
1

Parallel Breadth First Search on GPU Clusters

Zhisong Fu
∗
, Harish Kumar Dasari

†
, Martin Berzins

†
and Bryan Thompson

∗

∗
SYSTAP, LLC. 4501 Tower Road, Greensboro, NC 27410, USA. www.systap.com.

†
SCI Institute, University of Utah, USA

UUSCI-2014-002

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

July 29, 2014

Abstract:

Fast, scalable, low-cost, and low-power execution of parallel graph algorithms is important for a
wide variety of commercial and public sector applications. Breadth First Search (BFS) imposes
an extreme burden on memory bandwidth and network communications and has been proposed
as a benchmark that may be used to evaluate current and future parallel computers. Hardware
trends and manufacturing limits strongly imply that many core devices, such as NVIDIA R⃝ GPUs
and the Intel R⃝ Xeon Phi R⃝, will become central components of such future systems. GPUs are
well known to deliver the highest FLOPS/watt and enjoy a very significant memory bandwidth
advantage over CPU architectures. Recent work has demonstrated that GPUs can deliver high
performance for parallel graph algorithms and, further, that it is possible to encapsulate that
capability in a manner that hides the low level details of the GPU architecture and the CUDA
language but preserves the high throughput of the GPU. We extend previous research on GPUs
and on scalable graph processing on super-computers and demonstrate that a high-performance
parallel graph machine can be created using commodity GPUs and networking hardware.



1

Parallel Breadth First Search on GPU Clusters
Zhisong Fu, Harish Kumar Dasari, Martin Berzins and Bryan Thompson

Abstract—Fast, scalable, low-cost, and low-power execution of parallel graph algorithms is important for a wide variety
of commercial and public sector applications. Breadth First Search (BFS) imposes an extreme burden on memory
bandwidth and network communications and has been proposed as a benchmark that may be used to evaluate current
and future parallel computers. Hardware trends and manufacturing limits strongly imply that many core devices, such as
NVIDIA R©GPUs and the Intel R©Xeon Phi R©, will become central components of such future systems.
GPUs are well known to deliver the highest FLOPS/watt and enjoy a very significant memory bandwidth advantage over
CPU architectures. Recent work has demonstrated that GPUs can deliver high performance for parallel graph algorithms
and, further, that it is possible to encapsulate that capability in a manner that hides the low level details of the GPU
architecture and the CUDA language but preserves the high throughput of the GPU. We extend previous research on
GPUs and on scalable graph processing on super-computers and demonstrate that a high-performance parallel graph
machine can be created using commodity GPUs and networking hardware.

Keywords—GPU cluster, MPI, BFS, graph, parallel graph algorithm

F

1 INTRODUCTION

Scalable parallel graph algorithms are critical
for a large range of application domains with
a vital impact on both national security and
the national economy, including, among others:
counter-terrorism; fraud detection; drug dis-
covery; cyber-security; social media; logistics
and supply chains; e-commerce, etc. However
scalable parallel graph algorithms on large core
or GPU counts is fundamentally challenging,
as computational costs are relatively low com-
pared to communications costs. Graph opera-
tions are inherently non-local, and skewed data
distributions can create bottlenecks for high
performance computing. Solutions based on
map/reduce or requiring checkpoints to disk
are relatively inflexible and 1000s of times too
slow to extract the value latent in graphs in
within a timely window of opportunity. Fast
execution and robust scaling requires a conver-
gence of techniques and approaches from in-
novative companies and the High Performance
Computing (HPC) community.

Our work on graph problems is motivated by

• Zhisong Fu and Bryan Thompson are with SYSTAP, LLC
E-mail: zhisong@systap.com

• Harish Kumar Dasari and Martin Berzins are with the Univer-
sity of Utah.

the fact that large, and often scale-free, graphs
are ubiquitous in communication networks, so-
cial networks and in biological networks. These
graphs are typically highly connected and have
small diameters such that the frontier expands
very quickly during BFS traversal as seen in
Figure 1. We use the same scale-free graph
generator as the Graph 500 for which there is a
vertex degree distribution that follows a power
law, at least asymptotically [24], [26], [27]. We
focus on Breadth First Search (BFS) as this is
perhaps the most challenging parallel graph
problem because it has the least work per byte
and the most reliance on memory bandwidth
within the node and on the communications
network among the nodes. By demonstrating
success on BFS, we hope to show that the
potential of the proposed approach to a wide
range of parallel graph problems.

