due, not to the stability of the problem, but

the convergence properties of the non-linear solver outlined in Chapter 4, and highlighted
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in Section 5.6.1. For example, experiments have shown that should the timestep become

very small then any corrections made may amplify, rather than reduce, the errors in the

solution unless very small under-relaxation parameters are used.

In EHL solutions ∆T has always been chosen to be fixed. Whilst for early transient

solutions it was chosen to be larger than ∆X , the choice ∆T =∆X has been pioneered by

Venner and collaborators. This was introduced to minimise the total discretisation error

for the Standard Upstream Second Order discretisation scheme, Equation (5.10), which

they employ. Wijnant [154] additionally proposed the use of ∆T =2∆X for the Narrow

Upstream Second Order scheme.

The optimal choice of timestep is governed by successfully relating the spatial error of

the solution, with the time error. It is well established in the ODE literature, e.g. [13,131],

that controlling the local (temporal) error per step, so that the spatial error dominates,

provides efficient, reliable algorithms. This approach, therefore, requires estimates of

both components of the error.

Let the continuous equation system, defined by Equations (5.3) and (5.4), have an

exact solution u(t), and the discretised equation system, defined by Equation (5.20), have

exact solution U(t). If, at time t, the numerical approximation to the solution of the system

is Ũ(t), then the total error, E(t), is defined by

E(t) = u(t)−Ũ(t)

= (u(t)−U(t))+(U(t)−Ũ(t))

= e(t)+g(t), (5.36)

where e(t) = u−U represents the spatial discretisation error, and g(t) = U − Ũ is the

global error in the time integration. Given that a solution has been discretised in space to

a particular degree of accuracy, e(t), it is not worthwhile solving the transient part to a

much higher degree of accuracy, but equally this transient error g(t) must not degrade the

spatial accuracy.

The strategy employed here is similar to that described in [20] which is used in

DASSL, a package designed to solve both index zero and index one DAE systems.

As outlined in Section 5.4, there is a free choice as to whether it is the errors in P or

in H which are controlled. Intuitively, because the system given by (5.17) is solved for P,

and (5.18) is solved for H using this P, it seems sensible to control the errors in P. This

was the approach suggested in [108]. However, it is the area inside the contact region

where the most change is taking place, and this is dominated by the wedge and squeeze

terms in (5.3). This depends upon the film thickness, H, which is also the algebraic
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variable of the system. Experiments have confirmed that controlling these errors requires

significantly less work per timestep and less timesteps are required. The error tests will

therefore be formulated for the variable H. However, note that if P is chosen instead, the

only points to be considered for the error tests are non-cavitation ones.

Once the Shampine convergence test has been satisfied, a local error calculation is

undertaken to establish a new timestep size. Since the EHL problem is a non-linear DAE

system, the LU decomposition of the system is not available, and hence the approaches

described in [118] are not used. Instead, the local truncation error will be used to estimate

the local error over the step. Defining the local truncation error for P, leP, as in [131, page

355], by:

leP =
1
2

(

Pn−Ppred
n

)

, (5.37)

and leH similarly, then the equations for these errors, in the same form as Equation (5.4.9)

in [20], are

[

−1−∆T ∂F1
∂ρH −∆T ∂F1

∂P

−∆T ∆T K

][

leH

leP

]

=

[

−1 0

0 0

]

1
2

[

Hn−H pred
n

Pn−Ppred
n

]

. (5.38)

This gives us a relationship between the local truncation errors in H and P:

leH = K leP, (5.39)

where K is the film thickness integration kernel matrix. It is possible to rewrite the first

equation of (5.38) as the standard estimate for the local truncation error:

−∆T

(

leH
∆T

+
∂F1

∂ρH
leH +

∂F1

∂P
leP

)

=−

(

Hn−H pred
n

)

2
. (5.40)

Since these Jacobians are never calculated, consider Taylor’s Theorem for two variables:

F1

(

ρH + leH,P+ leP
)

≈ F1

(

ρH,P
)

+
∂F1

∂ρH
leH +

∂F1

∂P
leP+h.o.t. (5.41)

Assuming that the residual on the timestep, F1

(

ρH + leH,P+ leP
)

is zero, substitution

into Equation (5.40) gives the following equation for the local errors leH and leP:

F1

(

Pn + leP,ρH
n
+ leH

)

−
ρH + leH−ρH

n

∆T
=

1
2∆T

(

Hn−H pred
n

)

. (5.42)

Defining P̃ ≡ Pn + leP and H̃ similarly, then the equation for the local error (5.42) may
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then be rewritten in the same form as Equation (5.17) with a different right hand side:

F1

(

P̃,ρH̃
n

)

− [ρH̃
n
]′ =

(

Hn−H pred
n

)

2∆T
. (5.43)

This equation may then be solved for H̃ using the standard EHL multigrid algorithm with

right hand side 1
2∆T

(

Hn−H pred
n

)

. Therefore, in summary, to estimate the local error on

a timestep, after a sufficiently converged solution has been obtained, two or three more

V-cycles are carried out to obtain solutions, P̃ and H̃, to the local error problem.

Once these new solutions are calculated, an estimate of the total local error in H, may

be defined as

‖leH‖ω =
∥

∥H̃n+1−Hn+1

∥

∥

ω , (5.44)

where ‖ · ‖ω is a weighted root mean square L2-norm, as used in DASSL [20] defined by

‖H‖ω =

√

√

√

√

1
NxNy

Nx

∑
i=1

Ny

∑
j=1

(

Hi, j

ωi, j

)2

, (5.45)

with weights, ωi, j defined by

ωi, j = ATOL+H(0)
i, j RTOL (5.46)

which are themselves given in terms of the predicted solution at that mesh point on that

timestep, H(0)
i, j , and the absolute and relative error tolerances, ATOL and RTOL respec-

tively. These tolerances have been chosen to be dynamically defined by

ATOL =
1
10

√

√

√

√

1
NC

x NC
y

NC
x

∑
I=1

NC
y

∑
J=1

[

H̃i, j− H̃I,J
]2

(5.47)

and

RTOL = ATOL, (5.48)

for fine mesh points (i, j) with coincident coarse points (I,J).

Once the local error has been established, it is then necessary to use this information

to calculate the most desirable stepsize for the next timestep. The method chosen here is

that of Shampine and Gordon [132], where any change to the stepsize is governed by the

value of r in

r = (2‖leH‖ω)
−1
k+1 , (5.49)
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with k being the order of the method (k = 1 for the Backward Euler Method). The method

of [132] suggests that the new stepsize should be given by

∆Tn+1 = r∆Tn, (5.50)

subject to some limitations described below.

These tests now mean that the code itself relates future timestep sizes to the magnitude

of the local error. If the error is small, e.g. r > 1.5 in Equation (5.49), then the stepsize

may be increased for the next timestep. If the error is ‘too large’, r < 0.9, then the stepsize

is reduced, either for the following step, or, if the current step is considered to have failed,

the current timestep may be retaken with a new stepsize. There is also a ‘comfort region’

in between these extremes where the stepsize is left unchanged.

Limits are also imposed on when, and by how much, the timestep size may change.

In some codes, as is used here, it is never allowed to change up or down by more than a

factor of 2, which is a standard approach in ODE initial value problem solvers. This helps,

both in terms of keeping temporal derivatives of similar scales, and in keeping a check

on what changes are allowed. A safety factor – usually of just one timestep – prevents

the stepsize increasing too rapidly. The size is, however, allowed to reduce as often as

necessary to capture features in the solution. Maximum and minimum timesteps may be

specified by the user before runtime. These allow controls to be placed on the code to stop

the stepsize diminishing towards nothing, for example, if it is failing at some point, and

to impose physical constraints to the individual problem being solved: e.g. if the problem

is being solved on T =[0.0, 1.0] then there would be no point in a ∆Tmax of 0.5, but 0.05

could be acceptable.

5.7.3 Examples

Any modification to the numerical methods used to solve a problem must both enable

accurate solutions to be obtained, and ensure that any additional computational overhead

is minimal. In the case of variable timestepping this is broadened to solutions of similar

accuracy as the best fixed timestep results, in a reduced computational time. It will also

enable some problems which were previously unrealistic in a fixed ∆T =∆X sense, to be

solved.

In this section three examples the use of variable timestepping will be presented. In

Section 5.7.3.1 the reversal of entrainment example will be tackled again, and both accu-

racies and computational timings compared. This example is useful because of the two

linear periods of change at the start and at the end, with the nonlinear behaviour occurring
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in the middle. This idea is also seen in Section 5.7.3.2 where a surface feature proceeds

through the contact, and hence both before and after the feature influences the solution

inside the contact region, the expected behaviour is almost a steady state, whereas large

transient effects occur as it passes through the centre of the contact.

The third example, presented in Section 5.7.3.3 is that of shock loading. This is an

industrially relevant example modelling the changes in conditions as gears interlock, and

then separate again. Here the timestep will be expected to be small over the very short

timescale of loading (or unloading) and then increase as the new steady state conditions

are reached.

5.7.3.1 Reversal

A clear example of the benefits of using variable timesteps can be seen in the case of

reversal of entrainment. This test case is that used in [128] and presented above in Sec-

tion 5.6.2. The most interesting, and most non-linear part of this example is the formation

at the point of reversal (0.1 s) of a saucer of viscous fluid which then proceeds across the

domain (towards the new outflow) before the deformation pattern re-adopts its character-

istic horseshoe shape. All physical parameters are as given previously in Table 5.2, with

the non-dimensionalisation as in Table 5.1. The use of variable timestepping should pick

out the transient effects around reversal with smaller timesteps than those preceding and

following reversal, where larger timesteps may be more appropriate.

