
IEEE Symposium on Large Data Analysis and Visualization 2013
October 13 - 14, Atlanta, Georgia, USA
978-1-4799-1658-0/13/$31.00 ©2013 IEEE

Accepted for publication by IEEE. ©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/

republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

An Analysis of Scalable GPU-Based Ray-Guided Volume Rendering
Thomas Fogal∗

HPC Group, Duisburg-Essen; SCI
Alexander Schiewe†

HPC Group, Duisburg-Essen; Intel VCI
Jens Krüger‡

HPC Group, Duisburg-Essen; SCI; Intel VCI

Figure 1: The Visible Human male full color (∼12 GB) and a Richtmyer-Meshkov instability (∼8 GB) render in 34 ms and 58 ms, respectively,
using our ray-guided volume rendering implementation. On right are views which highlight the areas that take advantage of empty space
leaping (green) and early ray termination (blue).

ABSTRACT

Volume rendering continues to be a critical method for analyzing
large-scale scalar fields, in disciplines as diverse as biomedical en-
gineering and computational fluid dynamics. Commodity desktop
hardware has struggled to keep pace with data size increases, chal-
lenging modern visualization software to deliver responsive interac-
tions for O(N3) algorithms such as volume rendering. We target the
data type common in these domains: regularly-structured data.

In this work, we demonstrate that the major limitation of most
volume rendering approaches is their inability to switch the data
sampling rate (and thus data size) quickly. Using a volume renderer
inspired by recent work, we demonstrate that the actual amount of
visualizable data for a scene is typically bound considerably lower
than the memory available on a commodity GPU. Our instrumented
renderer is used to investigate design decisions typically swept under
the rug in volume rendering literature. The renderer is freely avail-
able, with binaries for all major platforms as well as full source code,
to encourage reproduction and comparison with future research.

Index Terms: I.3.0 [Computing Methodologies]: COMPUTER
GRAPHICS—General; I.3.m [Computing Methodologies]: COM-
PUTER GRAPHICS—Miscellaneous;

1 INTRODUCTION

Modern volume rendering is heavily focused on the concepts of
empty space skipping and the fast detection of ray saturation. Both
of these concepts have extensive effects on the amount of compute
work required. However, even more relevant is their ability to reduce
the working set of extremely large datasets down to a small kernel,
which can significantly reduce the amount of data which must be
loaded from a slow resource, such as the network or a local disk.
This has enabled interactive volume rendering for very large data on
commodity hardware [1, 2, 3].

There are a variety of trade-offs in the development of a mod-
ern volume renderer. The choice of brick size, for example, can
significantly impact the effectiveness of empty space skipping. We
note that the presentation of most volume rendering systems lacks

∗e-mail: tfogal@sci.utah.edu
†e-mail:schiewe@intel-vci.uni-saarland.de
‡e-mail:jens.krueger@uni-due.edu

detailed insight into these parameters. Further, these factors can in-
teract in complex ways. As an example, empty space skipping works
considerably better with smaller bricks sizes, but disk throughput
drops sharply with small requests. Compression can further compli-
cate the issue.

We seek to rectify this situation by performing a thorough study
of the interaction of these parameters within the context of GPU-
based ray driven volume rendering. We have surveyed recent volume
rendering literature and implemented a renderer by piecing together
the best ideas from a multitude of systems. These ideas were ex-
tended with notions required for our environment—for example, by
removing the requirement that datasets fit in GPU memory. Along
the way, we instrumented every corner of the renderer and utilized
this instrumentation to exhaustively explore relevant options. The
final result achieves better performance than previous work and pro-
vides a guided tour through the maze of design choices available in
a modern volume renderer.

2 RELATED WORK

Volume visualization on consumer graphics hardware has become
widely utilized as a means to cope with the growing sizes of data.
GPUs have proven useful in both ray-tracing and rasterization tech-
niques [4, 5], rendering of diverse scenes [6], as well as considerably
more general tasks [7].

Volume rendering accelerated by GPU hardware was established
in the mid-90’s [8, 9], initially based on hardware compositing of
volume slices. The ability to do raycasting came later [10]. Since
the time of the initial GPU-based volume renderers, researchers have
been concerned with methods to work around the limited memory
available on GPUs. The prominent technique for volume rendering
large data on a GPU is to use a multiresolution representation [11,
12, 13]. This method hinges on the concepts of empty space leaping
and early ray termination [14], two techniques developed early on
which demonstrate that sampling can be significantly reduced in
many instances of volume rendering.

There has been much work on accelerating ray-traced volume
rendering in recent years. Voreen implements a more general archi-
tecture, including GPU-based raycasting [15]. Tuvok implements
a flexible volume rendering system with support for very large
datasets [16, 17]. Knoll et al. utilize a bounding volume hierar-
chy and optimized SSE to achieve very fast volume renderings [1].
Gobbetti et al. and Boada et al. detail methods for traversing tree
structures on the GPU for the purpose of volume rendering [18, 19].
The Gigavoxels [3] system traverses N3-trees on the GPU to choose
an effective resolution. With the large gap between processing power

GPU CPU CPU GPU

Empty/Present/Absent

GPU Hashtable

Paging Requests Brick Pool

Bricked File

1)

2)

3)

4)
5)

6)

Figure 2: The missing brick reporting / paging subsystem of our volume rendering approach. Missing bricks are recorded into a hash table (1,
2), to be paged in (3, 4, 5) and rendered in subsequent frames (6).

and data sizes, some communities have turned to distributed memory
systems for large-scale volume rendering [20, 21, 22, 23].

Our algorithm employs a lock-free data structure on the GPU
for feedback information. Highly-concurrent Lock-free structures
are ideal for the manycore GPU environment, however they have
previously been challenged by the lack of concurrency primitives
available for the OpenGL platform. We make use of a lock-free
hash table very similar to that of Michael’s [24], implemented in
a manner similar to Lux and Fröhlich’s implementation for terrain
rendering [25].

Hadwiger et al. presented a volume renderer similar to ours [2].
Their system is aimed at volume rendering highly anisotropic data
as it is streamed real-time from a high-resolution microscope. Our
renderer improves upon theirs in a number of ways:

• We perform brick lookup each brick, instead of every sample,
maintaining the simple and familiar ray-marching core that is
well-documented in volume rendering literature.