Our research is motivated in part by Merrill
at el. [16] who demonstrated that GPU can
deliver 3 billion Traversed Edges Per Second
(3 Giga-TEPS or GTEPS) across a wide range
of graphs on Breadth First Search (BFS), a fun-
damental building block for graph algorithms.
This was a more than 12× speed up over ide-
alized multi-core CPU results. Merrill directly
compared against the best published results
for multi-core CPU algorithms, implemented a



2

single-core version of the algorithms, verified
performance against published single-core re-
sults, and then used idealized linear scaling to
estimate multi-core performance. He found that
the GPU enjoyed a speedup of at least 12×
over the idealized multi-core scaling of a 3.4
GHz Intel Core i7 2600K CPU (the equivalent
of 3 such 4-core CPUs). The single-GPU imple-
mentation of MapGraph [1] generalizes Merrill
et al.’s dedicated BFS solution to support a
wide range of parallel graph algorithms that
are expressed using the Gather Apply Scatter
(GAS) abstraction [3]. This abstraction makes it
easy for users to write sequential C methods
and realize throughput that rivals hand-coded
GPU implementations for BFS, SSSP, PageRank,
and other graph algorithms.

In this work, we extend the MapGraph
framework to operate on GPU clusters. The
starting point for our design is an approach de-
scribed by Checconi, et al. for the Blue Gene/Q
[7]. A major challenge of our research is that
GPUs are much faster than the Blue Gene/Q
processors while commodity networking hard-
ware lacks the more sophisticated communica-
tion capabilities of the Blue Gene/Q. Together,
these factors can create a severe imbalance be-
tween compute and communications for band-
width and communications constrained prob-
lems such as BFS. To the best of our knowledge,
no published work has so far demonstrated
good scaling GPU clusters on BFS, the funda-
mental building block of graph algorithms.

Key contributions of this work include:

- A high performance implementation of paral-
lel BFS for GPU clusters with results on up to
64 GPUs and 4.3 billion directed edges.

- A strong and weak scaling study on up to
64 GPUs with an analysis of the strengths and
weaknesses of our multi-GPU approach with
respect to scalability.

- Identification of a log p communication pattern
that may permit strong scaling to very large
clusters.

- Identification of a means to eliminates the
all-to-all communication pattern used by the
Blue Gene/Q [7] while allowing the parallel
computation of the predecessors on each GPU.

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

0 1 2 3 4 5 6

Fr
o

n
ti

er
 S

iz
e 

Iteration 

Fig. 1. Frontier size during BFS traversal (scale
25)

2 RELATED WORK

Graph traversal and graph partitioning have
been studied extensively in the literature. On a
distributed parallel computer architecture, scal-
able and efficient parallel graph algorithms re-
quire a suitable decomposition of the data and
the associated work. This decomposition may
be done by graph partitioning with the goal of
distributing data and work evenly among pro-
cessors in a way that reduces communication
cost. There are many graph partitioning strate-
gies proposed in the literature. The simplest
strategy is 1D partitioning, which partitions the
graph vertices into disjoint sets and assigns
each set of vertices to a node as implemented in
parallel in widely-used packages such as Zoltan
[4] and ParMetis [5].

Vastenhouw and Bisseling [6] introduce a
distributed method for parallel sparse-matrix
multiplication based on 2D graph partition-
ing. In 2D graph partitioning, the edges are
distributed among the compute nodes by ar-
ranging the edges into blocks using vertex
identifier ranges. These blocks are organized
into an p × p grid and mapped onto p2 virtual
processors. Each row in the grid contains all
out-edges for a range of vertices. The corre-
sponding column contains the in-edges for the
same vertices. In [7], the authors implement
BFS with this 2D graph partitioning algorithm
on IBM Blue Gene/P and Blue Gene/Q ma-
chines using optimizations to reduce communi-
cations by 97.3% (through a “wave” propagated
along the rows of the 2D processor grid to
eliminate duplicate vertex updates) and also
optimize for the underlying network topol-
ogy. They study the weak scaling and strong



3

scaling of their design and the effect of the
graph partitions on cache locality. This ap-
proach was ranked 1st in the November 2013
Graph500 on 65, 536 Blue Gene/Q processors
(http://www.graph500.org).

Many of the 1D and 2D Graph partitioning
algorithms perform partitioning on the origi-
nal graphs and try to minimize the edge-cuts
as a model for communications. Catalyureck
[8] showed that hypergraphs more accurately
model the communication cost leading to pack-
ages such as [9], [4].

