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Abstract
Predicting and capturing an analyst’s intent behind a selection in a data visualization is valuable in two sce-
narios: First, a successful prediction of a pattern an analyst intended to select can be used to auto-complete
a partial selection which, in turn, can improve the correctness of the selection. Second, knowing the intent
behind a selection can be used to improve recall and reproducibility. In this paper, we introduce methods to
infer analyst’s intents behind selections in data visualizations, such as scatterplots. We describe intents
based on patterns in the data, and identify algorithms that can capture these patterns. Upon an interactive
selection, we compare the selected items with the results of a large set of computed patterns, and use vari-
ous ranking approaches to identify the best pattern for an analyst’s selection. We store annotations and the
metadata to reconstruct a selection, such as the type of algorithm and its parameterization, in a provenance
graph. We present a prototype system that implements these methods for tabular data and scatterplots.
Analysts can select a prediction to auto-complete partial selections and to seamlessly log their intents. We
discuss implications of our approach for reproducibility and reuse of analysis workflows. We evaluate our
approach in a crowd-sourced study, where we show that auto-completing selection improves accuracy, and
that we can accurately capture pattern-based intent.
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Introduction

When experts interact with a visual analysis system,

they are frequently guided by a domain-specific analy-

sis question, such as identifying a gene that could be a

drug target. To answer this question, they execute a

series of intermediate tasks, such as selecting a set of

correlated items for detailed analysis. In contrast to the

high-level goal of answering a domain-specific ques-

tion, these intermediate tasks are based on patterns in

the data: for example, selecting outliers, clusters, or

correlations. Such a carefully constructed selection of

items based on a domain-agnostic structure reflects a

reasoning process – an intent – by the analyst. We

refer to the motivation behind these actions as the pat-

tern-based intent of an analyst. Pattern-based intents

are distinct from higher level intents in that they are

free of context and based solely on the data. They are

also distinct from low-level intents, such as hovering

over an item to read its label. In this paper, we intro-

duce methods to infer these pattern-based intents for

brushes in scatterplots. We define pattern-based intents as

the reasoning behind selections based on statistical patterns
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or structures in a dataset. These selections can then

serve as the basis for more sophisticated actions, such

as filtering, querying, aggregating, or labeling, so that

semantic knowledge about the purpose of the selection

can be applied to these actions.

Why is capturing pattern-based intents important?

First, inferring intents based on partial selections can

be used to auto-complete selections. To select out-

liers, for example, analysts would have to brush only a

few examples and could then auto-complete the selec-

tion, instead of painstakingly brushing the examples

individually. Auto-complete can also be used to cor-

rect a selection. For example, if an analyst intended to

select a cluster, reviewing the predicted cluster might

reveal points that should be added to the selection.

Second, making pattern-based intents available in

provenance data improves the recall and reproduci-

bility of analytic processes conducted with visualiza-

tion tools. By capturing such processes at a higher level

of abstraction than just low-level interactions, they

become more transparent when revisited either by the

original analyst or a collaborator. Hence, analysis ses-

sions that capture intents are more justifiable and likely

to increase trust in the process.

Down the line, such rich provenance data also have

the potential to enable reusing visual analysis ses-

sions on modified or updated data. For example,

when an analyst first removes outliers before proceed-

ing with an analysis, that action could be translated

into a rule, which then could be used to automatically

remove outliers from an updated dataset.

We use scatterplots and tabular data as common

and important representatives of visualization tech-

niques and data types to demonstrate the feasibility of

predicting intents from selections. To identify the types

of patterns that map to these pattern-based intents, we

conducted formative interviews with scientists who

regularly use scatterplots in their research.

Our primary contribution is a set of methods to

detect and capture these pattern-based intents

for brushes and selections. We select data mining algo-

rithms that are suitable to detect patterns in a dataset,

and compute a large set of potential patterns for a

dataset. We introduce methods to address the poten-

tially large space of dimensions and parameters.

Finally, we develop three approaches to score and rank

the output of the algorithms relative to an analyst’s

selections.

Our secondary contribution is an implementation

of these methods in an interactive visualization

technique, thereby demonstrating how they can be

leveraged for auto-complete and provenance tracking.

By showing ranked predictions of patterns for a selec-

tion, we create a mixed-initiative approach that lets

analysts easily capture their pattern-based intent by

verifying a prediction. We provide the means to anno-

tate these intents to tie them to higher level domain

goals and capture this information in a provenance

graph.

We demonstrate the usefulness of our approach in a

set of examples. We also show that we can successfully

predict pattern-based intents in a large, crowd-sourced

quantitative study.

Background and related work

Our work is related to predicting intents in different

contexts, data-aware brushes and selections, prove-

nance tracking, and annotation of visual analysis pro-

cesses, which we discuss in the following subsections.

Theoretical background

Selection is one of the fundamental interactions found

in visualization systems.1 Selections are typically com-

municated by manipulating the appearance of items,

in which case they are also called a brush. In multiple

coordinated view systems, linked brushing is fre-

quently used to highlight the same items in multiple

views.2 However, selections can also serve as the first

step in more complicated actions, such as filtering,

extracting, querying, aggregating, grouping, manipu-

lating, or labeling items. Hence, understanding the

intent behind a selection is also useful to understand-

ing the intents behind these derived operations.

Selections are commonly discussed in task analysis

for visualization. Brehmer and Munzner,3 for exam-

ple, classify selections as a manipulation method in the

how part of their typology. Rind et al.4 classify tasks

along a cube using the dimensions abstraction (concrete

to abstract), composition (low-level to high-level), and

perspective (how and why). In their design space, a

selection is an abstract, low-level task of the how

perspective.

Our goal, however, is to understand the why behind

a selection and hence bridge the actions and the objec-

tives: why has an analyst chosen to select a particular

set of points? We attempt to infer pattern-based intents

from domain-agnostic patterns in the data, and give

analysts the opportunity to annotate their actions to

capture domain-specific reasoning. Our ultimate goal

is to realize Knuth’s vision of literate programming for

interactive visual data analysis, just like notebook for-

mats such as Jupyter Notebooks or Observable have

done for scripting-based data analysis.

Our pattern-based intents are related to insights into

the data, as defined by Karer et al.:5 ‘‘Insights affecting

the viewer’s knowledge about statistical and other

structural information about the data.’’ A difference in

our definition of pattern-based intents is the
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viewpoint: insight is about an analyst learning some-

thing, whereas intent is the reasoning behind an

action.

Predicting intents

Inferring an analyst’s intent has been studied in vari-

ous contexts. For example, Myers6 proposes methods

for inferring operations and source code from demon-

strations when implementing graphical user interfaces.

More specific to data analysis, Gotz and Zhou7 study

analysts’ activities and model them in four tiers, from

high-level tasks, to subtasks, to actions, to events.

Actions, which correspond to our pattern-based

intents, are composed of a type, an intent, and para-

meters. They represent an executable, semantic step,

such as a query, that bridges the high-level human

cognitive ability and the low-level user interactions.

Gotz and Zhou implement this framework in a proto-

type, named Harvest, that captures such actions. In

contrast to our work, however, Harvest captures that

an action was executed, but not why. A related tool

that also captures actions is SensePath.8 A key differ-

ence to Gotz and Zhou’s work is that SensePath is

optimized to support qualitative data analysis: it is

made for analysts to use the log of semantic actions in

qualitative coding.

Our approach is also related to query-from-example

methods developed in the databases community.

Dimitriadou et al.,9 for example, infer range queries

from a set of selected items. Cavallo and Demiralp10

use an approach similar to ours for precomputing and

predicting clusters. These approaches are limited to a

single type of pattern. Our work, in contrast, considers

diverse patterns and ranks the predicted pattern-based

intents.

