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Steady Couette and pressure-driven turbulent channel flows have large regions in
which the gradients of the viscous and Reynolds stresses are approximately in balance
(stress gradient balance regions). In the case of Couette flow, this region occupies
the entire channel. Moreover, the relevant features of pressure-driven channel flow
throughout the channel can be obtained from those of Couette flow by a simple
transformation. It is shown that stress gradient balance regions are characterized by
an intrinsic hierarchy of ‘scaling layers’ (analogous to the inner and outer domains),
filling out the stress gradient balance region except for locations near the wall. The
spatial extent of each scaling layer is found asymptotically to be proportional to its
distance from the wall.

There is a rigorous connection between the scaling hierarchy and the mean velocity
profile. This connection is through a certain function A(y+) defined in terms of
the hierarchy, which remains O(1) for all y+. The mean velocity satisfies an exact
logarithmic growth law in an interval of the hierarchy if and only if A is constant.
Although A is generally not constant in any such interval, it is arguably almost
constant under certain circumstances in some regions. These results are obtained
completely independently of classical inner/outer/overlap scaling arguments, which
require more restrictive assumptions.

The possible physical implications of these theoretical results are discussed.

1. Introduction
Boundary-layer and pressure-driven or shear-driven channel flows transition to

turbulence at sufficiently high Reynolds numbers.† Within the turbulent regime,
numerous empirical observations, e.g. Gad-el-Hak & Bandyopadhyay (1994), indicate
that many of the statistical properties of these flows are similar, even though they
possess different driving mechanisms. This apparent statistical similarity supports
claims for an underlying similarity in the dynamical structure of the turbulence as
well. In the case of pressure- and shear-driven turbulent flows, structural similarity
will be one of the themes in this paper.

Theoretical approaches to the description of the mean velocity profile in both shear-
and pressure-driven flows often start by assuming a mathematical structure formally
describing behaviour in two separate scaling regions – the inner, where the law of

† This paper will primarily employ the so-called Kármán number, δ+ = δuτ /ν, where δ is the
boundary-layer thickness or channel half-height, ν is the kinematic viscosity, uτ is the friction
velocity (≡

√
τwall/ρ), τwall is the surface shear stress, and ρ mass density.
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the wall holds, and the outer, where the defect law governs the flow. Subsequent
analyses (classical and modern) then typically propose the existence of a region of
overlap where both representations are valid. Such traditional methodologies have
their origin in the work of Izakson (1937) and Millikan (1939). (Gill (1968) rightly
showed that in addition to assuming the existence of an overlap region, one must
assume appropriate maximal rates of growth, as the outer variable approaches 0, of
the discrepancy between the outer approximation and the true solution, and similarly
with the inner approximation as that variable approaches ∞.)

This traditional framework constitutes the basis for a number of the theoretical
approaches attempting to describe the physical behaviours of wall turbulence. For
example, this inner/outer/overlap structure promotes the notion that the logarithmic
region of the mean profile is an inertial sublayer in physical space (e.g. Tennekes &
Lumley 1972), and has been employed in constructing descriptions of the Reynolds
normal and shear stresses (Monin & Yaglom 1971; Panton 1997, 2005). More gener-
ally, the classical train of thought has been at the foundation of a great many theore-
tical treatments of wall-bounded turbulence in the last decade or so (Afzal 1993,
2001a, b; George & Castillo 1997; Panton 1997, 2005; Buschmann & Gad-el-Hak
2003a, b).

For the mean velocity profile, the hypothesized overlap region is traditionally hand-
led by matching the velocity gradient, as simultaneously represented by the inner and
outer functions (e.g. Tennekes & Lumley 1972). In this way a logarithmic velocity
profile is obtained. There is, however, a rational basis for questioning the logic
of the methodology. First, while generic prototypical two-scale problems with an
overlap region arising in other contexts lead to the solution being constant in the
overlap domain, such constancy in the present case is not acceptable. It is known
that the mean velocity profile is a strictly increasing function of distance from
the wall. Secondly, it is straightforward to construct quite arbitrary mathematical
functions with inner and outer scaling regions in which the traditional forms for the
corresponding approximations are satisfied, but which have no overlap zone of joint
validity, and no logarithmic profile. Thirdly, while the overlap ideas often constitute
an empirically convincing framework for organizing data, a lucid description of the
dynamical structure underlying such a region has yet to emerge. The foundation
provided in Wei et al. (2005), upon which the present analysis builds, avoids the
ambiguity associated with the overlap hypothesis by basing its analysis directly on
the scaling properties of the mean differential statement of Newton’s second law.

To summarize, there is reason to question whether the pair of hypotheses, (i) an
overlap zone exists, and (ii) the profile is strictly increasing, forms a reasonable basis
for a derivation (see the further discussion in Wei et al. 2005). One goal of the present
work is to construct an approach to the derivation of features of the mean velocity
and Reynolds stress profiles that is distinct from the classical one. This approach
seeks to employ a train of reasoning beginning with credible hypotheses that are
disconnected from the phenomenon to be explained.

The present paper greatly expands on Wei et al. (2005). Specifically, the arguments
in that paper reveal that while Reynolds-number dependencies in the mean velocity
profile (using inner scaling) appear only very subtly, the Reynolds-number-dependent
behaviour of the terms in the mean momentum balance are both clearly evident
in existing data, and derivable from the equations of motion. From these new
results, we are also led to conclusions regarding flow structure that are contrary
to a number of well-established notions within the turbulent wall-flow literature.
Notable among the latter are (i) that viscous forces are only comparable to turbulent
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inertia in the buffer layer and below (say y+ = yuτ/ν less than about 30), (ii) the
aforementioned correspondence between a logarithmic mean profile and an inertial
sublayer-like structure in physical space, and (iii ) the exclusivity of the inner and
outer scales with regard to describing the behaviour of mean momentum transport
and its Reynolds-number dependence. The new assertions, contrary to those just
listed, are corroborated by the highest quality data available (Zagarola & Smits 1997;
Moser, Kim & Mansour 1999; DeGraaff & Eaton 2000; McKeon et al. 2004), as well
as via multiscale analyses under a minimal set of well-founded assumptions. At the
heart of this theory is the actual balance of terms in the mean momentum equation
(as opposed to the mean profile and stress-based interpretations, as in Tennekes &
Lumley 1972; Hinze 1975; Townsend 1976; Panton 1990; Pope 2000). Resulting from
this effort is the identification of a layer structure for channel flows, and by extension
for boundary-layer and pipe flows, and that is well-founded in the mathematical
representation of mean flow dynamics. A primary element of this layer structure is
the so-called stress gradient balance layer.

As the name implies, a stress gradient balance layer exists when there is a balance
between the viscous and Reynolds stress gradient terms in the mean momentum
equation (see (2.1) below). In boundary layers, pipes and channels, the stress gradient
balance layers extend from the edge of the viscous sublayer (y+ ≈ 3) to an inner
normalized wall-normal position that is proportional to the square root of the global
Reynolds number,

√
δ+. As is readily apparent, at high Reynolds numbers, the

position y+ ∼
√

δ+ extends well into the traditional logarithmic layer of the mean
profile. In terms of non-normalized physical dimension, this layer thickness is given
by the intermediate length,

√
δν/uτ (Long & Chen 1981; Afzal 1984; Sreenivasan &

Sahay 1997). These scaling behaviours find universal support from existing empirical
data, and have been theoretically derived through the aforementioned multiscale
analyses of the equations of motion. In addition to showing the necessity of this inter-
mediate scaling for describing the mean momentum field in wall-bounded flows, there
is evidence that a mean profile having features of a logarithmic profile can occur,
entirely owing to the flow physics intrinsic to the stress gradient balance layer, i.e.
independent of any flow structure requiring description via inner/outer overlap ideas
(Wei et al. (2005), together with the much stronger argument and more exact definition
of these features given in the present paper).