Several methods and software packages are
introduced in the literature to develop scalable,
high performance graph algorithms on parallel
architectures. In [11], the authors try to address
the problem of how graph partitioning can be
effectively integrated into large graph process-
ing in the cloud environment by developing
a novel graph partitioning framework. Also,
Berry et al. [12], introduce the Multi-Threaded
Graph Library (MTGL), generic graph query
software for processing semantic graphs on
multithreaded computers while Bader [13] in-
troduces a parallel graph library (SNAP). Agar-
wal [25] presents results for BFS on Intel proces-
sors for up to 64 threads in a single system with
comparisons against the Cray XMT, Cray MTA-
2, and Blue Gene/L. Pearce [17] presents re-
sults for multi-core scaling using asynchronous
methods while [18] and [19] present an ap-
proach to graph processing based on sparse
matrix-vector operations. The approaches of [2]
and [10] have been shown to be equivalent to
2D partitioning.

As noted above, Merrill et al. [16] developed
the first work-efficient implementation of BFS
on GPUs. He developed adaptive strategies for
assigning threads, warps, and CTAs to vertices
and edges, and optimized frontier expansion
using various heuristics to trade off time and
space and obtain high throughput for algo-
rithms with dynamic frontiers. While [16] offers
the best results to date for BFS on a single
GPU, Fu et al. offer nearly equivalent perfor-
mance on BFS [1] (it may be slightly higher or
lower depending on the data set). Gharaibeh
and Zhong present multi-GPU (single worksta-
tion) results for Page Rank (PR) and BFS [20].
Gharaibeh defines a performance model for

hybrid CPU/GPU graph processing, tests that
model with up to 2 GPUs using random edge
cuts, and notes that aggregation can reduce
communications costs. Zhong uses 1D parti-
tioning and also tests n-hop partitioning (to
increase locality through redundancy). While
some of these approaches use multiple GPUs
on a single node, none of these approaches
scales to GPU clusters.

In addressing multi-GPU scalability we will
draw on lessons learned from large-scale
parallel scalability for the Uintah Software
(http://www.uintah.utah.edu). Uintah runs on,
and scales to, the very largest machines by
using high-level abstractions, such as: (a) a
domain specific abstraction for writing analyt-
ics; (b) a low-level, data-parallel runtime sys-
tem with adaptive, asynchronous and latency-
hiding task execution and (c) a data warehouse
on each multi-core/GPU node which abstracts
away hardware specific operations required to
support the movement of data [22]. In im-
plementing BFS on GPU clusters, we combine
the Uintah design philosophy with the wave
communication pattern of [7] (see above) and
the Mapgraph approach [1] to parallel edge
expansion on GPUs.

3 MULTI-GPU IMPLEMENTATION

While writing a single GPU graph-processing
program is difficult due to the data-intensive
graph algorithms, irregular-data storage and
access and dynamically varying workload, this
challenge has been addressed in MapGraph [1].
In this paper we extend that work to BFS
on multiple GPUs using a Bulk Synchronous
Parallel (BSP) approach with a synchronization
point at the end of every BFS iteration.

3.1 Partitioning
The graph is generated in parallel using the
Graph 500 Kronecker Generator [15]. The edges
are then partitioned using 2D partitioning, sim-
ilar to the partitioning mechanism by [7]. Our
code models each undirected edge as two di-
rected edges. Each directed edge is stored on a
single GPU. The adjacency matrix is partitioned
in two dimensions with an equal number of



4

G
11

G
22

G
33

G
44

C
1

C
2

C
3

C
4

R
1

In
2

t

Out
1

t

Out
2

t

Out
3

t

Out
4

t

In
1

t In
3

t In
4

t

R
2

R
3

R
4

Fig. 2. Multi-GPU BFS algorithm

vertices partitioned across each row and col-
umn. In our case, if we have p2 GPUs, we have
to partition the matrix into p partitions along
both the rows and columns. The global vertex
identifiers are converted to local vertex identi-
fiers and the data are written into a file system.
At run time, the CPUs read the adjacency lists
into a CSR (Compressed Sparse Row) sparse
matrix. The data are then copied to the GPU’s
global memory where the GPU builds a CSC
(Compressed Sparse Column) sparse matrix.
The CSR matrix is used during traversal. Once
the traversal is complete, the CSC matrix is
used to compute the predecessors from the
assigned levels.

3.2 BFS Traversal
The search begins with a single search key,
communicated to all GPUs as a global vertex
frontier. Each GPU, denoted Gij , decides if that
global vertex falls in its range and sets the
corresponding bit in the bitmap Int

i, where t
stands for the iteration t of BFS. In parallel, all
GPUs perform a data parallel local operation in
which they compute the 1-hop expansion of the
active vertices over the local edges and produce
a new frontier, which is also represented as a
bitmap denoted Outtij .