Dou et al.11 argue that much of the reasoning pro-

cess during a visual analysis session can be inferred by

humans from inspecting user interactions, yet it is

unclear whether a human’s ability to do so can be

leveraged by automatic methods.12 Brown et al.13 have

shown that user performance and certain personality

traits can also be inferred from analyzing user interac-

tions. A thread of work is concerned with predicting

future events in an analysis process to enable gui-

dance.14 Ottley et al.,15 for example, predict future

clicks on items based on an interaction history.

Steichen et al.16 and Gingerich and Conati17 show

that predicting lower level tasks, such as retrieve value,

is possible using eye gaze data. This approach differs

from our goal of predicting the intent of a current

selection. Monadjemi et al.18 propose a Bayesian

approach to predict intents by ranking Gaussian distri-

bution models based on user interactions. The ranked

models can then be used to predict the next

interaction, detect exploration bias, and summarize

the analysis process based on click patterns. Battle

et al.19 propose ForeCache, a tool for the exploration

of large datasets. ForeCache uses Markov chains and

computer vision algorithms to model analysts’ future

actions based on their past moves. The system uses

these predictions to pre-fetch data. In contrast to our

work, the purpose of both these methods is to predict

a future interaction or a region of interest.

A common goal for intent prediction is view specifi-

cation, that is, the selection of data (sub)sets and suit-

able visual encodings. Systems such as Tableau’s Show

Me20 use data properties to predict useful visual

encodings. Natural language interfaces for view speci-

fication attempt to extract intents from language21 and

extract configurations for a view. Saket et al.22 predict

intents for view specification from demonstrations,

such as assigning a color to a dot in a scatterplot, based

on which their system infers the intent of mapping an

additional variable in a dataset. Their follow-up work23

demonstrates that analysts seamlessly switch between

manual and mixed-initiative approaches. Demiralp

et al.24 compute patterns for a dataset and suggest

visualizations for each of these patterns, but their

approach is not reactive to analyst selections.

In summary, these related approaches usually target

predicting of future interactions, visualization recom-

mendation, query generation, or preloading of data

subsets. Both our approach – mapping analyst selec-

tions to patterns and then ranking these patterns – and

our applications – auto-complete and capturing intents

to enable reproducibility and reusability – are different.

Data-aware brushes and selections

Selections, and the related concepts of brushes,

queries, and filters, specify a subset of data items.

Most selections are defined by explicit clicks on indi-

vidual items, ‘‘paint-brushes’’ that select all elements

under a brush tool, geometric brushes, such as rectan-

gles or lassos, or textual queries. More advanced, data-

driven brushes have also been proposed. For example,

Fan and Hauser25 introduce a method for fast brush-

ing based on neural networks, where they estimate an

intended selection based on simple sketches. Although

they do not predict intents based on these brushes, a

method like theirs could be used to improve brushing

in our system.

Data-aware selections are actions that are defined in

data space.1,26,27 For a selection, for example, data-

aware selections mean that it is described by condi-

tions, not by a list of items. Dynamic queries28 are

commonly realized in a data-aware way: all items that

fit certain conditions, defined, for example, via sliders,

are considered to be in the query results. Certain types
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of brushes2 can be realized in a data-aware way. A rec-

tangular brush in a scatterplot, for example, easily

translates into the necessary conditions. Many selec-

tions (and other actions) are, however, realized by

direct reference, for example, by pointing at items, and

hence they are defined in item space. Actions that are

defined in item space have several disadvantages: they

cannot be generalized to apply to updating data, and

they cannot be used to semantically explain a selec-

tion. Data-aware actions, in contrast, are robust to

changes, can be used to explain and justify an action,

and can be used in various ways to support an analyst,

for example, by relaxing a selection,29 or for reuse in a

different context.30 Most data-aware selections are rea-

lized by deriving rules directly from a rectangular

brush. In more general cases, rules for data-aware

selections are harder to derive. However, deriving the

pattern of a selection (what makes the item in a selec-

tion belong to each other and different from everything

else) is possible algorithmically. Xiao et al.,31 for exam-

ple, create ‘‘knowledge representations’’ of selections

in communication networks. This approach is similar

in spirit to our work, yet, Xiao et al.’s knowledge repre-

sentations are limited to simple clauses and are not

concerned with higher level patterns in the data.

Provenance

Our goal is not only to capture the intent behind

selection-based actions, but also to explicitly track the

intents and their constituting interactions for the pur-

pose of reproducibility and, eventually, reuse of analy-

sis actions. We use provenance tracking to achieve this

goal. Provenance in the context of data analysis refers

to the history of an artifact, such as a dataset, a com-

putational workflow, or an insight. Ragan et al.32 dis-

cuss different purposes of provenance, including

recall, replication (reproducibility), presentation, and

collaboration (among others), but do not discuss

reuse. Ragan et al. also characterize the different types

and purposes of provenance. They distinguish the pro-

venance of data, the provenance of visualization, the

provenance of interaction, the provenance of insights

(which captures analytical findings), and the prove-

nance of rationales (which captures the reasoning

behind any decisions made). Most provenance-

tracking techniques are limited to the former three,

whereas insight and rational provenance can currently

be achieved only using manual annotation.

Provenance tracking has two distinct approaches:

(1) tracking the history of an analysis to achieve prove-

nance (process-based), and explicitly modeling a visua-

lization workflow (workflow-based).33

Workflow-based approaches are common in

large-scale scientific data processing34 in systems such

as SCIRun.35 Workflow approaches are also common

for specifying the visualization pipeline, for example

for volumetric data,36 networks,37 and tabular data.38

A benefit of workflow-based systems is that they expli-

citly capture rules and thus can be reused easily.

However, even these rules do not typically capture

higher level semantics or intents.

Process-based approaches are the alternative to

explicitly modeling workflows. They provide analysts

with an interactive visualization systems while tracking

the analysis process in the background.12,39 Many

visualization systems support the tracking of a history

for the purpose of action recovery (undo/redo), so we

limit our discussion to systems that explicitly target

provenance. Examples include the graphical histories

by Heer et al.40 or CzSaw;41 both render prior states

as thumbnails. Various tools also represent histories as

node-link diagrams,42–45 and some methods automati-

cally detect key states in an analysis process,46 or

retrieve prior states using search.47 The provenance

tracking in these systems is realized in an ad hoc way.

However, recent papers have introduced software

libraries for process-based provenance tracking,48

including the Trrack library.39 Trrack is developed by

our team at the Visualization Design Lab. However, in

all of these cases the tracked information is based on

interaction logs and lacks higher level semantics.

Annotation

One approach to capture intents and semantics is

through note taking and annotation. Annotations

are common in visualizations designed for presenta-

tion, but are not frequently integrated in exploratory

visualization tools, with notable exceptions.40,45,49–53

Manual notes, documentation, and annotations can

capture analysts’ reasoning and insights, but creating

and maintaining them is associated with a burden on

the analyst and thus a lack of scalability.7 Hence, in

this paper, we associate annotations with the corre-

sponding provenance step, which can also be tied to

pattern-based intents. This approach allows analysts to

elaborate on their intentions, bridging the gap between

pattern-based intents and domain-specific, higher level

intents.

Patterns for selections

When analyzing data, analysts have intentions at dif-

ferent levels of abstraction. We are specifically inter-

ested in the pattern-based intents behind brushes or

selections of data items in scatterplots, which are still

semantically rich but domain agnostic.54 To define a

set of patterns that map to these intents, we first devel-

oped an initial classification based on the
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literature55,56 and our own experiences working with

scatterplots. We then validated and extended the initial

classification through interviews with six scientists at

the University of Utah who regularly use scatterplots

in their data analysis. We used a convenience sample

of domain experts we had interacted with profession-

ally. Our inclusion criteria were: (1) regular use of

scatterplots, and (2) and a willingness to share scatter-

plots or data used in scatterplots. The interview proto-

col was reviewed by the Institutional Review Board

and classified as exempt from full review. We identified

six participants from nursing, astrophysics, chemical

engineering, psychiatry and population health, and

surgery. The participants included one graduate stu-

dent, one research scientist, and four faculty members.