In this paper, these basic results are extended to show that stress gradient balance
layers have a mathematical structure composed of a hierarchy of length scales. The
picture of only two scaling regions – inner and outer – with their attendant analysis,
is shown with considerable rigour to be inadequate for a full understanding. It is
argued here, through rescaling arguments, that the mathematical structure of the
flow involves a continuum of length scales, in a sense to be explained below. Each
has its own ‘scaling layer’, with characteristic length asymptotically proportional to
distance from the wall as that distance, in wall coordinates, increases. In all, this
continuum of layers serves to connect the traditional ‘outer’ region with a region
close to the ‘inner’ one. Although the analysis here is sound, the relationship between
this mathematical structure and the instantaneous motions in the flow is, at this time,
speculative. Furthermore, while there may be connections between the hierarchical
scalings formally admitted by the mean dynamical equation (as shown herein) and the
hierarchical eddy structures posed in Townsend’s attached eddy hypothesis (Townsend
1976; Perry & Chong 1982; Perry & Marusic 1995), such connections await future
verification. Possible implications of the scale hierarchy identified by the present effort,
relative to flow physics and hierarchy-based models, are briefly discussed in § 5.
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The scale hierarchy revealed herein also has consequences relating to the functional
form of the mean velocity profile. Specifically, a rigorous connection is established
between a certain well-defined characteristic function A(y+) associated with the
hierarchy, and the mean velocity profile. The function A is guaranteed to take on O(1)
values for all y+ in the hierarchy, and to be constant in any interval if and only if
the profile is logarithmic in that same interval. If A is almost constant (and there are
indications when this may be the case), then the profile is close to being logarithmic.
Although it is generally not constant, an argument pointing to its constancy in certain
regions in the limit as Re → ∞ is given in § 3.5.2. For finite Re, other functions such
as certain power laws could be accommodated, and certainly Re-dependence as well.
Nevertheless, it is the firmest theoretical basis yet found for a generalized logarithm-
type growth, and is entirely independent of the classical arguments for logarithmic
growth based on an overlap hypothesis.

Finally, the general location where the hierarchy begins can be predicted, and
coincides roughly with the empirical onset of the traditional logarithmic part of the
velocity profile. Specifically, this location is theoretically shown to be identified with
where the derivative of the Reynolds stress, namely (d/dy+)〈uv〉+, is in a range near
−0.01, with its second derivative positive. This implies that the start of the log profile
is near y+ = 30.

The analysis in this paper proceeds directly from the mean momentum balance
equation, whose terms represent the different forces acting in the fluid. This is contary
to traditional practice, in which the integrated form of that equation is used, the terms
representing stresses. The two forms are equivalent, but the unintegrated form more
directly displays the flow information (scaling structure) that is of primary interest
here (see figure 1. (In other analogous settings, compare the velocity vs. vorticity forms
of the flow equations; although equivalent, they convey flow information in different
ways, and are therefore useful for different purposes.)

The theoretical and empirical evidence to date provide good reasons for exploring
further the physical and mathematical properties of stress gradient balance layers.
In this regard, consideration of purely shear-driven flow (turbulent Couette flow) is
especially relevant. As will be shown, the properties of turbulent Couette flow are
exclusively derived via stress gradient balance layer dynamics. Moreover, the scaling
properties of turbulent channel flow can be derived from those of Couette flow
by a simple transformation. The latter therefore provides a particularly useful and
general context for educing the essential characteristics of stress gradient balance
layer dynamics, which is a primary objective of this paper. The analysis of Couette
flow (§ 3) and turbulent channel flow (§ 4) will be preceded (§ 2) by a review of existing
results relating to the structure of pressure-driven turbulent flow in a channel, and
followed (§ 5) by a discussion of the implications of the major results.

2. Momentum balance layer structure of turbulent channel flow
This section gives a brief recapitulation of known results about the structure of the

mean momentum balance in turbulent channel flow. Its intent, in part, is to provide a
context for comparisons with turbulent Couette flow, which will be the primary topic
of the analysis in § 3.

In this and subsequent sections, the time-averaged form of the axial momentum
balance will be considered for statistically stationary, fully developed flow in a channel
of height 2δ. As is customary, the mean velocity, U (y), is in the x-direction with the
transverse coordinate, y, extending from its origin at the lower wall to the channel
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Figure 1. Sketch of the four layers of turbulent channel flow at a fixed Reynolds number;
layer I is the inner viscous/pressure gradient balance layer, layer II is the stress gradient
balance layer, layer III is the viscous/pressure gradient balance mesolayer and layer IV is the
Reynolds stress/pressure gradient balance layer. Note layer I in the zero pressure gradient
turbulent boundary layer is different from that of channel and pipe flow in that all of the
terms in the boundary-layer equation are zero at the wall.

centreline at y = δ. In the case of pressure driven flow in the channel, the inner
normalized differential statement of Newton’s second law is

0 =
1

δ+
+

d2U+

dy+2
− d〈uv〉+

dy+
. (2.1)

It is crucial to recognize, in different parts of the flow, the relative orders of magnitude,
as δ+ → ∞, of the three terms in (2.1). The only possibilites are: (i ) the three dynamical
effects are, in order of magnitude, in balance, or (ii ) two terms are in balance with
the third much smaller. The various possibilities can be gauged by the ratio of two
of the three terms in (2.1): the gradient of the viscous stress and the gradient of the
Reynolds stress, i.e. |d2U+/dy+2/d〈uv〉+/dy+|.

Consideration of the balance of terms in (2.1) reveals the layer structure shown
schematically in figure 1 (from Wei et al. 2005). This figure depicts a thin sublayer
(0 � y+ � 3) where the mean pressure gradient and the viscous stress gradient dominate
the balance equation (layer I, the inner viscous/pressure gradient layer). Outside this
thin layer is a region defined by a nearly perfect balance between the viscous and
Reynolds stress gradients (layer II, the Reynolds stress/viscous stress gradient balance
layer). The thickness of this stress gradient balance layer exhibits a clear Reynolds-
number dependence, extending well into the traditionally accepted logarithmic region
of the mean velocity profile at sufficiently large Reynolds number. Near the location,
y+

m , of maximum Reynolds stress, the viscous force and pressure gradient are, once
again, nearly in balance (layer III, the viscous/pressure gradient mesolayer). Around
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y+
m , the gradient of the viscous stress is much larger than the gradient of the Reynolds

stress, although |〈uv〉+| 
 dU+/dy+. For greater distances from the wall, the Reynolds
stress gradient has changed sign and the viscous stress gradient becomes much smaller
than either the Reynolds stress gradient or the mean pressure gradient terms. In this
region (layer IV, the Reynolds stress/pressure gradient balance layer), the Reynolds
stress and pressure gradients are essentially in balance.

As is readily apparent, this layer structure constitutes a considerable departure from
the sub-, buffer, logarithmic, wake layer structure typically ascribed to turbulent wall-
flows. The detailed scaling behaviours associated with the layer structure depicted in
figure 1 are revealed in detail by Wei et al. (2005). In what follows, the structure of a
turbulent flow that is entirely characterized by stress gradient balance layer dynamics
(i.e. Couette flow) is contrasted with, yet found to be intimately connected to, the
pressure-driven channel flow.

3. Scaling analysis of turbulent Couette flow
This section is devoted to an investigation of steady turbulent Couette flow, via the

averaged equation of (streamwise) momentum balance and concepts from multiscale
analysis. Specifically, implications relating to the scaling-layer structure of the flow and
the behaviour of the mean velocity U+ = U/uτ and Reynolds stress T + = −〈uv〉/u2

τ

profiles across the channel will be explored.
The two channel walls are situated at positions y = 0 and y =2δ. The lower one is

stationary and the upper one is in steady motion. The dimensionless inner scaled half-
width of the channel is denoted by δ+ = uτ δ/ν. The parameter ε = 1/

√
δ+, which is

assumed to be small, will figure prominently in the various scalings. The traditional
inner and outer scaled distances from the lower wall are y+ and η = ε2y+, respectively.
The latter is simply the physical distance from the lower wall, normalized by δ. The
centreline is at η = 1, i.e. y+ = ε−2 = δ+. A major conclusion will be that the designation
of coordinates as being either ‘inner’ or ‘outer’ may be misleading, because they re-
present only the extreme ends of a spectrum of scaled distances. In fact, the theoretical
basis for judging the relevance of using y+ near the wall and η near the centreline
is extended here to derive the existence of the intermediate scaling regions. The new
intermediate scalings therefore enjoy a theoretical foundation as firm as that of the
traditional inner and outer regions.

