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Multigrid methods have proved robust and highly desirable in terms of the iteration speed in solving elas-
tohydrodynamic lubrication (EHL) problems. Lubrecht, Venner and Ehret, amongst others, have shown that
multigrid can be successfully used to obtain converged solutions for steady problems. steady problems.

A detailed study reinforces these results but also shows, in some cases, that while multigrid techniques give
initial rapid convergence, the residuals - having dropped to a low level - may reach a stalling point, mainly due to
the cavitation region. The study will explain this behaviour in terms of the iterative scheme and show how, if this
happens, the errors in the fine grid solution can be reduced further. Example results of both steady and transient
EHL problems (including a thermal viscoelastic case) are shown with further developments into adaptive meshes
considered.

1. Introduction

Elastohydrodynamic lubrication (EHL) prob-
lems have been solved numerically since Petru-
sevich’s first results were published in 1951 [1].
Almost half a century later, it is now possible to
solve large, complicated problems routinely. The
industrial requirement is for accurate solutions as
quickly as possible to help in the development of
new lubricants and model the behaviour of the
components they separate. For example, it is not
unusual to be testing several oils under a vari-
ety of loads at a variety of speeds. One of the
most successful methods that has been employed
to speed up EHL codes is that of Multigrid. Since
it was first used by Lubrecht for both line [2] and
point [3] contacts, it has become a standard tool
for fast solutions of detailed problems.

The aim of this paper is to investigate the de-
tailed performance of multigrid methods for EHL
problems and in particular to assess and improve
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the convergence behaviour as far as possible.
The rest of the paper is laid out as follows.

In Section 3 we present the governing equations
of the problem of a circular point contact using
the notation from Section 2. Section 4 briefly
describes the multigrid method, as well as the
mechanics of the solver used. Section 5 uses a
transient flow reversal case to illustrate the prob-
lems we attempt to remedy. Sections 6 and 7
describe possible difficulties we have encountered
with convergence, and they present our methods
for addressing these issues. The paper is con-
cluded in Section 8 where we also look forward to
future work using adaptive meshes.

2. Notation

a halfwidth of Hertzian contact
H non-dimensionalised film thickness
H00 film thickness central offset
p pressure
p0 ambient pressure
ph maximum Herzian pressure
P non-dimensionalised pressure:

P = p/ph



Rx reduced radius of curvature
T non-dimensionalised time
us sum of velocities of contacts
X dimensionless coordinate
Y dimensionless coordinate
z viscosity index
α pressure viscosity index
ǫ coefficient in Reynolds equation
λ coefficient in Reynolds equation
η viscosity
η0 viscosity at ambient pressure
η̄ non-dimensionalised viscosity:

η̄ = η/η0
ρ density
ρ0 density at ambient pressure
ρ̄ non-dimensionalised density:

ρ̄ = ρ/ρ0

3. Governing Equations

The EHL problem is governed by a system of
equations which both define the pressure distribu-
tion due to the lubricant thickness, and the de-
formation of the surfaces due to the pressure. For
circular point contact cases, as used in this paper,
the equations in non-dimensionalised form, are:
the Reynolds equation:
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where ǫ and λ are given by
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Equation (2) is the most computationally in-
tensive part of the solution process. This is
because, in a discretised form, each point is a
function of all the pressures at all the points
in the computational domain. Multi-level multi-
integration, as first proposed for EHL problems
by Brandt and Lubrecht [17], and Venner [4],
has speeded this up dramatically, reducing the
amount of work in this calculation from O(n2) to
O(n lnn), where n is the total number of points
in the domain.

For completion, the model used for viscosity
is derived from the Roelands equation [5],

η(p) = η0 exp

{

α p0
z

[
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(
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p
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)z]}

(6)

and for density the Dowson and Higgison rela-
tion [6] is employed:

ρ(p) = ρ0

(

1 +
5.8× 10−10 p

1 + 1.7× 10−9 p

)

. (7)

4. The Multigrid Solver

To solve the problem we, first, spatially dis-
cretise the equations on a regular grid of size
2k+1 x 2k+1 points. We can then use symme-
try along the y = 0 centreline to halve the size of
the domain.

