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ABSTRACT

Interactive visual analysis has many advantages, but has the disadvantage that analysis processes and
workflows cannot be easily stored and reused, which is in contrast to scripted analysis workflows
using a programming language such as Python. In this paper, we introduce methods to semantically
capture workflows in interactive visualization systems for different interactions such as selections,
filters, categorizing/grouping, labeling, and aggregation. We design these workflows to be robust to
updates in the dataset by capturing the semantics of underlying interactions, and, hence, they can
be applied to updated datasets. We demonstrate this specification using a prototype that visualizes
the data, shows interaction provenance, and allows generating workflows from this provenance.
Finally, we introduce a Python library that can consume the workflow and apply it to the datasets,
providing a seamless bridge between computational workflows and interactive visualization tools.
We demonstrate our techniques using our UI prototype and Jupyter notebooks.

Keywords Visualization, reusing workflows, interaction, provenance

1 Introduction

Data visualization enables analysts to leverage the pow-
erful human visual system to identify patterns and draw
conclusions. When data visualizations are made inter-
active with selections and data transformations such as
filters, labels, and aggregation, they can reveal complex re-
lationships and make large datasets accessible. Not supris-
ingly, therefore interactive data visualization has entered
the mainstream, with tools like Tableau and Microsoft
PowerBI, but also many more specialized visual analysis
platforms seeing widespread use and commercial success.

One significant drawback of interactive visual data anal-
ysis, however, is that analysis processes remain ad hoc:
when a dataset is updated or changed, the analysis has
to be re-done. Updating datasets is very common: For
example, business add new sales data regularly, scientists
expand or correct their datasets as errors are discovered
or new samples come in, and economists get updated data
about various countries’ indicators every year. However,
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datasets that are updated are problematic for data transfor-
mations that are used in a downstream analysis: in such
cases, even storing the state of an application is not enough
to meaningfully reapply a filter.

This lack of reusability in interactive visual analysis is in
sharp contrast to computational analysis workflows. A
function that filters a dataset based on parameters can be
easily reapplied to an updated dataset. However, this appli-
cation comes with the usual drawbacks of computational
approaches: they require a skilled analyst, are harder to
write, and cannot leverage the benefits of graphical percep-
tion.

In this paper, we propose methods to capture and reuse
workflows in an interactive visualization system. Work-
flows are composed of interactions that are well suited for
interactive data visualizations, such as selecting, filtering,
labelling, categorizing, or aggregating items. We intro-
duce methods to capture these workflows in a semantically
meaningful way, making them robust to changes in the
underlying datasets, as illustrated in Figure 1.

However, even when we use semantically meaningful se-
lection to reapply them to a new dataset, we need human
review — and potentially updates — to ensure that these
actions reflect the analyst’s intent. To address this, we
introduce a review and update interface that ensures that
changes are correctly applied and makes corrections easy.
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Figure 1: The process of reusing workflows. Actions, such as brushes or filters, are applied on a dataset. Specifying a
pattern-based intent — such as outliers in this example — improves reusability. A series of actions can be extracted
into a workflow. This workflow can then be applied to an updated dataset.

Finally, capturing smart workflows has the advantage that
we can make them available within the same visualiza-
tion system and use them to bridge between interactive
visualization systems and scripted data analysis processes.
For example, an analyst could do some preprocessing in a
Jupyter notebook, then launch an interactive visualization
system from the notebook to execute a series of complex
selections and data transformations that are more easily
achieved in a visualization system, and then return to the
notebook to apply, e.g., an algorithm to the transformed
dataset. Because we now have reusable visualization work-
flows, all parts of such an analysis can then be reapplied to
an updated dataset.

We demonstrate these capabilities in a prototype visual-
ization system that captures interaction provenance, from
which analysts can extract workflows. We demonstrate that
these workflows can be reapplied to updating or changing
datasets on a series of examples. We also introduce a
Python software library that can be used to bridge between
the visualization system and Python code, and provide
examples for these workflows.

In summary, our contribution is a method to capture work-
flows in interactive visualization systems that can then be
reapplied to a new dataset. To ensure the accuracy of the
reapply process, we introduce review and updating capa-
bilities for these workflows. Finally, we introduce methods
to use these workflows as part of computational workflows.
We believe that our methods will make it possible to use
interactive visualizations even for analyzing datasets that
are being updated. We also push the limits of what is

possible with regard to integration between computational
and interactive workflows, thereby enabling analysts to
leverage the best tool for each part of a job.

2 Related Work

Our work is related to methods for capturing interaction,
to approaches for managing analysis workflows, and to the
integration between interactive visualization techniques
and computational workflows. We discuss all of them
separately in this section.

2.1 Capturing Interaction

Despite widespread agreement in the visualization litera-
ture about the benefit of interaction, it is often treated as
secondary to the development of visual encodings [1, 2]
or even as an afterthought in the design of visualization
systems [3]. Several authors also call for a new “science of
interaction” [4, 3] to support the human reasoning process.

