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ABSTRACT

With increasing use of subject-specific longitudinal imaging
for assessment of development, degeneration and disease pro-
gression, there is a clear need for image analysis segmenta-
tion/registration tools dedicated to 4D image time series . Pre-
vious work has mostly focused on temporal modeling of ge-
ometric deformations and shape changes, assuming that im-
age intensity changes can be normalized. However, in stud-
ies of early infant development or aging, e.g., we encounter
low contrast and appearance alterations due to tissue prop-
erty changes which pose challenges to temporal registration
and 4D segmentation. The two problems are linked since reg-
istration can be solved if appearance changes are accounted
for, and 4D segmentation requires registration of image time
series. In this paper, we propose to integrate a temporal ap-
pearance change model into diffeomorphic registration thus
accounting for such variations, where voxel-wise intensity
model parameters are calculated from temporal image coreg-
istration. Moreover, we demonstrate a novel 4D segmenta-
tion of co-registered images that uses local intensity change
rather than intensity itself for Gaussian mixture model. Both
methods can be seen as two stages of an integrated registra-
tion/segmentation framework for 4D time-discrete image data
making use of the same underlying model of longitudinal ap-
pearance changes. We demonstrate feasibility of the new ap-
proach with validation on longitudinal, multimodal pediatric
MRI of infants in the age range neonates to 24 months.

Index Terms— Temporal appearance modeling, 4D seg-
mentation

1. INTRODUCTION

Longitudinal image analysis of MR images plays an impor-
tant role in studying the trajectory of normal brain develop-
ment, degeneration patterns of aging brains, and monitoring
disease progression and therapeutic intervention. Accurate
and consistent tools for longitudinal segmentation and regis-
tration are necessary requirements for many clinical applica-
tions. Current methodologies do not fully solve the significant
challenges related to temporal variations in image appearance

due to differences in scanner calibrations, global or local tis-
sue changes related to development or aging, and appearance
variations related to disease.

Previous work reflects a variety of approaches to ad-
dress these difficulties. Xue et al. [1] propose image-adaptive
clustering, spatiotemporal smoothness constraints, and im-
age warping to jointly segment single subject serial MRI to
achieve consistent longitudinal alignment and segmentation.
The clustering objective function treats the spatially and tem-
porally adaptive smoothness constraints in a similar manner
despite significant differences across space and time. Shi
et al. [2] take advantage of the fact that MRI presents im-
proved tissue contrast at older ages and proposed the use of
a subject-specific tissue probability atlas to guide segmenta-
tion at earlier time points along with iterative bias correction.
Niethammer et al. [3] propose a geometric metamorpho-
sis formulation to explain changes in image appearance by
a composition of a global deformation and a deformation
of a geometric model. Csapo et al. [4] model longitudinal
intensity changes explicitly and propose a model-based im-
age similarity measure for longitudinal image registration
in the presence of spatially non-uniform intensity changes.
Reuter et al. [5] introduce a longitudinal analysis framework
based on unbiased within-subject template creation to avoid
processing bias, over-regularization and build workflow on
FreeSurfer to get the capacity of producing a large variety
of reliable imaging statistics. Prastawa et al. [6] present a
framework for construction of subject-specific longitudinal
anatomical models including joint segmentation, registration,
and personalized atlas building, with individual Gaussian
mixture model per time point to account for temporal con-
trast differences. Regularization over time is achieved via
kernel smoothing of the longitudinal subject-specific tissue
probability atlas. Kim et al. [7] focus on brain maturation
and related contrast changes and developed a spatial intensity
growth map (IGM), which was computed as the coefficient
of a voxel-wise linear regression model, to compensates for
white matter intensity inhomogeneity. Gao et al. [8] work
on temporal intensity change modeling via voxel-wise inten-
sity Gaussian smoothing based on aligned image series and
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Fig. 1. Clinical pediatric scans at ages 0, 3, 6, 9, and 11
months (from left to right) after affine alignment. Axial slices
are shown for T1W (top row) and T2W (bottom row) images.

provide a joint 4D segmentation and appearance modeling.
Most of the previously reported work relies on geometric

deformation modeling which suffers difficulties related to low
contrast common in longitudinal pediatric MRI (Fig. 1). We
propose a novel joint temporal appearance and deformation
model to account for intensity changes due to tissue property
alterations and geometric deformations resulting from brain
growth. We also demonstrate that the temporal appearance
model can be be used for 4D image segmentation, a task
which is difficult for infant MRI at ages where contrast van-
ishes (mark in Fig. 2 with a black ellipse).

