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ABSTRACT

Image segmentation of very large and complex microscopy

images are challenging due to variability in the images and the

need for algorithms to be robust, fast and able to incorporate

various types of information and constraints in the segmenta-

tion model. In this paper we propose a graphical model based

image segmentation framework that combines the informa-

tion in images regions with the information in their boundary

in a unified probabilistic formulation.

Index Terms— model based image segmentation, prob-

abilistic graphical models, microscopy image segmentation,

axon segmentation

1. INTRODUCTION

Image analysis and segmentation of large complex mi-

croscopy images is a challenging problem. In some settings

the image analysis is dominated by the need to identify and

characterize a very large number of small objects of interest

in images that have large amount of variability, have compli-

cated backgrounds, and may have low contrast. Microscopy

images of stained histological sections of brain or spinal cord

tissue are one such example, where one seeks quantitative

measurements from closely packed individual axons within a

very large data set. For example, one may want to use such

images to extract physiological features for comparison to

other lower resolution imaging modalities, such as in studies

of the physiological basis of diffusion weighted MRI [1].

The inability to efficiently identify and quantitate individual

objects such as axons can lead to the use of suboptimal and

subjective ROI-based methods that can be difficult to repeat

or to generalize from [2].

Image segmentation algorithms for these types of data

need to be fast, robust, able to handle complex images, and

able to incorporate various types of information and con-

straints in the segmentation model. There are few reports in

the literature on methods to efficiently address this problem.
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Deterministic approaches including clustering-based meth-

ods such as mean shift [3], active contours [4], level set-based

methods [5], and graph cut-based methods [6] are often not

directly applicable. They either require some image-specific

manual initialization, or do not incorporate all the critical

information in the images into the segmentation algorithm.

Model-based probabilistic approaches have also been used in

image segmentation; they formulate the segmentation prob-

lem as a stochastic optimization. The benefit of using these

models is the ability to incorporate various types of informa-

tion available in the data into the model. These approaches

include graphical models [7], [8], such as Markov random

fields (MRF), conditional random fields (CRF) and Bayesian

networks (BN). Other probabilistic approaches include dis-

criminative models without using graphical models. The

benefit of using graphical models in this framework is the

ability to systematically combine information in the image

data as well as other prior knowledge about the data.

The histology data images of interest in this study come

from human cadaver brain and spinal cord tissue. The ulti-

mate goal is to quantify the distribution of axon density, size,

eccentricity, etc. These images contain a very large number

of very small homogenous objects (often only a few pixels

in diameter) which include the desired axons, but also nu-

clei, branches of through-plane axons, and other structures

that appear similar to axons based on their color and inten-

sity, but which can be distinguished from axons by consider-

ing their shape and the structures in their local neighborhood.

A sample 100×100 pixel histology image is shown in Fig. 1,

where desired axon objects can be identified as small dark ob-

jects. The entire histology data consists of 128×128 images

of 716×1116 pixels, i.e. the composite image to be processed

contains about 1010 (140,000×90,000) pixels, where the ob-

jects of interest are of the order of a few pixels. To address

this problem, we adopt a probabilistic modeling framework,

defining an axon model that represents axon pixels based on

their color and intensity, the information in their local neigh-

borhood, and the information in their boundaries. In this

framework, an axon model can be thought of as a posterior

class-conditional probability density function based on the

above information and the image. The probability maps for

class axon can then be converted to homogenous regions rep-

resenting each axon.
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Fig. 1. Sample histology image shows axon objects as dark

instances.

We report here on our development of a graphical model

axon segmentation approach, motivated by [9], that unifies

these two types of information - the information in axon

regions and the information in their boundaries. Our axon re-

gion model incorporates intensity, color, and texture and ho-

mogeneity information available in different color channels,

while our boundary model includes curvature, in addition

to gradient information. We hypothesize that the curvature

based information will be particularly useful in identifying

structures that have intensity measurements similar to axons,

but boundary shapes with low probability of being an axon

boundary.

In more detail, the information available in axon regions

are modeled by undirected graphical models, a CRF model,

that can effectively capture noncausal relationships between

different image entities, such as spatial homogeneity between

different axon regions, by encouraging adjacent regions to be

classified into the same label. The benefit of using CRFs [10]

over other undirected graphical models such as MRFs [11]

is that they directly model the posterior probability distribu-

tion of regions being axon given the region measurements,

which is our desired model for an axon region. This makes the

CRF a discriminative model for axons given the observations.