We provided participants with paper printouts of scat-

terplots of their own data and asked them to describe

and highlight the kinds of patterns they find interest-

ing. The goal of the interviews was to validate our ini-

tial classification of patterns based on the literature,

and to identify patterns we might have missed. The

interviews were video recorded and then transcribed.

The transcriptions were coded by two independent

coders using a seeded codebook developed from the

initial classification of patterns: outliers, clusters, cate-

gories, multivariate optimization, and range queries. A

table in the Supplemental Material shows the code fre-

quencies from both coders for each interview. Both

coders identified many instances of outliers, clusters,

categories, and range queries. Only one of the two

coders identified two cases of multivariate optimiza-

tion. Both coders frequently identified correlation

analysis, which we originally had not included in our

set of patterns. Based on this process, we identified

the following data patterns that match the analyst

intents when analyzing data in scatterplots.

Correlations. Correlations are

associations between two or multi-

ple dimensions. They were men-

tioned as a target pattern in five of

our six interviews with domain

experts. Frequently, analysts were

looking to identify correlations in

the overall datasets or parts of the

data, but also attempted to find points that do not fit

the correlations. They had the intent to identify sub-

sets of data that correlate, but also identify items

that do not fit the correlation. In several interviews,

these points were identified as ‘‘bad data.’’ We found

that participants did an approximate visual regression

analysis, identifying both linear and nonlinear trends.

Outliers and inliers. Outliers are

data points that differ significantly

from other items. They were

brought up as a pattern of interest

in all six interviews. Frequently,

analysts wanted to understand

what causes the data points to be

outliers, relying on their back-

ground knowledge. Outliers are also related to, but

distinct from, the points that do not fit a correlation:

for example, an item can be an outlier in its magnitude

but perfectly fit the correlation. Outliers were also

mentioned as bad data that should be filtered out. We

consider both outliers and ‘‘inliers,’’ that is, the set of

points that are not outliers, as target patterns.

Clusters and groups. Clusters or

groups of data points are items that

are similar to each other, but dis-

tinct from the rest of the dataset.

They were mentioned as a pattern

that analysts look for in three of six

interviews. Clusters were fre-

quently not well defined in the

data the experts we interviewed

analyzed.

Multivariate optimization. One goal

when analyzing data is to find data

points that are dominant over mul-

tiple dimensions. A typical exam-

ple is to find a hotel that is both

close to the city center and afford-

able. The set of such points is

often called a skyline.57 Hotels in the skyline are such

that no other hotel is both cheaper and closer to the

center. Skylines were brought up in two of our six

interviews, and hence are the least frequently men-

tioned pattern.

Categories. An observed pattern

can sometimes be traced back to

the items being of distinct cate-

gories. Four of our six expert parti-

cipants mentioned they intend to

select elements by category. For

example, one expert wanted to

separate data points based on cate-

gories, where one category corresponded to an experi-

mental condition, and the other category was made up

of unmanipulated controls.
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Ranges. Four of the six experts

mentioned they select data based

on numerical ranges. Several

experts stated these ranges can be

based on domain conventions for

setting cut-offs. We observed range

selections based on single or multi-

ple dimensions, implying that ranges can be combined

for more complicated queries.

Discussion. We believe that the described patterns

cover a broad range of use cases, but we do not argue

that our list of patterns is exhaustive. For example,

domain-specific patterns might be meaningful in cer-

tain contexts. Sarikaya and Gleicher56 describe tasks

for analyzing scatterplots. Each of our patterns can be

mapped to one or multiple tasks from their work. For

example, they mention tasks like identify anomalies,

identify correlation, and search for known motif, which

can be mapped to the outlier, correlations, and cluster

pattern, respectively. Their list of tasks, however, goes

beyond patterns, including, for example, explore data,

and they do not explicitly mention some of our pat-

terns, such as multivariate optimization.

Our pattern classification is limited to tabular data

in scatterplots. We expect that other patterns, such as

rankings, would be common in different representa-

tions. Finally, we have sometimes included a pattern

and its antipattern, such as outliers and nonoutliers as

separate patterns, but we have not done so consistently

for all patterns. We have included anti-patterns for

those cases where they were explicitly mentioned in

our interviews (outliers and correlation). However,

anti-patterns could also be considered for other cases.

Mapping patterns to intents

Most patterns that we identified in our formative study

are also commonly targeted in data mining, which

implies that various algorithms can be used to identify

them. We leverage this diversity to calculate a broad

set of patterns using different algorithms, combina-

tions of dimensions, and parameters. We then compare

the computed patterns with analysts’ selections and

rank them according to that match. Whereas our initial

step creates a large set of patterns, the subsequent

ranking makes these patterns manageable. We explain

the details of the algorithms used and our ranking

approaches in this section. Figure 1 gives an overview

gives an overview of our method.

Up to this point, we have implicitly assumed that

the patterns we discussed appear in two-dimensional

space. In practice, however, many datasets have much

higher dimensionality. Hence, a key question we have

to answer is: For which dimensions should we calcu-

late predictions? We considered calculating patterns

for all pairs of dimensions, all dimensions that are

actively brushed in the system, all dimensions that are

visible in the system, all dimensions in the dataset, and

any combination of these options. Calculating all pos-

sible options is computationally expensive, if not

Figure 1. Scatterplots showing three dimensions of a dataset. An analyst has brushed points in the right scatterplot based
on a pattern they see (orange points). Our system predicts possible intents and ranks them by their match to the current
selection. The points in green show a cluster that is recommended by our system based on the selection. When an analyst
accepts this suggestion, a semantically rich log entry is stored in a provenance graph, shown on the right. [Interactive Figure].
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prohibitive, but also not necessary. As we aim to pre-

dict the intent of analysts interacting with (possibly

multiple) 2D scatterplots, and not to reveal high-

dimensional patterns, we decided to limit predictions

to (1) pairwise dimensions and (2) the dimensions that

are actively brushed. We believe that predicting pat-

terns on pairs of dimensions is the most appropriate

choice for 2D scatterplots, as these patterns match

what is visible in the plot. This restriction to pairs of

dimensions is also supported by the fact that we did

not encounter examples where experts wanted to select

items based on more than two dimensions. However,

we also do not want to exclude the possibility of ana-

lysts selecting higher dimensional patterns. Hence, we

also calculate all patterns for all dimensions that are

actively brushed, as the brushes indicate that an ana-

lyst is explicitly interested in a combination of these

dimensions. Consequently, in a set of two 2D scatter-

plots visualizing dimensions A/B and C/D, and with

active selections in both scatterplots, we calculate and

predict patterns in two dimensions for A-B and C-D;

and patterns in 4D space for A-B-C-D.

For example, if an analyst would like to select the

species in Fisher’s prominent Iris flower dataset, a

selection based on 2D combinations of dimensions

would be difficult as the feature are not well separated

in any combination of 2D plots. In our system, they

could start by plotting sepal width and sepal length

and brushing a group of similar plants. They can fur-

ther narrow the selection down by brushing in a sec-

ond plot showing petal length and petal width. This

combination of selections triggers a prediction consid-

ering all four dimensions. They can then select the

cluster prediction that best matches their intended

selection, leveraging patterns computed on higher

dimensional space. A live version of this example is

available [here].

Algorithms

Many algorithms can extract the patterns we describe.