Precise direct comparison of accuracies between transient calculations using different

timestep sizes is not trivial. In this section the results obtained will be compared for

certain notable variables, namely central and minimum film thickness, and the central

offset film thickness. This will be done between fixed and variable timestepping runs on

two different finest grid levels.

The general accuracy of the approaches can be compared by visualising the central

and minimum film thickness results throughout the solve. This is done in Figure 5.31

for a level 5 finest mesh with accuracy tolerance tol in Equation (5.26) set to be 0.3,

in Figure 5.32 with tol=0.03 and in Figure 5.33 for a level 6 finest mesh with tol=0.3.

In each graph the lines indicate the fixed timestep solution, and the points indicate the

results at each timestep of the variable timestepping case. All three cases show that for

the variable timestepping cases, the timesteps are much closer together around reversal

than in the linear sections. It is clear that these results are very close to the fixed step

results.

A more detailed examination of these differences is presented in Table 5.6. This shows

the values of the central and minimum film thickness, and the central offset film thick-



Chapter 5 122 Solving Transient EHL problems

0

2e-08

4e-08

6e-08

8e-08

1e-07

1.2e-07

1.4e-07

1.6e-07

1.8e-07

2e-07

2.2e-07

0 0.05 0.1 0.15 0.2

F
ilm

 th
ic

kn
es

s 
(m

)

Time (s)

Figure 5.31: Central and minimum film thickness during reversal with, and without vari-
able timestepping on grid 5, tol=0.3, where lines show the fixed step case and points are
the variable timestepping results
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Figure 5.32: Central and minimum film thickness during reversal with, and without vari-
able timestepping on grid 5, tol=0.03, where lines show the fixed step case and points are
the variable timestepping results
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Figure 5.33: Central and minimum film thickness during reversal with, and without vari-
able timestepping on grid 6, where lines show the fixed step case and points are the vari-
able timestepping results

Grid Convergence Timestep At reversal, t=0.1 s
level factor, tol scheme Central Minimum H00

65×65 0.3 Fixed 7.83×10−8 1.74×10−8 -1.208×10−6

65×65 0.3 Variable 7.90×10−8 1.76×10−8 -1.207×10−6

65×65 0.03 Fixed 7.83×10−8 1.74×10−8 -1.208×10−6

65×65 0.03 Variable 7.88×10−8 1.75×10−8 -1.207×10−6

129×129 0.3 Fixed 7.59×10−8 2.26×10−8 -1.207×10−6

129×129 0.3 Variable 7.61×10−8 2.26×10−8 -1.207×10−6

At t=tmin

Central Minimum H00

65×65 0.3 Fixed 8.19×10−8 1.25×10−8 -1.205×10−6

65×65 0.3 Variable 8.26×10−8 1.27×10−8 -1.205×10−6

65×65 0.03 Fixed 8.16×10−8 1.25×10−8 -1.206×10−6

65×65 0.03 Variable 8.21×10−8 1.28×10−8 -1.206×10−6

129×129 0.3 Fixed 8.14×10−8 1.77×10−8 -1.203×10−6

129×129 0.3 Variable 8.17×10−8 1.78×10−8 -1.202×10−6

Table 5.6: Comparison between test parameters at reversal and tmin
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Figure 5.34: Timestep sizes during reversal using variable timestepping on grid 5, tol=0.3

ness, H00, at two reference times. These have been chosen to be in the area of greatest

importance and are the values at the point of reversal, t=0.1 s, and at t=tmin, the time

of minimum calculated film thickness, around 0.11 s. At these times the minimum film

thickness is an order of magnitude less than the initial steady state. It can be seen that

there is excellent agreement between the results of fixed and variable timestepping cases.

The actual timestep sizes can be seen in Figures 5.34 to 5.36. These show how the

timestep rises from the initial value of ∆T =∆X to reach a maximum value before falling to

reach a constant value just after reversal. This minimum ∆T is still larger than the initial

stepsize in all three cases.

The values of the calculated stepsize change ratio, r, are shown in Figures 5.37 to 5.39.

They show exactly how ‘good’ the current timestep size is considered to be. The flat

period at reversal coincides with the smallest timesteps and the desire of the local error

estimation to increase the stepsize afterwards is clearly visible.

It was explained above that there can be advantages in not changing the stepsize too

often. Choosing the new stepsize based on an a priori error test cannot guarantee that the

new stepsize will be valid for more than one timestep. Thus having a large enough range

of values for r in Equation (5.49) where the stepsize remains unchanged is important. The

size of this region also governs how often the stepsize can change. Setting it too narrow

can result in the stepsize being successively increased and decreased. This ‘chattering’

effect, well known in the ODE community, may cause instabilities in the solution. This

region is considered, for example, by Shampine [132] and Hairer et al. [59]. It is the

range of values calculated for r in the error test, for which no change in stepsize should be
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Figure 5.35: Timestep sizes during reversal using variable timestepping on grid 5,
tol=0.03
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Figure 5.36: Timestep sizes during reversal using variable timestepping on grid 6, tol=0.3
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Figure 5.37: Stepsize change ratio, r, during reversal using variable timestepping on
grid 5, tol=0.3
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Figure 5.38: Stepsize change ratio, r, during reversal using variable timestepping on
grid 5, tol=0.3
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Figure 5.39: Stepsize change ratio, r, during reversal using variable timestepping on
grid 6, tol=0.3

Grid Convergence Fixed / Time Iterations
Dimension tolerance Variable taken (s) required

65×65 0.3 Fixed 1493 2164
65×65 0.3 Variable 1116 1126
65×65 0.03 Fixed 2998 4356
65×65 0.03 Variable 2440 3019

129×129 0.3 Fixed 11090 4181
129×129 0.3 Variable 5374 951

Table 5.7: Computational performance comparison between fixed and variable timestep-
ping codes

made. An example of reduction in chatter is shown by comparing Figures 5.39 and 5.40

where the level at which r increases the timestep value has been increased from 1.25 to

1.5.

The use of variable timestepping may require more iterations to reach the same level

of approximation for the solution at individual timesteps. However, the important factor

is not that more cycles may be needed per timestep, but that over a complete run less are

taken. It is also possible to limit the number of iterations per timestep if the convergence

of individual steps is failing to satisfy the convergence test of Equation (5.26), quickly

enough. This may occur at solution discontinuities.

The balance between variable timestepping taking extra iterations per timestep, and

fixed timestepping taking more timesteps overall is quantified in Table 5.7 where the six

cases above are considered. Both the computational times and the iterations required,



Chapter 5 128 Solving Transient EHL problems

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2

S
te

p 
ch

an
ge

 r
at

io
, r

Time (s)

Halve the stepsize

Decrease stepsize

No change

Double the stepsize

Figure 5.40: Stepsize change ratio, r, during reversal using variable timestepping on
grid 6, tol=0.3, with a larger threshold for increasing timestep size

excluding those for evaluating the local temporal error, are compared. It is seen that

variable timestepping is especially beneficial on the finer grid where the computational

time is reduced by over 50% and the total number of iterations by a factor of four.

Overall, it is clear that the use of variable timestepping can produce significant savings

in computational work whilst producing results of similar accuracy.

5.7.3.2 Ridge Tracking

Variable timesteps are of great value for distinguishing the change in solutions and cap-

turing features of particular importance. A good example of this is the overrolling of a

transverse ridge, considered by Venner and Lubrecht [143] and previously here in Sec-

tion 5.6.4.1. The parameters are, again, as given in Table 5.4 with the ridge entering from

the left hand side of the domain, with Xd(0)=-2.5, and then progressing through the do-

main. Initially the ridge is outside the area of influence on the solution, and the timestep

is expected to be larger than the optimal timestep as the ridge passes through the contact

region. Once the ridge has entered the cavitation region no further transient effects should

be present, and hence the solutions should return to the steady state conditions, and the

timestep size should increase.

The physical solutions obtained were as shown in Section 5.6.4.1 and hence the only

part of interest is the timestep information. In Figure 5.41 the timestep size is shown. As

expected it does rise to a maximum which then falls as the ridge enters the contact area at

T =1.5. This remains fairly constant until the ridge enters the cavitation region just after
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Figure 5.41: Timestep sizes during overrolling of a transverse ridge using variable
timestepping on grid 6, tol=0.3

T =3.5. Once out of the contact the solution returns to steady state conditions and the

timestep size increases dramatically.

Consideration of the stepsize change parameter, r, in Figure 5.42 reveals how satis-

factory the selected timestep size is, as the ridge passes through the contact area. The

desire to increase the stepsize both initially and after overrolling is contrasted against the

reduction in timestep size between T =1 and T =2.

5.7.3.3 Shock Loading

The example of shock loading models the kind of change to the physical conditions ex-

perienced by the teeth on gears during meshing. Two kinds will be demonstrated in the

section: shock loading and shock unloading. Rather than the variable loading examples

shown in Section 5.6.3, the load changes are of much greater amplitude, and the timescale

is very short.