Interaction is used in a variety of ways in a visual data anal-
ysis session, including choosing datasets, selecting items,
making data transformation, and zooming and panning.
To be able to capture interactions, reflecting on the types
of interactions that are commonly used in visual analysis
systems is useful. Although various taxonomies of inter-
action have been devised (e.g., [5, 6, 1, 7]), we will use
the taxonomy introduced by Heer and Shneiderman [8]
that distinguishes among three high-level categories of
“interactive dynamics”: (1) data and view specification,
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with the sb-categories visualize (specify data and visual
encoding), filter, sort, and derive; (2) view manipulation,
with the subcategories select, navigate, coordinate (syn-
chronize between multiple views), organize (arrange win-
dows and workspaces), and (3) process and provenance
(record, annotate, share, guide). Tracking the “data and
view specification” operations is highly relevant to enable
reuse, whereas the importance of tracking certain “view
manipulation” operations depends on the system, task, and
dataset. The third category, “process and provenance,” is a
collection of meta-interactions that we want to enable in
this work.

Data-aware selections, or, more generally, data aware ac-
tions (selections, queries, filters, etc.), are defined in data
space [9, 10, 8]. For a selection, for example, this means it
is described by conditions, not by a list of items. Dynamic
queries [11] are commonly realized in a data-aware way:
all items that fit certain conditions, defined e.g., via sliders,
are considered to be in the query results. Certain types of
selections (brushes) [12] can be realized in a data-aware
way, using, for example, a rectangular selection in a scat-
terplot that easily translates into the necessary conditions.
More often, however, selections (and other actions) are
realized by direct reference, e.g., by pointing at items, and,
hence, they are defined in item space. Actions that are
defined in item space have several disadvantages: they
cannot be generalized to apply to updating data, and they
cannot be used to semantically explain a selection. Data-
aware actions, in contrast, are robust to changes, can be
used to explain and justify an action, and can be used in
various ways to support an analyst, e.g., by relaxing a
selection [13], or for reuse in a different context [14].

Most data-aware selections are realized by deriving rules
directly from a brush. Such selection, however, is limited
to cases where spatial position is used to encode attributes
in visualization techniques such as scatterplots or parallel
coordinates. In more general cases, rules for data-aware
selections are harder to derive. It is possible, however, to
derive the pattern of a selection (what makes the item in
a selection belong to each other and different from every-
thing else) algorithmically. Xiao, Gerth, and Hanrahan,
for example, create “knowledge representations” of selec-
tions in communication networks [15], and Su, Paris, and
Durand use a similar approach for selecting graphical ob-
jects [14]. Most relevant to our work is the framework to
infer pattern-based intents of a selection by Gadhave et
al. [16], which we utilize as the backbone of our approach
to reusing actions. This framework makes it possible to
capture the semantics of selections, which we leverage as
part of our approach to capturing and reapplying work-
flows.

2.2 Workflows

Explicit modeling of workflows is common in scientific
data analysis [17]. Representative examples are systems
such as Galaxy [18] for biomolecular data, SCIRun [19]
and Kepler [20] for scientific/simulation data, and KN-

IME [21] in a machine learning context. Workflow ap-
proaches are also common for scientific visualizations ap-
plications such as volume rendering. Here, VisTrails [22]
is a prolific example. Notable workflow-based systems for
abstract data visualization include GraphTrail [23], where
each node in the workflow shows an aspect of a multivari-
ate network, and VisFlow [24], which is tailored to tabular
data.

Explicitly modeled workflows are designed to be easily
reused. At the same time, the definition of these workflows
is similar to explicit code-based specification of visualiza-
tions, and thus the associated interaction cost [2] is high,
and the spontaneity and rapid exploration that is associated
with interaction patterns such as direct manipulation [25] is
lost. Also, even if they are easier to learn than writing code,
they have a steeper learning curve compared to interactive
systems.

An alternative approach to explicit workflow modeling is
tracking the interaction provenance [26, 27] and using this
information to later extract workflows. Although several
visualization systems track provenance [28, 29, 30, 31] and
a few dedicated libraries to track provenance exist [32, 33],
most tools do not explicitly curate workflows based on the
provenance. A notable exception is the Vistories tool [34],
which enables analysts to curate data stories. However,
these data stories cannot be reused on different datasets.

Chen et al. proposed a parameteric symbolic approach to
support analytic provenance in their CZSaw system [35].
CZSaw enables analysts to reuse parts of the analysis pro-
cess, but the process is reapplied based on a parametric
model created earlier. The system does not support autode-
tection and application of patterns, and the analysis has to
be done in the same system.

Commercially available solutions like Tableau Prep make
it possible to create workflows for preparing and clean-
ing data. The interactions supported by Tableau Prep are
combining data, filling in missing values, etc. Tableau
prep does not support creating a workflow visually by in-
teracting with the data directly, or exporting it to other
environments.