The smoothing process is defined in the fol-
lowing stages. First, the Reynolds Equation (1)
for the pressure is solved as described below. Af-
ter that is done the force balance equation (3) is
used to relax the value of H00 before it is used in
the calculation of the new film thickness in (2).
Finally, the viscosity and density are updated.
This is implemented in software built upon the
FDMG code [7] and is described in [8].

In a traditional non-multigrid framework this
smoothing process is repeated ad infinitum on the
grid described above. The advantage of multi-
grid is that it can start on a much coarser grid
(ie where k is lower). The initial smoothing steps



0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.09 0.1 0.11 0.12 0.13

N
on

-d
im

en
si

on
al

is
ed

 C
en

tr
al

 F
ilm

 th
ic

kn
es

s

Time (s)

100 Iterations
 30 Iterations
 10 Iterations

0.01

0.015

0.02

0.025

0.03

0.035

0.09 0.1 0.11 0.12 0.13

N
on

-d
im

en
si

on
al

is
ed

 M
in

im
um

 F
ilm

 th
ic

kn
es

s

Time (s)

100 Iterations
 30 Iterations
 10 Iterations

Figure 1. Central and minimum film thicknesses during reversal of entrainment with 10, 30 and 100
iterations per timestep.

are performed before stepping up to the next finer
grid in a hierarchical manner. Elimination of
large errors in the initial Hertzian solution, as well
as very low frequency errors, are achieved in this
way. These issues are explained in detail in, for
example, [9] and [10], along with more informa-
tion on multigrid methods and strategies.

The principle is relatively straightforward.
Each level in the hierarchy of grids is regularly
meshed so that in each coarser-finer pair of grids
all the coarser points are coincident with points
on the finer mesh, with an extra point mid-
way between each two adjacent coincident points.
The simplest multigrid cycle is the V-cycle which
starts on the finest grid, smooths the solution and
then coarsens both the solution and the residual
to the next grid where it again smooths. This pro-
cess is repeated until the coarsest grid is reached
where, after smoothing, a prolongation operator
is used to then update the solution on the next
grid up. Smoothing is then applied. When we
have smoothed on the finest grid we are said to
have completed one multigrid cycle. The opera-
tions of prolonging and coarsening between grids
are defined in terms of stencils showing how the
interpolation of the local values are used to cal-
culate the coarser and finer representations of the

solution. We can define them as operators on a
solution by

ũk−1 = Ik−1

k uk (8)

for coarsening from grid k to grid k-1, and for
prolonging back by

ũk = Ikk−1
ũk−1. (9)

The nature of the EHL problem means that
across the domain there are two very different re-
gions. In the contact region (around (0,0)) the
Reynolds equation in the transient case is hyper-
bolic in character, whereas in the rest of the do-
main it is parabolic. Different solution schemes
are needed in each of these regions. There are
a variety of possible schemes that are commonly
employed in these areas. These are summarised
and compared in papers such as [11] and [12]. It
is also important to note that the far right-hand
side of the domain is a cavitation region where
the Reynolds equation no longer applies.

5. Transient Problems

One of the current areas of particular inter-
est is solving transient problems. These require
a robust strategy for quickly obtaining converged
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Figure 2. Difference in results between dis-
tributed and Nurgat’s non-distributed scheme for
a reversal problem over 0.2s.

results at each time step. Each timestep is a sep-
arate problem, but excessive errors must not be
allowed to propagate through from one step to the
next. Figure 1 shows the effect of timestepping
before all the variables have fully converged with
the three curves showing 10, 30 and 100 fine grid
iterations per timestep. This example is from [13]
and shows the central and minimum film thick-
nesses during linear reversal of entrainment from
0.1ms−1 to -0.1ms−1 in 0.2s.

The variation between the curves in Figure 1
clearly illustrates how the solution after 10 itera-
tions was not fully converged. In this case we have
used timesteps of 0.001s which gave 100 timesteps
each side of the point of reversal. A successful
transient code needs to be able to quickly com-
pute the next solution but there is a delay in the
convergence of the results.