The examples to be considered here both start from the initial conditions of the re-

versal example, shown in Tables 5.1 and 5.2. The loading will take place by increasing

the maximum Hertzian pressure to double its initial value for loading, or by halving it for

the unloading case. This is incorporated into the solve by modifying the target sum of

pressures in Equation (5.5) to be

2π
3

Φ =
∫ ∞

−∞

∫ ∞

−∞
P(X ,Y)dXdY, (5.51)
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Figure 5.42: Stepsize change ratio, r, during overrolling of a transverse ridge using vari-
able timestepping on grid 5, tol=0.3

where the variable load, Φ, is given by

Φ =

{

1+450t t ≤ 0.02s

10 t > 0.02s

}

for increasing loading (5.52)

Φ =

{

1−45t t ≤ 0.02s
1
10 t > 0.02s

}

for decreasing loading. (5.53)

Considering first the physical results. The central and minimum film thickness results

are as shown in Figures 5.43 and 5.44 for increasing and decreasing the load, respectively.

Of particular interest is the initial unexpected behaviour as the loading changes: for the

shock loading case the film thickness rises across the contact before attaining its new

significantly lower value, whereas for the unloading the reverse behaviour is less evident,

although can be observed in the central value.

Pressure solutions for the two cases are very different. The centreline pressure is

shown at selected timesteps in Figure 5.45, with the arrow indicating the direction of

increasing time of solution plots. The increase in both the size of the contact area and

maximum pressure is very evident.

The unloading example has a very different behaviour, as shown in Figure 5.46,

because the problem has dropped out of the EHL regime to just being hydrodynamically

lubricated instead. This means that the pressure spike has completely disappeared, and

the deformation is now minimal, with no sidelobes present at all.
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Figure 5.43: Central and minimum film thickness during shock loading from 0.45 to
0.90 GPa in 0.02 s
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Figure 5.44: Central and minimum film thickness during shock unloading from 0.45 to
0.22 GPa in 0.02 s
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Figure 5.45: Centreline non-dimensional pressure during shock loading from 0.45 to
0.90 GPa in 0.02 s
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Figure 5.46: Centreline non-dimensional pressure during shock unloading from 0.45 to
0.22 GPa in 0.02 s



Chapter 5 133 Solving Transient EHL problems

1e-05

0.0001

0.001

0.01

0.1

0 0.05 0.1 0.15 0.2

S
te

p 
si

ze
 (

s)

Time (s)

Figure 5.47: Timestep sizes selected during shock loading from 0.45 to 0.22 GPa in 0.02 s

The timestep size should reflect the amount of solution change, hence beyond 0.02 s

when the system has reached the final steady state solution the timestep should be much

larger than in the initial stages when the greatest change is taking place. For the shock

loading example the timestep size is shown in Figure 5.47 with the stepsize change ratio,

r, shown in Figure 5.48. It can be clearly seen that the timestep does initially start out

much smaller than the final steady state value.

The timestep sizes and the step change ratios for the shock unloading examples are

shown in Figures 5.49 and 5.50. Similar behaviour to the shock loading case can be

observed, although with a significantly less smooth increase in the timestep size. It is

also noticeable that the position of the minimum of the dip in film thickness at the end of

unloading, shown in Figure 5.44, coincides with the minimum timestep size selected.

5.8 Conclusion

In this chapter it has been shown that the solution methods used in Chapter 4 can be

developed to solve transient circular point contact EHL problems. The numerical meth-

ods employed make use of the differential-algebraic nature of the equations to be solved.

These include the use of the Shampine convergence test, for individual timesteps, to esti-

mate when convergence has been obtained based on a predicted solution. The choice of

which variable should be monitored for error tests was also discussed.

Several example solutions were presented for very different physical cases. The

pseudo-steady state case was presented to demonstrate the overall stability of the solver.
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Figure 5.48: Stepsize change ratio, r, values during shock loading from 0.45 to 0.22 GPa
in 0.02 s
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Figure 5.49: Timestep sizes selected during shock unloading from 0.45 to 0.22 GPa
in 0.02 s
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Figure 5.50: Stepsize change ratio, r, values during shock unloading from 0.45 to
0.22 GPa in 0.02 s

The example of reversal of entrainment was presented. Results were successfully com-

pared to both the experimental and numerical results of Scales et al. [126, 128]. It was

shown how the use of prediction for the initial solution on a timestep significantly reduces

the residual level and hence the amount of work required to obtain a solution on that step.

It was also seen how the accuracy of the solutions obtained relate to the tolerances chosen

for the Shampine convergence test.

Another case examined was that of sinusoidally varying loads. The results were com-

pared to those of Wijnant [154] and again a very close similarity was observed. The

frequency of the oscillations was also decreased, well beyond those considered by Wij-

nant, and it was seen how the non-linear effects due to the squeeze term were no longer

visible.

Problems involving surface features are very important in the continuing drive to

model increasingly realistic contacts. In this chapter an example, for a single timestep, of

the pressure and film thickness results was shown for a sputtering pattern applied to one

of the contacts. Two other cases were solved transiently, with significant effects from the

squeeze term of the Reynolds Equation. The case of overrolling of a transverse ridge was

successfully compared to the results of Venner and Lubrecht [143]. The second example

was a variation on the case of a circular dent passing through the domain, considered by

Ai and Cheng [1].

To improve the computational efficiency of multigrid finite difference EHL codes, a

method of variable timestepping has been presented based on the differential algebraic
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nature of the system. Variable timestepping has been shown, by experiments, to substan-

tially reduce the required work whilst maintaining the same level of solution accuracy.

The overhead in calculating new stepsizes is small, relative to the increase in perfor-

mance. Changing the stepsize away from ∆T , within predefined limits, has been seen to

pose no problems for the solver.

Examples considered were the case of reversal, the overrolling of a transverse ridge,

and the case of shock loading and unloading of the contact. These examples all showed

that the convergence tests did identify regions of greatest non-linear solution change by

reducing the timestep in these periods, and later increasing it again once the linearity of

the solution had been re-established. In the example of shock unloading it was also seen

how the code was able to still function without difficulties despite dropping out of the

EHL regime into the hydrodynamic lubrication region.



Chapter 6

Grid Adaptation

6.1 Introduction

The drive towards solutions of problems incorporating surface features and, ultimately,

true roughness means that the solvers being used must be designed to be extensible to

meshes of several thousand points in each dimension. However, increasing the resolution

of the domain means that the amount of work required to obtain solutions also grows. The

need to obtain solutions sufficiently quickly means that new techniques must be investi-

gated.

Grid adaptation is widely used in many areas of computing for obtaining fast, accurate

solutions to many numerical problems. This is especially true for finite element methods.

Error estimates can be derived in order to decide the areas in need of refinement or de-

refinement [3, 148]. The style of adaptation chosen will depend upon the nature of the

problem. For example, it is possible to track a shock moving through a domain by keeping

a fine mesh around the front, through the use of node movement, called r-refinement, with

the number of mesh points remaining fixed [8]. Conversely, h-refinement is the addition

of more mesh points in regions of interest [135, 148]. Finally p-refinement changes the

order of the approximating polynomial solution used with the higher order polynomials

giving a local increase in accuracy [6].

The use of adaptive meshing in EHL, though, is relatively unknown. Early work was

done by Lubrecht and co-workers [93, 99] into the use of adaptive grids, however this

137
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appears to have been an isolated experiment. In [50] Goodyer et al. presented preliminary

results for the use of adaptive meshing and considerable work has been done since that

time to improve upon the methods used in terms of both accuracy and performance.

In this chapter the ideas behind re-meshing are to be explored. It will be shown that

without major changes to the solution method, grid adaptation can maintain the accuracy

of the results whilst obtaining significant improvements in the performance of the code.

The numerical techniques to be used for the mesh adaptation are discussed in Sec-

tion 6.2. The results of [50] were predominantly based on refinement of the film thickness

solve, however with the large advances made in the multilevel multi-integration algorithm

used, the deformation calculation has become less important to the overall solution time.

Choice of where to adapt is very important. There are three possible methods for

choosing this, and these will be considered in Section 6.3. The first is by apportioning

parts of the domain for certain levels of refinement based on problem specific knowledge.

The second is based on solution properties, be they actual solution values, derivatives or

some other type of monitor function. The third is by applying some sort of error test.

Results will be shown in Section 6.4 for various different methods of adaptation for a

steady state case. They will be presented in terms of both solution accuracy and compu-

tational time. Similarly, in Section 6.5 a transient case will be examined.

6.2 Theory

The addition of more fine grid points means that the resolution of the solution can be in-

creased. However, it may not be necessary to use a fine grid in regions where the solution

does not change greatly. The intention of adaptive meshing is to focus the computational

work by placing mesh points in the areas of the domain where they are most required.

In cases where solution discontinuities or very steep gradients exist, the solution at

these points must be updated differently from smooth parts of the solution, otherwise

smearing of the numerical discontinuity will not allow accurate resolution of physical

features. These ideas were used by Harten to produce a multilevel approximation strat-

egy, called multiresolution (see [15] for 2D work). In Harten’s work, in order to obtain

the solution over the entire fine mesh, the only points stored are those required to in-

terpolate the calculated solution using defined smoothness properties. This reduces both

the computational work required in evaluating the new solution, and the storage of said

solution.

It is straightforward to extend Harten’s work to multigrid. Multigrid grid adapta-

tion has been undertaken for many years, e.g. [7], including some early work with EHL
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Figure 6.1: Example of a three level multigrid mesh

solvers [93, 99]. Goodyer et al. [50] applied the idea of smoothness to the calculation of

the film thickness deformation calculation to generate a full fine grid representation of the

solution. However, since the publication of [50], the increased efficiency of the multilevel

multi-integration algorithm used has reduced the potential performance increase due to

grid adaptation in the film thickness calculation.

