
A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL
EQUATION ON TETRAHEDRAL DOMAINS

ZHISONG FU , ROBERT M. KIRBY , AND ROSS T. WHITAKER

Abstract. Generating numerical solutions to the eikonal equation and its many variations has
a broad range of applications in both the natural and computational sciences. Efficient solvers on
cutting-edge, parallel architectures require new algorithms that may not be theoretically optimal,
but that are designed to allow asynchronous solution updates and have limited memory access pat-
terns. This paper presents a parallel algorithm for solving the eikonal equation on fully unstructured
tetrahedral meshes. The method is appropriate for the type of fine-grained parallelism found on
modern massively-SIMD architectures such as graphics processors and takes into account the partic-
ular constraints and capabilities of these computing platforms. This work builds on previous work for
solving these equations on triangle meshes; in this paper we adapt and extend previous 2D strategies
to accommodate three-dimensional, unstructured, tetrahedralized domains. These new developments
include a local update strategy with data compaction for tetrahedral meshes that provides solutions
on both serial and parallel architectures, with a generalization to inhomogeneous, anisotropic speed
functions. We also propose two new update schemes, specialized to mitigate the natural data increase
observed when moving to three dimensions, and the data structures necessary for efficiently mapping
data to parallel SIMD processors in a way that maintains computational density. Finally, we present
descriptions of the implementations for a single CPU, as well as multicore CPUs with shared memory
and SIMD architectures, with comparative results against state-of-the-art eikonal solvers.

Keywords: Hamilton-Jacobi equation, eikonal equation, tetrahedral mesh,
parallel algorithm, shared memory multiple-processor computer system,
graphics processing unit (GPU)

1. Introduction. The eikonal equation and its variations (forms of the static
Hamilton-Jacobi and level-set equations) are used as models in a variety of applica-
tions, ranging from robotics and seismology to geometric optics. These applications
include virtually any problem that entails the finding of shortest paths, possibly with
inhomogeneous or anisotropic metrics (e.g. due to material properties). In seismology,
for example, the eikonal equation describes the travel time of the optimal trajectories
of seismic waves traveling through inhomogeneous anisotropic media [23]. In cardiac
electrophysiology [20], action potentials on the heart can be represented as moving
interfaces that can be modeled with certain forms for the eikonal equation [7, 15].
The eikonal equation also describes the limiting behavior of Maxwell’s equations [9],
and is therefore useful in geometric optics (e.g. [6, 19]).

As described in [3], many of these cases, present a clear need to solve such prob-
lems on fully unstructured meshes. In particular, in this work, the use of unstructured
meshes is motivated by the need for body-fitting meshes. In certain problems, such
as cardiac simulations, the domain is a volume bounded by a smooth, curved surface,
and triangle meshing strategies for surfaces combined with tetrahedral meshing of
the interior can accurately and efficiently capture these irregular domains (e.g. see
Figure 1.1-left). In other problems, such as in the case of geometric optics (Figure 1.1-
right) or in geophysics applications, irregular unstructured meshes allow for accurate,
efficient modeling of material discontinuities that are represented as triangulated sur-
faces embedded in a tetrahedral mesh.

While solutions of the eikonal equation are used in their own right in many physi-
cal problems, such solutions are also used as building blocks in more general computa-
tional schemes such as in remeshing and in image/volume analysis (e.g. [1, 2, 5, 25]).
When used as part of a more general computational pipeline, it is essential that effort
be expended to minimize the computational cost of this component in an attempt to

1



Fig. 1.1. Examples of body-fitting meshes used for numerical simulation. On the left, we
present the surface of a heart model mesh used for bioelectric computation. On the right, we present
a cross-section of a lens model used for the simulation of geometric optics (the green region denotes
air while red denotes the location of the lens).

optimize the time of employing the pipeline. There is a clear need for the development
of fast algorithms that provide solutions of the eikonal equation on unstructured 3D
meshes.

Recent developments in computer hardware show that performance improvements
will no longer be driven primarily by increased clock speeds, but by parallelism and
hardware specialization. Single-core performance is leveling off, while hex-core CPUs
are available as commodities; soon, conventional CPUs will have tens of parallel cores.
Commodity multimedia processors such as the IBM Cell and graphics processing
units (GPUs) are considered forerunners of this trend. To obtain solutions in an
efficient manner on these state-of-the-art Single-Instruction-Multiple-Data (SIMD)
type computer architectures places particular constraints on the data dependencies,
memory access, and scale of logical operations for such algorithms.

Building an efficient three-dimensional tetrahedral eikonal solver for multicore
and SIMD architectures poses many challenges, some unique to working with three-
dimensional data. First of all, as in two-dimensions, the update scheme of the solver
needs to be easily parallelizable and pose no data dependencies for the active compu-
tational domain, which will change as the solution progresses. Secondly, representing
the topology of an unstructured 3D mesh imposes a significant memory footprint
compared to its two-dimensional counterpart, creating challenges in achieving the
computational density necessary to make use of the limited memory, registers, and
bandwidth on massively parallel SIMD machines. Thirdly, the vertex valences of the
three-dimensional unstructured meshes can be both quite high and can be highly
variable across the mesh, posing additional challenges in SIMD efficiency.

In the past several decades, many methods have been proposed to efficiently solve
the eikonal equations on regular and unstructured grids. The fast marching method
(FMM) by Sethian [16] (a triangular mesh extension of [26]) is often considered the
de facto state-of-the-art for solving the eikonal equation; its asymptotic worse case

2



complexity, O(N logN), was shown to be optimal. It attains optimality by main-
taining a heap data structure with a list of active nodes, on a moving front, that are
candidates for updating. The node with the shortest travel time is considered to be
solved, removed from the list, and never visited again. This active list contains only
a (relatively small) subset of the nodes within the entire mesh. Though it provides
worst-case optimality for the serial case, the use of a heap data structure greatly
limits the parallelization of the approach. Zhao [31] and Tsai et al. [29] introduced
an alternative approach, the fast sweeping method (FSM), which uses a Gauss-Seidel
style update strategy to progress across the domain in an incremental grid-aligned
sweep. This method does not employ the sorting strategy found in FMM, and hence
is amenable to coarse-grained parallelization [10, 30, 32]. The Gauss-Seidel style
sweeping approach of FSM, however, is a significant limitation when attempting to
build a general, efficient fine-grained parallel eikonal solver over tetrahedral meshes.
Although one can do as is traditionally done in parallel computing and employ color-
ing techniques (e.g. red-black) to attempt to mitigate this issue [28], one cannot push
this strategy to the levels needed for the fine-grain parallelization required on current
streaming architectures. Furthermore, any gains through parallelism must offset any
suboptimal behavior; previous work has shown that FSM introduces a large amount
of excess computation for certain classes of realistic input data [13].

In this paper we put forward a new local solver specially designed for tetrahedral
meshes and anisotropic speed functions, propose a data compaction strategy to re-
duce the memory footprint (and hence reduce costly memory loads) of the local solver,
design new data structures to better suit the high valence numbers typically expe-
rienced in three-dimensional meshes, and also propose a GPU-suitable sorting-based
method to generate the gather-lists to enable a lock-free update. We also propose a
new computational method to solve the eikonal equation on three-dimensional tetra-
hedral meshes efficiently on parallel streaming architectures; we call our method the
tetrahedral fast iterative method (tetFIM). The framework is conceptually similar to
the previously proposed FIM methodology [8, 13] for triangle meshes, but the move to
three-dimensions for solving realistic physics-based problems requires two significant
extensions. First is principles-based local solver which handles anisotropic material
(which is needed for realistic three-dimensional physics-based simulations such as in
geometric optics and seismology). Second is the corresponding re-evaluation and re-
design of the computational methodology for triangles in order to fully exploit stream-
ing hardware in light of the additional mathematical complexities required for solving
the eikonal equation in inhomogeneous, anisotropic media on fully three-dimensional
tetrahedralizations. This paper also provides algorithmic and implementation details,
as well as a comparative evaluation, for two data structures designed to efficiently
manage three-dimensional unstructured meshes on GPUs. The data-structure issue is
particularly important in 3D, because of the increased connectivity of the mesh and
the need to mitigate the cost of loading three-dimensional data to processor cores in
order to keep the computational density high.