2. METHOD

Let us consider a longitudinal MRI sequence of a single sub-
ject acquired at multiple time points. There may be large vari-
ation among the image series, so we firstly eliminate bias ar-
tifacts associated with MRI acquisition for each image, then
apply affine transformations to co-register the image series.
For temporal consistency, we adjust all images in a time se-
ries to be at the same intensity level. The central ventricular
CSF area shows image intensity stability over time, so we
choose the average value within this region for a reference to
apply temporal intensity normalization. Finally, we have a
pre-processed sequence of MRI images: It = {It(x) : x ∈
R3}, where t ∈ {1, · · · , T}.

2.1. Temporal appearance model

The choice of temporal appreance model should depend upon
the application. Fig. 2 shows typical intensity change over
time for pediatric MRI of infants and it suggests that a linear
model would be a good candidate for this application. In this
section, we assume images are co-registered, for each voxel
x, the intensity model with respect to time t is as follows:

f(t, x) = w(x)t+ b(x) , (1)

where w(x) is the slope and b(x) is the intercept in linear
intensity model for voxel located at x.

Fig. 2. Voxel-wise intensity changes over time in gray and
white matter regions of interest shown for T1w and T2w im-
ages after registration.

2.2. Diffeomorphic temporal registration

In this section, for notation simplicity, we omit parameter x
in the temporal intensity model and notate f(t, x) as f t. Our
goal is that after successful image registration, the intensity
model parameters would provide a closer fit to the images at
each time point. Via the Large Deformation Diffeomorphic
Metric Mapping (LDDMM) framework [9], given a sequence
of images, It ∈ L2(Ω, R) where t ∈ {1, · · · , T}, we define
the following energy function:

E(φt) =

T∑
t=1

1

2σ2
‖f t ◦ (φt)−1 − It‖2 + (Lvt0, v

t
0) . (2)

Here σ2 represents noise variance, and the vt0 ∈ L2([0, 1], V )
is the initial velocity field (for time point t) in reproducing
kernel Hilbert space V equipped with metric L : V → V ∗, a
positive-definite, self-adjoint and differential operator, which
maps V to it’s dual space V ∗. The notation (m, v) denotes
the pairing of a momentum vector m ∈ V ∗ with a tangent
vector v ∈ V . The deformation φt is defined as the integral
flow of vt. To clarify our notation, subscript t is used for the
time variable in the time-varying velocity field, for example,
vt : [0, 1] → V , however, superscript t is used for the index
of discrete time point in sequence MR images. The geodesics
that minimize the energy function Eq. 2 are characterized by
the following EPDiff equation:

∂v

∂t
= −Kad∗vm = −K[(Dv)Tm+Dmv+m div v] , (3)

where D denotes the Jacobian matrix, operator ad∗ is the
dual of the negative Lie bracket of vector fields, and advw =
[v, w] = Dvw −Dwv.

2.3. Joint estimation of model parameters

Integrating the temporal appearence model (Eq. 1) with dif-
feomorphic temporal registration (Eq. 2), the objective func-
tion for registration with temporal appearance model is de-
fined as follows:

F =
∑
t

1

2σ2
‖(wt+ b) ◦ (φt)−1 − It‖2 + (Lvt0, v

t
0) . (4)



Minimizing this objective function (Eq. 4), by taking deriva-
tive and applying the chain rule (e.g. ∂F

∂ft
∂ft

∂w ), gives closed-
form solutions for w and b with respect to φt as follows:

w =
Y P −XQ
Y 2 −XZ

, b =
Y Q− ZP
Y 2 −XZ

(5)

where

X =
∑
t

|Dφt| , Y =
∑
t

t|Dφt| , Z =
∑
t

t2|Dφt| ,

P =
∑
t

It ◦ φt|Dφt| , and Q =
∑
t

tIt ◦ φt|Dφt| .

Please note that in this novel framework, the voxel-wise in-
tensity change model’s parameters w and b are estimated to-
gether with the deformation fields φt from the diffeomorphic
registration framework.

2.4. 4D Segmentation

After registration with temporal appearence model, images
are co-registered across time and each voxel’s intensity is
a function over time, then we can use these model param-
eters, which represents the set of longitudinal images, for
tissue segmentation. In the case of linear intensity model
(Eq. 1), these are slope and intercept parameters. For the
segmentation based on the intensity model’s parameters, we
model each class c ∈ {1, · · · , C} by a normal distribu-
tion with parameters Θc = {µc,Σc}, where µc is the mean
and Σc is the covariance. The joint probability of the in-
tensity model’s parameters {w(x), b(x)} attributed to class
c is p({w(x), b(x)} |Γx = c ; Θc) = N ({w(x), b(x)}; Θc),
where N is the normal density function.

Given the prior probability of the voxel x belongs to class
c via atlas, i.e. p(Γx = c) = Ac(x), by the law of total proba-
bility: p({w(x), b(x)}; Θ) =

∑
cAc(x)N ({w(x), b(x)}; Θc),

which is a mixture of normal distributions, and Θ represents
all parameters of normal distributions.