With increasing numbers of points in the domain the linear algebra system required

to be solved for each line gets larger. This can then dominate the calculation time. The

method being applied in this chapter is to only use fine grids in selected regions of the

domain. This idea is explained in detail in Trottenberg et al. [139] and is summarised

below.

Considering a three level multigrid formulation as shown in Figure 6.1 then an extra

level of refinement may be added over only part of the domain if so desired. This can

be seen in Figure 6.2 where the bottom right hand of the four coarsest squares has been

refined. It is possible to just solve for a new finest grid solution using just the points

inside the shaded area. The points on the boundary with the unadapted region, namely

those marked • and ◦ will be treated as Dirichlet boundary conditions. Those outside the

shaded region will not be included in the solve. The difference between the two types

of boundary points is the accuracy with which they have been obtained. Those marked •
are a direct prolongation of the coincident coarser grid point, whilst the hanging nodes,

marked by ◦, are only obtained by some interpolation of surrounding coarse grid points.

This method fits inside the multigrid framework as follows. Solutions from the finest

grid are only generated inside the shaded region, say Ωad . It is clearly only valid to
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Figure 6.2: Example of a multigrid mesh with one quadrant refined further

calculate coarse grid corrections inside this region. Similarly the calculation of the right

hand side functions, previously shown in Equation (3.10), now becomes

f̂ j =

{

L j(I j
k ũk)+ I j

k rk (i, j) ∈Ωad

0 elsewhere
(6.1)

with all symbols as defined in Chapter 3. This means that only the points marked � in

Figure 6.3 will have knowledge of finer multigrid meshes.

This procedure may be applied iteratively to produce a hierarchy of increasingly re-

fined multigrid meshes. An example of this is shown in Figure 6.4 which shows five

different grid levels with different adaptation domains on each. It is however important

to ensure that refinement can only take place on an area which was refined on the next

coarsest level.

The solution of the film thickness equation will still be performed on the entire un-

refined fine mesh. A prolonged version of the pressure on the next coarsest grid will be

used to generate the pressure solution on points not in the new adaptive mesh. Updating

the film thickness at points which are not used may seem like an unnecessary overhead,

however the use of multi-integration, in its present form, means that this overhead is not

large. In future work it should be possible to include the adaptive mesh multilevel multi-

integration techniques described by Brandt and Venner [18] to increase efficiency still

further.
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Figure 6.3: Example of the next coarsest multigrid mesh to that shown in Figure 6.2

Figure 6.4: Example of many levels of adaptation applied to a hierarchy of grids
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Figure 6.5: Example showing adaptation around cavitated free boundary

6.3 Monitoring Where to Adapt

Solutions of the EHL system are characterised by three regions of the domain: the contact

region, where the pressure is high; the non-contact region, where the pressure is low; and

the cavitation region, where the pressure is assumed to be identically zero. In deciding

where to adapt the differences between these regions will be of great importance.

The most obvious choice of region in which to adapt the solution is the cavitation

region. Here, there is no reason to spend CPU cycles calculating a pressure solution

which will come out negative and then have to be set to zero. By deciding that only those

points of positive pressure are in the linear solve automatically reduces the size of every

calculation. There must, however, be at least one, preferably two points in the cavitation

region included to allow the free boundary to adjust its position. An example of adaptation

over the free boundary is shown in Figure 6.5 where the cross-hatched region indicates

the area of positive pressure, and the dotted region includes the extra points included into

each line solve.

In the rest of the domain there is a lot more freedom about how to choose where to

adapt. Deciding the correct refinement criteria is very important to obtaining optimal

performance from the use of grid adaptation, however even some crude assumptions will

be shown to be very beneficial. There are three possible types of scheme available for

deciding on refinement levels; namely arbitrary geometrical decisions, adaptation based

on a monitor function, or refinement based on an error test.

Effective use of the arbitrary geometrical decision scheme relies on a priori knowl-
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edge of how the solution behaves. In the EHL case this is well defined, since it is known

that the high pressure contact region is found inside the unit disc centred at (0,0), that the

cavitation region is almost entirely the X -positive region not in the contact region, and the

non-contact region is the rest of the X -negative domain. It is therefore sensible to surmise

that refinement in the area of high pressure and great deformation is advisable. Using

this method of adaptation, the decisions on where to adapt are all taken before the code is

started.

The adaptation can also be made more automatic. This is often done through use of a

monitor function which will take account of the properties of the solution before deciding

which regions need adapting. This idea is already commonly used in EHL problems to

decide which numerical scheme should be used at individual points, as shown in Sec-

tion 4.2.1. The monitor function may be as simple as “On grid 6 adapt if Pi, j<1×10−3”.

Equally, it may be chosen to monitor derivatives of solution variables to identify regions

of greatest change. This method again requires certain criteria to be decided before the

run is started, but the actual regions adapted will move as the solution proceeds.

Fully automatic refinement can only come through use of an accurate error control

function. Much work has been done into grid refinement in many different applications.

It is, however, the case that at present little or no analysis has been done into the error

control issues of the EHL problem. In the work of Lubrecht [93] the method of Bai and

Brandt [7] was used to decide where to adapt. This uses the quantity τ k−1
k known as the

(k,k-1) relative truncation error which is the quantity that is to be added to the right hand

side of the coarse grid problem, and is thus a measure of the extent to which the local

introduction of the finer grid has influenced the global solution [139]. The convergence

test given in [139] is to refine whenever

(∆X)kτk−1
k < ξ (6.2)

for a chosen tolerance ξ .

In Section 6.4 a steady state example will be solved using each of these three methods,

and their relative effectiveness and applicability judged.

6.4 Adaptation Example - Steady State

To test the effectiveness of the grid adaptation, the test case shown in Table 6.1 was

chosen. This was solved on the half-domain X∈[-4.5,1.5], Y∈[0,3] using finest meshes

between level 5 and level 8. The accuracy of the solutions were monitored to ensure that
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Parameter Test Case 3
Viscosity index, α 2.2×10−8 Pa−1

Viscosity at ambient pressure, η0 0.04 Pa s
Maximum Hertzian pressure, ph 0.45 G Pa
Material parameter, G 4972
Load parameter, W 1.63×10−7

Speed parameter, U 8.18×10−12

Moes parameter, M 20
Moes parameter, L 10

Table 6.1: Non-dimensional parameters for steady state adaptation example

potential speed-ups were not detrimental to the quality of the solution obtained.

Measuring the accuracy of the results can be done in several different ways. Compar-

isons can be made between the values of the different ‘notable’ variables, for example the

central and minimum film thickness and the height of the pressure spike. The accuracy

desired is that the solution of an adapted grid on level k should be significantly closer to

the results obtained on an unadapted level k than those obtained on an unadapted level k-1

mesh, or coarser.

Comparison between grid levels does, however, rely upon the numerical solution to

the equations being similar. Around the pressure spike this need not be the case. The

effect of grid spacing for line contact cases has been investigated for many years, and

results up to level 10 were shown using adaptation in the work of Lubrecht [93] and

Breukink [21]. Recent work done by Fairlie [44] into the resolution of the pressure spike

in the line contact case is reproduced here in Figures 6.6 to 6.8. In Figure 6.6 the pres-

sure distribution across the whole domain is shown. It can the seen the curves are almost

coincidental apart from around the pressure spike. This area is shown in detail in Fig-

ure 6.7 where the addition of many orders of magnitude more points has now captured

the pressure spike completely and appears to have achieved a converged solution. Whilst

the accurate capturing of such a feature is an obvious use for adaptation, it can be seen

from Figure 6.8 that even the small differences in spike height have caused much greater

variation in the film thickness profile.

The accuracy of the whole solution domain can also be compared, although the limi-

tations mentioned above must be remembered. The points at which comparisons are to be

taken is again important to the level of accuracy obtained. If all points on the finest level

are to be considered then it is the case that the results at all points outside the adapted

region have not had a fine grid solution solved on them. There would be the errors in the

accuracy of the interpolation routines used to generate the non-coincident intermediary
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points, coupled with the lack of relaxations on all non-adapted points. It therefore seems

sensible to only calculate the accuracy at points which were solved upon at their finest

level, hence accuracy will be compared on a mesh similar to the one shown in Figure 6.4,

which itself was never explicitly used in any calculation.

The method chosen for comparing the accuracies of the methods is by calculating the

L2-norm of the differences between solutions on adapted and unadapted grids. This is

given by
∥

∥ure f −uad
∥

∥

2 =
∫ Ymax

Ymin

∫ Xmax

Xmin

(

ure f −uad
)2

dXdY (6.3)

where ure f is the reference solution against which the adapted solution, uad , is compared.

The integrals have been calculated using three point Gauss quadrature applied in both X

and Y directions. To solve the integral on each square pseudo-element of the mesh, a

substitution is undertaken to calculate on points ζ∈[-1,1], before using the approximation

∫ 1

−1
Ψ(ζ )dζ ≈

3

∑
k=1

akΨ(ζk) (6.4)

with abscissas, ζk, and weights, ak as given in Table 6.2, with the solution values, Ψ
being given by linear interpolation of the mesh point solution values. By applying this

equation in both X and Y directions, a nine-point formula defines the numerical integral.

For adapted grids, with prolongation of the solution as defined by the linear interpolation

of Equation (3.15), this quadrature will preserve the validity of norm, regardless of the
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k Abscissa Weight
1 -0.774597 5/9
2 0.0 8/9
3 0.774597 5/9

Table 6.2: Abscissa and weights for calculating three point Gauss quadrature on a domain
ζ∈[-1,1].

number of further sub-divisions of this element that are made.