The remainder of the paper proceeds as follows. In Section 2, we present the
mathematical and algorithmic description of the fast iterative method for solving
the inhomogeneous anisotropic eikonal equation on fully unstructured tetrahedral
domains. We then in Section 3 describe how the proposed algorithm can be efficiently
mapped to serial and multi-threaded CPUs and to streaming architectures such as
the GPU. In Section 4 we provide results that compare both our CPU and GPU
implementations against other widely-used methods and discuss the benefits of our

3



method. We present conclusions and future work in Section 5.

2. Mathematical and Algorithmic Description. In this section, we describe
the mathematics associated with the eikonal equation and the corresponding algo-
rithm we propose for its solution. The main building blocks of the method are a new
local solver and the active list update scheme. The local solver, upon being given a
proposed solution of the eikonal equation on three of the four vertices of a tetrahedron,
updates the fourth vertex value in manner that is consistent with the characteristics
of the solution. The update scheme is the management strategy for the active list,
consisting of the rules for when vertices are to be added, removed or remain on the
list. We refer to the combination of these two building blocks as tetFIM.

2.1. Notation and Definitions. The eikonal equation is a special case of the
nonlinear Hamilton-Jacobi partial differential equations (PDEs). In this paper, we
consider the numerical solution of this equation on a 3D domain with an inhomoge-
neous, anisotropic speed function:H(x,∇φ) =

√
(∇φ)TM(∇φ) = 1 ∀x ∈ Ω ⊂ R3

φ(x) = B(x) ∀x ∈ B ⊂ Ω
(2.1)

where Ω is a 3D domain, φ(x) is the travel time at position x from a collection of
given (known) sources within the domain, M(x) is a 3×3 symmetric positive-definite
matrix encoding the speed information on Ω, and B is a set of smooth boundary con-
ditions which adhere to the consistency requirements of the PDE. We approximate
the domain Ω by a planar-sided tetrahedralization denoted by ΩT . Based upon this
tetrahedralization, we form a piecewise linear approximation of the solution by main-
taining the values of the approximation on the set of vertices V and employing linear
interpolation within each tetrahedral element in ΩT . We let M be constant per tetra-
hedral element, which is consistent with a model of linear paths within each element.
vi denotes the ith vertex in V whose position is denoted by a 3-tuple xi = (x, y, z)T

where x, y, z ∈ R. An edge is a line segment connecting two vertices (vi, vj) in R3

and is denoted by ei,j . Two vertices that are connected by an edge are neighbors of
each other. ei,j denotes the vector from vertex vi to vertex vj and ei,j = xj−xi. The
angle between ei,j and ei,k is denoted by ∠i or ∠j,i,k.

A tetrahedron, denoted Ti,j,k,l, is a set of four vertices vi, vj , vk, vl that are
each connected to the others by an edge. A tetrahedral face, the triangle defined by
vertices vi, vj and vk of Ti,j,k,l, is denoted ∆i,j,k. The solid angle ωi at vertex vi
subtended by the tetrahedral face vj , vk, vl is given by ωi = ξj,k + ξk,l + ξl,j , where
ξj,k is the dihedral angle between the planes that contain the tetrahedral faces ∆i,j,l

and ∆i,k,l and define ξk,l and ξl,j correspondingly. We define a tetrahedron as an
acute tetrahedron when all its solid angles are smaller than 90 degrees while we define
an obtuse tetrahedron as one in which one or more of its solid angles is larger than 90
degrees. We note that one can define both an acute and obtuse tetrahedron in terms
of dihedral angle, which is equivalent to the proposed definition. We call the vertices
connected to vertex vi by an edge the one-ring neighbors of vi, and the tetrahedra
sharing vertex vi are called the one-ring tetrahedra of vi. We denote the discrete
approximation to the true solution φ at vertex vi by Φi.

2.2. Definition of the Local Solver. One of the main building blocks of the
proposed algorithm is the local solver, a method for determining the arrival time at
a vertex assuming a linear characteristic across a tetrahedron emanating from the

4



planar face defined by the other three vertices—whose solution values are presumed
known. In this section, we define the actions of the local solver for both acute and
obtuse tetrahedron.

Given a tetrahedralization ΩT of the domain, the numerical approximation, which
is linear within each tetrahedron, is given by Φ(x) and is defined by specifying the val-
ues of the approximation at the vertices of the tetrahedra. The solution (travel time)
at each vertex is computed from the linear approximations on its one-ring tetrahedra.
From the computational point-of-view, the bulk of the work is in the computation of
the approximations from the adjacent tetrahedra of each vertex—work accomplished
by the local solver.

Because acute tetrahedra are essential for proper numerical consistency [16], we
consider the case of acute tetrahedra first and then discuss obtuse tetrahedra subse-
quently. The specific calculation on each acute tetrahedron is as follows. Considering
the tetrahedron T1,2,3,4 depicted in Figure 2.1, we use an upwind scheme to com-
pute the solution Φ4, assuming the values Φ1, Φ2 and Φ3 comply with the causality
property of the eikonal solutions [22]. The speed function within each tetrahedron is
constant, so the travel time to v4 is determined by the time/cost associated with a line
segment lying within the tetrahedron T1,2,3,4, and this line segment is along the wave
front normal direction that minimizes the value at v4. The key step is to determine
the normal direction n of the wavefront and establish whether or not the causality
condition is satisfied. The ray that has a direction n and passes through the vertex
v4 must fall inside the tetrahedron T1,2,3,4 in order to satisfy the causality condition.
To check such a causality condition numerically, we first compute the coordinates of
the point v5 at which the ray passing through v4 with direction n intersects the plane
spanned by v1, v2 and v3 and then then check to see whether or not v5 is inside the
triangle ∆1,2,3.

Fig. 2.1. Diagram denoting components of the local solver. We compute the value of the
approximation at the vertex v4 from the values at vertices v1, v2 and v3. The vector n denotes the
wave propagation direction that intersects with the triangle ∆1,2,3 at v5.

We denote the travel time for wave to propagate from the vertex vi to the vertex
vj as Φi,j = Φj − Φi, and therefore the travel time from v5 to v4 is given by Φ5,4 =

Φ4 − Φ5 =
√

eT
5,4Me5,4, according to the Fermat principle as it applies to Hamilton-

Jacobi equations [29]. An alternative derivation of this principle from the perspective
of geometric mechanics is given in [11]. Using the linear model within each cell and
barycentric coordinates (λ1, λ2, λ3) to denote the position of v5 on the tetrahedral
face, we can express the approximate solution at v5 as Φ5 = λ1Φ1 + λ2Φ2 + λ3Φ3,
where the position is given by x5 = λ1x1 +λ2x2 +λ3x3. Here, λ1, λ2, λ3 satisfy that

5



λ1 + λ2 + λ3 = 1. This gives the following expression for Φ4:

Φ4 = λ1Φ1 + λ2Φ2 + (1− λ1 − λ2)Φ3 +
√

eT
5,4Me5,4. (2.2)

The goal is to find the location of v5 that minimizes Φ4. Thus, we take the partial
derivatives of Equation 2.2 with respect to λ1 and λ2 and equate them with zero to
obtain the conditions on the interaction of the characteristic and the opposite face:

Φ1,3

√
eT
5,4Me5,4 = eT

5,4Me1,3

Φ2,3

√
eT
5,4Me5,4 = eT

5,4Me2,3.
(2.3)

If Φ1,3 and Φ2,3 are not both zero, we have the following linear equation:

Φ2,3(eT
5,4Me1,3) = Φ1,3(eT

5,4Me2,3). (2.4)

We must now solve Equation 2.4 and either one of Equation 2.3 for λ1 and λ2. If no
root exists, or if λ1 or λ2 falls outside the range of [0, 1] (that is, the characteristic
direction does not reside within the tetrahedron), we then apply the 2D local solver
used in [8] to the faces ∆1,2,4, ∆1,3,4 and ∆2,3,4 and select the minimal solution
from among the three. The surface solutions allow for the same constraint, and if
the minimal solutions falls outside of the tetrahedral face, we consider the solutions
along the edges for which we are guaranteed a minimum solution exists. Because the
quantity being minimized, there can be only one minimum, and the optimal solution
associated with that element must pass through the tetrahedron or along one of its
faces/edges.