In our system, we deliberately rely on standard algo-

rithms that are robust and simple, although more

sophisticated versions might exist. One reason for this

is generality: Many data mining algorithms require

careful choices of hyperparameters, but choosing good

parameters requires expertise and trial and error,

which is not acceptable for our use case. Instead, we

choose parameters for these simple algorithms by sam-

pling the parameter space or rely on defaults. For

example, we run k-means with a k of 2–7, but use

defaults for all other parameters. We do not use eva-

luation approaches for the quality of the outputs;

instead, we let our ranking approach reveal the most

suitable results. We also assume that the visualization

uses linear scales. However, an extension to logarith-

mic or power scales would be straightforward. We use

algorithms provided by Scikit-learn58 unless noted oth-

erwise, and normalize the data before the analysis.

We use two different algorithms for clusters,

DBSCAN and k-means, that have complementary

strengths, since different algorithms pick up different

kinds of clusters, such as circular clusters or concave-

shaped clusters. DBSCAN is based on a (parameter-

ized) measure of density (clusters are clouds of dense

points of arbitrary shape), whereas k-means assumes

roughly spherical clusters and requires the cluster

number as a parameter. If no clusters are present,

DBSCAN considers the whole dataset as one cluster

(except for outliers), whereas k-means always provides

a segmentation of the dataset. We solve each formula-

tion multiple times with different parameterizations

For outliers, we use two algorithms: the local out-

lier factory and the outliers identified by DBSCAN.

We treat inliers provided by the local outlier factory as

a separate prediction named nonoutliers.

Multivariate optimization is used to find values

that are optimal across multiple dimensions. Although

a general optimization would require weighting the

value of each dimension, skylines57 are a generic

approach that determines the items that are not domi-

nated by other points. As a skyline requires a defini-

tion of what is considered ‘‘good’’ in each dimension

(e.g. a low price, but a high customer rating is consid-

ered good for a hotel), we compute skylines for all

high/low permutations of the 2D cases. We limit pre-

dictions to all-low or all-high for higher dimensional

cases, because calculating all possible permutations

would be computationally expensive.

If a dataset contains categorical values, we treat

each category as a separate pattern. Individual cate-

gories could conceivably be shown in the scatterplot,

but predicting an overlap between a selection and a

category is especially important if a dataset has many

categories that cannot be shown at the same time.

Finally, we use regression as a framework to analyze

correlations in the data. To identify the sets of points

that are part of a linear or quadratic correlation pat-

tern, we run the following algorithm on linear and

quadratic regression datasets, where X is the entire

dataset, I are points marked as inliers, R is the regres-

sion model built with Scikit-learn, ri is the residual for

a point xi calculated from R, and iters is a constant for

the maximum number of iterations we execute if the

algorithm does not converge earlier.

1. First we assume all the points in the dataset X are

inliers I and build a Scikit-learn regression model

R on the I.
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2. Then we calculate residuals ri using R for all

points xi in I.

3. Next we define �r =median(rijxi 2 I).
4. Then we redefine I as all the points xijxi 2 X

where ri \ 2�r.
5. We repeat points 1 to 4 for a predefined number

of iterations iter, stopping early if inliers do not

change between iterations.

The pseudocode for the above algorithm is

expressed in algorithm 1.

Ranking predictions

All the described patterns result in classifications for

each item in the dataset. To rank the predictions in our

system, we compare these patterns with a binary classifi-

cation representing an analyst’s selection. Figure 3 shows

an overview of our method. Some algorithms, like clus-

tering, produce a multiclass prediction, which we first

transform into a set of binary classifications using one-

hot encoding. We can then use a similarity metric to

rank each of the predictions. We use a preprocessing step

to remove duplicate predictions for the same pattern

from the set of predictions to rank. Duplicate predictions

occur frequently if a pattern is robust to different para-

meterizations of the same algorithm.

In the following subsection, we discuss three ways

to rank the predicted patterns that are optimized either

to infer intent for an existing selection, or to predict

intent of a partial selection, plus a special case for rank-

ing range queries.

Ranking for inferring intent. Our baseline metric is the

Jaccard index, which is a measure of similarities

between sets. We consider the set of selected items S,

and the set of items in a candidate pattern C. The

Algorithm 1 Calculate inliers for a correlation pattern.

I X 8 initially mark all points as inliers
while iters . 0 and I is changed do

R Regression(I) 8 building regression model
�r  median(rijxi 2 I) 8 median residual over I
I xijxi 2 X ^ ri \ 2�r 8 update inliers
iters iters� 1

end while

Figure 2. Overview of our method for mapping patterns to intents: (a) an analyst makes a selection in a scatterplot,
(b) the system calculates many different patterns using various algorithms that we use for prediction, (c) we rank how
well the analysts’ selection matches the predicted patterns, and (d) the analysts select their intended pattern and
provides annotations to capture their thoughts.

Figure 3. Using decision trees to capture range-based
queries. (a) A brush is shown in red. The brush geometry
can be described with four rules. (b) The decision tree
simplifies the brush to two rules, illustrated in dark blue
in (a). (c) A simplified decision tree, where one level has
been removed. The result is a simple rule, which also
includes a point that was not in the original selection,
contained in the light-blue area in (a).
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Jaccard index J(S,C) between those two sets is then

defined as

J(S,C)=
jS \ Cj
jS [ Cj =

jS \ Cj
jSj+ jCj � jS \ Cj

Here, a value of 1 corresponds to a perfect match, and

a value of 0 indicates no overlap. The Jaccard index is

well suited to infer the intent of an existing, complete

selection.

Ranking for auto-complete. The tasks of auto-

completing and inferring intent differ with respect to

ranking a possible pattern: In the case of inferring

intent for a completed selection, finding the best

match overall is necessary. In contrast, for auto-com-

pletion, the selection is partial, as the goal of the task

is to complete the selection. Hence, we needed to

develop a ranking approach that does not penalize

incomplete selections. To do this, we rank the predic-

tions using a modified Jaccard index Jm. We define the

similarity between sets S and C as,

Jm(S,C)=
jS \ Cj

jS \ Cj+ jCnSj+w 3jSnCj+ r 3jX j

Here X is the complete dataset. The modified similar-

ity metric reduces the penalty for points in S that are

not present in C by down-weighting jSnCj using a fac-

tor w \ 1, reflecting the goal of a partial selection to

be automatically completed. The metric also adds a

regularization parameter of r to prevent boosting ranks

in cases where few correct points are selected.

Empirically, we found that w= 0:2 and selecting r

such that r 3jX j= 3 gives good results for datasets

that are suitable to be visualized in scatterplots. Due

to the regularization, the metric never reaches 1, but 0

still indicates no overlap.

Ranking ranges. Our range-based queries rely on a

decision tree of arbitrary depth; hence, the pattern

captured by that decision tree is always a perfect match

to the selection. Consequently, the range query would

always rank at the top if we ranked it using the Jaccard

index. However, this ranking is inconsistent with what

humans perceive as a good prediction of their intent:

when analysts create complex selections, they tend not

to think of them as long lists of rules. Instead, they

likely select a pattern based on a higher level relation-

ship in the data. To address this inconsistency, we

assign a score R to the range-based query using a heur-

istic based on the depth d of the decision tree: R= 1
d2.

Our heuristic relies on the assumption that simpler

queries are more likely to match an analyst’s intent

than complex queries that require deep decision trees

to represent them. The resulting score is on the same

scale as the Jaccard index, and hence can be easily

integrated.

Probabilistic ranking. The Jaccard index considers

each possible pattern independently. However, an ana-

lyst’s intent is rarely independent, and some predicted

patterns are more likely than others. To address this,

we propose a probabilistic framework that models

these effects. We denote predicted patterns with

Ci 2 C and the Boolean vector representing the ana-

lysts’ selection as S. Finding a probabilistic ranking of

the predicted patterns is the same as determining the

conditional probability P(CjS) for each pattern.

Framing the problem using probabilities also gives us

more interpretability as it relates the different intents

to one another: the probabilities for each intent add

up to one:

X

Ci2C

P(CijS)=P(C jS)

X

Ci2C

P(CijS)=P(COutliersjS)

+P(CClustersjS)+ . . . = 1

To compute P(Ci jS) we can use Bayes theorem.