• We expound on how to use modern GPU features to imple-
ment our lock-free feedback data structure, which enables the
implementation to spend more time computing on the GPU
and less time pushing data around.

• We utilize an out-of-core, progressive rendering methodology,
breaking the GPU-memory-size barrier that limits data sizes
from Hadwiger et al.’s work. This also allows us to gracefully
scale down to consumer-level graphics cards.

While we believe these to be novel additions, we do not consider
them to be this work’s major contribution. Rather, we provide new
depth to the discussions of a variety of parameters which are relevant
in the development of a ray-guided direct volume renderer:

• The strategy to be used to load higher resolution data when a
variety of intermediate choices are possible;

• an understanding of the miasma of issues surrounding bricking
and brick sizes;

• empirical evidence demonstrating that the working set for
direct volume rendering is indeed bound more by the screen
resolution than the dataset;

• a novel method for ray-guidance storage and propagation to
the input system’s logic;

• how to effectively handle real-time updates to the transfer
function; and

• the effect of brick layout strategies on large volume access
times.

In contrast to previous renderers, ray-guided volume renderers
couple the rendering process with the identification of which sub-
volumes (‘bricks’) must be loaded. We describe the operation of
ray-guided volume renderers, in Section 3. In Section 4 we detail a

plethora of benchmarks which demonstrate the performance of the
renderer.

In many prior volume renderer evaluations, results are generally
limited to the raw performance of the renderer. However, we note
that—for some reason—users of our volume renderer rarely ask
how many milliseconds it takes to render the visual human. One
thing users do ask is how large the data can get before the renderer
becomes unusable. For this reason, we have engineered our renderer
so that it does not require that the volume fit in core. Furthermore,
users generally value a responsive system over a performant system.
They are curious if money should be spent upgrading a video card or
buying a solid state drive. Design elements are carefully expounded
and conclusions are drawn in Section 5.

Finally, Section 6 gives our final remarks, and note both limita-
tions and opportunities for future work.

3 RAY-GUIDED GRID LEAPING

At the macro level, our algorithm is reminiscent of the recent work
of Hadwiger et al. [2], as well as Engel’s CERA-TVR [26] which
in turn is based on the Gigavoxels system [3].

With Hadwiger et al., we share the requirement of a set of simple
multiresolution Cartesian grids, along with an OpenGL-based table
to report missing bricks. A multiresolution hierarchy is built as a
preprocess for input data which exist at only one resolution (details
are in Section 5). From the CERA-TVR system we inherit the idea
to only recompute and request grid cells at boundaries.

3.1 Overview
We endeavor to create a volume renderer which can render massive
datasets extremely fast on commodity GPU hardware. The major
issues in such a renderer are:

1. Identifying regions which must be sampled densely.

2. Precisely locating the transition between these regions and
regions which exhibit considerable homogeneity.

3. Terminating a ray as soon as possible.

4. Efficiently communicating regions to be rendered in the future
to the IO layer.

Points (1) and (2) ensure we concentrate the computational effort
on the areas which require it. Point (3) is critical because it means
we do not have to load the data beyond the point of early termina-
tion, significantly reducing costly disk traffic. If point (4) is not
sufficiently addressed, the renderer will load large amounts of data
which are not needed for rendering, at severe costs in performance.

To the first point, we employ an efficient metadata structure which
allows us to quickly identify these regions. Points (2) and (3) are
handled through an educated choice of brick size, which is discussed
more thoroughly in Section 5. A major component to modern vol-
ume renderers is how they address point (4), now by and large based
on ray guidance. That is, the sampling characteristics of the ray
determine which data to load. Stated differently, the future data

requirements are computed in concert with standard ray traversal
and accumulation.

The entire operation is detailed in Figure 2. For each ray we
compute the level of detail required to maintain a pixel error of less
than one. With this level and the position in the volume we compute
a brick index. This brick index is used to fetch information from a
lookup table (Figure 2.1) to identify whether the brick is a) empty,
b) non-empty and present on the GPU, or c) non-empty and absent.
When it is empty, we skip the brick and repeat the process at the
brick’s exit point. When it is non-empty and present, we ray-cast
that brick. When the brick is non-empty and not resident in GPU
memory, the system returns the finest coarser level available and
the missing entry is added to a GPU hash table (Figure 2.2). This
table is read back to the host memory at the end of the frame (Figure
2.3), and used to page in bricks from disk or cache (Figure 2.4). A
paged-in brick is then uploaded to a GPU texture pool (Figure 2.5),
and a subsequent frame will use this portion of the brick pool for
sampling (Figure 2.6).

The key component is that both ray-accumulation as well as iden-
tification of the bricks which are needed should occur on the GPU.
The latter is natural to compute during standard ray-casting opera-
tions. Doing both operations on the GPU means brick identification
comes very cheap, as it parallelizes very effectively. More impor-
tantly, performing this during ray-casting ensures that it is optimally
accurate: the program never loads data which will not be used.

Algorithm 1 Ray-guided volume rendering. Each ray identifies the
set of bricks which it needs for rendering independently, and reports
this information for use in subsequent rendering passes.

1: color = rayResumeColor
2: terminated = true . assume ray will finish
3: repeat
4: LoD = ComputeLOD(Depth(ray))
5: brick, samplingRate = GetBrick(ray)
6: offsets = PoolOffsets(brick)
7: if samplingRate 6= RequiredSamplingForLOD(LoD) then
8: ReportMissingBrick(brick)
9: if terminated then . first missing brick?

10: terminated = false
11: rayResumePos = ray
12: end if
13: end if
14: Raycast(ray, stepSize, offsets)
15: until ray ≥ exit ∨ Saturated(ray)
16: rayResumeColor = color
17: if done then
18: rayResumePos = FINISHED
19: end if

The basic algorithm is given in Algorithm 1. Briefly, the appro-
priate sampling rate is identified and we look for the data at that
resolution (lines 4, 5). GetBrick will always return some data,
but the data may be at a lower resolution than request; this is com-
municated through the stepSize and the situation is handled on
line 7. If our data are too coarse, we note that we are missing a
brick (ReportMissingBrick) and where we are in the volume
(rayResumePos) when this first occurred (terminated).

Every iteration through the outer loop, we perform this identifi-
cation of the appropriate resolution. This satisfies our first goal as
mentioned above: we identify the appropriate sampling resolution
at every brick boundary. With small bricks, this means we will
do few integration steps before early ray termination is recognized.
Furthermore, we detect empty bricks at this stage as well.