In the case of parallel architectures with limited high-bandwidth memory, the
memory footprint of the local solver becomes a bottleneck to performance. The
smaller the memory footprint of the local solver, the higher the computational den-
sity one can achieve on the streaming processors, and the closer one gets to the
100-200× raw improvement in processing power (relative to a conventional CPU).
Here we explore the algebra a little more carefully to reduce these computations to
their fundamental degrees of freedom. Solving Equations 2.3–2.4 directly requires
storing all the coordinates of the vertices and the components of M , which is 18 float-
ing point values in total. In practice, we can reduce the computations and memory
storage based on the observation that e5,4 can be reformatted as: e5,4 = x4 − x5 =
x4− (λ1x1 +λ2x2 +λ3x3) = [e1,3 e2,3 e3,4]λ, where λ = [λ1 λ2 1]T . Hence we obtain

eT
5,4Me5,4 = λT [eT

1,3 eT
2,3 eT

3,4]TM [e1,3 e2,3 e3,4]λ = λTM ′λ (2.5)

where M ′ = [α β θ] with
α = [eT

1,3Me1,3 eT
2,3Me1,3 eT

3,4Me1,3]T

β = [eT
1,3Me2,3 eT

2,3Me2,3 eT
3,4Me2,3]T

θ = [eT
1,3Me3,4 eT

2,3Me3,4 eT
3,4Me3,4]T

(2.6)

and {
eT
5,4Me1,3 = λTα

eT
5,4Me2,3 = λTβ.

(2.7)

6



Plugging Equation 2.5, 2.6 and 2.7 into Equations 2.3 and 2.4 we obtain{
Φ1,3

√
λTM ′λ = λTα

Φ2,3λ
Tβ = Φ1,3λ

Tα.
(2.8)

Solving Equation 2.8 only requires storing M ′, which is symmetric so only requires
six floats per tetrahedron.

Having defined the acute tetrahedron local solver, we now discuss the case of ob-
tuse tetrahedra. The computation of the solution for linear approximations on tetra-
hedral elements has poor approximation properties when applied to obtuse tetrahedra
[24]. The issue of dealing with good versus bad meshes is not the main focus of this
paper or the proposed algorithm, but limited incidences of obtuse tetrahedron can be
addressed within the local solver. To accomplish this, we extend the method proposed
in [16], originally designed for triangular meshes to work for tetrahedral meshes. As
shown in Figure 2.2 where ω4 is obtuse, we connect v4 to the vertex v5 of a neighbor-
ing tetrahedron and thereby cut the obtuse solid angle into three smaller solid angles.
If these three solid angles are all acute, then the process stops as shown in the left
images of Figure 2.2; otherwise if one of the smaller solid angles is still obtuse, then
we connect v4 to the vertex v6 of another neighboring tetrahedron. This process is
performed recursively until all new solid angles at v4 are acute as shown in the right
image of Figure 2.2, or the opposite triangular faces coincides with a boundary. Note
that algorithmically, these added edges and tetrahedra are not considered part of the
mesh; they are considered virtual and only used within the local solver for updating
the solution at v4. We cannot prove the convergence of this refinement algorithm,
and the above recursion could propagate extensively throughout the mesh in extraor-
dinary cases. In practice, the algorithm would be forced to terminate after a fixed
number of splits emanating from a single vertex — in all of the meshes in this paper,
the algorithm recursed no more than once.

2.3. Active List Update Scheme. The proposed algorithm uses a modifica-
tion of the active list update scheme as presented in [8, 13] combined with the new
local solver described above designed for unstructured tetrahedral meshes with inho-
mogeneous anisotropic speed functions.

The algorithm is iterative, but for efficiency, the updates are limited to a relatively
small domain that forms a collection of narrow bands that form wavefronts of values

Fig. 2.2. Diagram denoting the strategy used to deal with obtuse tetrahedra. We split the obtuse
angle ω4 to create three virtual tetrahedra used within the local solver.

7



that require updating. This narrow banding scheme uses a data structure, called active
list, to store the vertices or tetrahedra slated for revision and these vertices/tetrahedra
are called active vertices/tetrahedra. During each iteration, active vertices/tetrahedra
can be updated in parallel and after the updates of all the active vertices/tetrahedra,
the active list is modified to eliminate vertices whose solutions are consistent with their
neighbors and to include vertices that could be affected by the last set of updates.
Convergence of the algorithm to a valid approximation of the eikonal equation was
proven in [13].

3. tetFIM Serial and Parallel Implementations. In this section, we provide
implementation details in terms of methods and data structures necessary for the
efficient instantiation of our local solver and active list update scheme on serial CPUs,
multi-threaded CPUs, and streaming SIMD parallel architectures.

3.1. Implementation on Serial and Multithreaded CPUs. The proposed
method builds on the fast iterative method proposed for structured meshes [13], which
operates as follows. Nodes on the active list are revised individually, and the corre-
sponding values remain consistent with their upwind neighbors. Then, each updated
value immediately overwrites the previous solution. The algorithm runs through the
active list, constantly revising values, and at the end of the list, it loops back to
the beginning. As such, the list has no real beginning or end. A vertex is removed
from the active list when the difference between its old and revised values is below a
predetermined tolerance —effectively, the value at the vertex does not change within
the range of the prescribed tolerance from the previous update. We specify a ver-
tex whose value remains unchanged (within some tolerance ε) as ε-converged. As
each ε-converged vertex is removed from the active list, all of its potentially down-
wind neighbors (neighbors with larger value) are updated. If their values are not
ε-converged (i.e. they deviate significantly), they are included in the active list. The
algorithm keeps updating the vertices in the active list until the list is empty.

The update of an active vertex does not depend on the other updates, hence we
can extend the single-threaded algorithm to shared memory multiprocessor systems
by simply partitioning arbitrarily, at each iteration, the active list into N sublists and
assigning the sublists to N threads. Each thread asynchronously update the vertices
within the sublist. These updates are done by applying the updating step to each
partition of the active list. In practice, we choose N to be twice the number of CPU
cores to take full advantage of Intel’s hyper-threading technology. At the beginning
of an iteration, if there are n nodes in the active list, the sublist size M is given
by M = d nN e. The active list is evenly divided into N sublists, each containing M
consecutive active nodes except for the last sublist which may contain fewer than M
active nodes. These N sublists are then assigned to N threads.