P(SjCi) models how a particular intent explains the

current selection of the analyst. It is scaled by the term

P(Ci), which is called the prior. It describes the prob-

ability of each intent, without considering additional

information. Finally, P(S) acts as a normalizing con-

stant that ensures that the result is a probability. To

make this equation computationally tractable, we

make use of two observations. First, if we do not con-

sider the order of selections, the problem that we are

trying to solve is very similar to text classification. Our

description of the analysts’ selection is almost identical

to a bag-of-words (BOW) model, which is often used in

this domain. The difference is that typically, in text

classification, the bag-of-words model describes the

frequency of each word. In our method, the BOW

model simplifies to a constant frequency of one if a

point is part of the selection. Second, by assuming that

each feature (selected point) is independent of

another, we can compute P(SjCi) using the naive

Bayes method. In particular, we use a multinomial

naive Bayes classifier to compute the conditional prob-

abilities. For each selection by the analyst, we train

such a classifier on the output vector of each of the

intents Ci. Given a selection S as an input, the classi-

fier yields the corresponding probability. Our predic-

tion is then the intent that maximizes this probability.

Sometimes, selected points are not part of any of the

training samples, which leads to zero probabilities for
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the intents. This is a common problem when using

naive Bayes classifiers. We use Laplacian smoothing to

avoid this effect.

Visualization and interaction design

In this section, we describe how we implemented our

methods in an interactive visualization system and

explain our visualization design decisions. The inter-

face allows analysts to add scatterplots as desired.

Categories can be visualized using glyph types (see

Figure 4). We provide a paint-brush feature2 with

three brush sizes, rectangular brushes, and individ-

ual, click-based selections. The items in multiple rec-

tangular brushes can be treated as unions or as

intersections within or between multiple plots. Points

that are selected individually or using the paint-brush

are always treated as part of the intersection. The labels

of the items in a selection are shown in a separate view

(see Figure 5), where we also break down the number

of items in the union and intersection of multiple

brushes.

(c) (d) (e) (f)(a) (b)

Figure 4. Overview of our method for ranking patterns for an analyst’s selection based on a cluster example. (a) A
dataset exhibits two clusters, shown in blue and green. (b) A clustering algorithm detects the clusters and assigns
labels to the points. (c) We use one-hot encoding to transform the output of each algorithm into disjoint Boolean vectors.
(f) An analyst’s selection results in (e) another Boolean vector. (d) These Boolean vectors act as inputs to compute
Jaccard indices and the naive Bayesian classifier, which are then used as scores for ranking.

Figure 5. The prediction interface shows ranked patterns based on the three scores. The ‘‘Category’’ prediction for a
selection (orange points, rectangle brush) is shown in green in the scatterplot. Hovering over a row in the prediction
interface shows a preview of the prediction. Clicking the row replaces the current selection with the predicted selection.
The M, NP, and NS columns show the number of matching items (M), not predicted items (NP), and predicted but not
selected items (NS). Hovering over a cell highlights the corresponding items in the scatterplot in green. The ‘‘Dims’’
column displays the dimensions considered for calculating a pattern. The ‘‘Probability’’ column encodes the probabilistic
ranking. The provenance visualization (right) shows the steps that lead to the current selection and prediction. Insights
(orange) are used to group and aggregate steps that lead to them. [Interactive Figure].
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We designed the prediction interface, shown in

Figure 5, as a ranked table with scores shown as bar

charts.59 Each predicted pattern is a row. Hovering

over a prediction shows a preview, and clicking it

replaces the selection with the prediction. The differ-

ent scores are shown as bar charts in the columns as

‘‘Intent Rank’’ (the Jaccard index), ‘‘Auto-Complete

Rank’’ (the Jaccard index modified to be sensitive to

partial selections), and ‘‘Probability.’’ The table can be

sorted based on these scores. Other columns denote

the ‘‘Matches (M),’’ that is, the number of points that

the prediction and selection share; the ‘‘Not Predicted

(NP)’’ items, that is, the number of items in the selec-

tion but not in the prediction; and the ‘‘Not Selected

(NS)’’ items, that is, the number of items in the pre-

diction but not in the selection. Combined with the

similarity scores, these numbers give analysts a sense

of how well each prediction matches the selection.

Hovering over each of the M, NP, or NS numbers

highlights the corresponding items in the scatterplot in

green (see Figure 5).

Each prediction also shows on which dimension it

was calculated (and their order) in the ‘‘Dims’’ col-

umn. We use short labels, which we replicate on the

axes of the scatterplots to identify the dimensions. For

range queries, we display the dimensions that are used

in the decision tree.

When using auto-complete, analysts can sort by

the auto-complete score. In addition, a pop-up appears

right next to a selection in the scatterplot (Figure 6)

showing the top three predictions for the current selec-

tion according to the auto-complete score. This popup

can be used as a short-cut to complete selections.

To enable reproducibility and recall, a prove-

nance graph is visualized in the history view (Figure

5).39 Every persistent action, such as adding a plot or

making a brush, is logged in the interface and can be

retrieved at a later time. The provenance graph sup-

ports branching analysis histories. A prediction can be

logged as a semantically meaningful insight, which can

be supplemented with an annotation (see the annota-

tion interface in Figure 4). Textual annotations are

designed to connect the pattern-based intent in the

data to the high-level, domain-specific goals. We use

insights to group and aggregate the provenance graph:

All actions that were in service of a particular insight

are grouped together and can be collapsed. This

grouping allows us to show a concise and semantically

meaningful analysis history, while still storing a com-

plete history of interactions. The example in Figure 5

Figure 6. The study interface for the computer-supported condition for an outlier task. The user-driven condition was
identical, except for the absence of the ranking on the right and the prediction pop-up. [Interactive Figure].
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shows one expanded group, indicated with an orange

frame, and one aggregated insight in the inactive

branch on the left.

The provenance graph contains all the information

that is necessary to reconstruct the semantics of a

selection, which means that a selection is not just a list

of IDs, but contains, for instance, the explicit range

query, or the cluster centroid and the algorithm con-

figuration that can be used to reproduce a specific pat-

tern on updated data. In the future, we plan to export

the intents into machine-readable form, so that an

interactive analysis and filtering session can be used,

for example, in computational notebooks.

We chose to use scatterplots and point/brush-based

selections for our prototype, because Scatterplots are a

commonly used and widely understood visualization

technique, and are well suited for brushing items.

Combined with highlighting, scatterplots allow us to

demonstrate analyst selections and system predictions

clearly. We chose to focus on selections because they

are not only important by themselves, but also are fre-

quently precursors to more complex interactions like

filtering, grouping, labeling, or segmentation. Our

goal was to demonstrate the capturing of intent at the

selection stage.

The visualization system described here is a tech-

nology demonstration that we developed with the goal

of showing and validating the methods to detect and

capture intent. We expect that a production system

using our approach will use a simplified user interface

for ranking intents, potentially closer to the simplified

selection interface we used for our study (shown in

Figure 6).

Results

We have implemented our prediction approach in an

open-source prototype, and also have provided a vari-

ety of real and simulated datasets. An online version of

the tool is available at [here], and the source code is

available at [redacted for review].

We demonstrate our results through examples of

brushes and the matching prediction. Figure 4, for

example, shows a partially selected cluster that is also

predicted as a cluster. Figure 5 shows a brush that

closely matches a category and a range. Figure 6,

which shows the study stimulus, gives an example of

how our system can be used to auto-complete complex

brushes. The plot, overall, shows a strong linear corre-

lation between X and Y . Here, a participant has

selected four points in a dataset (the four points in the

top-left corner), and intended to select outliers. Our

system recommended a list of predictions on the right

and shows the top three predictions on the plot itself.