3.3 Global Frontier Contraction and Com-
munication
The Outtij generated by the GPUs are contracted
globally across the rows Ri of the partitions

using prefix sum technique similar to the wave
method used by the Blue Gene/Q [7]. This
operation removes duplicates from the frontier
that would otherwise be redundantly searched
in the next iteration and also resolves the con-
flicts among the GPUs to update the state asso-
ciated with the vertices discovered during that
iteration. The Assignedij bitmap makes sure that
only one GPU gets the chance to update the
state associated with a particular vertex.

Instead of the sequential propagate commu-
nication pattern described in [7], we used a par-
allel scan algorithm [14] for finding the Prefixt

ij ,
which is the bitmap obtained by performing
Bitwise-OR operations on Outtik where k < j for
a GPU Gij . The Prefixt

ij is accumulated across
iterations into the bitmap Assignedij using a
bitwise-OR operation at the end of each iter-
ation t. There are several tree-based algorithms
for parallel prefix sum. Since the bitmap union
operation is very fast on the GPU, the complex-
ity of the parallel scan is less important than the
number of communication steps. Therefore, we
use an algorithm having the fewest communi-
cation steps (log p) [14] even through it has a
lower work efficiency and does p log p bitmap
unions compared to p bitmap unions for work
efficient algorithms.

The contracted Outtj bitmap containing the
vertices discovered in iteration t is then broad-
cast back to the GPUs of the row Rj . This
is done to update the GPUs with the visited
vertices so that they do not produce a frontier
containing those vertices in the future itera-
tions. It is also necessary for updating the levels
of the vertices. The Outtj becomes the Int+1

j .
Since both Outtj and Int+1

i are the same for the
GPUs in the diagonal (i = j), we copy Outtj to
Int+1

i in the diagonal GPUs and then broadcast
across the columns Ci using MPI_Broadcast.
Communicators were setup along every row
and column during initialization to facilitate
these parallel scan and broadcast operations.

During each BFS iteration, we must test
for termination of the algorithm by deciding
if the global frontier size is zero to check.
We currently test the global frontier using a
MPI_Allreduce operation after the GPU local
edge expansion and before the global frontier



5

contraction phase. However, an unexplored op-
timization would overlap the termination check
with the global frontier contraction and com-
munication phase in order to hide its compo-
nent in the total time.

3.4 Computing the Predecessors
Unlike the Blue Gene/Q [7], we do not use
remote messages to update the vertex state
(the predecessor and/or level) during traversal.
Instead, each GPU stores the levels associated
with vertices in both Int

j frontier and Outtj
frontier. This information is locally known in
each iteration. The level for the Int

j frontier is
available at the start of each iteration. The level
for the vertices in the Outtj frontier is known
to each GPU in a given row at the end of the
iteration.

Once the BFS traversal terminates, the pre-
decessors are computed in parallel by all GPUs
without any further communications. For each
GPU, all vertices discovered by that GPU (that
is, those vertices that correspond to a set bit
in Assignedij bitmap) are resolved to a source
vertex at the previous level on that GPU. Specif-
ically, each vertex vi first looks up in the level
array to find its own level li. Next, it accesses
its adjacency list and find the levels of its neigh-
bors. For neighbors with level li−1, this vertex
writes the neighbor identifier in a temporary
array. Otherwise, it writes −1 in the array.
Finally, we do a reduction on the temporary
array to find the maximum and set it as the
predecessor of the vertex.

This procedure is entirely local to each GPU.
When it terminates, the GPUs have discovered
a valid predecessor tree. On each GPU, the
elements of the predecessor array will either
be a special value (−1) indicating that the pre-
decessor was not discovered by that GPU or
the vertex identifier of a valid predecessor. The
local predecessor arrays can then be reduced to
a single global array on a single GPU.

4 EVALUATION

Two fundamental measures of scalability for a
parallel code running on a parallel computer
are strong and weak scaling. As strong scaling

has a constant problem size and increasing
processor or core count, it measures how well a
parallel code can solve a fixed size problem as
the size of the parallel computer is increased.
In contrast, weak scaling has a fixed problem
size per core per processor and so measures the
ability of a parallel machine and a parallel code
to solve larger versions of the same problem in
the same amount of time.