2.3 Integrating Visualization and Computational
Environments

Computational notebook-based environments are great for
narrative data analysis, fulfilling Knuth’s vision of liter-
ate programming [36]. A common limitation of notebook
platforms like Jupyter has been a lack of interactive vi-
sualizations to transform the data. Native visualization
libraries, such as Matplotlib [37], have limited interactive
capabilities, and cannot feed back actions from visualiza-
tions to code. Tableau views can be embedded in Jupyter
notebooks, but the visualizations have to be developed in
Tableau environment and can be embedded only in Jupyter
for display. Libraries such as Altair [38] support interac-
tive visualizations, but the interactions primarily serve the
purpose of coordinating between multiple views, not for
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data transformation. Schmidt and Ortner [39] discuss a
number of reasons for the lack of interactive data analysis
in notebook-style environments, with two of the reasons be-
ing the lack of computational power and limited interaction
capabilities native to the environment. Our approach aims
to bridge the gap between these environments by providing
communication between the computational notebook and
the interactive visualization tool, where the latter can fill
in for lack of interactivity in the former.

Wu et al. [40] introduce B2, a set of techniques that treat
the data queries as a shared representation between code
and visualizations. They introduce a library that adds a
visualization dashboard in a Jupyter notebook. This dash-
board can interact with Python code. Our approach devel-
ops a similar shared representation, but instead leverages
an external visualization tool, which enables the use of
more sophisticated visualization systems. Most impor-
tantly, however, in contrast to B2, selections and derived
data transformations in our approach are captured on a
semantic level, and hence are robust to changes in datasets.

3 Capturing and Reusing Workflows

In this section, we describe the details of how we capture
workflows in interactive visualizations that can then be
reapplied to updated datasets. We first introduce the types
of interactions we capture, and then explain how we cap-
ture workflows, followed by how workflows can be reused
with updated datasets. We conclude the section by showing
how we can use our approach to bridge between interactive
visualizations and computational workflows. We demon-
strate our approach using a simple, multiple-coordinated-
view interactive visualization systems using scatterplots
and parallel coordinates, shown in Figure 2. A live demo
of our tool is available at https://reapply-workflows.
github.io/reapply-workflows/.

3.1 Interactions

We developed a specification to capture interaction prove-
nance that we use to capture the workflows. The actions
we capture and support in our visualization system are in-
formed by the taxonomy developed by Heer and Shneider-
man [8]: we support all of the “data & view specification”
actions except for sorting, which is meaningful only in tab-
ular visualizations, as well as all “process & provenance”
interactions. However, in our specification we capture the
interactions that are relevant for data manipulation, namely
view specification, selections, and various types of data
manipulation.

View specification interactions are concerned with choos-
ing the subset of dimensions to visualize. An example is to
show two dimensions of a dataset in a scatterplot: here, the
view specification entails both the choice of dimensions
and the choice of visualization technique.

Selections are a basic but very important interaction avail-
able in visualizations. Selections not only allow highlight-

ing items of interest, but also form the basis for further
data transformation on selected subsets of the data. For
our specification, we break down selections by the level of
semantics each type of selection captures:

The simplest of these is ID-based selection, which directly
stores the IDs of the selected items. ID-based selection has
the lowest level of semantics and is the least useful when
reusing the selection: as only IDs of items are stored, if
items are added in a new version of a dataset, they could
not be considered, even if they clearly fall into a selected
pattern.

Next we specify the range selection that stores ranges over
dimensions, capturing a set of rules for a selection, similar
to e.g., an SQL query. Range selections are usually speci-
fied using rectangular brushes [12, 9]. They are reusable
for updates in the data as long as the updates happen within
the extent of the range selection. For example, if an up-
dated version of the dataset has three new points within a
rectangular brush area, these points will be selected auto-
matically.

The highest level of selection specification is pattern-based
selections as introduced by Gadhave et al. [16]. This ap-
proach captures higher level semantics behind the selection
that are apparent when the data is visualized. A pattern-
based selection recognizes, for example, that an analyst
selected all outliers, or a cluster centered at a specific lo-
cation. By selecting based on higher level patterns in the
data, such selections are robust to changes in the data: For
example, when outliers are selected in a dataset, similar
outliers can be selected in an updated dataset, even if the
outliers appear in new locations.

Our specification supports four data transformation ac-
tions, shown in Figure 3. Filter actions track whether
certain items are filtered-in or filtered-out of the dataset.
Filters is useful for focusing on a select group of items
by filtering them in or removing irrelevant data items by
filtering them out. Labeling sets of items in a dataset is
useful for annotating or tagging items with metadata or
observations. Categorize actions are used to classify (as-
sign categories) to items from a set of dynamically defined
categories. Usually, each point is assigned to a unique
category. Categorization is useful for dividing the dataset
into distinct subsets that can then be compared or used
separately in subsequent analysis steps.

Deriving new data items by aggregating groups of existing
ones is an important data transformation, as is evident from
the popularity of pivot tables in Excel. An aggregate item
can replace the items it was derived from, simplifying the
data. Aggregation also allows analysts to compare groups
with shared characteristics effectively. Aggregation is done
by grouping multiple data items into a new item. Each at-
tribute is aggregated based on a mathematical function
(often called “apply” function in programming libraries).
These functions usually summarize multiple values into
a single representative value like the mean, median, sum,
min, or max of the item’s attribute, but custom functions
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Figure 2: Prototype visualization showing a COVID-19 dataset. The analyst selected six dimensions to be shown in
a scatterplot and a parallel coordinate plot (a). (f) A rectangular brush selection is used to compute predictions for
patterns to capture the semantics of the selection. (b) A ranked list of these predictions is shown to the right of the
scatterplot. The analyst selects the top prediction, which is a cluster, and the system shows an overlay (g) to show the
the boundary of the cluster. (c) The provenance graph on the right shows the captured interactions.

for aggregation are also common. In a dataset on metrics
about countries, for example, it might be useful to aggre-
gate all European countries into a single “Europe” item,
and compare it to an “Asia” item. For this aggregation,
we have to define “population” of Europe as the sum of
the population of all the countries in it. A column like
“life expectancy”, however, would need a different, more
sophisticated function for meaningful aggregation.