3.1. The averaged momentum balance equations

The averaged equation of streamwise momentum balance for steady turbulent Couette
flow expresses an exact balance between the transverse gradients of the viscous and
Reynolds stresses:

d2U+

dy+2
+

dT +

dy+
= 0. (3.1)

The variables U+ and T + satisfy the following boundary conditions at y+ = 0:

T +(0) =
dT +

dy+
(0) = U+(0) = 0;

dU+

dy+
(0) = 1. (3.2)

In terms of η, (3.1) becomes

ε2 d2U+

dη2
+

dT +

dη
= 0. (3.3)
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At the centreline, there are boundary conditions

dT +

dη
=

d2U+

dη2
= 0 at η = 1. (3.4)

Beyond η =1, U+ and T + can be continued by symmetry considerations: U+ is odd
and T + is even with respect to their values at the centreline (see the details following
(3.11)). This means, for example, that the centreline velocity U+

c is equal to V +/2,
where V + is the inner normalized velocity of the upper wall.

Equation (3.1) can be integrated with use of (3.2) to obtain

dU+

dy+
− 1 + T + = 0; (3.5)

or in terms of variable η,

ε2 dU+

dη
− 1 + T + = 0. (3.6)

The ‘outer approximation’ is found by setting ε = 0 in (3.6), which yields

T +(η) = 1. (3.7)

Alternatively, we can define a scaled Reynolds stress T̂ (η) by

T + = T +
m + ε2T̂ , (3.8)

where T +
m = T +

η=1, and thereby rewrite (3.3) as

d2U+

dη2
+

dT̂

dη
= 0. (3.9)

This, together with the observation from (3.4) that both terms in (3.9) vanish at η = 1,
expresses a balance between rescaled forces and therefore suggests that the rescaling
in question (U+ and T̂ as functions of η) is the correct one in the outer regime. In
§ 3.4.6, a stronger corroboration of this conclusion will be presented.

To reiterate, scaling arguments imply that near the centreline, (3.7) holds to lowest
order as ε → 0, T̂ (η) is a regular function (i.e. its derivatives with respect to η up to
some finite order are bounded depending on ε), and (3.9) holds to next order, again
as ε → 0. Some of these conclusions are well known (e.g. Panton 2005); they are given
here as an illustrative example of the methodology used in this paper to reveal a
hierarchy of layers (§ 3.4.3).

Since the outer solution (3.7) does not satisfy the boundary condition (3.2) at the
lower wall, it cannot be uniformly valid; there is a thin layer near that wall where the
outer scaling gives way to the inner scaling. More precisely, it will be shown, in fact,
that a whole hierarchy of scalings are appropriate, forming a transition between the
outer and the inner regions. First, however, a more detailed comparison with channel
flow will be provided, as well as some features of the flow near the centreline.

3.2. Comparative formulation of turbulent channel flow

In this section, a digression is made in order (a) to make pertinent comparisons
between Couette and channel flow, and (b) to introduce a transformation, (3.12), whose
generalizations will lead to far-reaching implications for the profiles of both Couette
and channel flows.

Physically, pressure-driven turbulent channel flow differs from Couette flow in the
nature of the force driving the flow. A pressure gradient, present throughout the flow,
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provides that forcing in place of the differential motion of the upper and lower walls
characteristic of Couette flow.

The mean momentum balance for channel flow is

d2U+

dy+2
+

dT +

dy+
+ ε2 = 0. (3.10)

The extra term ε2 ≡ 1/δ+ represents the dimensionless pressure gradient, and (3.4)
is replaced by

T + =
dU+

dy+
= 0 at η = 1. (3.11)

In Couette flow, U+ is odd about the point {η = 1, U+ = U+
c } where U+

c is the centre-
line velocity (at η = 1). This means that U+(2 − η) = 2U+

c − U+(η), which results in a
positive velocity V + =2U+

c at the upper wall, η = 2. Also T + is even in the sense that
T +(2 − η) = T +(η). In contrast, channel flow has U+(2 − η) = U+(η) and T +(2 − η) =
−T +(η), which imply (3.11). Thus the two kinds of flow differ with respect to simple
symmetry considerations.

There is, however, a deeper mathematical relation between them. In the Couette
flow case, we can define an adjusted Reynolds stress

T̃ ≡ T + − ε2y+. (3.12)

Then (3.1) becomes

d2U+

dy+2
+

dT̃

dy+
+ ε2 = 0, (3.13)

which in form coincides with (3.10). Thus, this simple transformation from T + to T̃

converts the differential equation for Couette flow to that for channel flow. Moreover,
the boundary conditions satisfied by the variables in (3.13) turn out to be approxi-
mately the same as those satisfied by the corresponding variables in pressure-driven
channel flow.

Qualitatively, the portion {0 <η < 1} for Couette is analogous to a region close to
the wall, {0 <η <ηm =O(ε)}, for channel flow (Wei et al. 2005), where ηm =O(ε) is
the location of the peak value of T +. In both cases, T + rises to a maximum and U+

rises to a point where dU+/dη has a smaller order of magnitude than it does at η =0.
That is, in both cases, the flow domain interior to the peak in T + constitutes a stress
gradient balance layer. It will be shown that this observation leads to methodological
similarities in describing other aspects of the two flows.

3.3. Properties of T + and U+ at the centreline

Order of magnitude estimates for the magnitude of T + at the centreline, as well as
for the curvature (flatness) of T + and U+ will now be derived by scaling arguments.

Throughout the paper, the order symbol O(·) will be used with respect to ε → 0
or β → 0 (β is a small parameter introduced in § 3.4.1). For example, a = O(b) for
positive a(ε) and b(ε) will be taken to mean that a/b and b/a are both bounded for
small ε.

Based on all empirical evidence, it may be assumed that for 0 <η < 1

dU+

dy+
> 0,

d2U+

dy+2
< 0 (Couette and channel),

dT +

dy+
> 0,

d2T +

dy+2
< 0 (Couette), the latter for y+ > a certain value.




(3.14)
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Figure 2. Reynolds stress around the peak, showing d2T/dη2 = O(ε2) and 1 − Tm = O(ε2).
Although these order of magnitude relations are clear, it is difficult to read off even the
approximate value of d2T/dη2. The case Reτ = 82 is from DNS of Bech et al. (1995), and the
other two cases are from DNS of Kawamura, Abe & Shingai (2000).

From this and (3.5), we see that for Couette flow, T + < 1 and that T + increases
monotonically as we proceed from the lower wall to the centreline. Let T +

m ≡ T +
η=1 be

the maximal value of T +. Recall the definition of T̂ in (3.8), and (3.9). As mentioned,
they suggest that near the centreline, both T̂ and U+ scale with η, in the sense
that all their derivatives with respect to η are � O(1) quantities. Further justification
of this assertion will be provided in § 3.4.6. In particular, d2T̂ /dη2 � O(1), so that
d2T +/dη2 � O(ε2). Therefore in that neighbourhood

T + ≈ T +
m − Kε2(η − 1)2,

for some K independent of ε, or

T + ≈ T +
m − Kε6(y+ − δ+)2. (3.15)

This provides the order of magnitude of the curvature of the T + profile at the
centreline. Very good experimental support for this analytical prediction is given in
figure 2, albeit only over a small range of Reynolds numbers.

Use of (3.6) at the centreline also provides the order of the deviation of T +
m from

the value 1. Since it was noted above that η is the correct scaled variable for U+ at
the centreline, it is now seen that

T +
m = 1 − O(ε2). (3.16)

Again, table 1 provides remarkable corroboration of (3.16).
In contrast, in pressure-driven turbulent channel flow, the proximity of T +

m to 1 is
given by T +

m = 1 − O(ε), and the curvature of the graph of T +(y+) is O(ε3) near the
peak (Wei et al. 2005). Table 2 provides a review of data corroborating the relation
for channel flow. The contrast between the data of tables 1 and 2 is strong evidence
of (3.16), despite the small range of Reτ .
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Investigators Reτ T +
m

1 − T +
m

ε

1 − T+
m

ε2

Bech et al. 82.2 0.955 0.4080 3.699
Kawamura et al. 128.5 0.9729 0.3066 3.476
Kawamura et al. 181.3 0.9817 0.2459 3.311

Table 1. Properties of T +
m for turbulent Couette flow. DNS data from Bech et al. (1995)

and Kawamura et al. (2000).