3.2 Missing Data
As noted above, it is possible that data are undersampled while
rendering. When this occurs, we display a coarser version of the data

Figure 3: Volume rendering behavior for the Mandelbulb dataset.
Green indicates bricks which were skipped via empty space skipping.
Red indicates bricks which were sampled densely. Blue indicates
bricks which were sampled but saturated quickly.

initially, but progressively refine those regions with finer resolution
data until they are sampled at a rate of a single voxel per pixel, or the
maximum data resolution available. This information is collected
by the GPU as it renders, but must be communicated back to the
CPU to coordinate disk access and update the appropriate area of
the volume pool.

One solution for this would be to use multiple render targets to
store information on which bricks are missing [3]. The limitation
of this method is the limited mapping operation from the ray to
the target buffer: there are only so many available render targets.
Furthermore, this approach ignores the inherent spatial coherency
between rays. Two neighboring rays are highly likely to request the
same set of bricks, or at least have substantial overlap within the sets
they require. With the multiple render targets approach, both pixels
will encode the same value, and we will need to read back larger
textures which consist of predominantly duplicate values.

Instead of utilizing extra render targets, we take advantage of
an OpenGL extension which was promoted to core in version 4.2,
GL ARB shader image load store. This extension allows
the creation of an image buffer which is independent of the current
rendering buffer. Using the atomic load/store operations the exten-
sion provides, we implement a set based on a linearly-probed lock-
free hash table stored in an image load store buffer. Since we
are hashing based on the brick, multiple rays requesting the same
brick hash to the same position. This allows us to keep the table—
and therefore how much information we read back per-frame—quite
small. We discuss sizing of the hash table in more detail in Section
5.3.1.

3.3 Brick Classification
Considering our target goals (1) through (3) given at the beginning
of this section, one could classify a brick into one of three categories:

• skipped due to empty space skipping,
• early termination due to ray saturation, or
• sampled densely without saturating.

An important observation is that—in a very large number of
cases—bricks fall into either the ‘empty’ or ‘saturating’ categories,
and only rarely in the ‘non-saturating’ category. The factor which
has the greatest effect on performance is how quickly a renderer
can classify data into one of the first two categories, and therefore
bypass a large set of the work.

Native Rebricked0

5

10

15

20

25

30

35

Ti
m

e
(s

ec
on

ds
)

Whole Body

Native Rebricked0

10

20

30

40

50 Velocity

Native Rebricked0

10

20

30

40

50

60 Magnitude

Native Rebricked0

20

40

60

80

100

120

140 Visible Human

Native Rebricked0

10

20

30

40

50

60

70

80

90 Mandelbulb1k

Native Rebricked0

50

100

150

200 RMI

Native Rebricked0

1

2

3

4

5

6

7

8

9Head Aneurysm

Decompression
Read from Disk
Rebricking Overhead
GPU Data Mgmt.
Hash Table Mgmt.
Raycasting

Figure 4: Time spent at various stages of our pipeline, aggregated over the generation of a rotation sequence. Comparisons are made between
data stored with the ideal brick size for that dataset (‘Native’), and data stored at a large brick size of 2563 with the ideally-sized bricks created
at run-time (‘Rebricked’). ‘Whole Body’, ‘Velocity’, and ‘Magnitude’ suffer from a lack of ray saturation.

To make this identification effective, ray-guided volume renderers
maintain the state of each brick, shared on both the GPU and host
memories. During rendering, one uses the table to identify if a brick
is empty. If so, the renderer leaps over that space instead. We store
this as an array consisting of one 32-bit integer per brick of the
dataset.

Figure 3 visualizes this classification for a large dataset under a
typical view and transfer function. As shown there, the majority
of the visualization falls into either the ‘blue’ (saturated quickly)
or ‘green’ (skipped) sets. This also demonstrates how little data is
actually required for a typical volume rendering. A similar rendering
is given in the rightmost image of Figure 1, in which only the rays
in the middle of the volume require high computation.

Of course, this classification depends largely on the transfer func-
tion and viewing parameters. In practice, however, transfer functions
which produce informative visualizations tend to exhibit such ternary
classifications.

When the transfer function is changed, this metadata information
must be recomputed. For datasets with many bricks, this can induce
a noticeable delay. Our current test platform can process about
7.5 million bricks per second, but even a 1 second delay between
interactions is too much. Therefore, we offload this update to a
background thread. Until the thread completes its work, the renderer
considers all unprocessed bricks to be ‘missing’, causing it to request
bricks which might be empty. Those bricks’ metadata is directly
updated and they are only loaded if they fail the empty check. The
overall performance effects may be large, but the system remains
responsive during this period.

4 PERFORMANCE

In this section, we give an overview of the various stages of the
renderer and how they perform. Unless otherwise noted, all timings
were performed on a dual quad-core Xeon 2.2 GHz system using
an NVIDIA GeForce GTX 680, with 24 GB of system memory and
4 GB of GPU memory. We mostly report results from commodity
hard drives, explicitly noting some specific relevant uses of SSDs. In
many cases, results were obtained from multiple screen resolutions,
but we report results from an HD viewport (1920× 1080) unless
noted otherwise. Details of the data utilized and renderer timings
are given in Appendix A.

4.1 Benchmarks
We have chosen a variety of benchmarks to evaluate the performance
of our renderer, and we elucidate the logic behind those choices
here. First, the choice of HD resolution is motivated by voxel-to-
pixel error ratios. All modern high-performance volume renderers
try to maintain a 1-to-1 ratio between projected voxels and pixels.

Adaptive resolution selection is used to ensure this ratio. Without
this feature, results will be aliased, too much information will be
compressed to a single pixel, and performance will suffer. Adaptive
resolution means that small viewports will not stress renderers: a
512×512 viewport can get along fine with a paltry few hundred
megabytes of memory, irrespective of the input dataset size.

We utilize zoom-ins, as in the accompanying video and results
such as those in Figure 5 and some in Table 1, to accentuate these
high resolution issues. When the volume is far away, a very coarse
resolution is utilized which maintains accurate voxel-to-pixel error
ratios. As the camera comes closer, higher resolutions of the source
data must be utilized. We terminate zoom-ins slightly after they fill
the screen; beyond this point, frustum culling’s effect dominates
(see Figure 5). The most challenging cases for a volume renderer
are when data are close enough to be seen at native resolution, but
far enough away that no data can be culled by the frustum.