3.2. Implementation on Streaming SIMD Parallel Architectures. To
exploit the GPU performance advantage, we propose a variation of tetFIM, called
tetFIM-A, that adapts well on SIMD architectures by combining an agglomeration-
based update strategy that is divided across blocks and carefully designed data struc-
tures for 3D tetrahedral meshes. In this method, the computational domain (mesh) is
split into minimally overlapping agglomerates (sharing only one layer of tetrahedra)
and each agglomerate is treated with logical correspondence to a vertex in the original
tetFIM. The vertices in each agglomerate are updated in a SIMD fashion on a block,
and the on-chip cache is employed to store the agglomerate data and the intermediate
results. Similar to the CPU variants of tetFIM, a narrow banding scheme is used to

8



focus the computation in terms of the necessary computational region. The active list
consists of a set of active agglomerates instead of active vertices.

In an iteration, each active agglomerate is loaded from the global memory to a
block, and the values of all vertices in this agglomerate are updated by a sequence of
SIMD iterations which we call internal iterations. The agglomerate data are copied
to the on-chip memory space, and the internal iterations are performed to revise
the solutions of the vertices in that agglomerate. In general, the whole computation
consists of two steps: the preprocessing and the iteration.

Preprocessing. The tetFIM-A requires setup or preprocessing before the com-
putation of the solution. First, we divide the mesh into agglomerations through a
multilevel partitioning scheme described in [14]. The specific algorithm for mesh par-
titioning is not essential to the suggested algorithm, except that efficiency is achieved
for agglomerates with matching numbers of vertices/tetrahedra and relatively few ver-
tices on the agglomerate boundaries. We also precompute the static mesh information
including the extra information associated with the obtuse tetrahedra and prepare the
necessary data for the iteration step including compaction of the speed and geometric
data and generation of the gather-lists which will be described below.

Iteration step. In this step, each agglomerate is treated just like a vertex in tet-
FIM, and the main iteration continues until the active list becomes empty. The main
iteration consists of three stages as outlined below. First, each agglomerate in the
active list is assigned to a SIMD computing unit. Second, once the agglomerate is
updated, we check to see if the agglomerate is ε-converged, i.e., all vertices in an
agglomerate are ε-converged. Checking the agglomerate convergence entails updating
the entire agglomerate once and seeing if there exists a vertex with a changed solu-
tion. This is done with a reduction operation, which is commonly employed in the
streaming programming model to efficiently produce aggregate measures (sum, max,
etc.) from a stream of data [21]. Finally, we deal with the effects of an update on
the active list. If an agglomerate is not ε-converged, we add it into the active list,
otherwise we add its neighboring agglomerates to the active list and then go to the
first stage and repeat the update again (see Algorithm 1).

Algorithm 1. meshFIM(A,L) (A: set of agglomerates, L: active agglomerate
list)

comment: initialize the active list L
for all a ∈ A do

for all v ∈ a do
if any v ∈ S then

add a to L
end if

end for
end for
comment: iterate until L is empty
while L is not empty do

for all a ∈ L do
update the values of the node in each a

end for
for all a ∈ L do

check if a is converged with reduction operation
end for
for all a ∈ L do

9



if a is converged then
add neighboring agglomerates of a into a temporary list Ltemp

end if
end for
clear active list L
for all a ∈ Ltemp do

perform 1 internal iteration for a
end for
for all a ∈ Ltemp do

check if a is converged with reduction operation
end for
for all a ∈ Ltemp do

if a is converged then
add a into active list L

end if
end for

end while

end

This agglomeration strategy is meant to exploit the high computing power from
modern SIMD processors. However, the 3D tetrahedral mesh and anisotropy of the
speed function pose some challenges for this strategy to achieve good performance.
First, representing the topology of an unstructured 3D mesh and storing the speed
matrices imposes a large memory footprint. In juxtaposition to this, high local mem-
ory residency and sufficient computational density are desired to hide the memory
access latency. Due to the large memory footprint, the agglomerate size must be
small enough so that the limited on-chip fast memory space of the SIMD processor
can accommodate all the agglomerate data. However, small agglomerate sizes leads
to larger boundary and more global communication which is slow for SIMD architec-
tures. In addition, unstructured 3D meshes can have large and highly variant vertex
valances which result in uneven workload for the threads and incoherent memory ac-
cess pattern that affects the achieved bandwidth. To address all these challenges, it
is essential to carefully design the data structure used for the agglomeration strategy
so that the data structure is compact and regular. We explore here two different
data structures for representing tetrahedral agglomeration yielding high computa-
tional density for the SIMD processing of tetrahedral meshes on blocks. We call these
two representations the one-ring-strip and the cell-assembly data structures.

3.2.1. Description of One-ring-strip Data Structure. The one-ring-strip
data structure is efficient only for the case of isotropic speed functions because its
run-time effectiveness is offset by the memory footprint of the geometric and speed
information in the anisotropic case. We discuss it here as it provides better per-
formance for this very important special case. As in tetFIM, the update for one
vertex includes computing solutions from its one-ring tetrahedra and taking the min-
imum solution as the new updated value. In order to minimize memory usage, we
store for each vertex its one-ring tetrahedra by storing the outer-facing triangles on
the polyhedron formed by the union of the one-ring tetrahedra. To further improve
memory usage, these triangles are stored in “strips” as commonly used in computer
graphics [4]. Specifically, for a given vertex within the mesh, the faces of its one-ring
tetrahedra that are opposite of the vertex form a triangular surface (see Figure 3.1)
from which we generate a triangular strip and store this strip instead of storing the

10



entire one-ring tetrahedra list.

Fig. 3.1. 2D representation of the outer surface of vertex v formed by the one-ring tetrahe-
dra: the polygon formed by the bold line segments is analogous to the outer triangular surface in
tetrahedral mesh.

In practice, the one-ring-strip data structure consists of four arrays: VAL, STRIP,
GEO and SPEED. GEO is the array storing the per-vertex geometry information
required to solve the eikonal equation. It is divided into sub-segments with a prede-
fined size that is determined by the largest agglomeration among all the agglomerates.
Each sub-segment stores a set of three floating point variables (floats) for the vertex
coordinates of each vertex. VAL is the array storing the per-vertex values of the solu-
tion of the eikonal equation. It is also divided into sub-segments, and solutions on the
vertex are stored. The algorithm requires two VAL arrays, one for the input and the
other for the output, in order to avoid memory conflicts. Vertices on the boundaries
between agglomerates are duplicated so that each agglomerate has access to vertices
on neighboring agglomerates, which are treated as fixed boundary conditions for each
agglomerate iteration. The STRIP array stores both indices to GEO and VAL re-
spectively for the geometric information and the current solution at each vertex within
the strip. The SPEED array stores per-tetrahedron speed values corresponding to
the tetrahedral strip of a vertex. This data structure is not suited for the anisotropic
case since the speed matrix requires significant memory. Anisotropic speed functions
require that six floating point numbers of the speed matrix be stored for each adjacent
tetrahedron of a node, while isotropic speed functions require only one floating point
number per adjacent tetrahedron. Figure 3.2 depicts the data structure introduced
above. In a single internal iteration on an agglomerate, the one-ring-strip data struc-
ture employs a vertex-based parallelism, i.e., each thread in a block is in charge of the
update of a vertex which includes computing the potential values from the one-ring
tetrahedra of this vertex and then taking the minimum as the final result.

3.2.2. Description of Cell-assembly Data Structure. The cell-assembly
data structure is an extension of the data structure described in [8] for triangular
meshes. However, specially for the tetrahedral meshes, we have designed a new data
compaction scheme to combine the anisotropic speed matrices with the geometric
information. In addition, instead of using a fixed length array NBH to store the
memory locations for a thread to gather data, we use a more compact data structure
to store these locations. Also, we propose a lock-free strategy to generate the gather-
lists which are needed in the computation to find the minimum of the potential values
of each node. The cell-assembly works for both the isotropic and anisotropic cases,
although it is slightly less efficient in terms of run-time performance for some isotropic

11



Fig. 3.2. One-ring-strip data structure: in this figure, Ti is a tetrahedron, xi, yi and zi
represent the coordinates of the ith vertex, fi is the inverse of speed on a vertex. Φi denotes the
value of the solution at the ith vertex. Ii in STRIP represents the data structure for the one-ring-
strip of the ith vertex each of which has q indices pointing (shown as arrows) to the value array.

cases than the one-ring-strip data structure.