The iteration method used is that of Nurgat,
Berzins and Scales [12]. This offers an alternative
to the distributed scheme of Venner [4] and has
since been compared to the Venner scheme on a
number of highly loaded cases. The results and
convergence times were similar between the two
methods. This is illustrated in Figure 2 which
shows the difference in solution of the results ob-
tained for the 30 iteration case between the dis-

tributed scheme and that of Nurgat for central
and minimum film thicknesses, the central offset
value, H00 and the sum of pressures. These dif-
ference are small and well within the errors shown
above for non-converged results.

6. Multigrid Convergence and Stalling

The essence of multigrid is the use of coarser
grids to correct the solution quickly by eliminat-
ing errors of frequencies that would be expensive
to remove on the fine grid. The EHL problem
is highly non-linear and so we need to use the
Full Approximation Scheme (FAS). This means
that, rather than just transferring the error be-
tween grids to correct the solution, we transfer
the solution as well. FAS accomplishes this by
coarsening the previous fine solution, smoothing
on the coarser grid and then prolonging a correc-
tion back to the finer grid. This is called Coarse
Grid Correction (CGC).

In EHL problems the coarse mesh solution
may be inherently different to the fine mesh solu-
tion on the edge of the cavitation region because
the position of the free boundary may move half
a coarse mesh cell (one fine cell). This means
that when interpolating back, the new solution
is introducing an error at this boundary. This is
shown in Figure 3 which shows the residual levels
across the half domain at two separate stages in
the solution process - both after returning from
the CGC process. The more prominent, faint sur-
face shows the early stages of convergence where
residual levels across the whole domain are noti-
cable. The lower, darker surface shows that most
of the error has been smoothed away except that
exactly the same error is reappearing on the cav-
itation boundary. This error is then smoothed
away on the fine grid but is reintroduced the next
time the CGC is made. This means there is a
stage when the errors smoothed away on the finest
grid are equally balanced by the errors added to
the solution by the CGC process.

This stalling point is illustrated in Figure 4
which shows, in a relatively highly loaded case,
the way the residuals on the finest grid reach a
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Figure 4. Residual values reaching a stalling point
in a multigrid solution method.

point beyond which further multigrid cycles have
no effect.

Careful treatment of this free boundary is
therefore necessary. In [4] it says that “near the
cavitational boundary both for the transfer of the
residuals as well as for the transfer of the solu-
tion to the coarse grid injection should be used.”
In our experience it may be necessary also to fix
the free boundary on coarser grids to ensure that,
when it is prolonged back it has not moved.

The EHL problem has the added complica-
tions of the sharp pressure rise on the edge of
the contact region (where ǫ changes by many or-
ders of magnitude) and the pressure ridge. The
advantage of the multigrid start to performance
is enormous and the use of standard multigrid
techniques for initial error reduction is also with-
out question. However, when accurate, fully con-
verged solutions are required a good strategy is
to remove the coarsest grid from use at the stage
when the CGC is no longer useful. For full con-
vergence to occur, this may or may not lead to a
stage where just the fine grid remains.

The decision of when to remove grid levels is
determined by a number of factors, the most obvi-
ous one being the ratio of the reduction in size of
the residual from the CGC process to the reduc-
tion that would have been expected by smoothing
on the fine grid alone. To simply say that there
is an advantage is not enough because we must
also include whether the time spent doing work
on the coarser mesh is bringing enough of an error
reduction on the finer mesh to justify using it.

An example of this can be seen in the following
example from [14]. This is a thermal viscoelas-
tic case with sliding. Running it on a series of
three grids (smoothest 65x65) with and without
our new method gave results as shown in Fig-
ure 5. We can see that the residual level using
the new method has not stalled and that conver-
gence is linear. In this case only the coarsest grid
has been discarded (after around 300 fine grid it-
erations) and so multigrid is still being used all
the way to machine accuracy.

An important point is that for the perfor-
mance of the code still to be efficient we need to
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Figure 5. Effectiveness of multigrid cycles in re-
ducing the residual in a thermal viscoelastic ex-
ample with sliding.

continue to use multi-integration up to our origi-
nal coarse level. This operation is not dependent
on moving between grids, just using the values of
pressure at the coincident points. If there is no
decrease in convergence rate when grids are dis-
carded (up until just the fine grid remains) then
there will be a (small) work reduction.

7. The Force Balance Equation

Although the convergence of the Reynolds
Equation (1) is of primary importance to the con-
vergence of the system, care must be taken to en-
sure that the Force Balance Equation (3) is satis-
fied to a similar degree of accuracy. The method
we are using is that described by Venner [4].