Rotations are used to demonstrate that the renderer does not rely
solely on early ray termination. As described in Section 3.3 and
depicted in Figure 3, most rays either skip large parts of the volume,
or terminate very quickly. With a transfer function that produces a
dense volume, bricks in the front will prevent bricks in the rear from
ever being paged in, effectively meaning the volume renderer need
only cope with the front half or even less of the volume. Barring
pathological volumes and transfer function choices, rotations ensure
all of the data has a chance to contribute to a sequence.

Transfer functions. Changing a transfer function is also an
important benchmark in any volume rendering system. Doing so
invalidates our brick metadata concerning which bricks are empty,
causing some hash table entries in the next frame to make little sense
(i.e. request bricks which are visible under the old transfer function
but empty under the new one). Furthermore, the bricks in the GPU
volume pool may be inappropriate for the new transfer function.

Renderer performance as measured by response time during such
an interaction actually changes very little, and can even improve.
However, quality suffers rather drastically. This is evident in the time
to convergence after a change in the transfer function: in a typical
case with the RMI data set (see Section A), time to convergence
increased over 6x after changing the transfer function (from∼380ms
to ∼2300ms).

4.2 Results
To evaluate our renderer in different scenarios, we used a standard
rotation scenario with a variety of datasets, measuring the length of
each pipeline stage. Figure 4 has these results. As IO is the prime
bottleneck in many cases, we implemented a ‘rebricking’ scheme to
mitigate the amount of IO performed. Using large reads and caching,
this significantly lowers the time spent doing IO. We used ‘LZ4’

Scenario: Zoom-In Scenario: Rotation Scenario: Clip-Plane
W

h
o
le

 B
o
d
y

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

W
o
rk

in
g
 s

e
t

si
ze

 (
G

B
)

#112 #224 #336 #448 #560 #672 #784 #896

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

#112 #224 #336 #448 #560 #672 #784 #896

0.0

0.2

0.4

0.6

0.8

1.0

1.2

#112 #224 #336 #448 #560 #672 #784 #896
R

M
I

0

1

2

3

4

5

6

W
o
rk

in
g
 s

e
t

si
ze

 (
G

B
)

#112 #224 #336 #448 #560 #672 #784 #896

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

#112 #224 #336 #448 #560 #672 #784 #896

0.0

0.5

1.0

1.5

2.0

2.5

3.0

#112 #224 #336 #448 #560 #672 #784 #896

V
is

ib
le

 H
u
m

a
n

Frame number
0

2

4

6

8

10

12

14

W
o
rk

in
g
 s

e
t

si
ze

 (
G

B
)

#112 #224 #336 #448 #560 #672 #784 #896

Frame number
0

1

2

3

4

5

6

7

#112 #224 #336 #448 #560 #672 #784 #896

Frame number
0

1

2

3

4

5

6

7

16@1024x768

16@1080p

32@1024x768

32@1080p

64@1024x768

64@1080p

128@1024x768

128@1080p

256@1024x768

256@1080p

512@1024x768

512@1080p

#112 #224 #336 #448 #560 #672 #784 #896

Figure 5: Working set sizes across three different scenarios for multiple datasets. Smaller brick sizes approximate the working set better.

compression when recording this performance data, which trades
CPU time for IO time.

The majority of the time is spent ray-casting, pulling data from
disk, and uploading the bricks to the pool. Our novel hash table
approach keeps the table small, and so reading it is very cheap:
even for large data, this component does not factor in to the overall
performance. The other GPU data to manage is metadata information
for our volume pool (i.e. which bricks are resident), but at a single
machine word per brick it costs very little to push it down to the
GPU, even for very large data.

Interestingly, the time spent managing GPU data is an increasing
function of volume size until it peaks around the size of the RMI
(2048× 2048× 1920). This reinforces our assertion that there is
only so much data visible in a given frame—dependent only on the
view frustum, and not the dataset size—and so at some point we
saturate the set of visible data. Figure 5 and Section 5.1 include
more discussion about working set sizes.

5 DESIGN TRADEOFFS

In this section, we try to explore aspects which have not been thor-
oughly addressed by previous literature. Details on trade-offs and
the reasoning behind our final implementation choices are given.

5.1 Subdivision

How a system subdivides the volume into manageable pieces can
have a large effect on the performance of the renderer. The primary
considerations are in regard to early ray termination and empty space
skipping: small bricks are much more likely to be composed of a
small range or even uniform values, which will make it more likely
that the brick can be skipped under a large set of transfer functions.
Further, small bricks means one will detect ray saturation much
more quickly, as this is checked only when exiting a brick.

Internal Overhead The primary drawback is reduced disk
throughput due to utilizing many small requests. A further drawback
is the data size overhead: each brick needs two voxels of ghost data
in each dimension, for sampling and gradient computation purposes.
This is negligible for large bricks, but grows sharply as the brick
size approaches one, as shown in Figure 6. Figure 8 demonstrates
that this is not strictly a theoretical result: a small brick size greatly
increases not just size overhead, but also the time to reorganize the
data on disk. From these Figures we can derive that for large datasets
a brick size of less than 163 is impractical.

External Overhead We have performed a number of experi-
ments to identify the working set size for multiple different brick
sizes. Starting with the smallest practical size of 163, we increase
the brick size up to 5123.

As can be seen in Figure 5 the working set is bound not by just
the data size, but the screen resolution as well. It can also be seen
that the brick size heavily influences the working set size: larger
bricks allow for less efficient utilization of empty regions. From the
images we can derive that a brick size of less than 1283 is desirable
to reduce the working set to roughly the memory size of a GPU.

We note that the working set size is not a strict function of the
brick size, however. Figure 5 and Table 1 also show that the choice
of brick size is not clear-cut. The Visible Human male performs best
with 163 bricks, for example, whereas the ideal brick size for the
‘Magnitude’ data is 643. For the ‘Whole Body’ dataset, using brick
sizes of 163 actually resulted in larger working sets than 323. This
occurs when the transfer function produces large regions of semi-
transparency but never reaches saturation. Indeed, when datasets
contain large swaths of semi-transparent regions, the conventional
wisdom is reversed: large brick sizes are generally preferred, since
they significantly improve disk throughput.