The cell-assembly data structure includes four arrays, labeled GEO, VAL, OFF-
SETS and GATHER. GEO stores compacted geometry and speed information, and
the compaction scheme is described below. This is different from the cell-assembly
for the 2D meshes described in [8] which stores the speed and geometric information
separately. GEO is also divided into sub-segments with a predefined size that is de-
termined by the largest agglomeration. VAL stores per-tetrahedron values of solution
of the eikonal equation. As with the one-ring-strip, we simply duplicate and store the
exterior boundary vertices for each agglomeration and treat the data on those vertices
as fixed boundary conditions for each agglomerate iteration to deal with agglomerate
boundaries. The GATHER array stores concatenated per-vertex gather-lists which
are the indices to VAL for the per-vertex solution, and the OFFSETS array indi-
cates the starting and ending of the gather-list of each node in the GATHER array.
These gather-lists are stored differently because a tetrahedral mesh may have very
various valence, and the fixed length data structure used in [8] may waste a lot of
memory space and bandwidth for the sentinel values.

For cell-assembly, the updates of the intermediate (potential) vertex values in
an agglomerate employ tetrahedron-based parallelism. Each thread of a block is
responsible for updating all four vertex values of a tetrahedron, and the intermediate
results are stored in the VAL array. Then we need to find the final value of a node,
which is the minimum of its potential values which are stored in the per-tetrahedron
VAL array. Typically, an atomic minimum operation is then needed to find the
minimum for each node in parallel. However, atomic operations are costly on GPUs,
and we avoid them by switching to a vertex-based parallelism strategy using gather-
lists. A gather-list stores indices to VAL and tells the thread where to fetch potential
values in the VAL array for a node. A gather-then-scatter like operation is then used
to find the minimum value of a vertex from its one-ring tetrahedra and reconcile all
the values of this vertex according to the gather-lists. Generating the gather-lists
efficiently on GPUs is not a trivial task, given only the geometric information of the
mesh — the element list and the node coordinate list. We use a sorting strategy to

12



achieve this. Given a copy of the element list ELE which stores the vertex indices of
each tetrahedron, we create an auxiliary array AUX of the same size and fill it with
an integer sequence. Specifically, if the size of ELE is n, AUX is initialized to {0, 1,
2, ... n− 1}. We sort ELE and permute AUX according to the sorting. Now AUX
stores the concatenated gather-lists all the nodes, but we need to know the starting
and ending positions of the gather-list of each node, which is achieved by a reduction
and a scan operation on the ELE array. These operations – sorting, reduction and
scan – are all very efficient on GPUs, and we use the CUDA thrust library [17]
in our implementation. Now ELE and AUX are respectively the OFFSETS and
GATHER arrays we need.

Next, we describe how we combine the speed matrix and geometric information
in practice. As shown in Section 2.2, the local solver for updating a vertex requires
six floats to store the symmetric speed matrix M ′, so a total of 24 floats are needed
to update all four vertices on a tetrahedron. However, based on the topology of the
tetrahedron and some algebra reductions, we have:

ei,j = ei,k + ek,j , (3.1)

v1
TMv2 = v2

TMv1 and (3.2)

v1
TMv2 + v1

TMv3 = v1
TM(v1 + v2) (3.3)

where v1, v2 and v3 are arbitrary vectors. According to these properties, we can cal-
culate all the fourM ′ elements from the six values: eT

1,3M
′e2,3, eT

2,3M
′e3,4, eT

1,3M
′e3,4,

eT
1,4M

′e2,4, eT
1,3M

′e1,4 and eT
2,3M

′e2,4. Precomputing these values, we need only store
six floats for each tetrahedron which are stored in the GEO array.

Compared to the one-ring-strip data structure, the advantage of cell-assembly is
that the computational work is almost the same for each SIMD thread independent
of the valances of the vertices, while for one-ring-strip, the computational work per
thread is determined by the valences of the vertices. More homogeneity in the valances
of the vertices results in better load balancing for the different threads. However, the
one-ring-strip data structure has a smaller memory footprint and higher computation
density since each SIMD thread computes the local solver on each tetrahedron of a
one-ring-strip. We evaluate the performance each data structure empirically in the
next section.

4. Results and Discussion. In this section, we discuss the performance of
the proposed algorithms in realistic settings compared to two widely-used competing
methods: the fast marching method (FMM) and the fast sweeping method (FSM).
Serial CPU implementations were generated which strictly follow the algorithms as ar-
ticulated in the (previously) cited references. We rely on a collection of unstructured
meshes having variable complexities to illustrate the performance of each method.
For this set of meshes, we examine how the performance of these methods is affected
by four different speed functions—a homogeneous isotropic speed, a homogeneous
anisotropic speed, a heterogeneous anisotropic random speed, and a speed function
for the geometric optics/lens example. We first show the error analysis of the pro-
posed first order numerical scheme. Next, we show the results of the single-threaded
(serial) CPU implementation of tetFIM, FMM, and FSM, and review the typical per-
formance characteristics of the existing algorithms. We then detail the results of our
multithreaded CPU implementation and discuss the scalability of the proposed algo-
rithm on shared memory multiprocessor computer systems. Finally, we present the
results of our GPU implementation to demonstrate the performance of the proposed

13



method on massively SIMD streaming parallel architectures. For consistency of eval-
uation, single precision was used in all algorithms and for all experiments presented
herein.

The meshes and speed functions for the experiments in this section 1 are as follows:
Mesh 1: A regularly tetrahedralized cube with 1,500,282 tetrahedra (63× 63× 63

regular grid) whose maximum valence is 24;
Mesh 2: A irregularly tetrahedralized cube with 197,561 vertices and 1,122,304

tetrahedra whose maximum valence is 54;
Mesh 3: A heart model with 437,355 vertices and 2,306,717 tetrahedra whose max-

imum valence is 68 (Figure 1.1 left);
Mesh 4: A lens model with 260,908 vertices and 1,561,642 tetrahedra whose maxi-

mum valence is 58 (Figure 1.1 right); and a
Mesh 5: A 3-D model with irregular geometries, which we call blobs, with 437,355

vertices and 2,306,717 tetrahedra whose maximum valence is 88 (Figure 4.1).

Speed 1: a homogeneous isotropic speed of constant 1.0,
Speed 2: a homogeneous anisotropic diagonal speed tensor with diagonal entries

1.0, 4.0, and 9.0,
Speed 3: a heterogeneous anisotropic correlated random symmetric positive-definite

speed tensor,
Speed 4: a heterogeneous isotropic speed for lens model, and
Speed 5: a heterogeneous isotropic speed for lava lamp model.

Fig. 4.1. Blobs mesh and its cross section. The different colors in the cross section represent
different materials indices of refraction (speed functions).

4.1. Error Analysis. To show that the proposed algorithm achieves the first-
order accuracy we would expect from the piecewise linear approximation used within
the solver, we performed a convergence analysis on a problem with a known solution.
We use six regularly tetrahedralized cube meshes, representing a 256×256×256 block
within R3, with the number of vertices on each side ranging from 17 to 513. We use
an ellipse octant (placing the center of the ellipse at the corner of the cube domain)
of the form x2 + 4y2 + 9z2 = R2, where R = 40 as the source. Boundary conditions
were projected onto the vertices using the nearest vertices to the sphere. We then

1Files containing the mesh and speed function definitions can be found at:
http://www.sci.utah.edu/people/zhisong.html

14



solve for the distances to these boundaries for the entire domain using the tetFIM
eikonal solver with an anisotropic diagonal speed matrix with diagonal numbers 1,
4 and 9 and compare against analytical results at the vertices using the L1 error.
L1 errors are computed in this way. First, for each tetrahedron, take the average of
the errors at the vertices and multiply by the volume of the tetrahedron. We then
sum up the products over all tetrahedra and divide the sum by the volume of the
whole domain. Finally, we calculate the error orders of any two consecutive meshes.
The results are presented in Table 4.1. The table shows that the order of the error
is approaching 1.0 with increasing resolution, which is consistent to our claim that
tetFIM is asymptotically first-order accurate.