To evaluate our approach, we conduct an
empirical study of the strong and weak scaling
behavior on a GPU compute cluster with up to
64 GPUs. This scalability study provides empir-
ical evidence that GPU compute clusters can
be applied successfully to very large parallel
graph problems. As noted in [7], weak scaling is
not expected for this design. This is because the
frontier message size grows with the number
of vertices while the work per GPU is roughly
constant given a fixed number of edges per
GPU.

4.1 Test Environment

The test environment is a GPU cluster hosted at
SCI in Utah with 32 nodes and 64 GPUs. Each
node of the cluster has two Intel Xeon CPUs, 64
GB of RAM, and two NVIDIA K20 GPUs. Each
GPU is equipped with 5GB DDR5 memory and
has a peak single precision performance of 3.52
Tflops and peak memory bandwidth of 208
GB/sec. ECC was enabled for all runs. The
32 nodes of the cluster are connected with the
Mellanox InfiniBand SX6025 switches that pro-
vide up to thirty-six 56Gb/s full bi-directional
bandwidth per port. The nodes were config-
ured using CentOS 6.5. The MPI distribution is
MVAPICH2-GDR and the CUDA version is 5.5.
This configuration allows us to use GPUDirect,
thus eliminating copying of data between the
GPU and the CPU. Instead, MPI requests are
managed using direct connections between the
GPU and the InfiniBand port paired with each
GPU. This substantially decreases the latency
and increases the throughput of MPI messages.
The CPUs and the CPU memory are not relied
on in these experiments except to coordinate
the activity on the GPUs. All data is stored
in the GPU memory, and all computation is
performed on the GPUs.



6

4.2 Graph 500 Graph Generator
In order to provide comparable benchmark
results we use the Graph 500 [15] generator,
which is based on a Kronecker generator simi-
lar to the Recursive MATrix (R-MAT) scale-free
graph generation algorithm described by [24].
The graph has 2SCALE vertices based on inputs
of SCALE and EDGEFACTOR, which defined
the ratio of the number of edges of the graph
to the number of vertices. The EDGEFACTOR
was 16 for all generated graphs. The adjacency
matrix data structure for the graph edges is
then produced and is recursively partitioned
into four equal sized partitions and edges are
added to these partitions one at a time; each
edge chooses one of the four partitions with
probabilities A = 0.57, B = 0.19, C = 0.19,
D = 1− (A+B+C) = 0.05. For each condition,
we randomly selected 5 vertices with non-zero
adjacency lists (excluding loops). The average
of those 5 runs is reported. The observed vari-
ability among those runs was very small. All
experimental runs visit the vast majority of
the edges in the graph. This is because the
generated scale-free graphs have a very large
connected component that encompasses most
of the vertices.

4.3 Validation
Each GPU extracts the predecessors for those
vertices that are marked in its Assigned bitmap.
After conversion to global vertex identifiers
and adjustment by +1, the existence of a pre-
decessor in the predecessor array is denoted by
PredecessorVertex+1 and the rest of the vertices
in the precesssor array are assigned 0. We then
perform an MPI_Reduce across the rows Ri to
the nodes in the column C1 to find all the
predecessors of the vertices of that row. Then
we perform an MPI_Allgather across nodes in
the column C1 to build a lookup table for the
predecessors.

To validate the results, the predecessor in-
formation is used to test if the BFS tree has
cycles. In the nodes in column C1, we create
a temporary list of global vertices that were in
the partition of vertices for the row Ri during
the BFS and replace each visited vertex with its
predecessor in a loop until its predecessor is the

source vertex of BFS. If the number of iterations
of the loop reaches the number of vertices in the
graph, it means that there are loops in the BFS
graph, and validation fails.

Next, the directed edges of the graph are
traversed to verify that each predecessor vertex
is in the BFS tree. For each edge, we also verify
that the destination vertex is in the BFS tree at
a level not greater than x+1, where x is the level
assigned to the source vertex.

5 RESULTS

Our initial scalability runs demonstrated the
underlying promise of our approach. However,
they also illustrated the fundamental challenge
in the algorithm used for the global frontier
aggregation. This step aggregates the local fron-
tiers from the GPUs and forms the global fron-
tier, which is represented as a bitmap. We used
the wave strategy described the in paper [7],
but our analysis shows that the impact of this
algorithm on both our results and on those of
the Blue Gene/Q is considerable.