We have chosen these interactions as they allow us to
demonstrate our approach, yet other operations, such as
deriving new attributes, or manipulation, such as moving
around items, could be equally supported by our methods.
Taken together, these view specification, selection, and
data transformation actions make up a powerful set of tools
that benefit strongly from being available in an interactive
visualization interface and are commonly used in data
science tasks.

3.2 Capturing Workflows

We define a workflow as a user-curated series of interac-
tions or operations executed in the course of a visual data
analysis session. Figure 4 shows an example worklfow
that selects outliers, filters them in (so that only the out-
liers remain), and then assigns categories to some of them

based on a selection. One of our design principles was to
make the process of capturing workflows easy, with min-
imal overhead for the user. For this reason, we chose to
enable analysts to extract workflows based on provenance
data after they executed a series of actions [41]. As a re-
sult, analysts can freely explore and interact with a dataset,
and only worry about capturing workflows after they have
successfully completed an operation.

We track interactions and store them in a directed acyclic
graph using the Trrack library [33]. Branches of the his-
tory are possible when users go back to a previous step
and continue an analysis from that point. We visualize
the provenance graph in a tree-like layout (Figure 4(a)),
where each action is described and can be annotated by the
user. We track all types of interactions that are needed to
reconstruct every state of the application.

The key to reusable workflows is to capture semantically
meaningful selections, as downstream data transformations
are built on top of the selections. In our method, selections
are captured on multiple levels as described in Section 3.1.
These different selection approaches can — and commonly
are — combined. A rough selection can be made by a
rectangular selection, which is then augmented by adding a
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Figure 3: Overview of the data transformations supported by our system: Filter removes selected items, Label assigns
a (possibly) unique label to an item, Categorize classifies items into categories, and Aggregate reduces a set of items
to one derived item (in this example, the light-red items are aggregated into the dark-red, larger item).

few items. Analysts can then use a pattern-based selection,
derived from the selection they just made.

Capturing a selection by ID and range is relatively straight-
forward. However, capturing semantics is more challeng-
ing. Gadhave et al. [16] define pattern-based selection
intents as “the reasoning behind selections based on sta-
tistical patterns or structures in a dataset.” Figure 5 illus-
trates this concept for four patterns — in/outliers, clusters,
correlations, and multivariate optimization (also called
“skylines”). The upper row shows these patterns with a
selection (blue) of elements in the pattern. By capturing
these pattern-based intents, we can reapply the action even
on updated datasets, as illustrated in the bottom row. All
these patterns have changed slightly (values changed; items
added or removed), yet the patterns remain clearly visible,
and a selection based on these patterns preserves them.

We use Gadhave et al.’s approach to capture these se-
mantically rich selections: Our prototype monitors user-
selections and compares them to a large set of patterns
that were precomputed for a given dataset using various
algorithms and parameterizations. The different patterns
are ranked based on the Jaccard Similarity between the
selection and the prediction, as shown in Figure 2(b). Here,
we see a rectangular selection that partially covers a cluster,
and the system ranks a clustering pattern as a good match.
When an analyst hovers over the cluster prediction, the
extent of the cluster is shown as a polygon, and the items
that are not part of the selection are highlighted. When an

analyst chooses to confirm this prediction as the intended
pattern, our system stores the details of this pattern.

We predict five different patterns: clusters, in- and outliers,
correlations, multivariate optimization, and ranges. For
each of these patterns, we store the information necessary
to recreate the pattern in an updated dataset. For example,
for clustering, we store which type of algorithm was used
(e.g., KMenas or DBScan) with which parameters, in addi-
tion to attributes about the specific cluster that is selected,
such as its centroid.

Data transformations are derived from selections: to cate-
gorize a group of points, for example, they are first selected
and then assigned to a category. The robustness of the trans-
formation depends on how the selection was achieved. For
example, if an analyst selects 15 items individually and
assigns them to a category, the category is associated with
just those items. However, if the items were selected using
a range selection, the category is associated with the range
rather than individual items. When the dataset is updated,
items appearing in the region of the range selection are
categorized as well. Using semantic selections further im-
proves robustness of subsequent actions. An analyst can
use the pattern-based selection to refine the initial selection
of 15 items as a cluster. The category is then associated
with the cluster rather than the original selection. Updat-
ing the dataset by adding or removing items automatically
updates the categorization as well. If the groups of items
were to move, the semantic selection would still accurately
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Figure 4: The workflow editor. An analyst can create a new workflow from the interaction history captured in (a), the
provenance graph, and curate it in (b), the workflow editor interface by removing unnecessary actions. (c) Previously
created workflows are shown on the right and can be loaded and edited at any time.

track the items, in contrast to a range selection, which
would loose items that move outside its range.