If we begin to consider secondary metrics, such as the response
time of the system, the choice of brick size becomes even more

0 20 40 60 80 100 120 140 160 180
Brick size (voxels cubed)

0x

5x

10x

15x

20x

25x

30x
O

v
e
rh

e
a
d
 f

a
ct

o
r

Ghost data overhead

2 voxel overlap
4 voxel overlap

Figure 6: Brick size overhead. As bricks get smaller, the over-
head for the additional ghost data grows significantly. At a larger
brick size of 1283, the overhead with 2 ghost voxels per dimension
amounts to a few percent, whereas with 323 bricks this increases the
dataset size by almost 50%.

complex. Since bricks are the atomic building blocks in a volume
renderer, one cannot load less than a single brick from disk. There-
fore a larger brick size imposes a larger response time on the system.
These concerns would generally push a designer to choose smaller
bricks.

However, disk performance falls very sharply with small re-
quests [27]. It is nice for a system to respond within a few tens
of milliseconds, but such concerns should not dictate the design to
the point that end-to-end performance suffers drastically. Further-
more, small brick sizes are accompanied with significant overhead,
as discussed in Figure 6, and do not compress as effectively as their
larger counterparts.

Systems such as Reichl et al.’s hybrid surface rendering, CERA-
TVR, and Gigavoxels utilize a static brick size of 323 [4, 26, 3].
This brick size exhibits few extremes of the performance issues
mentioned above. However, it is certainly not the ideal choice for
all circumstances.

5.2 Disk IO
5.2.1 Brick Layout
Figure 7 demonstrates how this changes with the brick size. Both
disk IO times as well as decompression times are displayed there.
As shown in the figure, reading data from disk becomes quite severe
with small brick sizes. However, as brick sizes grow to 643 and
beyond, decompression time becomes more important and overall
time plummets. This effect is even more pronounced using a hard
disk in place of the SSD used here. Intelligent layout strategies
purport to minimize seek times; our results corroborate this, with the
important caveat that seek times are not relevant with larger brick
sizes.

5.2.2 Dynamic Rebricking
The renderer desires small bricks, as discussed in Section 5.1, as
small bricks will help with early ray termination and empty space
leaping. However Figures 7 and 6 clearly demonstrate that large
brick sizes are preferable for disk performance and overhead reasons.
To provide the best of both worlds, we implemented a ‘dynamic’
bricking scheme, whereby bricks are stored on disk in a rather large
size (e.g. 2563) but presented to the renderer as if they exist at some
small resolution (323). The small bricks are dynamically generated
from the large ones on request.

Since requesting a large brick for every small brick would only
increase the disk traffic, we keep an additional brick cache in memory
to source these copies from. Our cache uses a standard LRU strategy.
This is advantageous when the working set of the data fits into
the host memory, however when the working set exceeds the host
memory we will evict entries before finishing a rendering. We
stuck with this strategy since the working set often does fit into host
memory, as established by Figure 5. If the renderer is to be used

16 32 64
Brick size (voxels cubed)

0

20

40

60

80

100

T
im

e
 (

se
co

n
d
s)

No compression

16 32 64
Brick size (voxels cubed)

LZ4 compression

16 32 64
Brick size (voxels cubed)

zlib compression

Hilbert diskIO

Hilbert decode

Morton diskIO

Morton decode

Scanline diskIO

Scanline decode

Random diskIO

Random decode

Figure 7: Time spent with IO-related tasks using an SSD for the
RMI dataset’s zoom-in scenario, sampled with 100 frames and a
1024×768 viewport. Layout strategies only see utility at small brick
sizes.

512 256 128 64 32
Brick size (voxels cubed)

0

20

40

60

80

100

T
im

e
 (

m
in

u
te

s)

Hierarchy build time for a 2048x2048x1920 dataset

Build time

Figure 8: Time to build bricked representation for a medium-sized
dataset, as a function of brick size. Renderers desire small bricks
to perform efficiently, but generating such bricks takes significant
preprocessing resources.

in an environment in which working sets are routinely larger than
memory, an MRU strategy would be more appropriate.

Hierarchy Generation Reorganizing data into a set of bricks
is mostly ignored in volume rendering literature, but becomes a
significant bottleneck in real-world usage. Figure 8 shows the time
our preprocess needs to generate this hierarchy, which increases
sharply for small brick sizes. This time also increases with respect to
dataset size. At the extreme scale, such data reorganization is com-
pletely infeasible: merely reading every datum might take months.
We believe such reorganization will be feasible up to a few tens of
terabytes. In practice, the authors and collaborators thereof tolerate
this for up to 4 terabytes at present.

Rebricking the data at run time alleviates this problem. The data
can be generated at very large brick sizes, enabling fast conversion
and effective disk throughput, and then dynamically rebricked to
very small sizes. Both disk and renderer deal with their ideal cases,
then. The ‘Rebricking’ case of Figure 4 shows performance in this
mode.

5.3 CPU/GPU Interface
Point (4) in our overview is the efficient communication of the ray
guidance information from the location it is generated—the GPU—
to the location it is utilized—the IO layer of a volume renderer. This
section details how that communication happens.

We utilize a GPU-based hash table to store this data, though we
note that we really only require a set. That is, our keys (brick IDs)
are our values, and we only care about their presence in the table,

Algorithm 2 Greedy algorithm: request all
bricks at all resolutions.

ReportMissingBrick(b)
repeat

LoD++
b = LookupBrick(ray, LoD)
if Missing(b) then

ReportMissingBrick(b)
end if

until ¬Missing(b)

Algorithm 3 Global algorithm: only request bricks required to satisfy the final rendering
request.

ReportMissingBrick(b)
repeat

LoD++
b = LookupBrick(ray, LoD)

until ¬Missing(b)

Figure 9: The effect of multiple brick replacement strategies. Renderings are select intermediate frames from the corresponding strategy.
‘Greedy’ strategies converge quicker and produce more densely-packed intermediate progress.

which we will read back and process as a list later. A list would work
as well, but a hashing scheme allows concurrent inserts to proceed
with less contention. During rendering, a ray may write into this
table to indicate that it needs a non-resident brick to continue (see
Figure 2, (c)). This small table will be read back from the GPU at
the end of a frame and utilized to fill the volume pool with new data.

As locks do not exist in current GLSL versions (and potentially
never will), lock-free structures are the only hazard-prone data
structures which can be correctly implemented. Crassin et al.[3]
workaround this by using multiple render targets: each pixel has its
own unique set of memory to write into, and so there are no write
hazards. Our scheme requires significantly less memory, but we
must deal with these write hazards.