Selecting a prediction in the pop-up or the ranked

table on right reveals the points recommended for

auto-completing the selection in green. Here, the first

pattern matches the outliers above the main trend,

and the third pattern matches all outliers, including

those above and below the main trend. We provide

further examples for all patterns in the Supplemental

Material and refer to our prototype for an interactive

demonstration.

Evaluation

We explored various approaches to evaluate our meth-

ods. First, we decided to focus our evaluation on the

primary contribution of this paper: a set of methods to

detect and capture analysts’ pattern-based intents

behind selections. We do not evaluate details of our

visualization design, as they are meant to be technol-

ogy demonstrations in service of our primary contribu-

tion. To validate our primary contribution, we have to

determine how well our predicted intents match the

mental models of analysts. To do this, we considered

qualitative evaluation with experts using our system,

case studies, usage scenarios, and quantitative evalua-

tion. We ultimately chose a two-pronged approach: a

demonstration of our results through a prototype with

many preloaded datasets illustrated by a discussion in

the previous section and the Supplemental Material,

and a quantitative evaluation. For our quantitative

study, we had to make trade-offs among ecological

validity (realism), internal validity (isolating factors),

and external validity (generalization), and we opted

for a controlled crowdsourced study with a simple

interface to have control over the factors (internal

validity) and to include diverse participants, beyond

just experts (external validity).60

We validate our predictions using auto-complete as

an application scenario (see Figure 7(a)). This choice

is pragmatic: Even though our ability to capture men-

tal models is at least equally important to auto-com-

plete, evaluating auto-complete is significantly easier,

because it enables us to run a large-scale study and

cover various types of patterns. We argue that suc-

cesses in predicting correct pattern-based intents in an

auto-complete scenario is transferable to capturing

pattern-based intents for the purpose of reproducibil-

ity and reuse.

In our study, participants were instructed to select a

specific pattern in two conditions: either using only

brushes, or using brushes and auto-complete based on

our prediction system (see Figure 7(b)). The study is

designed to test the validity of our approach using two

primary measures: accuracy and match between

intended and predicted pattern.
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We chose a subset of our patterns: correlations (lin-

ear and quadratic), outliers, clusters, and multivariate

optimization. We excluded ranges, since they cannot

be used for auto-complete, and categories, since select-

ing elements belonging to categories would be tedious

in our system without auto-complete, and yet an alter-

native user interface design that enables participants to

explicitly select categories would solve that problem

trivially.

We also describe the study in a data comic, shown

in Figure 7, because data comics are an effective way

to communicate the complex procedures of a study.61

Procedure

We used a within-subjects design for two conditions:

user-driven, using only manual brushes, and

computer supported, which adds a simplified ver-

sion of our prediction interface. Participants were

instructed to select points that belong to a specified

pattern. The interface, shown in Figure 6, was simpli-

fied to show only the rankings tailored to auto-com-

plete. The names of the predicted patterns were not

shown to avoid biasing participants. To counter-

balance any learning effects, the conditions were

assigned in random order, the task order in each con-

dition was randomized, and the datasets were rando-

mized. We recruited 128 participants for the study on

Prolific, a crowdsourcing platform with a research

focus. Based on completion times of pilot experi-

ments, each participant was paid $6.25 USD, for an

estimated duration of 25 min, resulting in an hourly

rate of about $15 USD. All participants viewed and

agreed to an IRB-approved consent form. To be

Figure 7. Data comic61 showing the (a) motivation, (b) tasks and conditions, (c) study design, (d) analysis and results of
our study.
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eligible, participants had to use a laptop or desktop

device and either the Chrome or Firefox browsers.

Our procedure consisted of five phases (see Figure

7(c)) and followed guidelines on training participants

for complex analysis tasks:62 passive training, in the

form of an 8-min video introducing the types of pat-

terns and the interface; active training, where they had

to complete representative tasks, but could use a help-

feature to reveal the answer; trials in the two condi-

tions; and a short poststudy survey. The full study with

all phases is available online.

Our initial study had a negative result for outlier

detection. Upon investigating the reasons behind this

result, we found that our outlier prediction algorithms

did not perform adequately. The algorithm we used at

that time was Local Outlier Factor (LOF), which

compares the local density of the object to density of

its neighbors. This local density is given by the k-near-

est neighbors algorithm. The algorithm is good at

detecting local outliers, that is, data points that are

some distance from a dense cluster are considered out-

liers, whereas a point that is far from a sparse cluster

might be considered a part of the cluster, due to the

cluster being sparse. We added another outlier detec-

tion algorithm, DBSCAN, to the interface. DBSCAN

clusters the given data into density-based clusters and

marks the points lying in low density region as outliers,

which ensures that points that are outliers with respect

to the entire dataset are correctly marked as outliers

most of the time. We re-ran the study only for the out-

lier task. We edited the instructional video to remove

explanations on other tasks; otherwise, the procedure

remained the same. We recruited 130 participants for

the revised outlier-only study. Participants were paid

$3.52 for an estimated study duration of 14 min. For

transparency, we report on both our original outlier

results (referred to as ‘‘outlier old’’ going forward) and

the revised outlier condition (‘‘outlier revised’’).

Data and tasks

We generated synthetic two-dimensional datasets with

between 200 and 222 items for (1) linear correlations,

(2) quadratic correlations, (3) outliers combined with

a linear correlation, (4) outliers combined with a single

cluster, (5) clustered datasets with three or four clus-

ters, and (6) datasets for multivariate optimizations,

each in three levels of difficulty: easy, medium, and

hard. The levels of difficulty were driven by how

apparent a pattern is. For example, an easy clustering

dataset had fully separated clusters, whereas a hard

dataset had clusters that significantly overlap. We gen-

erated two variations of each combination (to be used

in the different experimental conditions), for a total of

36 datasets for the study and 6 datasets for training

tasks. For each dataset, we generated ground-truth

through human labeling. Patterns such as clusters

or outliers can be ambiguous, and our goal was to

match the human perception of those patterns. Hence,

we chose to ask expert coders to label the datasets.

Our coders were five doctoral students in visualization

not involved with this paper, with experience analyzing

these patterns. We instructed them to carefully label

each dataset for a specific pattern, with no algorithmic

support. We then treated all points that 4–5 of our

coders selected as correct, the points that 2–3 coders

selected as ambiguous (neither correct nor incorrect),

and the points that only a single or no coder selected

as incorrect. The Supplemental Material contains

images of the datasets, the ground-truth labels, and

the code used to generate them.

The tasks instructed participants to select one of

the patterns they learned about during training. As an

example, for outliers, the prompt was: ‘‘Select the

points that are outliers, that is, that are not following

the main pattern you see in the data’’ (see Figure 6).

For clusters, a specific cluster was marked in the plot

with a red cross, and the prompt was ‘‘Select the points

which belong to cluster centered around the cross.’’

Measures

We measured accuracy, time to completion, the

type and rank of a predicted pattern chosen by a

participant, and survey responses. After each

question, we also elicited confidence and perceived

difficulty on a five-point Likert scale and asked for

comments. We also logged detailed interactions in a

provenance graph. We calculated the accuracy of

the participant’s responses by using the Jaccard

index of the response overlapping with the ground-

truth, where we first removed the ambiguous points

(hence, selecting ambiguous points neither benefits

nor penalizes a score). For the time measures, we sub-

tracted the times where the browser window showing

the study was inactive. The final survey asked about

the satisfaction with different features, and experience

with visualization and statistics. Demographic data is

provided through Prolific participant profiles.