Figure 6 shows an example where an analyst first added
a plot of a dataset that exhibits clusters. The analyst then
continued with a crude rectangular selection. The system
recommends a cluster as a match in the prediction interface.
Hovering over that cluster prediction reveals the cluster’s
properties. The analyst decides this is a good match for the
intended selection and confirms the prediction. Finally, the
analyst filters out the selected items. Each of these steps is
then reflected in the provenance graph. The analyst could
now go on and continue a selection, and revisit the filter
process at a later time. However, the analyst can also create
a new workflow form the provenance history and call it
“Remove Outliers”. This workflow can then be reused for
a new dataset.

3.3 Reusing Workflows

When reusing workflows, we apply a workflow captured
through a visual analysis to an updated or changed dataset.
Tabular datasets can change in a limited number of ways:
attributes associated with rows can change, and rows can
be added or removed. Also, dimensions or rows (items)
can be added, removed, or reordered [42]. For our pur-
poses, we limit ourselves to changes of existing attributes,
adding or removing items, and updating attribute values,
as order is relevant only for certain representations and
adding or removing of dimensions is beyond the scope
of our work. Figure 7(a) shows how we visualize these
changes. Analysts can select two out of several versions of
a dataset and study their relationships.

When a new version of a dataset is loaded, we by default
apply all actions in the current history to the new dataset.

7
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Figure 5: Example selections based on pattern-based intents. Selections are made based on in/outliers, clusters,
correlations, and multivariate optimization (skyline) patterns, respectively. By capturing the semantics of these
selections, we can reapply the selection to datasets that are changed in various ways (items moved, added, or removed),
as shown in the second row.

We have different approaches to apply selections, which is
straightforward for IDs and ranges. The method for reap-
plying semantically captured selections varies by the type
of selection. Common to these approaches is re-running
the specific algorithm used to predict the pattern with the
captured parameters. The clustering algorithms (KMeans
and DBScan) return multiple clusters as output; hence,
we have to match up a specific cluster to a selection. For
KMeans, in addition to the parameters, we also store the
centroid of the selected cluster. After re-running KMeans
with the same parameters on an updated dataset, we find
the cluster with the centroid closest to the centroid stored
in the selection. For DBScan, we identify the best-fit clus-
ter based on the Jaccard similarity between the items in
the selected cluster and the cluster produced by the re-run
of DBScan. For patterns like multivariate optimization
and regression, we store meta information about the se-
lected prediction such as the “sense” (the direction of the
optimization) for the multivariate optimization, and the
location of selected items for linear regression such as
“within” or “outside” the regression threshold.

Figure 7 shows a comparison between the dataset shown in
Figure 6 and an updated dataset, and a subsequent success-
ful application of a cluster based selection. We can see in
Figure 7(a) how the dataset changed compared to the one

in Figure 6. Figure 7(b) shows how the selected cluster
changed between the dataset; the hulls of both clusters
are shown. Figure 7(c) shows the cluster selection in the
updated dataset. If the initial selection had been captured
using range-based rules, i.e., not using a semantic pattern,
the items that shift outside the range would not have been
captured.

Figure 8 shows a more difficult example, where the se-
lected and subsequently filtered cluster broke apart into
two clusters. Depending on the intent of the analyst, sev-
eral options are plausible: remove both clusters, remove
only the top or bottom cluster, or remove none of the clus-
ters. Here, an automatic determination is impossible, as
the right action depends on the analyst’s higher level intent.
Hence, the analyst has to review this situation, and make
a decision on how to proceed, as illustrated in Figure 8.
By default, the system assumes that one large cluster is
the best match (Figure 8(a)), as it best corresponds to the
previously selected cluster overall. Assuming that the an-
alyst intends to select only the top, smaller cluster, they
can reject the “Clusters Selection” node in the provenance
graph, and replace it with a better matching cluster, as
shown in Figure 8(b).

8
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Figure 6: Brushing a dataset that exhibits clusters. The analyst roughly selects a cluster and then uses the predicted
pattern-based selections to explore and refine the selection.

3.4 Bridging to Computational Workflows

The final aspect that capturing semantically meaningful
workflows enables us to do is to deeply integrate work-
flows with computational analysis systems and re-execute
a workflow on an updated dataset just like a function. Fig-
ure 9 shows how we bridge between the visualization
tool and the computational environment. The piece that
connects the visualization tool and the computational en-
vironment is a workflow database. An analyst can work
in the visualization tool to perform a visual analysis and
capture workflows, as discussed before. Whenever a work-
flow is created or modified, it is also stored in a workflow
databases. The workflows can then be loaded from the
workflow database to a computational environment, such
as a Jupyter notebook.