5.3.1 Hash Table Parameters

We map from the 4D index of the requested brick (spatial index +
LoD) to a unique 1D index in the hash table. The mapping we utilize
is simply converting the 4D index into its equivalent 1D form, as if
it were stored in a 1D array. We increment the index by 1 so that we
may use 0 to indicate that there is no entry at a location.

In a normal concurrent hash table, a lock is acquired for a table or
bucket before an access. In lock-free data structures the primitives
used to implement locks are instead used directly on the data values
in question. Inserts into our table proceed mostly as described in
previous work [24]. In the face of concurrent writes, this operation
fails, and we attempt to probe a few times (presently: 10) before
giving up.

The critical piece to note is: it is not an error if a missing brick
is not recorded. As long as some missing bricks are recorded, the
next frame will make progress. Each ray is either: finished, able to
make progress, or unable to make progress due to a lack of bricks
that it requires. Since our hash table only contains entries for bricks
which were requested by a ray, then an invariant of our system is
that: volume rendering is done, or there exists at least one ray which
can make progress.

5.3.2 Strategies for Loading Coarser Bricks

When the resolution required is missing during ray-casting, a ray’s
brick requests can be what we call ‘greedy’ or ‘global’. In the
‘greedy’ case, the ray requests intermediate levels of detail along the
way, flooding the hash table with requests that this ray wants. In
the ‘global’ case, each ray only requests what it absolutely needs,

leaving space for other rays to request what they need. These cases
are visually depicted and expounded in Figure 9.

The intuitive interpretation is that the ‘greedy’ approach will
produce a more responsive, iteratively-refined image, whereas the
‘global’ approach will generate the final correct image quickest.
However, the authors were surprised to find that the ‘greedy’ ap-
proach both produces more pleasing progress information and con-
verges in the fewest number of frames. This is because it allows a
ray to sample at its final resolution quickly, which can cause earlier
ray termination.

6 CONCLUSIONS, LIMITATIONS, & FUTURE WORK

In this work, we have introduced an efficient, out-of-core, ray guided
GPU volume renderer which scales to extremely large data. The
system pulls inspiration from a patchwork of recent renderers, com-
bining the advantages of many and reimplementing some ideas in
light of modern GPU features. We have also contributed an evalua-
tion and discussion of the tradeoffs inherent in the development of a
modern ray-guided volume renderer.

Based on the data here, we conclude that a ray-guided volume
renderer should work with bricks which are, on disk, 643 or larger.
This minimizes time spent doing IO (Figure 7), and makes data
layout irrelevant, obviating the need for a complicated component
of the code. Since the required memory shrinks with the brick size,
generating 323 or even 163 bricks on-the-fly is desirable, though
which size is unfortunately too data-specific to answer generally.
While ‘bzlib’ gives ideal compression ratios, it is very slow to de-
compress, and therefore most implementations will want to utilize
‘LZ4’ compression. A cache is a boon when data will not fit in GPU
memory but will fit in the host’s memory.

We have made a best-effort attempt to design both favorable and
unfavorable conditions with which to test a volume renderer, but
it is possible some considerations have been omitted. In particular,
this renderer and many others rely heavily on the assumption that
rays will saturate quickly. Subjectively, we have found this to be
overwhelming valid for all our work in volume rendering, but this is
not a rule and has not been thoroughly evaluated.

A second issue is the rendering modes evaluated. While our sys-
tem supports 2D transfer functions as well, all performance results
presented here utilized the 1D transfer function mode. Advanced
rendering effects as well, such as those similar to ambient occlu-
sion [28], are omitted. Such effects should have a variable impact,

Figure 10: Selected frames from interactions used to record data for
Table 1 or Figure 4

positively correlating to the proportion of rendering vs. IO times pre-
sented in Figure 4. Screen-space methods may provide acceptable
quality without (comparatively) impacting performance.

Finally, reformatting the data into a bricked hierarchy continues
to be the bane of high-performance volume rendering. This result
is not expounded often enough in the literature. We hope this paper
helps to reiterate to the community that the FLOPs may be free, but
data movement will kill performance.

More importantly, we have contributed an evaluation and dis-
cussion of the issues inherent in the development of a ray guided
volume renderer. As has been demonstrated, many of these choices
are not as clear as previous reports may have inadvertently implied.
The results presented in this work clearly depict the tradeoffs, to
aid system designers in creating volume renderers which suit their
particular environment.

We hope to extend this work to more diverse visualization scenar-
ios. Ray-guidance-based isosurface generation is a natural candidate
for these ideas. Furthermore, a common use case is combining an
isosurface with volume rendering, which has the potential to signifi-
cantly change such aspects as the working set size. The general idea
that rendering should drive the visualization pipeline—as opposed
to passively consuming the output of earlier operations—is one that
is applicable in a much wider sense than that presented here.

A DATA AND PERFORMANCE DETAILS

We tested our renderer with a plethora of datasets, both real and
artificially created. For space reasons, we discuss only a subset
which proved to be a reasonable sampling of our available data.
Renderer performance is depicted for a variety of datasets in Table 1.
We discuss these in order of increasing size here.

Two small datasets are the Bonsai tree (“Bonsai”) and “Aneurysm”
datasets (Figure 10, top, left & middle). While small by today’s
standards, effective empty space leaping and early ray termination
still double the performance (Table 1, note how performance doubles
with smaller brick sizes).

The “WholeBody” dataset (Figure 10, top, right) is a contrast-
enhanced CT scan of a human body. As sometimes happens in
the biomedical domain, these data have limited slice resolution
but a plethora of slices. Coarser resolutions must be careful to
downsample anisotropically, else the in-plane resolution washes out
too quickly.

“Velocity” (center, left) comes from the simulation of an explod-
ing star; we chose this dataset because our ideal transfer function for
it is quite transparent, preventing the renderer from taking advantage
of early ray termination. Highly transparent transfer functions which
still produce informative results are a rarity but still occur. For these
data, the additional overhead of small bricks can have a fairly drastic
effect on performance. This dataset is one of the rare datasets for
which lighting actually makes the visualization more difficult to
interpret, and so we always render this dataset with lighting off.

Table 1: Per-frame rendering time at 6 different brick sizes, for a
variety of datasets depicted in Figures 10 and 1. Optimal brick
sizes are dataset dependent.