The grid adaptation schemes used in each of the tests are shown in Table 6.3, where

each section refers to the finest grid used in the multigrid cycle. For each grid there are

examples of each of the three types of adaptation described in Section 6.3. In addition to

retaining consistency between the tests on the same finest grid level, there is a strong ele-

ment of correlation between different levels, e.g. cases 6.3 and 6.4 with cases 7.4 and 7.5.

The errors, as described above, are measured by two different methods. First, the

values for non-dimensional central and minimum film thickness, and centreline non-

dimensional pressure spike height for each test case are shown in Table 6.4. By con-

sidering each of the three adaptation methods in turn, a good intuition to the veracity of

the results may be gauged. The geometrical adaptation schemes, shown first for each grid

level, all preserve the three test parameters in the neighbourhood of the fully fine results

for that grid level, and all are a significant distance from those of other grid levels. Similar

results are also obtained for the pressure dependent grid adaptation schemes. However,

for the automatic grid refinement schemes the results are not as close for larger values of

ξ in Equation (6.2) as the grid gets finer. Whilst on its own the trade off between perfor-

mance and accuracy is expected to reduce the quality of results, the final entries for each

grid level exhibit starkly different solutions.

On a related note, in the test descriptions of Table 6.3 it was noted that the pressure

dependent style of test would find the first pressure point above the chosen level and

then refine all the way to the cavitation boundary. If the refinement had only been done

in regions with pressure greater than this level, and hence the area between the contact

region and the cavitation region had not been refined, then the results for the less stringent

tests given in Table 6.5 would be as given in Table 6.6. These show that beyond only the

finest level being adapted there is a marked drop of accuracy. This is most likely to do

with the narrowness region between contact region and cavitation region, and the effects

of the multigrid moving the cavitation boundary on too coarse a grid level to be accurate

for a fine grid solution.

The second set of accuracy results are those of the L2-norm for both the pressure and

film thickness results, again performed on the non-dimensional quantities. Comparisons
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Grid 5
5.0 No adaptation, fully converged
5.1 Solution after 10 multigrid cycles

Grid 6
6.0 No adaptation, fully converged
6.1 Solution after 10 multigrid cycles
6.2 Including adaption of cavitation region on all levels
6.3 Cavitation, and grid 6 for X <−2.44, Y > 1.50 de-refined
6.4 As 6.3, with grid 5 for X <−3.57, Y > 2.27 de-refined
6.5 Refined along line from first P > 1×10−2 on grid 6
6.6 As 6.5, with grid 5 from P > 2×10−3

6.7 Refined along lines using Equation (6.2), with ξ = 1×10−6

6.8 As 6.7, with ξ = 1×10−5

6.9 As 6.7, with ξ = 1×10−4

6.10 As 6.7, with ξ = 1×10−3

Grid 7
7.0 No adaptation, fully converged
7.1 Solution after 10 multigrid cycles
7.2 Including adaption of cavitation region on all levels
7.3 Cavitation, and grid 7 for X <−1.50, Y > 1.17 de-refined
7.4 As 7.3, with grid 6 for X <−2.44, Y > 1.50 de-refined
7.5 As 7.4, with grid 5 for X <−3.57, Y > 2.27 de-refined
7.6 Refined along line from first P > 5×10−2 on grid 7
7.7 As 7.6, with grid 6 from P > 1×10−2

7.8 As 7.7, with grid 5 from P > 2×10−3

7.9 Refined along lines using Equation (6.2), with ξ = 1×10−7

7.10 As 7.9, with ξ = 1×10−6

7.11 As 7.9, with ξ = 1×10−5

7.12 As 7.9, with ξ = 1×10−4

Grid 8
8.0 No adaptation, fully converged
8.1 Solution after 10 multigrid cycles
8.2 Including adaption of cavitation region on all levels
8.3 Cavitation, and grid 8 for X <−2.27, Y > 0.95 de-refined
8.4 As 8.3, with grid 7 for X <−3.00, Y > 1.50 de-refined
8.5 As 8.4, with grid 6 for X <−3.56, Y > 2.06 de-refined
8.6 As 8.5, with grid 5 for X <−4.13, Y > 2.44 de-refined
8.7 Refined along line from first P > 1×10−1 on grid 8
8.8 As 8.7, with grid 7 from P > 5×10−2

8.9 As 8.8, with grid 6 from P > 1×10−2

8.10 As 8.9, with grid 5 from P > 2×10−3

8.11 Refined along lines using Equation (6.2), with ξ = 1×10−8

8.12 As 8.11, with ξ = 1×10−7

8.13 As 8.11, with ξ = 1×10−6

8.14 As 8.11, with ξ = 1×10−5

Table 6.3: Adaptation schemes used for the steady state grid adaptivity tests
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Test
Central film

thickness
Minimum film

thickness
Centreline pressure

spike height

5.0 0.4615 0.3083 1.1373
5.1 0.4616 0.3090 1.1410

6.0 0.4488 0.3026 1.1679
6.1 0.4490 0.3024 1.1737
6.2 0.4490 0.3025 1.1728
6.3 0.4491 0.3028 1.1719
6.4 0.4492 0.3028 1.1717
6.5 0.4490 0.3027 1.1675
6.6 0.4491 0.3028 1.1673
6.7 0.4489 0.3026 1.1683
6.8 0.4489 0.3026 1.1683
6.9 0.4506 0.3043 1.1661
6.10 0.3991 0.2096 1.0851

7.0 0.4411 0.2978 1.2435
7.1 0.4412 0.2968 1.2477
7.2 0.4414 0.2972 1.2464
7.3 0.4419 0.2977 1.2473
7.4 0.4421 0.2980 1.2469
7.5 0.4421 0.2980 1.2467
7.6 0.4418 0.2976 1.2464
7.7 0.4423 0.2979 1.2470
7.8 0.4423 0.2980 1.2470
7.9 0.4414 0.2975 1.2454
7.10 0.4424 0.2982 1.2477
7.11 0.4184 0.2893 1.1856
7.12 0.4184 0.2921 1.1231

8.0 0.4369 0.2954 1.3062
8.1 0.4370 0.2953 1.3250
8.2 0.4370 0.2955 1.3057
8.3 0.4371 0.2960 1.3100
8.4 0.4371 0.2962 1.3111
8.5 0.4372 0.2962 1.3117
8.6 0.4372 0.2962 1.3120
8.7 0.4375 0.2961 1.3122
8.8 0.4380 0.2978 1.3178
8.9 0.4382 0.2969 1.3196
8.10 0.4382 0.2970 1.3200
8.11 0.4370 0.2954 1.3167
8.12 0.4274 0.2961 1.3206
8.13 0.4264 0.2940 1.2833
8.14 0.4215 0.2931 1.0974

Table 6.4: Values of central and minimum film thickness, and centreline pressure spike
height for grid adaptation tests, in non-dimensional units
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Grid 6
6.11 Refined wherever P > 1×10−2 on grid 6
6.12 As 6.11, with grid 5 from P > 2×10−3

Grid 7
7.13 Refined wherever P > 1×10−2 on grid 7
7.14 As 7.13, with grid 6 from P > 2×10−3

7.15 As 7.14, with grid 5 from P > 5×10−4

Grid 8
8.15 Refined wherever P > 1×10−2 on grid 8
8.16 As 8.15, with grid 7 from P > 2×10−3

8.17 As 8.16, with grid 6 from P > 5×10−4

8.18 As 8.17, with grid 5 from P > 1×10−6

Table 6.5: Grid adaptation schemes used for pressure dependent adaptivity without re-
finement to the cavitation boundary

Test
Central film

thickness
Minimum film

thickness
Centreline pressure

spike height

6.0 0.4488 0.3026 1.1679
6.11 0.4490 0.3027 1.1675
6.12 0.3491 0.2235 1.4918

7.0 0.4411 0.2978 1.2435
7.13 0.4414 0.2960 1.2452
7.14 0.4304 0.2762 1.3437
7.15 0.3506 0.1499 1.5739

8.0 0.4369 0.2954 1.3062
8.15 0.4363 0.2928 1.2998
8.16 0.4348 0.2917 1.3594
8.17 0.4725 0.2690 1.4276
8.18 0.3848 0.1777 1.6698

Table 6.6: Values of central and minimum film thickness, and centreline pressure spike
height for pressure dependent adaptation tests, in non-dimensional units, without refine-
ment to the cavitation boundary
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Pressure
Compared against test

6.0 6.1 5.0 5.1
6.1 2.11×10−5 - 9.04×10−3 7.70×10−3

6.2 2.07×10−5 2.78×10−7 9.02×10−3 7.68×10−3

6.3 1.26×10−5 1.73×10−6 8.91×10−3 7.59×10−3

6.4 1.07×10−5 2.73×10−6 8.88×10−3 7.56×10−3

6.5 1.76×10−5 3.27×10−5 8.46×10−3 7.22×10−3

6.6 3.89×10−5 4.04×10−5 8.41×10−3 7.18×10−3

6.7 1.53×10−7 2.13×10−5 8.57×10−3 6.61×10−3

6.8 1.53×10−7 2.13×10−5 8.57×10−3 7.31×10−3

6.9 1.03×10−4 1.97×10−4 7.72×10−3 7.31×10−3

6.10 1.53×10−2 1.54×10−2 1.64×10−2 1.52×10−2

Film thickness
Compared against test

6.0 6.1 5.0 5.1
6.1 3.64×10−5 - 4.88×10−1 4.86×10−1

6.2 3.18×10−5 1.72×10−7 4.88×10−1 4.86×10−1

6.3 8.62×10−6 1.09×10−5 4.88×10−1 4.86×10−1

6.4 5.04×10−6 1.69×10−5 4.88×10−1 4.86×10−1

6.5 5.90×10−6 7.09×10−5 4.87×10−1 4.86×10−1

6.6 1.38×10−5 9.41×10−5 4.87×10−1 4.86×10−1

6.7 5.11×10−9 3.69×10−5 4.87×10−1 4.86×10−1

6.8 5.11×10−9 3.69×10−5 4.87×10−1 4.86×10−1

6.9 2.50×10−4 4.69×10−5 4.87×10−1 4.86×10−1

6.10 1.46×10−2 1.69×10−5 5.08×10−1 5.04×10−1

Table 6.7: L2-norms of differences in non-dimensionalised pressure and film thickness
between adapted and unadapted cases on grid 6

have been made against the fully converged results, i.e. those of tests 5.0, 6.0, 7.0 and 8.0,

and against those of the similarly converged unadapted cases of tests 5.1, 6.1, 7.1 and 8.1.