Figure 10 shows the process of loading and using a work-
flow from the workflow database. We provide a library
that interfaces with the workflow database to provide con-
venient access. This library provides functions to print
descriptions and inspect the steps a workflow takes. Ulti-
mately, workflows can be applied to a pandas dataframe
containing the data. The output of applying the workflow
depends on the type of workflow itself. If the workflow is
made only of selections, the output dataframe has an extra

boolean column isSelected that denotes the selected items.
More complex workflows with data transformation have
similar modifications to the output dataframe, e.g., filters
return a subset of the original dataset after executing the
filter, label and categorize workflow has an extra column
with the relevant label or category assignment, and aggre-
gation workflows add a new row to the dataset with the
aggregated values.

When a workflow is applied to an updated dataset in a
computational environment, the library executes the same
operations to find the best match for actions based on the
semantic selections as our web-tool does (see Section 3.3).
When a workflow is used on an updated dataset, the library
prints a warning, informing users that this workflow has
not been reviewed for that version of the dataset. It also
prints a link to the visualization tool that automatically
loads the updated dataset with the workflow applied to it.
Analysts can now visually verify and possibly refine the
workflow, and then continue their analysis in the computa-
tional environment.

4 Prototype Implementation

To demonstrate our technique for capturing and reap-
plying the workflow, we developed a prototype that

9



GADHAVE ET AL.; REUSING INTERACTIVE ANALYSIS WORKFLOWS; 2021

Figure 7: Comparing two datasets and reapplying a workflow. (a) The comparison mode explicitly shows the differences
between two selected versions of a dataset. The scatterplot encodes newly added items in the updated dataset as blue
triangles , removed items are shown as red crosses , and items that have shifted positions show a comet-like trail

from their original to their new position. (b) we can see that the selection made on the original dataset nicely
moves down to the new cluster and handles new and removed items correctly. (c) The updated selection.

allows interactive visual analysis and a library that
can reapply the workflows. The prototype is avail-
able at https://reapply-workflows.github.io/
reapply-workflows/.

Users may create their own projects, and then upload as
many datasets as they wish to a project. Any datasets
uploaded via the tool will also be available for analysis in
the library. For the purpose of demonstrating our tool, we
have prepared several demonstration datasets with multiple
versions.

Analysts may select any two dimensions of a tabular
dataset to view in a scatterplot, and may add as many
plots as desired. We provide rectangular and free-form
“paint-brushes” of three sizes for selection. Every time a
selection is made, predictions are immediately updated.
Predictions are visualized by highlighting the items that
are inside (or outside) the prediction, and also by an ex-
plicit visualization of the pattern, such as a cluster outline
(see Figure 7) or a visualization of the Pareto frontier for
multivariate optimization (see Figure 13).

Analysts may add a parallel coordinate plot to visualize
multiple dimensions at once. We provide brushing on each
axis to select items. The predictions are updated as in the
scatterplot for every selection. Predictions are visualized
by highlighting the items that are inside or outside the
prediction.

Analysts can freely switch between different versions of a
dataset, and any analysis done on a previous dataset will au-
tomatically be applied to the new dataset. Although having
unrelated datasets in a project is not enforced, the datasets
within a project should be related, otherwise transferring
actions might not make sense.

Our prototype visualization tool is implemented using Re-
act, D3 and Typescript. The back-end uses a Flask server

and an PostgreSQL database. The workflow database is
stored in a Firebase Realtime Database, and communi-
cates with the visualization tool and the library using the
Firebase-Admin API.

4.1 Reapply Library

At the heart of our method is the Reapply Library that
performs all the predictions and the matching of actions
between updated datasets. The library is used in both the
web-based tool and third-party notebooks. The library is
written in Python and supports Python versions greater
than 3.7. The library uses scikit-learn to run the prediction
algorithms.

The library loads a workflow from the workflow database
using the workflow ID. Analysts can use the describe
method to check the workflow before applying it to a
dataset. Analysts can call the apply method with the target
dataframe and label column to apply the workflow, which
in turn returns a result object. We show our computational
demos in Google Colab notebooks, which are equivalent
to Jupyter notebooks but can be collaboratively edited and
are hosted by Google.

5 Analysis Examples

We validate our approach through a series of examples
with a mix of artificial and real datasets. We show how
our approach can be used to create reusable workflows for
various interactions.
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Figure 8: Reviewing and updating workflows that were applied to an updated dataset. Continuing our analysis from
Figure 6 the analyst loaded a new version of the dataset where a part of a cluster broke off and moved down. (a) By
default, the system considers these two clusters to be one larger cluster, since they are still relatively close, and the
previously selected larger cluster biases the outcome toward a single cluster. The review interface indicates that certain
actions have not been reviewed for this version of the dataset, by showing a question mark (?) next to the node. To
select just the upper cluster, the analyst first confirms the “Add Plot” and “Added Brush” actions, which are then show
as approved with a check-mark ( ). (b) The analyst then rejects the “Cluster Selection” action and pick a new cluster
prediction that captures their intent.

5.1 Categorizing and analyzing outlier countries for
COVID-19

For this example, we are using COVID-19 data provided by
the “Our World in Data” project [43]. This dataset includes
various COVID-19- related metrics for multiple countries
across the world. We took subset of these attributes for
selected months for our demos. COVID-19 data attributes
change frequently and are a good way to demonstrate our
approach, since selections and conclusions must be robust
to updates in data.