Pilots, analysis, and experiment planning

We conducted several tests and pilots to evaluate tasks,

system usability, data collection modalities, measures,

and our procedure. We estimated the number of parti-

cipants required to uncover effects based on a pilot run

on Prolific with 10 participants. We used a power anal-

ysis to estimate the variance in our measures, which we
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combined with our observed means to estimate the

number of trials required. Due to the limitations of

null hypothesis significance testing, we base our analy-

sis on best practices for fair statistical communication

in HCI63 by reporting confidence intervals and effect

sizes. We compute 95% bootstrapped confidence

intervals64 and effect sizes using Cohen’s d to indi-

cate a standardized difference between two means. For

the accuracy values, we also supplement our analysis

by including p-values from Wilcoxon signed-rank tests

(given the non-normal distributions of our data and

the within-subjects design). We consider a Bonferroni-

corrected threshold for significance of p= 0:0083.

Expectations

We expected that accuracy would be higher using

computer-supported mode for the medium and hard

datasets, and that accuracy would be about the same

and consistently very high with the easy datasets. We

assumed that the value of the prediction system would

be greater on ambiguous patterns, and that obvious

patterns would be easy to select manually, given the

brushing tools we provided. We also expected that par-

ticipants would perceive predictions as accurate and

the interface as user-friendly, and they would prefer

the computer-supported mode. Finally, we initially

also expected computer-supported mode to be faster,

but we realized during testing and pilots that this

would unlikely be the case.

Results

The original study had 128 participants and the

follow-up outlier study had 130 participants. After

reviewing the provenance data using the reVISit sys-

tem,65 we realized that participants sometimes chose

not to use predictions in the computer-supported con-

dition. Since our goal was to measure the effects of

using predictions, we removed trials that were not

completed using predictions in the computer-

supported mode. To avoid biasing our data by remov-

ing low-effort results in one condition, we also always

removed the equivalent trial in the user-driven mode.

We include data for all trials in our Supplemental

Material. Based on these criteria, we retained 1381 of

2268 trials in each of the computer-supported and

user-driven conditions (826 of 1560 for the second

study). Hence, when auto-complete was available, par-

ticipants chose to use it in 61% of cases (53% for the

second study). We argue that the removal of these

trials is justified and even necessary, but this argument

leads to the question of why predictions were not used

in many cases. We do not have definitive answers for

that question, since conducting follow-up interviews

with crowd participants is not possible. We do believe,

however, that skipping the prediction interface is a

sign of a crowd participant minimizing their effort,

which is well known to be a challenge in crowdsourced

studies.66

We analyze easy, medium, and hard tasks together,

resulting in 1785 valid trials across both studies.

Figure 8 summarizes our main results. Accuracy and

speed for every task are shown individually in

Supplemental Figure S21 and Figure S22. We also

break down results by levels of difficulty (see

Supplemental Figures S14, S15, and S16). Accuracy

was fairly high in both conditions for clusters, linear

regression, and quadratic regression (median of 84%–

98%), with a small to medium, significant effect

Figure 8. Task-specific accuracy shown as medians and
95% confidence intervals on a scale of 0–1. Blue (UD)
encodes the user-driven condition, orange (CS) the
computer-supported condition. Violin plots visualize the
underlying distribution. The numbers on the left show the
median and the extent of the 95% confidence interval. We
also give the number of trials per condition for each task
(n), Cohen’s d for effect sizes (d), and p-values. All
differences are significant. Note that the number of trials
varies due to our exclusion criteria, and that the outlier
tasks have higher numbers of trials as they group multiple
outlier configurations (outliers on top of clusters,
regressions, etc.) Also note that ‘‘outlier old’’ shows the
result of our original study, whereas ‘‘outlier revised’’
shows the result of the separate study with an improved
outlier detection algorithm.
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showing higher accuracy in the computer-

supported condition. The computer-supported clus-

tering condition shows a small ‘‘bump’’ at an accuracy

of around 0.5. Analysis of provenance data has

revealed that this bump is due to one of the clustering

predictions aggregating two ground-truth clusters into

one.

Overall accuracy for the multivariate optimization

task was lower, with accuracy in the computer-

supported condition being significantly higher,

with a small to medium effect size. Interestingly,

many of our coders omitted points that are contained

in the formal definition of a skyline, resulting in a

‘‘bump’’ of accuracy scores at around 0.85, represent-

ing participants who have selected the formally correct

skyline as recommended by the algorithm.

The accuracy for our original outliers condition

(‘‘outlier old,’’ in Figure 8) was significantly lower in

the computer-supported condition than in the user-

driven condition. Inspection of the provenance data

revealed that in many cases, applying a prediction for

outliers made user selections worse. As previously dis-

cussed, we re-ran our study using a different outlier

prediction algorithm (outliers as reported by

DBSCAN). In the second study, we saw significantly

higher accuracy for computer-supported mode,

although overall accuracy had gone down. The

reduced overall accuracy could be caused by reduced

learning effects in the study with fewer tasks.

The difference in accuracy in favor of the computer-

supported condition was more pronounced in medium

and hard tasks. The accuracy in easy tasks was similar

for both conditions (see Supplemental Figures S14,

S15, and S16).

Our exit survey revealed that participants generally

found predictions accurate (average score of 3.6 on a

five-point Likert scale) and helpful (average score of

3.8 on a 5-point Likert scale). In terms of the interac-

tion choices for selections, the paintbrush selection

was rated more helpful (average 4.5/5) than the rec-

tangular brush (average 2.3/5) and individual point

selection (average 3.3). Every task was followed by a

mini survey in which participants reported their confi-

dence in their selection and self-reported the difficulty

of the task. Confidence and difficulty were reported

on 1–5 scale with 1 being confident, 5 being not confi-

dent, 1 being easy, and 5 being difficult. Confidence

was higher and difficulty was reported lower for the

computer-supported condition for all tasks except out-

liers, where they were about the same, suggesting that

participants trusted the predictions when they

matched their mental model.

We also analyzed whether the type of predictions

chosen by participants matched the patterns they

were instructed to select, which is a useful metric to

judge the quality of our predictions and rankings. We

see a strong overlap between prediction and target pat-

tern (see Table 1); participants selected the right

type of pattern 70% of the time from our predic-

tions, and used the correct pattern or a reasonable

substitute (e.g. ‘‘outside linear regression’’ instead of

‘‘outlier’’) 77% of the time. There were variations

between patterns: clusters were almost perfectly

matched, whereaas both regression patterns were less

frequently correctly matched. Notably, quadratic and

linear regression were frequently substituted, and non-

outliers were also frequently chosen for regression

tasks.

Time to completion was generally slower by 3–

12 s (with completion times ranging from 21 to 37 s

on average) for the computer-supported condition

(see Supplemental Figure S13). Given the higher

accuracy – overall, the median accuracy for computer

supported mode was 3%–9% higher (excluding the

old outlier condition) – but the slower response times,

it is worth asking whether this a trade-off worth

making. In retrospect, the longer response times for

computer-supported work make sense. Previous work

by Saket et al.23 has shown that task completion times

in multiparadigm interfaces can be higher compared

to a single paradigm interface. However, Saket et al.

also argue that optimizing efficiency is not a suitable

goal in many contexts and that multiparadigm tools

can make analysts think more carefully. How meaning-

ful are 10 s of an analyst’s time when trying to under-

stand an important dataset? We argue that accuracy by

itself is much more important than time, when the

time difference is a few seconds, for most analysis sce-

narios. Furthermore, for our study specifically, we

were able to show not only that the accuracy in

computer-supported mode was higher, but also that

we were able to correctly predict patterns based on

participant selections in most cases, which has the

benefit that this data is now available as structured

information that can be leveraged for reproducibility

and reuse.

Study discussion

Overall, our expectations were verified: accuracy was

consistently higher in the computer-supported condi-

tion, and we were able to correctly predict a large per-

centage of patterns. In terms of predicted patterns,

quadratic and linear regression showed lower accuracy

in predicting correct patterns, even when including

nonoutliers as a reasonable substitute. This result is

likely due to the linear and quadratic regression algo-

rithms using our thresholding being quite similar.