Investigators Reτ T +
m

1 − T+
m

ε

1 − T +
m

ε2

Moser et al. 180 0.7321 3.696 49.321
Moser et al. 395 0.8370 3.228 69.935
Moser et al. 590 0.8647 3.278 79.447
Iwamoto et al. 109.4 0.6071 4.110 42.995
Iwamoto et al. 150.4 0.689 3.815 46.799
Iwamoto et al. 297.9 0.8006 3.442 59.401
Iwamoto et al. 395.7 0.8321 3.340 66.448
Iwamoto et al. 642.5 0.8746 3.179 80.574

Table 2. Properties of T +
m for turbulent channel flow. DNS data from Moser et al. (1999)
and Iwamoto, Suzuki & Kasagi (2002).

Finally since dU+/dη � O(1) at η = 1,

dU+

dy+
� O(ε2) (3.17)

at y+ = ε−2. Note that d2U+/dη2 = 0 at η = 1, which illustrates that the actual order
of derivatives of scaled quantities may be � O(1) rather than = O(1)).

3.4. The scale hierarchy

The transformation (3.12), when generalized, leads to remarkable consequences re-
garding the structure of stress gradient balance layers. The foregoing scaling argu-
ments, together with artificial adjusted Reynolds stresses, will be used systematically
to reveal a continuum of scales, extending almost completely across the channel.

3.4.1. Adjusted Reynolds stresses

Let β be a small positive number. Restrictions on it will be given later. Let

T β(y+) = T +(y+) − βy+. (3.18)

(Note that β is a superscript not an exponent.) These are simply mathematical
constructs that define the adjusted Reynolds stresses T β . They satisfy

dT β

dy+
=

dT +

dy+
− β, (3.19)

and from (3.1) (as always, for Couette flow),

d2U+

dy+2
+

dT β

dy+
+ β = 0. (3.20)

From DNS data of Kawamura et al. (2000), the adjusted Reynolds stresses for dif-
ferent β are shown in figure 3.
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Figure 3. Adjusted Reynolds stress profile for various values of β . The case β = ε4 corresponds
within O(ε2) to the genuine Reynolds stress for Couette flow (see § 3.4.6), and β = ε2 is an
approximation to that for pressure-driven channel flow. The DNS data is from Kawamura
et al. (2000), δ+ = Reτ = 181.3 and ε =0.074.

The main interest is in those adjusted stress functions that exhibit local maxima.
This happens when β is sufficiently small. The reasoning in § 3.5 uses these functions
to educe the existence of a special scaling region (layer) Lβ for each β in a certain
range. Part of the argument involves obtaining an exact differential equation, (3.29),
for rescaled variables having no explicit dependence on ε or β . Another part entails
the recognition that (3.20) expresses an approximate balance between its first two
terms (since β is small), and that this balance must be broken and changed to
another kind of balance when y+ attains a value such that the three terms in (3.20)
have the same order of magnitude.

Balance-exchange occurs when β is such that there are locations y+ = y+
0 for which

the middle term in (3.20) is positive and significantly greater than the last term. The
actual balance-exchange will happen at slightly larger values of y+, as shown below.
Therefore we require dT β/dy+(y+

0 ) 
 β . From (3.19), this will be the case when

dT +

dy+
(y+

0 ) 
 β. (3.21)

Temporarily, (3.21) will be replaced by

dT +

dy+
(y+

0 ) � 10β. (3.22)

Since this may be too restrictive, however, it will be relaxed at a later point by
allowing the coefficient 10 to be changed to some number in the interval 5 to 20.
Moreover, only points where d2T β/dy+2 =d2T +/dy+2 < 0 will be relevant, i.e. only
points on the decreasing part of figure 4.

From figure 4, we see that max[dT +/dy+] ∼ 0.07, attained at y+ ∼ 7, so that (3.22)
will be true for some y+

0 if

0 < β � 0.007. (3.23)
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Figure 4. Inner normalized Reynolds stress gradient for a variety of flows. The turbulent
Couette flow data are from Bech et al. (1995) and Kawamura et al. (2000). Also included are
turbulent boundary layer DNS from Spalart (1988).

3.4.2. Peaks of T β

Let β satisfy (3.23). There is a point on the right-hand (descending) branch of figure
4 at which (dT +/dy+)(y+) = β , hence from (3.19) the function T β has a maximum
there (since its slope is 0 and its second derivative negative). Call the position of
that maximum y+

m (β). As β decreases, y+
m increases toward its maximal allowed value,

which is 1/ε2 since that is the centreline. It will be shown in § 3.4.6 that β = O(ε4) at
the centreline.

A balance-exchange argument will be used to show that for each β satisfying (3.23)
and β � O(ε4), there exists a ‘scaling layer’ Lβ with characteristic width O(β−1/2) in
the inner variable y+, containing y+

m (β), such that in this layer, the functions U+ and
T + vary with characteristic length β−1/2. It will also be shown that the characteristic
width β−1/2 is of the order of the actual layer position y+

m (β) as y+
m increases.

To reiterate, at the point y+
m (β) (where T β is maximal), it follows from (3.19) that

dT +

dy+
(y+

m (β)) = β. (3.24)

Hence since dT +/dy+ is a decreasing function of y+, y+
m (β) increases as β decreases,

with (as was mentioned in § 3.4.6) y+
m → 1/ε2 as β → O(ε4). On the other hand, the

range of β is limited, (3.23), by 0.007, and hence by figure 4, the lower bound on y+
m

is about 30.
This provides a lower bound on the allowable values of y+

m which will be considered
here as peaks in the graphs of T β , with β subject to (3.22). Since the coefficient 10 in
that inequality was quite arbitrary, it is worth exploring the consequences of replacing
it by some number between 5 and 20. If that is done, it is found that the lower bound
on y+

m is between 20 and 36.
In summary,

(20 to 36) < y+
m (β) < 1/ε2 when (0.0035 to 0.014) > β > O(ε4). (3.25)

This range in y+ will be the predicted range of the hierarchy, constructed below.



Stress gradient balance layers and scale hierarchies 177

3.4.3. A continuum of scalings

It will be shown that within each layer Lβ (to be defined below), the variables y+

and T β may be rescaled in such a way that the basic differential equation (3.20) is
transformed into an exact equation having no explicit dependence on ε or β . This
continuum of scales can be parameterized by either β or y+

m , since y+
m (β) is a monotone

function. It will be called a scale hierarchy. As will be shown and discussed further,
there are compelling reasons to believe that scale hierarchies constitute a fundamental
structural feature of the wall–turbulence equations; underlying, for example, the
possible logarithmic behaviour of the mean profile, and replacing the traditional
overlap ideas as the theoretical paradigm for that behaviour. The prediction that the
beginning of the layered domain lies between y+ = 20 and y+ = 36 is interesting, in
that it roughly coincides with the traditional empirical onset of the logarithmic-like
profile. More generally, the striking connection between the hierarchy and the profiles
of U+ and T + is explored in § 3.5.