These results are presented in Tables 6.7 to 6.10. Again, by considering the three

different adaptation methods, the overall usefulness of the methods may be evaluated. It is

important, first, to note that even the unadapted cases, i.e. 6.1, 7.1 and 8.1, have a marked

difference in terms of the film thickness L2-norm, when compared to coarser grids. This

translates to up to six orders of magnitude difference. It can be seen in all the cases that

these differences will never be significantly reduced. Comparison between the results of

the fully converged and the ten iteration results are also seen to be comparable, showing

that generally the results achieved after these few cycles are not radically different from

those with near-zero numerical residuals.
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Pressure
Compared against test

7.0 7.1 6.0 6.1 5.0 5.1
7.1 1.01×10−4 - 4.70×10−3 4.35×10−3 1.84×10−2 1.66×10−2

7.2 1.19×10−4 5.50×10−6 4.57×10−3 4.23×10−3 1.82×10−2 1.64×10−2

7.3 1.48×10−4 1.91×10−5 4.43×10−3 4.10×10−3 1.80×10−2 1.62×10−2

7.4 1.68×10−4 3.30×10−5 4.35×10−3 4.03×10−3 1.79×10−2 1.61×10−2

7.5 1.75×10−4 3.83×10−5 4.32×10−3 4.00×10−3 1.78×10−2 1.61×10−2

7.6 1.71×10−4 3.75×10−5 4.30×10−3 3.99×10−3 1.78×10−2 1.60×10−2

7.7 2.23×10−4 7.28×10−5 4.16×10−3 3.86×10−3 1.76×10−2 1.59×10−2

7.8 2.44×10−4 8.82×10−5 4.12×10−3 3.82×10−3 1.75×10−2 1.58×10−2

7.9 1.22×10−4 1.30×10−5 4.45×10−3 4.13×10−3 1.80×10−2 1.62×10−2

7.10 2.12×10−4 6.47×10−5 4.19×10−3 3.88×10−3 1.76×10−2 1.59×10−2

7.11 2.81×10−3 3.26×10−3 8.11×10−3 7.72×10−3 2.01×10−2 1.92×10−2

7.12 6.51×10−3 7.00×10−3 7.51×10−3 7.28×10−3 1.49×10−2 1.32×10−2

Film thickness
Compared against test

7.0 7.1 6.0 6.1 5.0 5.1
7.1 1.18×10−5 - 2.43×10−1 2.42×10−1 4.59×10−1 4.57×10−1

7.2 2.07×10−6 1.69×10−5 2.43×10−1 2.42×10−1 4.59×10−1 4.56×10−1

7.3 2.62×10−6 6.75×10−5 2.42×10−1 2.42×10−1 4.58×10−1 4.56×10−1

7.4 5.92×10−5 1.18×10−4 2.42×10−1 2.42×10−1 4.58×10−1 4.56×10−1

7.5 7.27×10−5 1.37×10−4 2.42×10−1 2.42×10−1 4.58×10−1 4.56×10−1

7.6 4.92×10−5 1.04×10−4 2.42×10−1 2.42×10−1 4.58×10−1 4.56×10−1

7.7 1.15×10−4 1.95×10−4 2.42×10−1 2.42×10−1 4.58×10−1 4.56×10−1

7.8 1.45×10−4 2.33×10−4 2.42×10−1 2.42×10−1 4.58×10−1 4.56×10−1

7.9 9.82×10−6 3.95×10−5 2.42×10−1 2.42×10−1 4.59×10−1 4.57×10−1

7.10 1.07×10−4 1.84×10−4 2.42×10−1 2.42×10−1 4.58×10−1 4.56×10−1

7.11 3.40×10−3 3.05×10−3 2.48×10−1 2.47×10−1 4.68×10−1 4.65×10−1

7.12 2.11×10−3 1.86×10−3 2.46×10−1 2.46×10−1 4.66×10−1 4.62×10−1

Table 6.8: L2-norms of differences in non-dimensionalised pressure and film thickness
between adapted and unadapted cases on grid 7
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Pressure
Compared against test

8.0 8.1 7.0 7.1
8.1 1.20×10−5 - 2.50×10−3 2.78×10−3

8.2 4.09×10−6 6.37×10−6 2.49×10−3 2.78×10−3

8.3 6.70×10−6 8.55×10−6 2.36×10−3 2.64×10−3

8.4 1.05×10−5 1.34×10−5 2.31×10−3 2.58×10−3

8.5 1.27×10−5 1.63×10−5 2.28×10−3 2.56×10−3

8.6 1.44×10−5 1.85×10−5 2.27×10−3 2.54×10−3

8.7 1.44×10−5 1.40×10−5 2.29×10−3 2.56×10−3

8.8 4.27×10−5 5.33×10−5 2.09×10−3 2.35×10−3

8.9 6.56×10−5 7.91×10−5 2.02×10−3 2.27×10−3

8.10 7.35×10−5 8.80×10−5 1.99×10−3 2.24×10−3

8.11 9.93×10−6 1.54×10−5 2.54×10−3 2.82×10−3

8.12 2.19×10−5 1.13×10−5 2.54×10−3 2.83×10−3

8.13 1.53×10−3 1.38×10−3 4.09×10−3 4.66×10−3

8.14 4.63×10−3 4.15×10−3 4.74×10−3 5.36×10−3

Compared against test
6.0 6.1 5.0 5.1

8.1 1.02×10−2 9.70×10−3 2.47×10−2 2.26×10−2

8.2 1.01×10−2 9.62×10−3 2.45×10−2 2.24×10−2

8.3 9.91×10−3 9.43×10−3 2.43×10−2 2.22×10−2

8.4 9.83×10−3 9.36×10−3 2.42×10−2 2.22×10−2

8.5 9.79×10−3 9.32×10−3 2.41×10−2 2.21×10−2

8.6 9.76×10−3 9.30×10−3 2.41×10−2 2.21×10−2

8.7 9.81×10−3 9.34×10−3 2.42×10−2 2.21×10−2

8.8 9.49×10−3 9.04×10−3 2.38×10−2 2.18×10−2

8.9 9.37×10−3 8.92×10−3 2.37×10−2 2.17×10−2

8.10 9.33×10−3 8.88×10−3 2.36×10−2 2.16×10−2

8.11 1.02×10−2 9.72×10−3 2.47×10−2 2.26×10−2

8.12 1.02×10−2 9.70×10−3 2.46×10−2 2.25×10−2

8.13 1.11×10−2 1.06×10−2 2.41×10−2 2.20×10−2

8.14 8.94×10−3 8.60×10−3 1.89×10−2 1.71×10−2

Table 6.9: L2-norms of differences in non-dimensionalised pressure between adapted and
unadapted cases on grid 8
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Film thickness
Compared against test

8.0 8.1 7.0 7.1
8.1 2.16×10−6 - 1.21×10−1 1.21×10−1

8.2 3.04×10−7 8.91×10−7 1.21×10−1 1.21×10−1

8.3 8.69×10−4 1.84×10−5 1.21×10−1 1.21×10−1

8.4 1.98×10−5 3.37×10−5 1.21×10−1 1.21×10−1

8.5 2.66×10−5 4.25×10−5 1.21×10−1 1.21×10−1

8.6 3.15×10−5 4.86×10−5 1.21×10−1 1.21×10−1

8.7 2.26×10−5 3.71×10−5 1.21×10−1 1.21×10−1

8.8 1.16×10−4 1.47×10−4 1.21×10−1 1.21×10−1

8.9 1.76×10−4 2.14×10−4 1.21×10−1 1.21×10−1

8.10 1.97×10−4 2.37×10−4 1.21×10−1 1.21×10−1

8.11 2.04×10−6 3.10×10−8 1.21×10−1 1.21×10−1

8.12 6.63×10−6 2.24×10−6 1.21×10−1 1.21×10−1

8.13 4.32×10−4 3.86×10−4 1.21×10−1 1.22×10−1

8.14 1.24×10−3 1.17×10−3 1.23×10−1 1.23×10−1

Compared against test
6.0 6.1 5.0 5.1

8.1 2.28×10−1 2.28×10−1 4.21×10−1 4.19×10−1

8.2 2.28×10−1 2.28×10−1 4.21×10−1 4.19×10−1

8.3 2.28×10−1 2.28×10−1 4.21×10−1 4.18×10−1

8.4 2.28×10−1 2.28×10−1 4.20×10−1 4.18×10−1

8.5 2.28×10−1 2.28×10−1 4.20×10−1 4.18×10−1

8.6 2.28×10−1 2.27×10−1 4.20×10−1 4.18×10−1

8.7 2.28×10−1 2.27×10−1 4.20×10−1 4.18×10−1

8.8 2.28×10−1 2.27×10−1 4.20×10−1 4.18×10−1

8.9 2.27×10−1 2.27×10−1 4.19×10−1 4.17×10−1

8.10 2.27×10−1 2.27×10−1 4.19×10−1 4.17×10−1

8.11 2.28×10−1 2.27×10−1 4.21×10−1 4.19×10−1

8.12 2.28×10−1 2.28×10−1 4.21×10−1 4.19×10−1

8.13 2.30×10−1 2.29×10−1 4.24×10−1 4.21×10−1

8.14 2.32×10−1 2.31×10−1 4.27×10−1 4.24×10−1

Table 6.10: L2-norms of differences in non-dimensionalised film thickness between
adapted and unadapted cases on grid 8
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Case L2 pressure norm L2 film thickness norm