Speed 1 Speed 2
Mesh sizes L1 Error Order L1 Error Order

17 8.073934 — 15.399447 —
33 4.688324 0.78 9.232588 0.74
65 2.606537 0.85 5.347424 0.79
129 1.396091 0.90 2.967363 0.85
257 0.721630 0.95 1.558972 0.93
513 0.362584 0.99 0.789725 0.98

Table 4.1
Table presenting our convergence results (L1 error) and the order of convergence as computed

from subsequent levels of refinement.

4.2. CPU Implementation Results and Performance Comparison. We
have tested our CPU implementation on a Windows 7 PC equipped with an Intel i7
965 Extreme CPU running at 3.2 GHz. All codes were compiled with Visual Studio
2010 using compiler options /O2 and /arch:SSE2 to enable SIMD instructions. (we
accomplished a comparison using the Intel Sandy Bridge CPU to run some of the
tests. The results show the Sandy bridge CPU is around twice as fast as the i7
965. All results presented herein can be scaled appropriately to interpret the results
against the Sandy Bridge processor). First, we focus on the performance the CPU
implementations of our tetFIM method compared against serial FMM and FSM on
three different meshes with differing complexities (Mesh 1, Mesh 2 and Mesh 3) using
various speed functions. The anisotropic version of FMM [27] is no longer local
in nature (as it requires a larger multi-element upwind stencil) and hence we did
not include anisotropic FMM in our comparisons. We call the serial version of our
method CPU method tetFIM-ST and the multithreaded version tetFIM-MT (in all
cases, we use four threads). In all these experiments, a single source point is selected
at around the center of the cube. For the FSM, we select the reference points to be the
eight corners of the cube and the run-time for FSM does not include the sorting time
required to sort vertices according to their Euclidean distances to the reference points.
Tables 4.2, 4.3 and 4.4 show the computational results for this set of experiments.

As shown in Tables 4.2, 4.3 and 4.4, FMM outperforms both tetFIM and FSM
on all isotropic cases. This is to be expected as FMM is a worst-case optimal method
and its performance is not significantly impacted by the complexity of the mesh or the
speed function as observed previously in [13] and [8]. FIM outperforms the FSM on all
the test cases. For simpler speed functions like Speeds 1 and 2, the FSM requires only
two iterations to converge, because the characteristics are well captured thanks to the
reference point choice. FSM, however, requires the update of all the vertices in the

15



Speed 1 Speed 2 Speed 3
FMM 69 — —
FSM 213 216 680

tetFIM-ST 80 81 107
tetFIM-MT 27 28 41

Table 4.2
Run-time (in seconds) of FMM, FSM, single-threaded tetFIM (tetFIM-ST), and multithreaded

tetFIM with four threads (tetFIM-MT) on Meshes 1 with Speeds 1, 2 and 3.

Speed 1 Speed 2 Speed 3
FMM 42 — —
FSM 407 409 674

tetFIM-ST 60 59 175
tetFIM-MT 22 23 55

Table 4.3
Run-time (in seconds) of FMM, FSM, tetFIM-ST, and tetFIM-MT on Mesh 2 with Speeds 1,

2 and 3.

mesh according to their distance to each reference point in both ascending order and
descending order. So for the eight reference points in these experiments, FSM needs
to update all vertices 16 times in one iteration, which amount to 32 total updates
for each vertex. On the other hand, tetFIM needs less updates for the mesh vertices
when the wavefront passes through the whole domain from the source in the direction
of the characteristics. Indeed, the average valance of the mesh is 24, and assuming
that half of the neighbors of a vertex are fixed when a vertex is being updated, each
vertex needs to be updated only 12 times on average. As pointed out in [12], when the
speed function becomes more complex (i.e. characteristics change frequently), FSM
performs even worse when compared to FIM, which can be shown in our Speed 3 case
where FSM needs six iterations to converge and tetFIM runs about seven times faster.
Moving to the more complex Mesh 2, FSM’s performance is dramatically degraded,
needing five iterations for simpler Speeds 1 and 2 and eight iterations for Speed 3.
The tetFIM’s performance, however, is inconsequentially impacted by the complexity
of the mesh.

The tetFIM algorithm is designed for parallelism, and the results on the multi-
threaded system bear this out. The fourth rows in Tables 4.2, 4.3 and 4.4 show the
run-times of multithreaded tetFIM using four CPU cores. Note that tetFIM scales
well on multicore systems. On a quad-core processor, we observe a nearly three times
speedup from tetFIM-ST to tetFIM-MT on all cases. The reduction from perfect
scaling can be attributed to the fact that due to the partitioning of the active list at
each time step, the multithreaded version accomplishes more updates per vertex than
the serial version. In the single threaded version, a single active list implies that up-
dated information is available immediately once a computation is done, analogous to a
Gauss-Seidel iteration; in the multithreaded case, the active list partitioning enforces
a synchronization in terms of exchange of information between threads, analogous to
a red-black Gauss-Seidel iteration.

4.3. GPU Implementation Results. To demonstrate the performance of tet-
FIM on SIMD parallel architectures, we have implemented and tested tetFIM-A on
an NVIDIA Fermi GPU using the NVIDIA CUDA API [18]. The NVIDIA GeForce

16



Speed 1 Speed 2 Speed 3
FMM 71 — —
FSM 807 823 1307

tetFIM-ST 113 122 173
tetFIM-MT 46 48 56

Table 4.4
Run-time (in seconds) of FMM, FSM, tetFIM-ST, and tetFIM-MT on Mesh 3 with Speeds 1,

2 and 3.

GTX 580 graphics card is has 1.5 GBytes of global memory and 16 microprocessors,
where each microprocessor consists of 32 SIMD computing cores that run at 1.544
GHz. Each computing core has configurable 16 or 48 KBytes of on-chip shared mem-
ory, for quick access to local data. Computation on the GPU entails running a kernel
with a batch process of a large group of fixed size thread blocks, which maps well
to the tetFIM-A algorithm that employs agglomeration-based update methods. A
single agglomerate is assigned to a CUDA thread block. For the one-ring-strip data
structure, each vertex in the agglomerate is assigned to a single thread in the block,
while in cell-assembly data structures, each tetrahedron is assigned to a thread. These
two variants of the tetFIM-A algorithm are called tetFIM-A-ORS and tetFIM-A-CA
respectively.

The agglomerate scheme seeks to place the agglomerated data into the GPU cache
(registers and shared memory). However, the GPU cache size is very limited, and
hence we have to use agglomerates with smaller diameters compared to what can be
used in triangular mesh cases. This implies that we perform fewer internal iterations
in the 3D case versus the 2D case, which leads to lower computational density. On
the other hand, performing fewer internal iterations reduces the number of redundant
internal iterations caused by outdated boundary information. In addition, the local
solver for tetrahedral mesh requires more computations. Table 4.5 demonstrates that
our agglomerate scheme balances the trade-off between the agglomerate size, the
number of internal iterations and computational density very well on the GPU; the
speedup values increase in 3D over previously published 2D results [8]. In addition,
our GPU implementations perform much better than all the CPU implementations.
Section 4.5.2 provides detailed analysis of the parameter choice.