Let us look at a scenario for which the analyst wants to
investigate countries that have aberrant trend in number of
new cases and number of new deaths related to COVID-19.
We start with data for January 2021 and load a scatterplot
for new monthly cases vs new monthly deaths.

We immediately see that many countries are far away from
the cluster of countries close to the origin. We then select
a few of these countries using a paint brush selection. The
system computes predictions and suggests an outlier-based
selection that selects all the outliers (see Figure 11(a)). We
use this suggestion to refine our selection. We switch to
different months of the dataset to see if the selection is
applied correctly. We are happy with the selection, so we
filter-in these items to focus on these outliers.

We then categorize these outliers based on new monthly
cases per million. We select all the countries with high
monthly cases and high monthly deaths with a rectangu-
lar brush and categorize them as countries with “High
Deaths–High Cases”. We then select countries with low
monthly cases but high monthly dates and categorize them
as countries with “High Deaths–Low Cases”, and finally
select countries with low monthly deaths but high monthly
cases and categorize them as “Low Death–High Cases”
(Figure 11(b). We switch to different datasets and verify

that the categorization is applied correctly. When we are
satisfied with the result, we approve the interactions in
the provenance history. Figure 11(c) shows an extreme
example, June 2021, where cases and deaths in most coun-
tries are much lower, clustering close to the origin of the
chart. Applying the categories (Figure 11(d)) results in
several outliers being unassigned, hinting at the fact that
even moderate COVID activity is an outlier in that version
of the dataset.

We now curate the provenance history into a Categorize
Outliers workflow and store it to the workflow database.
We then move to a Jupyter notebook to load this workflow
and analyze these newly categorized countries. We can
create a histogram of the categorized countries stacked by
the region to get a general idea about how different regions
were affected by COVID 19, where we see that high deaths
have shifted to South American countries in June, which
were barely affected in January.

5.2 Analyzing the Relationship of GDP and Child
Mortality

For this example, we will use a global health dataset that
is updated yearly. Let us look at a scenario where we want
to investigate countries that have high child mortality rates.
We load in data from the Gapminder project [44] for the
year 2010 in the visualization tool. We add a scatterplot
of child mortality rate (CMR) vs gross domestic product
(GDP), an indicator of a countries wealth. We immediately
see a strong trend in the data: most countries with a high
child mortality rate have low GDP, but there are also many
countries with low GDP and low CMR.

To focus on countries with high CMR, we use the rectan-
gular brush from CMR values from 100–200. Our system
suggests a simplified range selection to generalize the ini-
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Figure 9: Analysis flow when bridging between a visualization tool, where workflows can be curated, and a computa-
tional environment, where workflows can be (re-)applied. Workflows created in the visualization tool are synced with a
workflow database. Computational environments, such as a Jupyter notebook, have access to the workflows, and can
apply it to the dataset by simply executing a function. When a dataset is updated in the computational environment,
the workflow can be applied to the new datasets, with results immediately available. Analysts can also review and
potentially refine the updated workflow in the visualization tool. If the workflow is updated in this way, it is then
immediately available in the computational environment.

tial brush (see Figure 12(a)), which also includes Haiti —
the rightmost point — with a value of 209.

We now decide to look at some historical data for CMR,
and switch to the data for 1980. The system reapplies the
interactions, and the generalized range selection includes
the new countries with high CMR automatically (see Fig-
ure 12(b)). We are satisfied with the generalization and
confirm the interactions in the provenance graph for the
1980 data (see Figure 12(c)).

We can now curate these interactions into a workflow, store
it in the workflow database, and move over to a Jupyter
notebook to continue the investigation to look for reasons
of high child mortality. We can use this workflow to also
automatically filter out the items of interest for other years
in the dataset in the Jupyter notebook.

5.3 Other Patterns and Updated Datasets

In figure 13, we demonstrate how our methods can be
applied to different patterns, and how these patterns are
adapted when a changed dataset is loaded. We show an
original dataset and a pattern-based selection, a comparison
of how the data changed, and finally how the selection was

applied to the changed dataset. For outliers, we can see
that the points that move closer to the center are excluded
from the outlier selections, and the points that move away
are added to the outliers. For the range selection, we
see the system added and removed the points that fall
outside the rules for the range selection. For multivariate
optimization, the system updates the selection on the new
dataset, and we see an updated Pareto frontier (shown as
a staircase). For correlations, we show a linear regression
line and threshold within which the points are counted as
part of the correlation. The system updates the selection
based on points moving in and out of the threshold.

6 Discussion

Certainty of Fit for Reuse. When we apply a selection
to a new dataset, we currently assume that an analyst will
review the update selection. Although a review is certainly
necessary if the data changed significantly, minor changes
might not require a manual review. We could conceivably
compute metrics about how “sure” we are about a specific
operation, as it is applied to a new dataset. If, for example,
all points are in the same selection and have moved little,
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Figure 10: Executing a computational workflow defined in the visualization tool in a computational environment. (a)
We first load the dataset. (b) We load the workflow library and the particular workflow we are interested in. We then
apply the workflow to the dataset. The tool plots a preview of the actions. Note that new isSelected and isFiltered
Boolean column are introduced when a brush and filter are added in the preview. (c) After the filter is applied, the
number of rows is reduced from 150 to 108. A visualizations of the result shows the cluster was removed. Visit the
the notebook.

we might not need a review. If, in contrast, the dataset
has changed significantly and the selection is affected, we
could print a warning, emphasizing the need for a review.