6.0 9.98×10−3 2.28×10−1

6.1 9.51×10−3 2.28×10−1

6.2 9.49×10−3 2.28×10−1

6.3 9.62×10−3 2.28×10−1

6.4 9.66×10−3 2.28×10−1

6.5 1.01×10−2 2.29×10−1

6.6 1.02×10−2 2.29×10−1

6.7 1.00×10−2 2.28×10−1

6.8 1.00×10−2 2.28×10−1

6.9 1.12×10−2 2.30×10−1

6.10 2.98×10−2 2.31×10−1

7.0 2.41×10−3 1.21×10−1

7.1 2.68×10−3 1.21×10−1

7.2 2.82×10−3 1.21×10−1

7.3 3.99×10−3 1.21×10−1

7.4 3.10×10−3 1.21×10−1

7.5 3.13×10−3 1.21×10−1

7.6 3.14×10−3 1.21×10−1

7.7 3.35×10−3 1.21×10−1

7.8 3.43×10−3 1.21×10−1

7.9 2.91×10−3 1.21×10−1

7.10 3.32×10−3 1.21×10−1

7.11 3.11×10−3 1.22×10−1

7.12 8.17×10−3 1.21×10−1

Table 6.11: Solution accuracy for non-dimensionalised pressure and film thickness com-
paring the unadapted grid 8 against both adapted and unadapted cases on grids 6 and 7

The geometrical adaptation results are seen to be similar on all grids for both pressure

and film thickness. The accuracy deteriorates as more of the mesh is de-refined, and this

has the greatest effect on the film thickness, e.g. cases 7.1 to 7.5. The pressure based

refinement has similar properties and is of similar accuracy for all the tests. Finally, the

automatic grid adaptation cases show similar behaviour to that suggested by the tracked

variables shown in Table 6.4. As the tolerance ξ increases the quality of the results de-

creases sharply. Of particular interest, though, are those results for the highest factors,

i.e. cases 6.7, 6.8 and 7.9, which show film thickness results significantly better than the

unadapted cases.

It is also worthwhile to consider the accuracy of the adapted grid results against those

on finer grids. In Table 6.11 the L2-norms of the solutions for both non-dimensionalised

pressure and film thickness are shown for the tests on grids 6 and 7 against the unadapted
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solution on grid 8. It is seen that, as expected, the solutions on the adapted grids have

similar accuracy to those on the unadapted grids with many more mesh points.

Finally, in Table 6.12, computational timings are shown for each case. These show

that solutions on adapted grids can be computed significantly faster than in the unadapted

case, often up to around half the time. This means that results of significantly greater

accuracy than those on grid k, say, can be computed on grid k+1 in roughly only twice the

time, rather than the factor of four previously.

6.5 Adaptation Example - Transient

In this section an example is shown which combines all the methods developed in this

work. With the adaptive meshing still at an early stage of development, and without any

adaptation of the film thickness solve, it would be unrealistic to expect substantial savings

in computational speed overall. This is especially true considering that an unadapted solve

is done on the first multigrid cycle per timestep to ensure that only accurate information

is being used in deciding the location for regions to be adapted.

The example chosen was the reversal example shown in Section 5.6.2 with oil en-

trainment initially from left to right before slowing down and reversing direction. This

has been solved, as in Section 5.7.3.1, using variable timestepping. This also means that

all of the computational benefits developed in Chapter 5, such as prediction of the solution

at the next timestep, and convergence testing on each timestep, are utilised.

The adaptation schemes used are shown in Table 6.13 where it can be see that the

pressure based adaptation scheme has been chosen. Both the plots of central and mini-

mum film thickness were indistinguishable from each other between adaptation schemes,

and, as such, there is little point in reproducing them here. Instead the accuracy can again

be measured by comparing the central and minimum film thickness results, as well as the

central offset film thickness, at certain reference times of the calculation. As in Table 5.6

these have been chosen to be at the point of reversal, and at the time of minimum film

thickness. These results are shown in Table 6.14. It can be seen that there is almost no

difference between any of the schemes in any of these key variables. This suggests that

they all have the same properties in terms of accuracy.

The computational efficiency is shown in Table 6.15. It can be seen that generally

the adaptive meshing cases are slightly quicker, although not by very much. The largest

variation between the cases is for the number of timesteps required. Coupling this with

the fact that the accuracy of the different methods is similar then it is clear that any errors

being introduced by the adaptive meshing are more than compensated for by the balancing
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Case
Time for 10
iterations (s)

Saving on
unadapted case (s)

Percentage
time saved

6.1 31.4 - -
6.2 30.0 1.3 4.2
6.3 21.1 10.3 32.8
6.4 19.5 11.8 37.7
6.5 21.6 9.7 31.1
6.6 20.5 10.8 34.6
6.7 30.4 1.0 3.1
6.8 30.0 1.3 4.1
6.9 21.7 9.6 30.7
6.10 18.8 12.6 40.1

7.1 117.2 - -
7.2 108.0 9.2 7.8
7.3 65.5 51.7 44.1
7.4 57.3 59.8 51.1
7.5 56.0 61.2 52.2
7.6 65.6 51.6 44.0
7.7 59.5 57.7 49.2
7.8 58.7 58.4 49.9
7.9 110.3 6.9 5.9
7.10 80.9 36.3 31.0
7.11 72.5 44.9 38.3
7.12 63.3 53.9 46.0

8.1 482 - -
8.2 445 37 8.0
8.3 267 215 44.0
8.4 241 241 49.6
8.5 233 249 51.3
8.6 237 245 51.3
8.7 268 213 47.8
8.8 220 262 54.2
8.9 214 268 53.7
8.10 218 264 55.6
8.11 450 32 6.6
8.12 276 206 44.3
8.13 241 241 46.6
8.14 236 246 48.8

Table 6.12: Computational timings for 10 multigrid V-cycles for adaptation test cases



Chapter 6 158 Grid Adaptation

Case Adaptation scheme
6.1 No grid adaptation, tol = 0.3
6.2 As 6.1, with cavitation region adapted
6.3 As 6.2, with refinement along line from first P >2×10−2 on grid 6
6.4 As 6.3, with refinement from P >5×10−3 on grid 5
6.5 No grid adaptation, tol = 0.03
6.6 As 6.5, with cavitation region adapted
6.7 As 6.6, with refinement along line from first P >2×10−2 on grid 6

Table 6.13: Grid adaptation schemes for transient reversal example

Test At reversal, t=0.1 s
case Central Minimum H00

6.1 7.613×10−8 2.263×10−8 -1.207×10−6

6.2 7.613×10−8 2.264×10−8 -1.207×10−6

6.3 7.613×10−8 2.264×10−8 -1.207×10−6

6.4 7.613×10−8 2.264×10−8 -1.207×10−6

6.5 7.613×10−8 2.264×10−8 -1.207×10−6

6.6 7.613×10−8 2.264×10−8 -1.207×10−6

6.7 7.627×10−8 2.267×10−8 -1.207×10−6

At t=tmin

Central Minimum H00

6.1 8.192×10−8 1.779×10−8 -1.202×10−6

6.2 8.192×10−8 1.779×10−8 -1.202×10−6

6.3 8.192×10−8 1.779×10−8 -1.202×10−6

6.4 8.192×10−8 1.779×10−8 -1.202×10−6

6.5 8.191×10−8 1.779×10−8 -1.202×10−6

6.6 8.192×10−8 1.779×10−8 -1.202×10−6

6.7 8.207×10−8 1.782×10−8 -1.202×10−6

Table 6.14: Comparison between test parameters at reversal and tmin

Case Time taken (s) Timesteps taken Iterations required
6.1 6088 378 863
6.2 5834 367 841
6.3 5944 375 859
6.4 6075 383 875
6.5 5853 361 846
6.6 5849 361 872
6.7 6136 366 1114

Table 6.15: Computational comparisons for adaptive meshing reversal cases
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of these errors against the temporal errors in the choice of new timestep size.

In summary it has been seen that grid adaptation can be successfully incorporated into

the EHL solver, and be combined with variable timestepping. Overall, though, it is clear

that more work needs to be done to investigate transient adaptive meshing cases. If finer

grids were used for the transient problems then it is likely that the speed-up per iteration

will improve but it is not clear whether this would be cancelled out with the need for more

timesteps to be taken. Perhaps a more comprehensive adaptation criterion is needed to

combine both adaptation in space and time.

6.6 Conclusion

In this chapter the idea of adaptive meshing has been introduced and examined from the

starting point of the EHL solver explained in previous chapters.