The details of the origin and properties of the layer Lβ are now explained. Take β

in the interval (3.23). Then (3.22) holds for some y+
0 < y+

m (β). Therefore for y+ = y+
0 ,

it follows from (3.22) that the first two terms in (3.20) are each much larger than
the last term and balance, except for an error term β . This, in fact, continues to
be true as y+ increases to larger values, except that as y+ approaches the location
y+

m (β) where T β achieves its maximum (denoted by T β
m (β)) the middle term in (3.20)

becomes smaller than O(1), and therefore the first term does as well. The middle term
eventually attains the value β (say) at some point, which will be called y+ = y+

1 (β).
By (3.20), the first term d2U+/dy+2 = −2β there. Therefore at y+ = y+

1 (β), all three
terms in (3.20) have the same order of magnitude, and it is natural to seek a rescaling
which reflects this equality. The new variables will be called ŷ (which also depends
on β) and T̂ β . As exemplified in Wei et al. (2005), rescaling is best done using the
differentials, dy+ and dT β . For coefficients α and γ , to be determined depending on
β , we set

dy+ = α dŷ, dT β = γ dT̂ β . (3.26)

Under this transformation, the first two terms in (3.20) become α−2d2U+/d(ŷ)2 and
(γ /α)(dT̂ β/dŷ) respectively. They must match, in formal order of magnitude, the third
term, β . This requires α = β−1/2 and γ = β1/2. Therefore

dy+ = β−1/2 dŷ, dT β = β1/2 dT̂ β . (3.27)

The equations (3.27) can be integrated with integration constants chosen such that
ŷ = 0 when y+ = y+

m (β) and T̂ β = 0 when T β = T β
m (β):

y+ = y+
m (β) + β−1/2ŷ, T β = T β

m + β1/2T̂ β . (3.28a, b)

The basic equation (3.20) then becomes

d2U+

dŷ2
+

dT̂ β

dŷ
+ 1 = 0. (3.29)

This is an exact equation with no explicit dependence on any parameters, and
it suggests that the β-dependent rescaling just described, (3.28), accurately depicts
the behaviour of U+ and T̂ β (hence T +) in some ‘scaling patch’, but that evidence
is not quite sufficient. It should also be independently demonstrated that at some
location in the channel, the individual derivatives appearing in (3.29) are actually
� O(1) quantities. Then the existence of a scaling patch containing that location can
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be surmised. In the patch, U+ and T̂ β will be regular functions of ŷ, which means
in particular that the derivatives of those functions (to orders 1, 2 and 3, say) with
respect to ŷ will also be O(1) quantities. There are, in fact, two candidates for such a
location: y+

1 (β) and y+
m (β). For example by construction, at y+

1 (β) the terms of (3.29)
are −2, 1 and 1, respectively. This, together with the fact that y+

1 is not at a boundary,
where external influences could occur, is evidence of the presence of a local ‘scaling
layer’ Lβ containing that point. In other words, the characteristic length scale in this
interval, referred to the variable ŷ, has the order unity, and thus by (3.28) in wall
units is O(β−1/2).

The other candidate is the point y+
m (β) where the three terms in (3.29) are −1, 0

and 1, respectively. The layer Lβ will contain both points, but the latter, y+
m (β), will

be chosen in this paper to pinpoint the layer. In view of (3.28a), the characteristic
length 
+ in the layer can be taken as 
+ = β−1/2.

At this point, it has been shown that for each value of β in the range (3.25), there
exists an interval Lβ containing y+

m (β) (and y+
1 (β)) within which U+ and T̂ β are

regular functions of ŷ, hence with reference to the inner variable y+, these functions
vary with characteristic length β−1/2.

The ‘width’ of Lβ in the inner variable y+ can then be surmised as being O(β−1/2),
although its width is not a well-defined concept, since Lβ overlaps with nearby layers
(Lβ ′ , for β ′ near β .) Since y+

1 (β) and y+
m (β) are in Lβ , some corroboration of its

magnitude being O(β−1/2) may be obtained by estimating y+
m (β) − y+

1 (β), which by
(3.28) is �y+ = β−1/2�ŷ, �ŷ = 0 − ŷ1. The corresponding increment in d2U+/dŷ2 is

�
d2U+

dŷ2
= −1 − (−2) = 1.

However, for some value ŷ∗ in layer Lβ , the mean value theorem says that the left-
hand side =(d3U+/dŷ3)(ŷ∗)�ŷ, so that �ŷ =(d3U+/dŷ3)−1. By differentiating (3.29), it
is seen that d3U+/dŷ3 = − d2T̂ β/dŷ2. This derivative, evaluated at ŷ = 0 (y+ = y+

m (β))
will be called

A(β) = −d2T̂ β

dŷ2
(0), (3.30)

although it depends also (probably weakly except for β values corresponding to
maxima near the centreline) on ε. It is the curvature of the peak in T β , in locally
scaled coordinates, so that A(β) > 0. It will be shown below in § 3.4.4 that A(β) = O(1)
for all β . Therefore �ŷ = 1/A= O(1)) as well. This corroborates the characteristic
width �y+ = O(β−1/2) found before.

If β1 and β2 are close to each other, Lβ1
and Lβ2

overlap. However, a discrete set of
values of β may be chosen so that the associated layers do not overlap, but nevertheless
fill out the entire domain of the hierarchy (3.25). If this is done, the number of members
in the ensemble increases indefinitely as ε → 0.

In summary, layer Lβ is characterized in part by the characteristic length (in inner
units) of variation of U+ and T + being O(β−1/2) and

dU+/dŷ = O(1), dU+/dy+ = O
(
β1/2

)
, (3.31)

the higher derivatives of dU+/dŷ and T̂ are � O(1).
Its location will be considered in § 3.4.4.
This process, by which the layer Lβ appears, involves a breaking of the approximate

balance of the first two terms in (3.20) as y+ increases past a critical value y+
1 , and
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its replacement by a balance among all three terms in (3.20), as indicated formally by
(3.29). However, the middle term of (3.29) soon vanishes (at y+ = y+

m (β)), resulting in
a balance between the first and third terms alone. This breaking and reestablishing
of a balance can be called a ‘balance exchange’. It plays a very prominent role in the
scaling analysis of turbulent channel flow (Wei et al. 2005), and as shown here is an
embedded property of stress gradient balance layers.

The above constitutes the theoretical foundation for the scale hierarchy. Namely,
it provides the existence of a layer Lβ , for each value of β in the interval
O(ε4) < β < (a value between 0.0035 and 0.014), located at y+

m (β). There will be
considerable overlapping of layers. This translates into the range of y+

m given by
(3.25).

An important question remains as to how the unadjusted Reynolds stress T + scales
in Lβ . The answer comes from (3.18): T + = T β + βy+ = T β

m + βy+
m + β1/2(T̂ β + ŷ) =

T β
m + βy+

m +β1/2T̂ ∗(ŷ), where this expression defines T̂ ∗(ŷ) = T̂ β(ŷ) + ŷ. It is a regular
function of ŷ. Therefore the conclusion is that in Lβ , T + also scales with ŷ. In fact

T + = T β
m + βy+

m + β1/2T̂ ∗, (3.32)

where T̂ ∗ is a regular function of ŷ (i.e. its derivatives are bounded independently
of ε or β). Of course, U+ is also a regular function of ŷ in Lβ . This result is self-
consistently reinforced by the fact that (3.32) is analogous to the rescaling derived in
(3.28).

3.4.4. Locations of the layers

An important piece of information is still lacking. This relates to how the location
y+

m (β) (which serves to pinpoint Lβ) of the maximum of T β depends on β . Once this
is found, the behaviour of the velocity U+(y+) and the Reynolds stress T +(y+) can
in principle be obtained. It is shown, in fact, that for large y+

m (β), the characteristic
extent of the layer has the order of magnitude of its distance y+

m (β) from the wall.
This means that the layer occupies a fraction of the distance y+ from the wall to the
centre of the layer itself.