In an p×p array of processors, the wave algo-
rithm does p communication steps per frontier
operation followed by a broadcast across 2p
processors. As we increase p, the decrease in
the message size is not sufficient to offset the
p communication steps and the overall costs
do not decrease sufficiently fast across each
of these stages to ensure that the calculation
scales. The fundamental issue lies in the p
communication steps per frontier operation,
which is sequential across the p processors on
a given row of the p × p processor array, but
parallel across the different rows. This p cost
is one of the primary effects that limits the
strong scaling efficiency. The solution to this
is to adopt an approach based on pairwise
exchanges that has a communication cost of
log p compared to the original cost of p. This
change in the communication pattern provided
a 30% gain in TEPS and improved the strong
scaling efficiency from 44% to 48% on the same
graphs and hardware. (The Blue Gene/Q has
a strong scaling efficiency of 44% as measured
on a cluster sizes of 512, 1024, 2048, and 4096
nodes.)



7

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

4 16 64

Ti
m

e 
(S

ec
o

n
d

s)
 

#GPUs 

Computation
Communication
Termination

Fig. 3. Communication and computation costs
during BFS traversal for iteration 2 (weak scal-
ing)

The main challenge in weak scaling is en-
suring that the communications costs do not
grow appreciably in a manner that is propor-
tional to the overall problem size. In the design
considered here, the communications costs is
theoretically Ccomm = εS log p, where ε is a con-
stant, and S denotes the bitmap size. Therefore,
when the number of GPUs increases by a factor
of 4, the bitmap size S grows by a factor of
2, and communications costs grow by a factor
of 2 log 2p

log p
. This is illustrated by Figure 3, which

breaks down the costs in a central iteration of
the BFS traversal for the weak scaling study.
Figure 3 shows that the communications costs
grow while the computation costs per GPU
remain very nearly constant. In order to have
weak scaling, the message size would need
to be constant, which it is not. Thus, while
we do not achieve weak scaling in the normal
sense, we would not expect to do so with this
design. The weak scaling results in Table 2 are
consistent with the Blue Gene/Q [7].

5.1 Strong and Weak Scalability Tests
For strong scaling study, we generate a scale 25
graph, which has 225 vertices and 230 directed
edges. We then evaluate our BFS implementa-
tion for this graph on 16, 25, 36 and 64 GPUs,
respectively (we get abnormal timings for the
runs on 49 GPUs, and we are working with the
MVAPICH authors to identify the root cause).
For the strong scaling study we have the same
data for each condition. Therefore, we use the
same set of randomly selected starting vertices
for all conditions. This makes it possible to

13

14

15

16

17

18

19

20

21

22

23

10 20 30 40 50 60 70

G
TE

P
S 

#GPUs 

Fig. 4. Strong scaling results

directly compare the performance for the same
graph traversal on different numbers of GPUs.
The average performance is shown in Table 1
and Figure 4. As noted above, our implemen-
tation has a strong scaling of 48% compared to
the Blue Gene/Q with a strong scaling of 44%.
This is attributable to the log(p) communication
pattern for propagate.

GPUs GTEPS BFS Time (s)
16 14.3 0.075
25 16.4 0.066
36 18.1 0.059
64 22.7 0.047

TABLE 1
Strong scaling results

For weak scaling study, we generated a series
of graphs of different scales. Each GPU has
226 directed edges. In order to have the same
number of edges per GPU, we used a power of
4 for the number of GPUs.

GPUs Scale Vertices Directed Edges BFS Time (s) GTEPS
1 21 2,097,152 67,108,864 0.0254 2.5
4 23 8,388,608 268,435,456 0.0429 6.3

16 25 33,554,432 1,073,741,824 0.0715 15.0
64 27 134,217,728 4,294,967,296 0.1478 29.1

TABLE 2
Weak scaling results

Performance for weak scaling is presented in
Table 2 and Figure 5. Unlike the strong scaling
study, a different starting vertex was chosen for
each condition because a different scale graph
is used in each condition for a weak scaling
study.

5.2 Performance at maximum scale
The largest graph is a scale 27 (227 ≈ 134
million vertices and 232 ≈ 4.3 billion directed



8

0

5

10

15

20

25

30

35

1 4 16 64

G
TE

P
S 

#GPUs 

Fig. 5. Weak scaling results

edges). On the 64 GPU cluster, this graph has
226 (67,108,864) directed edges per GPU. While
we can fit larger graphs onto the GPU, the next
larger scale graph (scale 28) would have twice
as many directed edges per GPU which would
exceed the on device RAM (5GB) for the K20
GPU.

The full edge-to-edge traversal of this 4.3 bil-
lion edge graph took an average of 0.14784 sec-
onds and traversed 4,294,925,646 (4.3B) edges
for an effective average traversal rate of 29.1
GTEPS. Note that 41,650 edges were not visited
because they were not part of the connected
component for the starting vertices.