Creating an umbrella intent ‘‘regression’’ would be

one possibility to address this problem.
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We also believe that the matches between patterns

and predictions will be much higher in practice when

labels for the patterns are shown, so that analysts can

pick the pattern that corresponds to their mental

model.

Although we were able to show that we can success-

fully predict pattern-based intents for auto-complete,

the question remains how useful real-life analysts will

find the ability to track semantically meaningful

pattern-based intents. To answer this question, we plan

to develop our prototype system into a visual explora-

tion tool that enables actions derived from selections,

such as filters and groupings, and provides features

such as sharing, replaying, and exporting the analysis

process into other pipelines or tools such as Jupyter

Notebooks. We can then design a more comprehensive

evaluation strategy that can validate the efficacy of this

system with regard to reproducibility and reusability.

Discussion

In this work, we demonstrate a method for semi-

automatically detecting and capturing analysts’

pattern-based intents. Detecting intents is useful for

two scenarios: to auto-complete selections and to be

able to semi-automatically record semantically rich

insights in provenance data and therefore make visual

analysis processes reproducible and justifiable. By cap-

turing pattern-based intents, we can, for example,

more easily create curated analysis stories by lever-

aging ideas from prior work on using provenance

information to create interactive data stories.45 The

capability to capture pattern-based intents opens up

numerous other prospects as well.

Integration in computational workflows and
analysis reuse

Our interviews show that analysts frequently use scat-

terplots in combination with statistical modeling tools

and computational notebooks, such as R-Markdown

or Jupyter notebooks. Having semantically meaningful

intents available means that we can generate robust

analysis scripts based on interactive visualization, sup-

porting more automatic computational workflows. For

example, if an analyst uses our tool to select a specific

cluster for downstream analysis, we will be able to gen-

erate code that will select this cluster even for updated

data.

Learning from interaction

Through large-scale capturing of intents, we can

empirically learn patterns that analysts select to

further improve our predictions. Such a system could

dynamically ‘‘auto-correct’’ analysis and allow large-

scale feedback on the usefulness and effectiveness of

various features within complex tools. For instance, a

software tool with a diverse set of users and skill levels

would allow intent to be trained on experienced users

so that novices are guided quickly toward effective

strategies.14

Generalization to other visualization
techniques and data types

We chose to limit ourselves to scatterplots and tabular

data because we believe that these are important cases

that can be used to demonstrate the feasibility of our

approach. There are numerous extensions and general-

izations of our work, ranging from implementing more

brushing tools, such as lasso selections, to allowing

analysts to filter datasets. We argue that our framework

could be extended to other visualization techniques,

such as parallel coordinates, histograms, or tabular

visualizations67 with small adaptions. Other visualiza-

tion techniques could also provide additional clues we

could use for predicting intents. For example, in a tab-

ular visualization, the action of sorting a table is likely

important to understand the intent of a subsequent

selection. Other data types, such as time-series or net-

work data, are likely amenable to the same approach,

but would require identifying appropriate patterns and

the corresponding algorithms.

Higher dimensionality

Although we allowed analysts to explore multiple two-

dimensional views, building a mental model of high-

dimensional data can be difficult. A potential solution

to this problem is dynamic dimensionality reduction.

That is, given points already selected, the system could

dynamically adjust a linear projection (e.g. PCA) to

best capture those datasets in a 1-, or 2-dimensional

subspace. Alternatively, given more complex selec-

tions, like clusters of relevant points, dimensionality

reduction can use techniques such as Latent

Discriminant Analysis to find the best linear projection

to separate the clusters. Another approach is to label

pairs of points that should be close (or far). Using

these pairs, a similarity learning method could provide

the best linear projection that satisfies those con-

straints. An intent-driven tool could suggest the most

informative point-pairs to label.

Scalability

Our current system recalculates the predictions every

time an analyst interacts with the system. This delay in

224 Information Visualization 20(4)



the prediction mechanism can be prohibitive for large

datasets, large combinations of dimensions, or more

parameterizations for algorithms. The prediction

mechanism’s two main phases are to run the machine

learning algorithms on the datasets and to rank the

results based on an analyst’s selection. Only the sec-

ond step has to be done in real time. The first, compu-

tationally expensive, step can be done once, on data

upload, as an offline step. Precomputing would also

allow us to include a larger combination of dimensions

and add more algorithms and parameterization with-

out substantially adding to the prediction time.

Active pattern exploration

Instead of just passively suggesting which pattern

matches to a selection, we could also suggest various

patterns in the data set as possible aspects to explore

at the beginning of an analysis. In this way, analysts

could, for example, see all computed skylines without

ever using selections. The downside of such an

approach is the potential for increased complexity in

the UI: analysts would be confronted with many dif-

ferent analysis choices, and rankings or suggestions

would be difficult to achieve without prior input from

the analyst.

Multiverse analysis

As in any multi-step analysis process, analysts must

make choices about their analysis paths, leaving other

reasonable paths behind. As we capture analysis paths

explicitly, it would be intriguing to also explore differ-

ent analysis paths from the multiverse and visualize

the results of these alternatives using a framework like

Boba.68

Limitations

Even in a simple scatterplot environment, our work

has identified numerous complexities. When more

than four dimensions of a dataset are relevant in the

exploration, the combinatorial complexity of all the

possible intents we model is significant. One potential

solution is to automatically filter entire classes of

intents so that not all of them need to be explicitly

explored.

Showing many scatterplots also raises the problem

of fitting them visually on the screen. Predicting

intents in higher dimensions based on selections in 2D

scatterplots is tricky, because scatterplots do not pro-

vide a good visual representation of high-dimensional

patterns. We plan on addressing this problem by pro-

viding additional visualizations for visualizing high-

dimensional data, such as parallel coordinate plots or

heat maps, or by using dimensionality reduction.

Our tool currently does not handle missing data.

When working with our collaborators, we frequently

encountered datasets that were generally well suited to

our approach but contained invalid or missing cells.

On the front-end, we plan to provide separate views

for items with missing data. On the back-end, appro-

priate interpolation and fitting strategies could be a

solution.

Our current approach to parameter space explora-

tion is naive. We could improve our prediction by eval-

uating our classifications using methods such as

silhouette analysis for clustering and varying the para-

meters accordingly.

In some cases, meaningful selections might not cor-

respond to predicted patterns, yet our ranking system

will still recommend a pattern, although with low

scores. We considered including a ‘‘no pattern’’ predic-

tion in the ranking, but ultimately decided against it,

since it would be difficult to rank in either of our rank-

ing frameworks. However, analysts can explicitly

record ‘‘custom insights’’ that are not based on any

ranked pattern to account for same.

As analysts interact with a visualization over a lon-

ger period of time, the provenance graph keeps grow-

ing. The Trrack library39 can demonstrably handle a

large number of actions, but the provenance visualiza-

tion will become hard to navigate. As a partial remedy,

we group the actions in a provenance graph when an

insight has been generated, which allows the collapse

of the provenance visualization to give a higher level

overview. We can improve this approach by allowing

analysts to manually group provenance actions and

collapse the tree further. Finally, search functionality

on the provenance graph may be a scalable solution to

the problem.47

Conclusion

In this paper, we introduce the first approach to pre-

dict, capture, and annotate pattern-based intents of

analysts as they interact with data in a scatterplot. We

use a mixed-initiative approach, leveraging data min-

ing methods to identify patterns in datasets, ranking

potential matches based on selections, and allowing

analysts to specify which (if any) of the predicted

intents fit their actual intents. We discuss two applica-

tion scenarios: auto-completing selections and increas-

ing reproducibility. We believe that our work will form

the foundation of many future projects. Immediate

next steps are the application to different visualization

techniques and data types. Other prospects include

learning from interactions and integrating the output
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of interactions in visualizations into computational

workflows.
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