By differentiating (3.24) with respect to β , we obtain

d2T +

dy+2
(y+

m (β))
dy+

m

dβ
= 1. (3.33)

This equation holds for all y+
m for which y+

m (β) is defined, and in particular for all y+
m

given by (3.25). Also by (3.27)

d2T +

dy+2
= β1/2 d2T +

dy+dŷ
= β

d2T +

dŷ2
= β3/2 d2T̂ β

dŷ2
. (3.34)

In Lβ , derivatives such as d2T̂ β/dŷ2 are O(1) quantities (independent of ε to dominant

order). Recall (3.30) A= −(d2T̂ β/dŷ2)ŷ =0; then A= O(1) (see below). Although A will
generally depend on β , i.e. on y+

m , its order of magnitude will not change. From (3.34),

d2T +

dy+2
= −A(y+

m )β3/2. (3.35)

Putting this into (3.33) gives

dy+
m

dβ
= − 1

A
β−3/2. (3.36)
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Since A(β) = O(1), it satisfies bounds of the form 0 <α1 < 1/A< α2, and from (3.36),
there is a C independent of β with y+

m (β) = C −
∫

(1/A)β−3/2 dβ , so that

2α1β
−1/2 + C < y+

m (β) < 2α2β
−1/2 + C. (3.37)

In short, y+
m (β) = O(β−1/2) (β → 0), and since β−1/2 is the characteristic length in Lβ ,

this establishes the claim that the characteristic length of Lβ is asymptotically propor-
tional to its distance y+

m (β) from the wall.
It is appropriate here to discuss further the issue of the constancy of the order of

magnitude of A(β). It was shown that the rescaled variables belonging to each member
of the scaling hierarchy satisfy (3.29) exactly (no approximation). The parameters β

and ε do not appear in that equation (except implicitly in the definitions of the
rescaled variables). Therefore although the definitions (3.28) of the rescaled variables
ŷ and T̂ β depend on β (3.28), the equation they satisfy does not. This suggests that
in each scaling patch the functions U+(ŷ) and T̂ β(ŷ), of the β-dependent variable
ŷ would be invariant (approximately) when β changes, i.e. would enjoy some β-
independence when evaluated at the same value of ŷ within the various different
scaling patches. This would hold as well for their derivatives. This conclusion is given
more credence, in fact, by the observation that at the point y+ = y+

m (β), i.e. at ŷ =0,
each term appearing in (3.29) has a value (−1, 0, 1), respectively, independent of β ,
and the undifferentiated quantity T̂ β = 0 does as well. It is to be concluded that
A(β) = O(1) for all β , and that there may be circumstances when the function A itself
is almost constant.

3.4.5. Determination of U+(y+) from A

Knowledge of the characteristic function A(β) of the hierarchy would lead rigor-
ously and uniquely, up to integration constants, to the profiles of U+ and T +. This is
done by integrating (3.36), (3.24) and (3.5), which are written here in terms of the
general coordinate y+ = y+

m in the hierarchy, representing the location of the maximal
point of T β:

dy+

dβ
= − 1

A(β)
β−3/2, (3.38)

dT +

dy+
= β, (3.39)

dU+

dy+
= 1 − T +. (3.40)

Integration of (3.38) yields y+ − C as a function of β , where C is an integration
constant which can be determined by fitting a known value of y+ with its known
value of β . Inverting that function gives β as a function of y+ − C. Integrating (3.39)
and then (3.40) finally provides T + and U+. As mentioned, the resulting function U+

is logarithmic if and only if A= constant.

3.4.6. The case β = ε4

Here it is shown that the traditional outer scaling η = ε2y+ fits into the hierarchy
at β = ε4, and that it is the proper scaling to use near the centre of the flow (η = 1),
as was asserted below (3.9). It is seen from (3.27) that in the case β = ε4

dŷ = ε2 dy+ = dη, (3.41)
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so that ŷ and η differ only in their origins:

ŷ = η − ηm, (3.42)

where ηm is defined as the value of η where T (β=ε4) has its maximum. Therefore it is to
be expected that η = 1 is in the layer Lβ=ε2 . In fact, the order of magnitude of 1 − ηm

can be found. At that point, the left-hand side of (3.19) = 0, and by differentiating
(3.15), the right-hand side ∼ 2Kε6(1/ε2 − y+

m ) − ε4. The graphs in figure 2 suggest that
K ∼ 4. Therefore 1/ε2 − y+

m ∼ (1/8)ε−2, i.e.

1 − ηm ∼ 1/8. (3.43)

Empirical data show, in fact, that 1 − ηm ∼ 0.1.
In summary, when β = ε4, the location of the maximum adjusted Reynolds stress

T (β = ε4) lies within a distance of about 0.1 (in η, i.e. in ŷ for this value of β) of the
maximum of T + itself, which is at η = 1. Thus for β = ε4, except for a small shift of
the order ∼ 0.1, ŷ and η are identical scaled distances. Thus the centreline η = 1 lies
in the layer Lβ=ε2 , where U+ and T̂ β = (T β − T β

m )/ε2 (3.28) are regular functions of η.
This corroborates the assertion to that effect following (3.9).

3.5. The question of logarithmic-type growth

A central issue in the history of turbulent channel flow investigations is whether and
where the mean velocity profile exhibits a logarithmic growth. The approach adopted
in this paper provides new insight into this issue. The first conclusion to be reached is
that logarithmic profiles of U+ depend crucially on A(β) (§ 3.4.4) being constant. If it
is constant, then exact logarithmic growth follows easily from the calculations below.
If it is not constant, then the growth is not logarithmic. If A is almost constant (and
reasons for supposing that it is so under certain circumstances are given), then the
profile of U+ is bounded between two nearby logarithmic functions. Finally in § 3.5.2,
a non-rigorous argument is presented leading to the conclusion that as Re → ∞, A

approaches a constant in certain moving ranges (characterized explicitly) of y+ values.

3.5.1. The issue of the constancy of A(β)

The reasoning following (3.37) and below in § 3.5.2 indicates that A may be approxi-
mately constant for values of y+

m far from the limits of its allowed range (3.25). For
now, suppose that A = constant in some interval. From (3.38), we find

y+
m = C +

2

A
β−1/2, β =

4

A2
(y+ − C)−2, (3.44)

and hence from (3.39),

dT +

dy+
(y+

m ) = (2/A)2(y+
m − C)−2, (3.45)

Replacing y+
m by the general variable y+ and integrating,

T +(y+) = C ′ − (2/A)2(y+ − C)−1. (3.46)

Since T + → 1 as y+ → ∞ (this is only possible in the limit ε → 0), the constant C ′ = 1.
Putting this into (3.5) yields

dU+

dy+
= 1 − T + = (2/A)2(y+ − C)−1. (3.47)

Integrating again,

U+(y+) = (2/A)2 ln (y+ − C) + C ′′, (3.48)
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Figure 5. A(y+) for different Reynolds numbers as estimated by finite difference of T +(y+).
These estimates indicate a trend to larger internal intervals of relatively constant A for larger
Re, thus agreeing with the present theory. The total range of the function A also increases with
Re. The values of A were calculated from finite differencing DNS data of Bech et al. (1995)
and Kawamura et al. (2000), (3.35), with locations y+

m determined from figure 3.

providing logarithmic growth with a ‘von Kármán constant’ κ = A2/4. Although the
usual logarithmic law lacks the constant C, an additive adjustment of this type has
been proposed both by the studies of George & Castillo (1997) and Oberlack (2001).

The conclusions (3.48) and (3.46) were under the assumption that A = constant.
That assumption of constancy is unlikely ever to be exactly true. However, the trend
shown in the computed values of A in figure 5 (unknown accuracy) suggests that for
large Re, A(β) may be ‘relatively’ constant in interior regions of its range. An extreme
case is discussed in § 3.5.2.

The effect of an approximate constancy of A on the validity of (3.46) and (3.48)
can be easily seen. Write the dependence of A on β as dependence on y+

m = y+
m (β),

i.e. A= A(y+
m (β)). Suppose that the function A(y+

m ) has a range lying in the interval
A0 − σ � A(y+

m ) � A0 + σ for some constant A0 and some small positive number σ .
Then (3.36) becomes a pair of inequalities which bound the left-hand side inside an
interval depending on σ . The integration steps (3.45)–(3.48) then result in inequalities
of the form

1 − (c0 + σc1)(y
+ − C)−1 � T + � 1 − (c0 − σc1)(y

+ − C)−1, (3.49)

(c2 − σc3) ln (y+ − C) � U+ − C ′′ � (c2 + σc3) ln (y+ − C). (3.50)

3.5.2. A limiting situation

In the hierarchy, each y+ can be identified as being a point y+
m (β) for some β . The

corresponding β will be called β(y+). In this way, each y+ has a layer Lβ(y+) containing
y+, such that −A(β) is the scaled second derivative of T β at its peak. What mechanism
will cause A(β) to vary? Certainly not the mean momentum balance partial differential
equation, (3.29), in that vicinity, nor the values of the scaled derivatives dT̂ β/dŷ =0 or
d2U+/dŷ2 = −1 (from (3.29)) at that peak location, because these things do not change
with β . The only source for such a variation would be influence from neighbouring
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layers. Extending that chain of influence, we could speak, on the one hand, of the
influence due to layers Lβ ′ lower in the hierarchy with β ′ > β , stretching down to
those values of y+ at or near the lower limit of the hierarchy, i.e. the smallest values
of y+ which accommodate a layer, y+ ∼ 20 to 36, (3.25). It stands to reason that this
influence of the lower part of the hierarchy will diminish as it becomes more remote,
i.e. as the original y+ becomes large.