6 CONCLUSIONS AND FUTURE WORK

The fundamental understanding that we now
have of the scalability properties of the algo-
rithm is perhaps as important as the software
implementation and results obtained. It is now
possible for us to go beyond present scaling
by considering alternative approaches such as
those described above, optimizations such as
the topology folding described in [7] and graph
compression [28] [29], and scaling beyond the
GPU DRAM using pipelined processing with
multiple graph partitions per GPU. Moreover,
we have shown that there is no fundamental
roadblock to scalability at levels that meets the
requirements of many users.

While we have shown that it is possible
to achieve a scalable solution for challenging
BFS graph problems on multiple GPU nodes,
the next decade presents enormous challenges
when it comes to developing software that
is portable across different architectures. The
anticipated rapid increase in the number of

cores available together with the desire to re-
duce the power consumption and concerns
about resilience at large scales is introducing
a rapid phase of innovation in both hardware
and software. There are many different com-
peting design paradigms ranging from low
power chips, to GPU designs, to the Intel Xeon
Phi. For example, GPU architectures them-
selves are changing very quickly with the pos-
sibility of increased compute power, vertically
stacked memory and much improved GPU-to-
GPU communications, and continued gains in
FLOPS/watt.

One solution is to use a layered software
approach that adapts to such rapid evolution
in hardware and systems. In such an approach,
the aim is to automatically translate and inject
user specific algorithms into data-parallel ker-
nels, such as the compute intensive parts of the
GPU code presently running today. This code
is then executed using a distributed runtime
system (similar to Uintah) that makes use of
all available node-to-node (e.g. GPU to GPU)
optimized communications.

The important aspect of such a design is that
it involves layers of abstraction that are suf-
ficiently rich to encompass future architecture
developments. Our future challenge will be to
combine this layered approach with achievable
performance for challenging applications such
as that considered here.

ACKNOWLEDGMENTS

This work was (partially) funded by the
DARPA XDATA program under AFRL Con-
tract #FA8750-13-C-0002. This material is based
upon work supported by the Defense Ad-
vanced Research Projects Agency (DARPA) un-
der Contract No. D14PC00029. The authors
would like to thank Dr. White, NVIDIA, and
the MVAPICH group at Ohio State University
for their support of this work.

REFERENCES

[1] Zhisong Fu, Michael Personick and Bryan Thompson
MapGraph: A High Level API for Fast Development of
High Performance Graph Analytics on GPUs in Proceed-
ings of Grades2014 Workshop at SIGMOD/PODS Confer-
ence Snowbird Utah, 2014.



9

[2] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bick-
son, and Carlos Guestrin. 2012. PowerGraph: distributed
graph-parallel computation on natural graphs. In Pro-
ceedings of the 10th USENIX conference on Operating
Systems Design and Implementation (OSDI’12). USENIX
Association, Berkeley, CA, USA, 17-30.

[3] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. Hellerstein. Distributed GraphLab: A framework for
machine learning and data mining in the cloud. Proceed-
ings of the VLDB Endowment 5, no. 8 (2012): 716-727.

[4] K. Devine, E. Boman, R. Heaphy, R. Bisseling, and U.
Catalyurek. "Parallel hypergraph partitioning for scientific
computing." In Parallel and Distributed Processing Sym-
posium, 2006. IPDPS 2006. 20th International, pp. 10-pp.
IEEE, 2006.

[5] G. Karypis and V. Kumar, Parallel Multilevel k-way Parti-
tioning Scheme for Irregular Graphs Siam Review 41, no.
2 (1999): 278-300.

[6] B. Vastenhouw, and R. Bisseling. A Two-Dimensional Data
Distribution Method for Parallel Sparse Matrix-Vector
Multiplication. SIAM Review, Vol. 47, No. 1 : pp. 67-95,
2005.

[7] Fabio Checconi, Fabrizio Petrini, Jeremiah Willcock, An-
drew Lumsdaine, Anamitra Roy Choudhury, and Yogish
Sabharwal. Breaking the speed and scalability barriers for
graph exploration on distributed-memory machines. In
Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis
(SC ’12). IEEE Computer Society Press, Los Alamitos, CA,
USA, , Article 13, 12 pages.

[8] U. Catalyurek and C. Aykanat. Hypergraph-partitioning-
based decomposition for parallel sparse-matrix vec-
tor multiplication. IEEE Trans. Parallel Dist. Systems,
10(7):673-693, 1999.