Another benefit of using CRFs is that they assume condi-

tional dependence between the neighboring observations us-

ing the Markovian assumptions, and incorporate relationship

between neighboring observations into the model. The spe-

cific discriminative CRFs used here are based on arbitrary dis-

criminative classifiers and are called discriminative random

fields (DRF)[12].

Using the information in the boundary pixels separately,

the axon boundary is modeled by DRFs as the posteriori prob-

ability distribution of boundary pixels being on a true axon

boundary. The boundary information can also be thought of

as the information in the edge pixels of axon regions and mod-

eled by directed graphical models of BNs. In the BN frame-

work the boundary model is combined with the DRF model of

axon regions where the combined model systematically incor-

porates the two types of information, as well as the relation-

ship between the two types of information, into one general

framework, in a probabilistic manner [9].

In Sec. 2 we describe in some detail the specific model-

ing choices we employed for each components of our overall

model, explain why those choices were made and describe

how we combined them together into a single overall model.

In Sec. 3, using stained images of human corpus callosum as

our study example, we show axon probability maps as the out-

put of our DRF model on image measurements, and the axon

boundary classification based on applying the DRF model on

the boundary measurements. In Sec. 4 we conclude and de-

scribe our next steps.

2. METHODS

In this section we first explain our CRF model for axon re-

gions, explain how different component of the model are ob-

tained, and relate the model to a DRF model. We then explain

how the same DRF model can be applied to axon boundary

nodes. Finally, we also propose a BN based model for axon

boundaries and explain how they can be combined with the

DRF model for axon regions.

2.1. CRF based image segmentation

A CRF model is used to segment an image into axon region

(nodes) y={yi}, where y is the joint labeling of all regions

(nodes) yi, by modeling the posterior probability distribu-

tion of image regions (nodes) yi, given image observation

x, defined as p(yi|{yj}j �=i,x). Conditioned on image ob-

servation x, the axon regions follow a Markovian property

i.e. p(yi|{yj}j �=i,x) = p(yi|N(yi),x) where N(yi) repre-

sents the spatial neighborhood of yi, so that any image region

yi depends only on its neighboring (adjacent) regions and is

independent of its non-neighbor regions. The joint posterior

probability distribution of region nodes y is given by:

P (y|x) =
1
Z

exp (
∑

i∈V

Ai(yi, x) +
∑

i∈V

∑

j∈Ni

Iij(yi, yj , x)) (1)

=
1
Z

∏

i∈V

φ(yi, xi)
∏

i∈V

∏

j∈Ni

exp (yiyjλ
T gij(x)) (2)

where φ(yi, xi) is the unary potential (or association potential

Ai(yi, x)), i.e. likelihood of label yi given its feature vector

xi from training data or the association of node yi to class i,
exp (yiyjλ

T gij(x)) is the pairwise potential (corresponding

to interaction potential Iij(yi, yj , x)), i.e. adjacency between

yi, yj , given x. gij(x) = [1, |xi − xj |]T is defined as the dif-

ference between feature vectors xi, xj , where our feature vec-

tors include image intensity, RGB and CIELAB color infor-

mation, and local neighborhood measures including standard
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deviation, range, and entropy of intensity and RGB color in-

formation for each image region (node yi). Z is the normal-

izing term (a detailed calculation for Z is described in [9]).

Parameter λ is calculated using a maximum likelihood esti-

mation (MLE) of the pairwise potential, and φ(yi, xi) is cal-

culated from training data using a logistic regression classi-

fier. V is the set of all image regions and Ni is the set of

regions in the neighborhood of ith region.

Using the DRF framework [12] the local class posterior

for region yi being axon given its measurements xi is defined

using generalized linear models and the logistic function as

the link function:

P (yi = 1|x) =
1

1 + exp (−(ω0 + ωT
1 x))

= σ(ωT x) (3)

where yi = 1 refers to region yi being an axon region, and

yi = −1 a non axon region. Using (3), the probability density

function of region yi given measurements xi is P (yi|x) =
σ(yiω

T x) and the local association potential Ai(yi, xi) =
ln(σ(yiω

T x)). We find the ω parameters by maximum likeli-

hood using a simplex search method.

The local interaction potential Iij(yi, yj , x) is the local

posterior of two neighboring regions having same labels given

their labels yi and yj and their measurements xi and xj and

is defined similarly to (3):

P (yi = yj |x, yi, yj) = P (tij = 1|tij , xi, xj) = σ(tijνT x)

where tij = 1 when yi = yj and tij = −1 otherwise. We also

find the ν parameters using maximum likelihood estimation

and indeed find them jointly with the ω parameters.