A similar chain of influence extends toward higher values of y+, i.e. β ′ <β , capped
only by the upper bound y+ = ε−2, at or near the centreline. The centreline, however,
becomes further, as ε → 0, from the original point y+ if the latter is fixed or moves
outward as ε → 0 more slowly than ε−2.

Consider, then, a band of values of y+, depending on ε, which migrate away from
the wall (measured in the wall coordinate y+) as ε → 0, but more slowly than ε−2.
An example would be the intermediate band {ε−1/2 < y+ <ε−3/2}. In that interior
band, the above argument suggests that the values of A will become more and more
independent of any influence from the upper and lower limits of the hierarchy, and
therefore would tend to become constant. In the limit as ε → 0, therefore, the analysis
relating to the case A = constant would apply so that (3.46) and (3.48) would be
approached in that band.

3.6. Summary

These arguments verify that for each y+ in the range

(a value between 20 and 36) < y+ � 1/ε2, (3.51)

there is a layer Lβ with y+ = y+
m (β), where ŷ and T̂ β are the proper scaled variables for

distance and adjusted Reynolds stress T̂ β , (3.18). The characteristic length in this layer
is O(1) in the scaled variable ŷ, and O(β−1/2) in y+. Thus for small enough β , the
characteristic length coincides in order of magnitude with its position y+. In regions
where A is approximately constant, logarithmic-type growth, (3.49) and (3.50), holds.

4. Turbulent channel flow induced by a pressure gradient
The purpose of this section is to illustrate that scale hierarchies exist in pressure-

driven flow. In fact, the evidence below indicates why these hierarchies not only
comprise the stress gradient balance layer, but the entire flow domain of the tradi-
tionally defined logarithmic layer.

4.1. Previous analytical results

The following is a summary of the main findings contained in Wei et al. (2005). Each
of these results is in accord with the scaling analysis in that paper and the data
compiled there from past experimental and DNS sources. We use the same notation,
such as y+, η, U+, T +, δ+, ε, as Wei et al. The averaged mean momentum equation is
(3.10), with boundary conditions (3.2) and (3.11).

The channel is divided into four principal layers with the properties described in § 2.
The Reynolds stress profile has the following features. The function T + vanishes

with its derivative at y+ = 0, increases monotonically with y+ to a maximum value
T +

m = 1 − O(ε) at a point y+
m =O(1/ε), and then slowly decreases, approaching the

value 0 in a linear fashion as η → 1. The expression for T + in this latter region is

T +(η) = 1 − η + O(ε2). (4.1)
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In a vicinity of the maximum, the function T +(y+) has the behaviour

T +(y+) ∼ T +
m − Cε3(y+ − y+

m )2. (4.2)

The mesolayer constitutes a region in which |y+ − y+
m | � O(1/ε). In it, the profiles

are properly described in terms of T̂ and U+ as functions of ŷ, where T + = T +
m + εT̂ (ŷ)

and y+ = y+
m + ε−1ŷ.

4.2. Hierarchy

To exhibit a hierarchy of layers in the channel-flow profile, all that is needed is to
revise slightly the definition of the adjusted Reynolds stresses, (3.18). The new one is
defined by

T β(y+) = T +(y+) + ε2y+ − βy+. (4.3)

This transforms the basic momentum balance equation, (3.10), into

d2U+

dy+2
+

dT β

dy+
+ β = 0, (4.4)

which is of the same form as (3.20).
Therefore, with the newly adjusted Reynolds stresses, the channel-flow context is

amenable to the balance exchange processes described in § 3.4.1, the construction of
a continuum of scalings with associated layers Lβ in § 3.4.3, and (under some assump-
tions) the derivation of logarithmic-like profiles in § 3.5. The scaling in Lβ is still given
by (3.27).

The mean profile calculations are given here only for the simplest case A= constant,
although analogues of (3.38)–(3.40) can be derived. As before, the expressions (3.36)
and (3.35) are obtained in the present setting as well; but the integration of (3.35)
yields a different integration constant. It is required that dT +/dy+ = 0 at y+ = y+

m , the
location of the maximum of the original unadjusted T +. Therefore (3.45) is replaced,
under the same supposition that A = constant, by

dT +

dy+
(y+) = (2/A)2[(y+ − C)−2 − (y+

m − C)−2], (4.5)

where now the variable y+ is the same variable as in (3.46) and y+
m was just defined.

Note that this derivative changes sign as y+ passes through y+
m , as it should. Integrating

once again, we obtain

T +(y+) = C ′ − (2/A)2(y+ − C)−1 − (2/A)2(y+
m − C)−2y+. (4.6)

However, there is now a known boundary condition, T + = 0 at y+ = 1/ε2; this serves
to determine the constant C ′.

Similar to the previous procedure, we may now use the integrated form of (3.10) to
determine dU+/dy+ and integrate it with the boundary conditions that the derivatives
of U+ vanish as y+ → ∞ to obtain the same log dependence as in (3.48):

U+(y+) = (2/A)2 ln (y+ − C) + C ′′. (4.7)

Again, this is all under the (doubtful) assumption that A is exactly constant. In the
case that it is almost constant, we obtain a pair of bounds like (3.50), valid now for
the mean velocity in channel flow for the range of y+ constructed as before. Note
that in the case β = ε2, by (4.3), T β = T +.
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4.3. The mesolayer

When β = ε2, the adjusted Reynolds stress T β , (4.3), coincides with the actual Reynolds
stress T +, so that the corresponding layer Lβ=ε2 will be located near the location of the
maximum of T +. As mentioned in § 4.1, this is how the mesolayer III was identified
in Wei et al. (2005).

Each of the layers Lβ can be thought of as an adjusted mesolayer, constructed by
replacing the actual T + by T β . In this sense, the actual mesolayer Lβ=ε2 = III is just
one among many. It is distinguished, however, on the one hand as the location where
the actual Reynolds stress reaches its maximum and its gradient changes sign, and
on the other hand as the location where an important force balance exchange takes
place.

4.4. The outer layer and the extent of the hierarchy

When β = ε4, it follows as before from (3.27) that dy+ = ε−2dŷ = ε−2dη, so that outer
scaling holds and Lβ=ε4 is in the outer region, far beyond y+

m . The range of the
hierarchy therefore extends well beyond the traditional ‘log layer’.

5. Summary and discussion
Theoretical tools of multiscale analysis were shown in Wei et al. (2005) to be useful

in elucidating the structure of fully developed pressure-driven turbulent channel flow
found, in the same paper, by an examination of empirical data. That structure consists
of four primary layers, one of them being a stress gradient balance layer, wherein
the gradients of the viscous and Reynolds stresses balance, to within a very good
approximation.

The analogous fully developed turbulent Couette flow consists of only the stress
gradient balance layer, since those two gradients provide the only forces internal
to the flow. In the present paper, the range of applicability of the same multiscale
techniques was shown to be much greater than shown in Wei et al. (2005). Applied to
Couette flow, they reveal a mathematical structure in which the mean axial velocity
and Reynolds stress exhibit a hierarchy of characteristic lengths and corresponding
layers (in a sense secondary to the primary stress gradient balance layer) covering the
major part of the flow domain. Other important information is also found, such as:

(i) The characteristic lengths are asymptotically proportional to distance between
the wall and the layer (they are reminiscent of, but different from, the mixing lengths
of Prandtl (Prandtl 1925; von Kármán 1930).