Higher Dimensional Patterns. Our examples were re-
stricted to relationships between a small number of dimen-
sions. In practice, the computational parts of our approach
work just as well on higher dimensional patterns. However,
selections of higher dimensional patterns are difficult in
scatterplots, and only slightly easier in parallel coordinate
plots. To address this problem, we plan on integrating
projection plots (e.g., t-SNE or PCA), which could serve
as the user-interface of the selection.

Other Data Types. Our implementation and our choice
of algorithms is specific to tabular data,but our general
approach is not. We could equally apply our methods to
network data, image data, or volumetric data, provided we
can identify suitable algorithms to semantically capture
selections.

Interaction Directly in Notebooks. Visualization li-
braries such as Altair [38] and B2 [40] have made inter-
active selections in visualizations within a Jupyter note-
book possible. We plan on extending our library, so that
selections made within a notebook can also be autocom-
pleted and extracted into a workflow. While we expect that
other aspects, such as compound actions and reviewing
of workflows, are infeasible to integrate natively within a
notebook, robust, pattern-based selections would enhance
an analyst’s ability to leverage the interactive capabilities
of such simple visualizations.

Reapplying to Unrelated Datasets. Our methods for
transferring actions to updated datasets are robust up to
a point. The clustering case in Figure 8 shows situations
in which the automatic transfer does not succeed: when a
pattern changes so much that a different interpretation is
possible. While we remedy these situations through our
review process, it would be worthwhile to automatically
make alternative suggestions on which actions could be
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Figure 11: Categorization of countries in a COVID-19 dataset. (a) A scatterplot for January 2021 shows the number of
new cases per million inhabitants vs. the number of new deaths per million. An analyst has selected outliers, capturing
countries with many cases, many deaths, or both. (b) The analyst filters out all countries except the selected outliers,
and categorizes the countries based on new cases values into “High Deaths–High Cases” , “High Deaths–Low Cases”

, and “Low Deaths–High Cases” categories. (c) We switch to an updated dataset for June 2021 and the analyst sees
that the number of cases and deaths have gone down across the world, but the pattern-based selection has correctly
selected the outliers. (d) The system automatically applies the range-based categorization to the countries that fall
within the ranges in June 2021. (e) A subsequent analysis in a notebook reveals that the worst of the pandemic has
shifted to South America in June 2021. Visit the interactive version of this figure, or the corresponding notebook.

taken. We have not experimented with applying workflows
to altogether different datasets. Our current technique of
capturing the workflow relies on tracking view specifica-
tions and downstream selections and transforms. Applying
the dataset to unrelated dataset will almost always result in
incorrect results. However, we see potential in using work-
flows as templates for recurring tasks, such as data cleanup
on datasets generated by the same instrument although for
different experiments. Here, a human analyst could update
the parameters of a selection, or supplement it, but use a
subsequent data transformation.

Making Differences Explicit. In some situations, it
would be useful to be able to retrieve explicit results of
which items have been added to or removed from our selec-
tion. In the child mortality case, described in Section 5.2,
for example, it would be useful to learn which countries
have moved from the high child mortality range to the low
mortality range.

7 Conclusion

We have introduced a method to capture interactive actions
taken in a visualization in a semantically meaningful way
and to reuse sequences of actions (workflows) on updated
datasets. In this way, we make actions taken in a visualiza-
tion just as robust to changes as if they were implemented
in a function in code. We introduce methods that match
up selections between updated datasets that go beyond just
reapplying a simple rule, instead leveraging various pattern-
detection algorithms and knowledge about the properties
of a prior selection. We introduce a mechanism to review
changes and update workflows if necessary. Finally, we
have demonstrated that this approach also allows us to
bridge between an interactive visualization system and a
computational workflow.

While any of the selections we capture through interactive
selections could also be implemented directly in code, we
argue that our approach is easier to execute, especially for
analysts with limited knowledge about the various algo-
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Figure 12: Preserving a selection in a temporally changing public health dataset. (a) We make a selection of countries
with high child-mortality. We missed an extreme outlier on the far right, but the suggested simplified range selection
catches that mistake. (b) Applying this brush to the 1980 dataset preserves the semantics of the actions, although now
significantly more countries are selected (note the scale change). (c) The provenance graph for this sequence of actions.

rithms we employ. Extracting some common data transfor-
mation interactions as workflows for frequently updated
datasets makes it easier to get started with a new version.
Our prototype and our examples show that our approach
works for a range of patterns and for datasets that change
in significant ways. We believe that our approach could
also be transferred to many other types of data and types
of visualizations.
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Figure 13: Semantic reapplication of different patterns in synthetic datasets. We see how different patterns (rows)
are semantically applied to updated datasets. The first column is the original selection, the second column shows the
compare view between the original dataset and the updated dataset, and the third column shows the final selections on
the updated dataset.
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