Assuming the slopew(x) and intercept b(x) from the tem-
poral intensity model of a longitudinal image sequence are
statistically independent over space, the likelihood function
is given by the mixture of normal models

L(Θ) = p(w, b ; Θ) =
∏
x

p({w(x), b(x)} ; Θ)

=
∏
x

∑
c

Ac(x)N ({w(x), b(x)} ; Θc) .
(6)

3. RESULTS AND DISCUSSION

We use two datasets to evaluate our model: both of them are
multimodal (T1w and T2w) pediatric brain MRI of infants.
Dataset 1 contains scans from 0, 3, 6, 9 and 11 months and
Dataset 2 contains scans from 6, 12 and 24 months. Axial

sections from Dataset 1 are shown in Fig. 1. For the temporal
appearance model, we apply the linear model (Eq. 1). For the
registration, we use diffeomorphic registration (Eq. 2). Due to
the inherent challenge for experts to label such complex, mul-
timodal data, instead of comparing with ground truth, we use
well-accpeted EM segmentation for Gaussian mixtures with
atlas priors [10] as the baseline to compare with our results.

Fig. 3. Dataset 1 in axial view: a, b are T1w and T2w MRI
from 0 month, c, d are the baseline white and gray tissue seg-
menations based on a, b; e, f are T1w and T2w MRI from
11 months, g, h are the baseline white and gray tissue seg-
menations based on e, f; i, j are estimated voxel-wise slope
parameters based on T1w and T2w longitudinal images; k, l
are estimated voxel-wise intercept parameters based on T1w
and T2w longitudinal images; m, n are the white and gray
tissue segmentations based on i, j, k, l.

Fig. 4. Dataset 2 in sagittal view: a, b are T1w and T2w MRI
from 6 month, c, d are the baseline white and gray tissue seg-
menations based on a, b; e, f are T1w and T2w MRI from
24 months, g, h are the baseline white and gray tissue seg-
menations based on e, f; i, j are estimated voxel-wise slope
parameters based on T1w and T2w longitudinal images; k, l
are estimated voxel-wise intercept parameters based on T1w
and T2w longitudinal images; m, n are the white and gray
tissue segmentations based on i, j, k, l.

In Fig. 3 and Fig. 4, the slope images (i, j) show clear
boundaries between brain tissue, which implies different in-
tensity change speed over time. The intercept images (k, l)
represent the temporal intensity model at time t = 0. The seg-
mentation results (c, d), by using only the first time point (a,
b), show that without proposed 4D segmentation, the neonate
MRIs are difficult to be segmented. We clearly observe
that our proposed longitudinal 4D segmentations (m, n) us-
ing temporal intensity models provide tissue segmentations,
which are qualitatively very close to the EM segmentations
(g, h) of the final time point, whereas they are significantly
better than the single time point segmentations (c, d) before



the final time point. These results are interesting since we do
not use image intensities but solely intensity change profiles
to differentiate the different tissue classes.

4. CONCLUSIONS

This paper presents work towards a new framework for joint
registration/segmentation of longitudinal time series, with a
particular focus on image data where we observe intensity
changes over time. Unlike most tissue segmentation meth-
ods that assume a clear separation of intensity distributions
per class, we explore the potential to classify tissue types via
their differences in temporal intensity change patterns, i.e. to
use the parameters of temporal functions of intensity rather
than the intensities themselves for classification. Such an ap-
proach requires accurate registration of serial images, which
itself is challenging in the presence of appearance changes.
In the spirit similar to Csapo et al. [4], but instead of itera-
tive optimization for elastic deformation, we integrate local
intensity change modeling into the image match function of
group-wise LDDMM image registration and give a closed-
from solutions of intensity model. Registration and segmen-
tation use the same temporal intensity models, but are pre-
sented as separate processing steps. Calibration of intensities
of the original MRI data is a necessary preprocessing step,
so far performed using fatty tissue in T1w and fluid in T2w
MRI. We currently explore automatic calibration across time
following the proposed temporal intensity modeling scheme.
Although the new 4D segmentations provide promising re-
sults, we will investigate higher-order models which may bet-
ter fit expected appearance changes. This work is clearly mo-
tivated by the analysis of longitudinal infant neuroimage data
where we encounter the well-known tissue contrast reversal
and even disappearance over time, demonstrating that con-
ventional 3D single time point segmentation is not feasible
for some of the time points. The proposed 4D registration
and segmentation concept results in a series of segmented
datasets by applying the inverse mapping of segmentations
into the original coordinate spaces, even including consistent
mapping of brain parcellation templates. Beyond tissue seg-
mentation, we also see the potential to analyze local patterns
of the intensity model parameters to provide measurements
on maturation speed patterns, quantitative information which
is of great interest in pediatrics.
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