Table 4.5 also shows the performance comparison of the two tetFIM-A variants,
tetFIM-A-ORS and tetFIM-A-CA with the single-threaded CPU implementation (tet-
FIM) on the same meshes and the isotropic speed function, and shows the speedup
factors of tetFIM-A over the CPU method. Communication times between CPU and
GPU, which are only about one tenth of the run-times in our experiments, are not
included for tetFIM-A to give a more accurate comparison of the methods. As shown
in this result, tetFIM-A-ORS performs better than tetFIM-A-CA for Mesh 1, which
is a regularly tetrahedralized cube. This is because one-ring-strip data structure con-
sumes less shared memory so as to allow larger agglomerates. Large agglomerates
need more inside iterations to converge, hence the computational density is increased
due to fast shared memory usage for inside iterations. While for the more complex
irregular meshes like Mesh 3 in this comparison, tetFIM-A-CA has a performance
advantage. The reason is that for irregular meshes, the valence of the vertices vary
greatly, hence the computational density of tetFIM-A-ORS for each thread is suffi-
ciently unbalanced that computing power is wasted when faster threads are waiting
for the slower ones to finish. On the other hand, the two tetFIM-A algorithms achieve

17



a good performance gain over both the serial and multithreaded CPU solvers. On
a simple case such as Mesh 1 with Speed 1, tetFIM-A-ORS runs about 201 times
faster than tetFIM-ST while tetFIM-A-CA runs about 131 times faster than tetFIM-
ST. On the other more complex cases, tetFIM-A-ORS runs up 23 times faster than
tetFIM-ST while tetFIM-A-CA is 37 times faster. See Figure 4.2 for visualizations of
the resulting solutions.

Fig. 4.2. Color maps and level curves of the solutions on the cube and heart meshes. Left: the
ellipse speed function (Speed 2). Right: the isotropic constant function (Speed 1).

We also observe that SIMD efficiency of the tetFIM algorithm depends on the in-
put mesh configuration (i.e. the average vertex valence relative to the highest valence).
As seen form Table 4.5, both GPU implementations achieve the highest speedups on
Mesh 1 compared to the CPU implementation while achieving the lowest speedups on
Mesh 3 which has much greater maximum vertex valance. This is because the highly
unstructured mesh, e.g., Mesh 3, leads to unbalanced word load and waste of memory
bandwidth on SIMD architectures.

Mesh 1 Mesh 2 Mesh 3
tetFIM-ST 80 60 113
tetFIM-MT 27 22 46

tetFIM-A-ORS 0.396 1.412 2.694
tetFIM-A-CA 0.587 0.939 1.911

Speedup 1 202× 42× 42×
Speedup 2 136× 64× 59×

Table 4.5
Run-times (in seconds) and speed-up factors (against tetFIM-ST) for the different algorithms

and architectures on all meshes with Speed 1. Data in first row are from Tables 4.2, 4.3 and 4.4.

Next, we show the tetFIM-A applied to the anisotropic cases. Because the one-
ring-strip data structure is not suitable for this case, we include only the performance
result of cell-assembly data structure variant tetFIM-A-CA. Table 4.6 clearly shows

18



that the tetFIM-A which is implemented on the GPU performs much better than the
CPU implementation on all the examples we experimented, regardless of the mesh
configuration and speed function.

Mesh 1 Mesh 2 Mesh 3 Mesh 1 Mesh 2 Mesh 3
Speed 2 Speed 2 Speed 2 Speed 3 Speed 3 Speed 3

tetFIM-ST 81 59 113 107 175 173
tetFIM-A-CA 0.580 0.958 1.986 1.356 2.079 2.413

Speedup 140× 62× 57× 79× 84× 72×
Table 4.6

Run-times (in seconds) and speed-up factors for the different algorithms and architectures.
Data in first row are from Tables 4.2, 4.3 and 4.4.

Finally, Table 4.7 shows the preprocessing time for Meshes 1, 2 and 3. The prepro-
cessing is performed on the GPU and includes permuting the geometric information
(element list and vertex coordinate list) according to the mesh partition using METIS
and generating the gather-lists for the cell-assembly data structure. The graph parti-
tioning and triangle strip generation time are not included since they are not essential
parts of our algorithm.

Mesh 1 Mesh 2 Mesh 3
0.150 0.120 0.209

Table 4.7
Run-times (in seconds) of the preprocessing step for Mesh 1, 2 and 3.

4.4. Meshes for Complex Surfaces. We have also tested this method on
meshes with more complex conformal surfaces (Meshes 4 and 5) to show that the
proposed method works correctly when applied to scenarios that resemble physical
simulation associated with target applications. Figures 4.3 and 4.4 show the results
of the simulation on the lens model and the blobs model. The green region in the lens
model (Figure 1.1-right) has a speed functions of 1.0, which represent the refractive
index of air, and the red region models a lens with refractive index is 2.419. Similarly,
in the blobs model, the red and green regions have constant speed functions of 1.0 and
10.0 respectively. Table 4.8 shows the performance of all the methods for Meshes 4
and 5.

Mesh 4 Speedup VS. FMM Mesh 5 Speed-up VS. FMM
FMM 43 1 51 1
FSM 378 -8.8 517 -10.1

tetFIM-ST 74 -1.7 62 -1.2
tetFIM-MT 22 2.0 21 2.4

tetFIM-A-ORS 2.372 18.1 2.032 25.1
tetFIM-A-CA 1.801 23.9 1.538 33.2

Table 4.8
Run-time (in seconds) of all methods on Meshes 4 and 5. The “Speed-up VS. FMM” column

lists the speed-up of all methods compared to FMM with negative numbers denoting that the method
is slower than FMM.

19



Fig. 4.3. Color maps and level curves of the solutions on the lens model with boundary as given
by the figure in the left-side image.

Fig. 4.4. Color maps and level curves of the solutions on the blobs model with boundary as
given by the figure in the left-side image.

4.5. Analysis of Results. In this section, we discuss the analysis of our results
in terms of asymptotic cost and parameter optimization choices.

4.5.1. Asymptotic Cost Analysis. We accomplished an asymptotic cost anal-
ysis that measures the number of iterations and number of updates per vertex for our
proposed serial CPU version tetFIM-ST and GPU version tetFIM-A. We used four
meshes with different sizes to show that our method scales very well against mesh size
for a given speed function (see Table 4.9).

tetFIM-ST tetFIM-A
Speed 2 Speed 3 Speed 2 Speed 3

Mesh sizes # iter # up # iter # up # iter # up # iter # up
17 37 11 44 13 48 29 69 51
33 70 12 81 15 103 29 119 49
65 139 12 170 16 206 32 265 51
129 276 11 326 15 403 31 510 50

Table 4.9
Asymptotic cost analysis: # iter is the number of iterations needed to converge and # up is

the average number of updates per vertex.

20



4.5.2. Parameter Optimization. In tetFIM-A, there are two parameters that
need to be specified: the agglomerate size and the internal iteration number. The
agglomeration scheme provides fine-grained parallelism that is suitable for SIMD ar-
chitectures by partitioning the mesh into agglomerates that are mapped to different
computational blocks. During the internal iterations on the agglomerate accomplished
per block, the boundary conditions are lagged. Hence taking an excessive number of
internal iteration is wasteful as it merely drives the local solution to an incorrect fixed-
point (in the absence of boundary condition updates). For this reason, it may seem
ideal to have smaller agglomerate sizes which tend to need fewer internal iterations for
the agglomerate to converge (and thus less computation is wasted). However, smaller
agglomerates result in large boundary and more global communication among blocks.
In addition, we need also take into account the size of the limited hardware resources,
e.g., GPU shared memory and registers. We want to fit the agglomerate into the fast
on-chip (shared) memory space to increase the computational density. Based upon
our experiments, the best agglomerate size is around 64 vertices. For the internal
iteration number, our experiments show that the ideal number is approximately three
when agglomerates are of this size.