(ii) There is a rigorous connection between the O(1) function A(β), defined expli-
citly in terms of the layer hierarchy, and the mean velocity and Reynolds stress
profiles.

(iii) The U+ profile is logarithmic in an interval only if A= constant in that same
interval; there is evidence, theoretical and computational, that it is relatively constant
in some intervals in some cases. However, the focus of the paper has been more
on offering explanations and reasons for important phenomena than on obtaining
numerical information.

(iv) The range of values of y+ at which the layered region begins is predicted, and
matches the empirical location of the onset of the traditional logarithmic profile.

(v) Order of magnitude properties of the Reynolds stress profile near the centreline
(its curvature and the deviation of its maximum from 1) are found.

Another important finding is that a simple transformation, applied to the Reynolds
stress, provides the way to transfer almost all of this information to the analogous
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pressure-driven turbulent flow. Namely, in the latter setting there is also a hierarchy
of scales and layers with properties (i)–(iv) (properties (v) were obtained in Wei et al.
2005).

The hierarchical layer structure is associated with exchange of balance phenomena
very similar to that used to reveal the properties of the mesolayer in Wei et al. (2005).
The generalization in this paper used ‘adjusted Reynolds stresses’.

The success of theoretical tools applied only to the Reynolds-averaged momentum
balance equation may be surprising, since the equation is not closed, underdetermined,
and therefore not capable of supplying an exact solution. Along with the analysis,
some crucial, but minimal, assumptions of an essentially physical nature were required.
The existence of a correct scaling of the variables with its concomitant scaling layer
was in each case surmised by showing (i) that it leads to a differential equation which,
to leading order, expresses a force balance between at least two of the three terms in
an adjusted conservation of momentum equation, and (ii) that at some location, the
terms in that differential equation are, when properly scaled, each O(1) in magnitude.
These criteria for the existence of a layer, in fact, also form the theoretical basis
for the traditional inner and outer scalings. Other useful information, gleaned from
empirical data, are that the mean velocity and Reynolds stress profiles are monotone
increasing in distance from the lower wall, with their slopes decreasing beyond a
certain point.

Overall, the formulations herein provide considerable information relative to the
mathematical structure of the equations governing wall-turbulence. An overarching
element of this analysis is the manner by which the terms in the momentum equation
undergo the exchange of balance just mentioned. As shown regarding the fundamental
layer structure of pressure-driven channel flow by Wei et al. (2005) and herein with
regard to the continuum of layers constituting the scale hierarchy, the particular
exchange of balance phenomenon under consideration (others may occur under
different flow configurations) takes place across a Reynolds-number-dependent layer
and is characterized by specific scaling behaviours derivable from the properties of
the momentum equation within this layer. For the pressure-driven flow equation
employing the unadjusted Reynolds stress, this physically represents a transition from
mean flow dynamics characterized by a balance between the viscous and Reynolds
stress gradient to dynamics described by a balance involving all three forces, and
on to a balance between the Reynolds stress gradients and the mean axial pressure
gradient. For the members of the scale hierarchy (described by equations containing
the adjusted Reynolds stresses), the physical interpretation is less clear cut. In either
case, however, the flow field decomposition resulting from exchange of balance
mathematics is retained as a property intrinsic to the structure of the mean flow
equations. The implications of these conclusions are significant with regard to both
modelling and theoretical considerations.

For example, since the mean flow equations have been shown inherently to contain a
hierarchical layer structure, hierarchy-based models (e.g. Townsend 1976; Perry &
Chong 1982; Perry & Marusic 1995; Kerstein 1999) would seem to have natural
advantages. That is, irrespective of the details of any given model, the hierarchical
property alone would probably yield a relatively high degree of efficacy. It is relevant
to note that the results of § 3.4.3 revealed that for large (inner) distance, the distance
from the wall is a length scale embodied in the composition of the scale hierarchy.
While the distance from the wall is often invoked as a characteristic length in
turbulent wall layers (e.g. Townsend 1976; Schlichting & Gersten 2000), its use relies
on physical arguments that are not necessarily supported by observations. Perhaps
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the most common assertion in this regard is that the scale of the largest eddy near the
wall is well represented by the distance from the wall. Measures of the scale of the
vorticity bearing motions, however, do not lend direct support for such an assertion
(Klewicki & Falco 1996). Indeed, the series of recent results from the University
of Illinois and elsewhere (see below) indicate a significantly more complex situation
in which instantaneous agglomerations of eddies (i.e. packets) collectively exhibit a
distance from the wall scaling. Independent of empirical evidence, the present results
provide theoretical justification for the distance from the wall as a characteristic
length that is founded in the mathematical structure of the mean momentum balance.
As revealed herein, this property comes about non-trivially through the structure of
the scale hierarchy.

The mathematics underlying the mean momentum balance layer structure and the
embedded scale hierarchy argue quite strongly against the appropriateness of the
classical overlap ideas (as outlined in § 1) for describing the mean velocity profile.
That is, while consequences of overlap ideas have obviously been empirically verified
to provide a useful framework for curve-fitting the data, the present analyses indicate
that a conceptual framework in the form of outer and inner domains, plus something
else in between, is contrary to the actual structure, in which the inner and outer
scales are simply two extremes in a spectrum of scaling domains. The discussion is
first clarified by noting that the inner/outer matching procedure described by Izakson
(1937) and Millikan (1939) must be supplemented by the restrictive additional physical
assumption that the mean velocity profile is strictly increasing with distance from
the wall. Generic examples, however, show that this is an unusual occurrence among
two-scale problems. Another generic class of examples (discussed in the cited paper)
questions the hypothesis that there even exists a domain of overlap. Moreover, in the
case of Couette flow, simultaneously satisfying an outer (inertial) functional form and
an inner (viscous) one is not conceptually consistent with the fact that the entire flow
constitutes a stress gradient balance layer. Similarly, in boundary-layer and pressure-
driven channel flow the empirical and theoretical evidence given herein and in Wei
et al. (2005) show that, according to the mean momentum balance, the traditionally
defined overlap layer actually contains all or part of three (principal) layers described
by distinctly different dynamics. On the other hand, the exchange of balance property
elucidated herein not only describes the layer-to-layer transitions and the internal
structure of stress gradient balance layers, but also analytically predicts the existence
of a generalized logarithmic-like variation in the mean profile. Specifically, in § 3.5
it was shown that under some circumstances the scale hierarchy naturally leads to
mean profile variations close to logarithmic functions. These inequalities are, to date,
believed to constitute the most theoretically well-founded bounds for the shape of the
mean profile.

Given the loss of information associated with time averaging, these may in fact be
the most that can be said with much theoretical rigour. It is important to note that the
inexactness expressed by these bounds no doubt allows Reynolds-number dependence,
and both ‘logarithmic’ and some limited power law forms to be fit between the bounds.
Thus, even though the ideas of Izakson and Millikan yield conclusions which are
generally consistent with those obtained here, overlapping function mathematics have
little connection to either mean flow dynamics or to the origin of the logarithmic-like
behaviour of the mean profile.

Lastly, while the scale hierarchy is born from the mathematics associated with the
structure of the time-averaged equations of motion, speculative connections to the in-
stantaneous motions in turbulent wall flows are worthy of brief mention. In particular,
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recent detailed particle image velocimetry (PIV) measurements provide mounting
evidence that organized packets of hairpin-like vortices are an important (arguably ir-
reducible) element of the instantaneous structure of boundary layers (Meinhart &
Adrian 1994; Adrian, Meinhart & Tomkins 2000; Christensen & Adrian 2001;
Ganapathisubramani, Longmire & Marusic 2003; Tomkins & Adrian 2003). Key
attributes of these vortex packets have intriguing similarities to the scale hierarchy,
including: (i) an embedded hierarchical structure, (ii) linear scale growth with distance
from the wall, and (iii) a distinct velocity increment embedded within each level of
the vortex packet structure. While these similarities may simply be coincidence, the
identification of an instantaneous connection to the time-averaged structure of the
governing equations would constitute an enormous advance. For this reason, further
investigation and experiments (especially at higher Reynolds numbers) are felt to be
warranted.
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