2.2. DRF based axon boundary segmentation

We use the DRF framework to find the posterior probabil-

ity distribution of image boundary (nodes) bi given bound-

ary measurements Mb where each boundary node consists of

boundary pixels corresponding to an image region yi:

P (b|Mb) =
1
Z

exp (
∑

i∈W

Ai(bi, Mb)+ (4)

∑

i∈W

∑

j∈Wi

Iij(bi, bj , Mb)). (5)

We select boundary nodes using an appropriate level set of

the axon region probability density function P (y|x). W is the

set of all boundary nodes, and Wi the set of adjacent bound-

ary nodes to bi. Since the level set function leads to bound-

ary nodes that are disjoint and independent of each other, the

second term in (5) will be zero. The first term is similar to

a logistic regression classifier using the boundary measure-

ments Mb and the probability of boundary node bi being a

true axon boundary given boundary measurements, given as

P (bi|Mb) = σ(biμ
T Mb), and the joint probability of all

boundary nodes being true axon boundary is given as:

P (b|Mb) =
1
Z

∏

i∈W

φ(bi, Mbi)

Our axon boundary measurements are divided into two

category: curvature features and gradient features. We first

obtain closed boundaries from a level set of axon density

maps, then fit cubic splines to the boundary pixels and cal-

culate the normalized local curvature. Curvature features are

1) the number of sign changes larger than a self-referenced

threshold, 2) the curvelengths with continuous curvatures be-

low another (negative) threshold, 3) the sum of the values in

2, and 4) the overall minimum and maximum curvature. Gra-

dients are calculated along profiles normal to the boundary.

2.3. BN based axon boundary segmentation

In a Bayesian framework the goal is to find the state of bound-

ary nodes bi given not only the boundary measurements, but

also the image measurements using a BN (see [9]). Assum-

ing axon boundary nodes bi are derived from level set of axon

density maps, they are dependent on their corresponding axon

region nodes yi and their boundary measurements Mbi. The

joint probability of all image region nodes y = {yi}, all im-

age boundary nodes b = {bi}, and all image boundary mea-

surements Mb = {Mbi} is given by:

P (y, b, Mb) = P (Mb|b)P (b|y)P (y)

=
m∏

j=1

P (Mbj
|ej)P (bj |pa(bj))

n∏

i=1

P (yi)

where pa(bj) are the parents of bj , i.e. image regions neigh-

boring the boundary, and P (yi) is the prior for axon region

labels, assumed to be uniform. P (bj |pa(bj)) is the proba-

bility of a true boundary given parent image regions and is

learned from the data. Searching for the most probable ex-

planation of b, y nodes given the measurements Mb results in

true boundary nodes of y∗ and b∗:

b∗, y∗ = arg max
b,y

P (b, y|Mb) = arg max
b,y

P (b, y,Mb)

2.4. Unifying the DRF model of axon regions and the BN
of axon boundaries

Unifying the DRF model of all axon regions y given their

measurements x and and the BN model of all axon bound-

aries given their axon regions and boundary measurements,

the joint probability of image measurement x, all axon region

nodes y = {yi}, all axon boundary nodes b = {bi} and all

axon boundary measurements Mb = {Mbi} is given by:

P (x, y, b, Mb) = P (Mb|b)P (b|y)P (y|x)P (x) (6)

=
1
Z

m∏

j=1

P (Mbj
|ej)P (bj |pa(bj))

∏

i∈V

φ(yi, xi)
∏

i∈V

∏

j∈Ni

exp (yiyjλ
T gij(x))
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3. RESULTS

The probability density map of image pixels in Fig. 1 being

an axon, using the DRF framework is shown in Fig. 2.

Fig. 2. Axon density map using the DRF model

The distribution of curvature boundary features show

good linear separability for axon boundary labels vs. non

axon boundary labels as shown in Fig. 3. These features

when added to gradient features provide even greater separa-

bility among axon boundary vs. non axon boundary labels.

Fig. 3. Number of curvature sign changes vs. curvelengths

with continuous negative curvature for axon boundary vs. non

axon boundary nodes

4. CONCLUSION AND FUTURE WORK

In this paper we use DRF frameworks to find probability maps

for axon regions and axon boundaries separately. The results

show that both maps show good visual correspondence with

the image data. However, combining the two set of data will

lead to much better results since we use both models jointly,

just as people do when they visually segment these types of

data. Our next step is to perform true inference labeling of

both BN boundary model and the joint model and compare

the results with manual segmentations.
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