Rendering Time (ms)
Dataset 163 323 643 1283 2563

Bonsai 16 20 26 31 28
Head Aneurysm 27 34 40 55 85
Whole Body 140 94 82 77 67
Velocity 376 208 146 118 110
Magnitude 132 93 80 82 85
RMI 60 64 61 67 67
Visible Human 34 37 47 67 123
Mandelbulb1k 21 21 21 22 25
Mandelbulb4k 27 30 37 47 47
Mandelbulb8k 33 37 45 60 78

Table 2: Dataset properties for test datasets.

Dataset Resolution Size
Bonsai 256 × 256 × 256 8 bpp 16 MB
Head Aneurysm 512 × 512 × 512 16 bpp 256 MB
Whole Body 512 × 512 ×3172 16 bpp 1.5 GB
Velocity 1000 ×1000 ×1000 16 bpp 1.9 GB
Magnitude 2025 ×1600 × 400 16 bpp 2.4 GB
RMI 2048 ×2048 ×1920 8 bpp 7.5 GB
Visible Human 1728 ×1008 ×1878 32 bpp 12.2 GB
Mandelbulb1k 1024 ×1024 ×1024 8 bpp 1 GB
Mandelbulb4k 4096 ×4096 ×4096 8 bpp 64 GB
Mandelbulb8k 8192 ×8192 ×8192 8 bpp 512 GB

The “magnitude” dataset (center, middle) comes from a combus-
tion simulation and represents another intermediate step towards
larger data. The lower half of this dataset actually has a very faint
trace of data, which causes the renderer to sample densely. The
expense of computing lighting information for fragments which
ultimately contribute very little has a notable effect on performance.

The Richtmyer-Meshkov Instability (“RMI”, Figure 1 right and
Figure 10, center, right) and the Visible Human (Figure 1 left) are
popular datasets in the volume rendering literature; details can be
found in previous work.

We created a series of “Mandelbulbs” at various resolutions (1k3,
4k3, 8k3). These are an extension of the mandelbrot fractal into
3 dimensions. This has many of the same properties of the data
used in Crassin et al. [3], which took a large bone scan and added
Perlin noise to increase the sampling requirements. We create the
high-resolution features a priori, so no GPU features were used to
accelerate this process. At equivalent resolutions to that work, we
see double to an order of magnitude improved performance, but for
this work we report results at 1080p HD resolution. A descriptive
view of the Mandelbulb is given in Figure 3 and there are close-ups
visible in Figure 10 (bottom row; center, right).

B SOURCE CODE

The renderer used in this work is freely available, as part of the
ImageVis3D [16] package, which can be obtained through a simple
web search. We encourage others to reproduce and build upon our
results.

ACKNOWLEDGMENTS

This research was made possible in part by the Intel Visual Comput-
ing Institute; the NIH/NCRR Center for Integrative Biomedical Com-
puting, P41-RR12553-10; and by Award Number R01EB007688
from the National Institute Of Biomedical Imaging And Bioengi-
neering. The content is under sole responsibility of the authors.

REFERENCES

[1] Aaron Knoll, Sebastian Thelen, Ingo Wald, Charles D. Hansen, Hans
Hagen, and Michael E. Papka. Full-resolution interactive cpu volume
rendering with coherent bvh traversal. In Proceedings of the 2011
IEEE Pacific Visualization Symposium, pages 3–10, 2011. http:
//dl.acm.org/citation.cfm?id=2015627.

[2] Markus Hadwiger, Johanna Beyer, Won-Ki Jeong, and Hanspeter
Pfister. Interactive volume exploration of petascale microscopy data
streams usign a visualization-driven virtual memory approach. In
Proceedings of IEEE Visualization 2012, 2012.

[3] Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eise-
mann. Gigavoxels : Ray-guided streaming for efficient and detailed
voxel rendering. In ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games (I3D), Boston, MA, Etats-Unis, feb 2009. ACM,
ACM Press. http://maverick.inria.fr/Publications/
2009/CNLE09.

[4] F. Reichl, M. G. Chajdas, and R. Westermann. Hybrid sample-based
surface rendering. In Proceedings of the workshop on Vision, Modeling,
and Visualization (VMV 2012), 2012.

[5] Christian Dick, Jens Krüger, and Rüdiger Westermann. GPU ray-
casting for scalable terrain rendering. In Proceedings of Eurographics
2009 - Areas Papers, pages 43–50, 2009.

[6] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich,
Jared Hoberock, David Luebke, David McAllister, Morgan McGuire,
Keith Morley, Austin Robison, and Martin Stich. Optix: A general
purpose ray tracing engine. ACM Transactions on Graphics, August
2010.

[7] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens
Krüger, Aaron Lefohn, and Timothy J. Purcell. A survey of general-
purpose computation on graphics hardware. Computer Graphics Forum,
26(1):80–113, 2007.

[8] T.J. Cullip and U. Neumann. Accelerating volume reconstruction with
3D texture hardware. Technical Report TR93-027, University of North
Carolina, Chapel Hill N.C., 1993.

[9] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware. In Pro-
ceedings ACM Symposium on Volume Vis, pages 91–98, 1994.

[10] Jens Krüger and Rüdiger Westermann. Acceleration Techniques for
GPU-based Volume Rendering. In Proceedings IEEE Visualization
2003, 2003. http://wwwcg.in.tum.de/Research/data/
vis03-rc.pdf.

[11] Imma Boada, Isabel Navazo, and Roberto Scopigno. Multiresolu-
tion volume visualization with a texture-based octree. The Visual
Computer, 17(3):185–197, 2001. http://vcg.isti.cnr.it/
publications/papers/vc17_3.pdf.

[12] Eric C. LaMar, Mark A. Duchaineau, Bernd Hamann, and Ken Joy.
Multiresolution techniques for interactive texture-based volume vi-
sualization. In Visual Data Exploration and Analysis VII, volume
3960, pages 365–374, Bellingham, Washington, 2000. SPIE, The Inter-
national Society for Optical Engineering. http://dl.acm.org/
citation.cfm?id=834140.

[13] Manfred Weiler, Rüdiger Westermann, Chuck Hansen, Kurt Zimmer-
man, and Thomas Ertl. Level-of-detail volume rendering via 3d tex-
tures. In Proceedings of the 2000 IEEE symposium on Volume visu-
alization, VVS ’00, pages 7–13, New York, NY, USA, 2000. ACM.
http://doi.acm.org/10.1145/353888.353889.