Refinement of grids has been done by refining the number of points used in the pres-

sure solve. This has allowed the order of the linear algebra systems being solved to be

significantly decreased. Solutions for film thickness have still been done on the full grid

to enable easy re-use of the multilevel multi-integration algorithm.

Both steady state and transient examples have been presented showing the benefits

of adaptation in terms of increasing computational performance against the accuracy of

the solutions attained. For the steady state case, the grids have been adapted using three

different methods. The first method was based on deciding which regions of the domain

would be solved before the code was started. This method was shown to accurately solve

the system to the same level of accuracy as the unadapted case, whilst reducing the time

taken by up to 50%. It does, however, require a priori knowledge of which area of the

solution domain will most benefit from grid adaptation.

The second method of grid adaptation was solution based. In the areas of highest

pressure the Reynolds equation was solved, but outside these areas it was assumed that

the solution was smooth enough to use a linearly interpolated values without affecting

solution accuracy. A succession of pressure values were used on different grid levels to

define a set of multigrid ‘patches’ which would be adapted. Again significant speed-ups

were achieved for accuracies of solution. This method is preferable over the previous one

because there is no need to know where the regions of high pressure are before the run is

started, and hence is a more automatic method.

The third criteria used to adapt the grid was that of an error test based on the relative

truncation error, τk−1
k , which is a measure of the similarity between pressure solutions

on adjacent grids. This test is automatic in that only the regions of the grid demanding
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greater accuracy are refined. It was shown that the chosen tolerance is very important

beacuse having too little an area adapted resulted in significantly larger errors, however

for correctly chosen tolerances gave accurate results up to around 40% faster. This error

test needs more work before it can be used confidently for this application. Another

automatic error test may well be preferable.

Adaptation has been seen to be very beneficial in reducing the required work to solve a

steady state EHL problem. It is clear that refining the multi-integration method to include

adaptive meshes will reap even greater benefits. Some work on this method has already

been published [18] and will be an obvious future extension to this work, although this

implementation will be non-trivial. Extension to transient cases has not seen similar re-

ductions in computational time, although there has been no decrease in accuracy of results

because the variable timestepping appears to have reduced the timestep size to compen-

sate for the additional errors from the adapted meshes. Further work is clearly needed

here.



Chapter 7

Conclusion

7.1 Summary

In this work the numerical solution of point contact EHL problems has been investigated.

Although numerical solutions to these computationally demanding problems have been

computed for a quarter of a century, modern mathematical techniques have increased the

speed with which solutions can be obtained. The use of multilevel techniques have been

particularly important in these advances, and these were summarised in Chapter 3.

The computational code used in this work was built on that of Nurgat. Whilst this had

been able to calculate accurate solutions to single grid problems, some of the elements

of the multigrid processes used still required work. In Chapter 4 these deficiencies were

examined in detail. It was seen that residuals around the cavitation boundary were not

falling away with continued multigrid iterations, but being reintroduced when making

coarse grid corrections to the fine grid solution. First a method to avoid this stalling of

residuals was proposed, and shown to be effective. Later, an accurate treatment of the

free boundary was introduced inside the multigrid correction process. When this was

then coupled with the correct treatment of the force balance equation in the multigrid

framework, asymptotic convergence on all grids was achieved as desired.

In Chapter 4 the use of parallelism was also considered. Whilst only done for the

multi-summation part of the deformation calculation for the film thickness, this did show

some encouraging results. However, with the introduction of multilevel multi-integration

161
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into the code the potential time savings from this method of parallelisation were sig-

nificantly reduced. The computational timings for the use of multi-integration in this

code were also shown in this chapter. The benefits of writing optimised FORTRAN were

emphasised by comparing two different single processor implementations of the multi-

summation process. Since conducting the multi-integration timing experiments, these

optimisation techniques have been incorporated into the code and timing results in later

chapters all include their benefits.

Transient EHL problems are of particular interest to industry as the behaviour of both

components and lubricant in changing physical conditions is very important. The first

attempt by Nurgat has been redeveloped in Chapter 5. Examples were presented show-

ing that solution inaccuracies could grow if the temporal derivatives were not adequately

controlled. These were then followed by a wide variety of test problems, namely mod-

elling variable entrainment velocity, sinusoidal loading and examples of surface rough-

ness. Results were compared against those of other numerical solvers and corresponding

experimental results.

Error control on a timestep was considered, and experimental results were shown

emphasising the advantages of choosing to test for convergence of the algebraic variable

for film thickness present in the time dependent squeeze term of the Reynolds Equation.

The reduction in residual levels at the start of each timestep using prediction from previous

timestep solutions, was also demonstrated.

Variable timestepping was introduced using the differential algebraic properties of the

system of equations. It was shown, by a series of experiments, that the chosen error test

was able to identify the periods of solution with non-linear behaviour, and hence small

timesteps were taken in these times. One of the examples in this section was the modelling

of shock loading and unloading, where the system undergoes a large change in loading in

a very short period of time.

Grid adaptation was explained in Chapter 6. Selection of areas of the mesh where

solutions are relatively smooth allows a reduced domain to be considered for the solution

of the equations on the finest mesh. By applying increasingly large regions on decreas-

ing levels of refinement in the multigrid hierarchy the computational effort on the finest

meshes can be directed only to these areas of the solution domain where it would be most

beneficial. Three different schemes for deciding where to refine were evaluated for a

steady state example. The computational time was typically reduced by a half, without a

significant drop in accuracy, and solutions were still better by the same order of accuracy

than those on any coarser mesh. A transient example was also shown, however whilst the

results were of the same accuracy as the unadapted cases, the increase in performance was
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small, since more timesteps were taken as the spatial and temporal errors were balanced.

7.2 Future Work

The code developed in this work has been shown to be capable of solving many different

problems that are typical of the cases being studied in industry. The work is part of a

continuing collaboration with Shell Global Solutions. Parts of the code developed during

this research are already being used in their lubrication software.

There are three main directions for future work. First, demanding physical problems

can now be tackled with confidence. Secondly, it has been seen that there are powerful

numerical tools available, such as grid adaptation, which require further exploration and

deeper understanding with regard to their application in EHL modelling. Finally, the

development of an all inclusive environment for solving EHL is proposed. Each of these

will be outlined in slightly more detail, and it will be clear that there is a significant

overlap between them.

The problems in this work have been restricted to a very basic lubricant model. The

first step away from this must come by using more realistic and applicable viscoelastic

models. In addition to a different steady state solution, these will have very different

transient behaviour. The solution of thermal problems is also of great importance to ac-

curately measuring the contact conditions. With differing slide to roll ratios there will be

different temperature profiles on each of the two contacts and the lubricant has another

profile, too.

In Chapter 5 problems involving surface roughness were tackled. These were done by

assuming an overall smoothness to the asperities. Real surfaces have far greater roughness

than those represented here, and this is as varied as the measuring equipment is precise. To

solve EHL problems for a measured roughness is not a technically difficult inclusion to the

problem, however the resolution of the details are far greater than anything attempted in

this work. To be able to solve these problems accurately, the finest mesh used must be the

equivalent of about 10000×10000 points. With the use of adaptation this finely meshed

region can be reduced to only those points in the contact region. Such fine meshes will,

however, require a much sleeker data structure to be implemented. At present the storage

is allocated for the full computational domain, even if it is not used in the adaptive solve.

Exactly how easy this will be to implement is an issue requiring deep thought, especially

due to the deformation calculation kernel matrix requiring solution on the entire domain

for every point.

It was also explained in Chapter 6 that the grid adaptation undertaken thus far has
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only been centred on reducing the order of the linear algebra system used in solving the

Reynolds Equation. The next critical step in reducing computation times still further is to

use adaptive meshes for the multi-integration [18]. Once this has been successfully incor-

porated then the transient case should be reconsidered in order to achieve the substantial

speed-ups seen in the steady state case.

The large systems of equations to be solved, combined with the extra computational

time increases which come with increasing the finest mesh size, e.g. increasing the fine-

ness of the coarsest meshes used in both the multigrid and multi-integration algorithms,

are examples of why effective use of parallelism should be very useful. The work of

Chapter 4 has now been superseded by the use of multi-integration, but the ideas are still

important. Successful partitioning of the domain to balance loads and eliminate the serial

calculations will be very important. Work on parallel multigrid has already been done,

e.g. [91, 92, 139], and the issues of how to best partition the domain for optimum load

balancing is still unclear for adaptive meshes. Clearly the added difficulties of multi-

integration will confuse the issue still further.

A Problem Solving Environment (PSE) is a technique for changing the nature of the

way calculations are done. Codes, such as the one in this work, are usually designed,

run, the results post-processed and visualised before editing the input parameters and re-

running. A PSE, on the other hand, combines these steps to allow visualisation of results

as the solution proceeds, and allows changes to be made to the problem being solved

without recompiling or starting the solution from the beginning again. PSEs either take the

form of purpose built environments such as SCIRun [79], or as additions to more widely

available applications such as IRIS Explorer [156]. These have already been used to solve

PDE problems, e.g. [80,155]. The ability to write the solver in a modular form means that

elements of the solver can be switched mid-solve, for example between lubricant models

or roughness patterns. Computational parameters, such as adaptivity controls, iterations

required, and mesh levels, will also be freely adjustable. Such an environment would

allow ease of use to an end-user, and would facilitate fast interactive development of the

code, whilst also enabling additional insight to be gained into the inherent difficulties of

the problem being solved.
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