[9] U. V. Catalyurek and C. Aykanat. PaToH: A Multilevel
Hypergraph Partitioning Tool, Version 3.0. Bilkent Univer-
sity, Department of Computer Engineering, Ankara, 06533
Turkey, 1999.

[10] A. Kyrola, G. Blelloch, and C Guestrin. GraphChi: Large-
scale graph computation on just a PC. In Proceedings
of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pp. 31-46. 2012.

[11] R. Chen, M. Yang, X. Weng, B. Choi, B. He, and X. Li.
Improving large graph processing on partitioned graphs
in the cloud. In Proc. of the Third ACM Symposium on
Cloud Computing (SoCC ’12), 2012.

[12] J. Berry, B. Hendrickson, S. Kahan, P. Konecny, Software
and Algorithms for Graph Queries on Multithreaded Ar-
chitectures. IPDPS, pp.495, 2007 IEEE International Paral-
lel and Distributed Processing Symposium, 2007.

[13] D. Bader and K. Madduri, Snap, small-world network
analysis and partitioning: An open-source parallel graph
framework for the exploration of large-scale networks. in
IPDPS, pp. 12., 2008

[14] W. Hillis and G. Steele Jr. Data parallel algorithms. Com-
munications of the ACM 29.12 (1986): 1170-1183.

[15] Graph 500 Benchmark. http://graph500.org
[16] Merrill, Duane, Garland, Michael and Grimshaw, An-

drew, Scalable GPU Graph Traversal, Proceedings of the
17th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, 2012, isbn 978-1-4503-1160-1,
New Orleans, Louisiana, USA,117–128, ACM, NY, USA

[17] R. Pearce, M. Gokhale, and N. Amato. Multithreaded
asynchronous graph traversal for in-memory and semi-
external memory. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pp. 1-11. IEEE
Computer Society, 2010.

[18] A. Buluç, and J. Gilbert. The Combinatorial BLAS: De-
sign, implementation, and applications. International Jour-
nal of High Performance Computing Applications 25, no.
4 (2011): 496-509.

[19] A. Lugowski, D. Alber, A. Buluç, J. Gilbert, S. Reinhardt,
Y. Teng, and A. Waranis. A Flexible Open-Source Toolbox
for Scalable Complex Graph Analysis. In SDM, vol. 12, pp.
930-941. 2012.

[20] A. Gharaibeh, L. Costa, E. Santos-Neto, and M. Ripeanu.
A yoke of oxen and a thousand chickens for heavy lifting
graph processing. In Proceedings of the 21st international
conference on Parallel architectures and compilation tech-
niques, pp. 345-354. ACM, 2012.

[21] Jianlong Zhong and Bingsheng He, Medusa: Simplified
Graph Processing on GPUs, IEEE Transactions on Parallel
and Distributed Systems,99,2013, IEEE Computer Soci-
ety,Los Alamitos, CA, USA

[22] Q. Meng, M. Berzins. Scalable Large-scale Fluid-structure
Interaction Solvers in the Uintah Framework via Hy-
brid Task-based Parallelism Algorithms, Concurrency and
Computation, 2014.

[23] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. Hellerstein. Graphlab: A new framework for parallel
machine learning. arXiv preprint arXiv:1006.4990 (2010).

[24] D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-MAT: A
Recursive Model for Graph Mining, in SIAM Data Mining
2004, Orlando, Florida, USA

[25] V. Agarwal, F. Petrini, D. Pasetto, and D. Bader. Scalable
graph exploration on multicore processors. In Proceedings
of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pp. 1-11. IEEE Computer Society, 2010.

[26] Chakrabarti, Deepayan, and Christos Faloutsos. "Graph
mining: Laws, generators, and algorithms." ACM Comput-
ing Surveys (CSUR) 38.1 (2006): 2.

[27] Seshadhri, C., Ali Pinar, and Tamara G. Kolda. "An in-
depth study of stochastic Kronecker graphs." Data Mining
(ICDM), 2011 IEEE 11th International Conference on. IEEE,
2011.

[28] Blandford, D., Blelloch, G., and Kash, I. "Compact Rep-
resentations of Separable Graphs." in Proc. ACM-SIAM
Symposium on Discrete Algorithms, 2003.

[29] Kaczmarski, K., Przymus, P., and Paweł Rzążewski, P.
"Improving High-Performance GPU Graph Traversal with
Compression." GPUs In Databases, ADBIS workshop on.,
Springer, 2014 (to appear).