[14] Marc Levoy. Efficient Ray Tracing of Volume Data. ACM Trans.
Graph., 9(3):245–261, 1990. http://doi.acm.org/10.1145/
78964.78965.

[15] Jennis Meyer-Spradow, Timo Ropinski, Jörg Mensmann, and Klaus
Hinrichs. Voreen: A Rapid-Prototyping Environment for Ray-Casting-
Based Volume Visualizations. IEEE Computer Graphics and Applica-
tions, 29(6):6–13, 2009. http://dx.doi.org/10.1109/MCG.
2009.130.

[16] Thomas Fogal and Jens Krüger. Tuvok, an Architecture for Large
Scale Volume Rendering. In Proceedings of the 15th Interna-
tional Workshop on Vision, Modeling, and Visualization, November
2010. http://www.sci.utah.edu/˜tfogal/academic/
tuvok/Fogal-Tuvok.pdf.

[17] Thomas Fogal and Jens Krüger. Size Matters - Revealing Small Scale
Structures in Large Datasets. In Wolfgang Schlegel Olaf Dössel, editor,

Proceedings of World Congress on Medical Physics and Biomedical
Engineering, pages 41–44. Springer, 2009.

[18] Enrico Gobbetti, Fabio Marton, and José Antonio Iglesias Guitián. A
single-pass GPU ray casting framework for interactive out-of-core
rendering of massive volumetric datasets. The Visual Computer,
24(7):797–806, July 2008. http://dx.doi.org/10.1007/
s00371-008-0261-9.

[19] Imma Boada, Isabel Navazo, and Roberto Scopigno. Multiresolution
volume visualization with a texture-based octree. The Visual Computer,
17(3):185–197, May 2001.

[20] Hank Childs, Mark Duchaineau, and Kwan-Liu Ma. A scalable, hy-
brid scheme for volume rendering massive data sets. In Proceedings
of Eurographics Symposium on Parallel Graphics and Visualization,
pages 153–162, May 2006. http://www.idav.ucdavis.edu/
publications/print_pub?pub_id=892.

[21] Mark Howison, E. Wes Bethel, and Hank Childs. MPI-hybrid Paral-
lelism for Volume Rendering on Large, Multi-core Systems. In Euro-
graphics Symposium on Parallel Graphics and Visualization (EGPGV),
Norrköping, Sweden, May 2010. LBNL-3297E.

[22] Thomas Fogal, Hank Childs, Siddharth Shankar, Jens Krüger, R. Daniel
Bergeron, and Philip Hatcher. Large Data Visualization on Distributed
Memory Multi-GPU Clusters. In Proceedings of High Performance
Graphics 2010, 2010.

[23] J. Beyer, M. Hadwiger, J. Schneider, W.-K. Jeong, and H. Pfister.
Distributed terascale volume visualization using distributed shared
virtual memory. Poster at IEEE Symposium on Large-Scale Data
Analysis and Visualization (LDAV), 2012.

[24] Maged M. Michael. High performance dynamic lock-free hash tables
and list-based sets. In Proceedings of the ACM symposium on Par-
allel algorithms and architectures, pages 73–82, New York, 2002.
ACM. http://dl.acm.org/citation.cfm?id=564870.
564881.

[25] Christopher Lux and Bernd Fröhlich. GPU-based ray casting of stacked
out-of-core height fields. In ISVC’11: Proceedings of the 7th interna-
tional conference on Advances in visual computing. Springer-Verlag,
September 2011.

[26] Klaus Engel. CERA-TVR: A framework for interactive high-quality
teravoxel volume visualization on standard pcs. Poster at IEEE Sympo-
sium on Large-Scale Data Analysis and Visualization (LDAV), 2012.

[27] Thomas Fogal and J. Krüger. Efficient I/O for Parallel Visualization.
In Eurographics Symposium on Parallel Graphics and Visualization,
Llandudno, Wales, UK, pages 81–90, April 2011.

[28] Matthias Schott, Vincent Pegoraro, Charles Hansen, Kevin Boulanger,
and Kadi Bouatouch. A Directional Occlusion Model for Interactive
Direct Volume Rendering. In EG Symposium on Visualization (IEEE-
VGTC ’09), volume 28, 2009.

http://dl.acm.org/citation.cfm?id=2015627
http://dl.acm.org/citation.cfm?id=2015627
http://maverick.inria.fr/Publications/2009/CNLE09
http://maverick.inria.fr/Publications/2009/CNLE09
http://wwwcg.in.tum.de/Research/data/vis03-rc.pdf
http://wwwcg.in.tum.de/Research/data/vis03-rc.pdf
http://vcg.isti.cnr.it/publications/papers/vc17_3.pdf
http://vcg.isti.cnr.it/publications/papers/vc17_3.pdf
http://dl.acm.org/citation.cfm?id=834140
http://dl.acm.org/citation.cfm?id=834140
http://doi.acm.org/10.1145/353888.353889
http://doi.acm.org/10.1145/78964.78965
http://doi.acm.org/10.1145/78964.78965
http://dx.doi.org/10.1109/MCG.2009.130
http://dx.doi.org/10.1109/MCG.2009.130
http://www.sci.utah.edu/~tfogal/academic/tuvok/Fogal-Tuvok.pdf
http://www.sci.utah.edu/~tfogal/academic/tuvok/Fogal-Tuvok.pdf
http://dx.doi.org/10.1007/s00371-008-0261-9
http://dx.doi.org/10.1007/s00371-008-0261-9
http://www.idav.ucdavis.edu/publications/print_pub?pub_id=892
http://www.idav.ucdavis.edu/publications/print_pub?pub_id=892
http://dl.acm.org/citation.cfm?id=564870.564881
http://dl.acm.org/citation.cfm?id=564870.564881

	Introduction
	Related Work
	Ray-Guided Grid Leaping
	Overview
	Missing Data
	Brick Classification

	Performance
	Benchmarks
	Results

	Design Tradeoffs
	Subdivision
	Disk IO
	Brick Layout
	Dynamic Rebricking

	CPU/GPU Interface
	Hash Table Parameters
	Strategies for Loading Coarser Bricks

	Conclusions, Limitations, & Future Work
	Data and Performance Details
	Source Code