H00 ← H00 − c





2π

3
− hxhy

nx
∑

i=1

ny
∑

j=1

Pi,j



 (10)

In this method the force balance equation is
relaxed only on the coarsest grid and corrections
made to be used on the finer grids. We have
seen above that the solution on this grid is dif-
ferent to the solution on finer grids and hence the

Table 1
Variation of non-dimensionalised H00 between
grids.

Grid dimensions H00

17 x 17 -1.0504
33 x 33 -0.9508
65 x 65 -0.9286
129 x 129 -0.9243

converged value of H00 will differ between grids.
Table 1 highlights the variation in the converged
value of H00 on different grids for a typical prob-
lem. From equation (10) it is clear that if H00 is
not correct, then the sum of the pressure is not
correct, meaning we have only strictly satisfied
two of our three equations.

There are several different approaches possi-
ble for allowing H00 to vary over the grids. These
include using one independent value on each grid,
passing the value between grids, or only pass-
ing the value up/down through the grids. These
stategies are summarised in Table 2. In our com-
putational experience the quickest, most accurate
strategy for fine grid Force Balance Equation con-
vergence is passing the value of H00 from the
finest grid down to coarser one but not back up.

In equation (10), the parameter c is a small
enough relaxation factor (eg c=0.01) to avoid un-
stable oscillations [4]. Again, during the initial
convergence of the solution this is very useful but
a stage is reached where this contribution is too
small.

Experiments have shown us that the the resid-
uals will decay to machine accuracy as the sum
of pressures converges to 2π

3
and hence H00 con-

verges on its final value. After the initial con-
vergence has been achieved it is possible to in-
crease the value of c in (10). A similar modifica-
tion to the relaxation value in the chosen scheme
for solving the Reynolds equation 1 is also bene-
ficial. These changes were used in the generation
of Figure 5.



Table 2
Strategies for passing H00 between grids.

Strategy for updating H00 H00 Sum of pressures ( 2π
3
≈ 2.0944)

when ‘converged’ on finest grid

Calculate on coarsest grid only -0.8950 1.9903

Calculating on each grid:-
Keep each grid independent of others -0.9293 2.1005
Pass one value freely up and down grids -0.9181 2.0597
Pass coarsest value up to finest -0.8805 1.9726
Pass finest value down to coarsest -0.9299 2.0934

8. Conclusions and Future Work

The combination of multigrid and multi-level
multi-integration techniques produce fast solu-
tions to EHL problems. We have presented three
separate amendments to the strategy previously
employed. These each produce more accurate
results with less work than was previously nec-
essary. We have shown that the Force Balance
Equation must not be treated as a side issue but
an overriding factor governing the final conver-
gence of results. The overall convergence of our
new approach can be seen in Figure 5.

We have now overcome many of the problems
discussed in [12] concerning “delivering better
convergence in terms of the residual” in addition
to “reducing [the] CPU time” although we will
endeavour to continue to make improvements.

The next stage of our research will be to in-
vestigate the need to completely mesh the entire
computational domain using the finest level of re-
finement. The region of greatest interest is where
the second derivative terms are highly variable,
which in EHL problems is the contact region, in
particular around the pressure ridge near the cav-
itation region. The option of not having as fine
a mesh outside the regions of interest will signif-
icantly reduce the work per fine grid level - es-
pecially as the surface will be almost undeformed
and hence the film thickness will be approaching
parabolic. During the preparation of this paper
we learned of other work using adaptive meshes
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Figure 6. Use of adaptive gridding on a half do-
main, with second derivative contours overlayed.

for EHL problems [15].
Initial work has shown a saving of at least

a third on the overall time taken for the calcu-
lation. Figure 6 shows a two-level mesh con-
taining both 129x129 and 65x65 resolution re-
gions. The dots are fine mesh nodes not calcu-
lated upon. The contours represent the change

in value of
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functions, such as these contours, to guide mesh
refinement is common in the adaptive mesh com-
munity. This approach has the important advan-
tage of focussing the computational work where
it is needed most. An obvious extension is to



combine such ideas with accurate time stepping
approaches.
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