5. Conclusions. In this paper, we have presented a variant of the fast itera-
tive method appropriate for solving the inhomogeneous anisotropic eikonal equation
over fully unstructured tetrahedral meshes. Two building blocks are required for
such an extension: the design and implementation of a local solver appropriate for
tetrahedra with anisotropic speed information, and algorithmic extensions that allow
for rapid updating of the active list used within the FIM method in the presence
of the increased data footprint generated when attempting to solve PDEs on three-
dimensional domains. After describing these two building blocks, we make the fol-
lowing computational contributions. First, we introduce our tetFIM algorithms for
both single processor and shared memory parallel processors and perform a careful
empirical analysis by comparing them to two widely-used CPU-based methods, the
state-of-the-art fast marching method (FMM) and the fast sweeping method (FSM),
in order to understand the benefits and limitations of each method. Second, we
propose a agglomeration-based tetFIM solver, specifically for more efficient imple-
mentation of the proposed method on massively parallel SIMD architectures. We
then described the detailed data structures and algorithms, present the experimental
results of the agglomeration-based tetFIM and compare them to the results of the
CPU-based methods to illustrate how well the proposed method scales on state-of-
the-art SIMD architectures. In comparison to [8], we have demonstrated that careful
management of data allows us to maintain high computational density on streaming
SIMD architectures – yielding significantly greater speed-up factors than seen when
solving two-dimensional eikonal problems on GPUs.

In future work, we envisage extending this technique to time-dependent Hamilton-
Jacobi problems in 2D and 3D. Specifically, we will seek to address how one might
solve the level-set equations over unstructured meshes on current streaming GPU
hardware.

Acknowledgements. The authors would like to thank Dr. Won-Ki Jeong for
helpful discussions on the material of this paper. This work is funded by NIH/NCRR
Center for Integrative Biomedical Computing (P41-RR12553-10) and Department of
Energy (DOE NETL DE-EE0004449).

21



REFERENCES

[1] D. Adalsteinsson and J. A. Sethian, A fast level set method for propagating interfaces,
Journal of Computational Physics, 118 (1995), pp. 269–277.

[2] , Transport and diffusion of material quantities on propagating interfaces via level set,
Journal of Computational Physics, 185 (2003), pp. 271–288.

[3] T. J. Barth and J. A. Sethian, Numerical schemes for the Hamilton-Jacobi and level set
equations on triangulated domains, Journal of Computational Physics, 145 (1998), pp. 1–
40.

[4] O. A. R. Board, D. Shreiner, and et al, OpenGL(R) Programming Guide: The Official
Guide to Learning OpenGL(R), Version 2, Addison Wesley, 2005.

[5] T. C. Cecil, S. J. Osher, and J. Qian, Simplex free adaptive tree fast sweeping and evolution
methods for solving level set equations in arbitrary dimension, Journal of Computational
Physics, 213 (2006), pp. 458–473.

[6] B. Cockburn, J. Qian, F. Reitich, and J. Wang, An accurate spectral/discontinuous finite-
element formulation of a phase-space-based level set approach to geometrical optics, Jour-
nal of Computational Physics, 208 (2005), pp. 175–195.

[7] P. Colli-Franzone and L. Guerri, Spreading of excitation in 3-D models of the anisotropic
cardiac tissue I. validation of the eikonal model, Mathematical Biosciences, 113 (1993),
pp. 145–209.

[8] Z. Fu, W.-K. Jeong, Y. Pan, R. M. Kirby, and R. T. Whitaker, A fast iterative method
for solving the eikonal equation on triangulated surfaces, SIAM Journal of Scientific Com-
puting, In Press (2011).

[9] J. E. Greivenkamp, Field Guide to Geometrical Optics, SPIE Publications, 2003.
[10] M. Herrmann, A domain decomposition parallelization of the fast marching method, Center

for Turbulence Research Annual Research Briefs, (2003), pp. 213–225.
[11] D. D. Holm, Geometric Mechanics: Part I: Dynamics and Symmetry (2nd edition), Imperial

College London Press, London, UK, 2011.
[12] W.-K. Jeong, P. T. Fletcher, R. Tao, and R. Whitaker, Interactive visualization of vol-

umetric white matter connectivity in DT-MRI using a parallel-hardware Hamilton–Jacobi
solver, IEEE Transactions on Visualization and Computer Graphics, 13 (2007), pp. 1480–
1487.

[13] W.-K. Jeong and R. T. Whitaker, A fast iterative method for eikonal equations, SIAM
Journal of Scientific Computing, 30 (2008), pp. 2512–2534.

[14] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM Journal on Scientific Computing, 20 (1998), pp. 359–392.

[15] J. P. Keener, An eikonal equation for action potential propagation in myocardium, J. Math.
Biol., 29 (1991), pp. 629–651.

[16] R. Kimmel and J. A. Sethian, Computing geodesic paths on manifolds, in Proc. Natl. Acad.
Sci. USA, vol. 95, 1998, pp. 8431–8435.

[17] NVIDIA. http://https://developer.nvidia.com/thrust.
[18] , Cuda programming guide. http://www.nvidia.com/object/cuda.html.
[19] S. Osher, L.-T. Cheng, M. Kang, H. Shim, and Y.-H. Tsai, Geometric optics in a phase-

space-based level set and Eulerian framework, Journal of Computational Physics, 179
(2002), pp. 622–648.

[20] N. F. Otani, Computer modeling in cardiac electrophysiology, Journal of Computational
Physics, 161 (2010), pp. 21–34.

[21] M. Pharr and R. Fernando, eds., GPU gems 2: programming techniques for high-
performance graphics and general-purpose computation, Addison-Wesley, 2005.

[22] J. Qian, Y. Zhang, and H. Zhao, Fast sweeping methods for eikonal equations on triangulated
meshes, SIAM Journal on Numerical Analysis, 45 (2007), pp. 83–107.

[23] N. Rawlinson and M. Sambridge, The fast marching method: an effective tool for tomo-
graphics imaging and tracking multiple phases in complex layered media, Exploration Geo-
physics, 36 (2005), p. 341C350.

[24] R. Rawlinson and M. Sambridge, Wave front evolution in strongly heterogeneous layered
media using the fast marching method, Geophys. J. Internat., 156 (2004), pp. 631–647.

[25] J. Sethian, Evolution, implementation, and application of level set and fast marching methods
for advancing fronts, Journal of Computational Physics, 169 (2001), pp. 503–555.

[26] J. A. Sethian, A fast marching level set method for monotonically advancing fronts, Pro-
ceedings of the National Academy of Sciences of the United States of America, 93 (1996),
pp. 1591–1595.

[27] J. A. Sethian and A. Vladimirsky, Ordered upwind methods for static Hamilton–Jacobi equa-

22



tions: Theory and algorithms, SIAM Journal on Numerical Analysis, 41 (2003), pp. 325–
363.

[28] B. Smith, P. Bjorstad, and W. Gropp, Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations, Cambridge University Press, New York, 1996.

[29] Y. Tsai, L. Cheng, S. Osher, and H. Zhao, Fast sweeping algorithms for a class of Hamilton–
Jacobi equations, SIAM Journal on Numerical Analysis, 41 (2003).

[30] M. C. Tugurlan, Fast Marching Methods-Parallel Implementation and Analysis, PhD thesis,
Louisiana State University, 2008.

[31] H. Zhao, A fast sweeping method for eikonal equations, Mathematics of Computation, 74
(2005), pp. 603–627.

[32] H. Zhao, Parallel implementations of the fast sweeping method, Journal of Computational
Mathematics, 25 (2007), pp. 421–429.

23


