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ABSTRACT

Machine learning based solvers have garnered much attention in physical sim-
ulation and scientific computing, with a prominent example, physics-informed
neural networks (PINNs). However, PINNs often struggle to solve high-frequency
and multi-scale PDEs, which can be due to the spectral bias during neural net-
work training. To address this problem, we resort to the Gaussian process (GP)
framework. To flexibly capture the dominant frequencies, we model the power
spectrum of the PDE solution with a student t mixture or Gaussian mixture. We
then apply inverse Fourier transform to obtain the covariance function (according
to the Wiener-Khinchin theorem). The covariance derived from the Gaussian
mixture spectrum corresponds to the known spectral mixture kernel. We are the
first to discover its rationale and effectiveness for PDE solving. Next, we estimate
the mixture weights in the log domain, which we show is equivalent to placing
a Jeffreys prior. It automatically induces sparsity, prunes excessive frequencies,
and adjusts the remaining toward the ground truth. Third, to enable efficient and
scalable computation on massive collocation points, which are critical to capture
high frequencies, we place the collocation points on a grid, and multiply our co-
variance function at each input dimension. We use the GP conditional mean to
predict the solution and its derivatives so as to fit the boundary condition and the
equation itself. As a result, we can derive a Kronecker product structure in the
covariance matrix. We use Kronecker product properties and multilinear algebra
to greatly promote computational efficiency and scalability, without any low-rank
approximations. We show the advantage of our method in systematic experiments.

1 Introduction

Scientific and engineering problems often demand we solve a set of partial differential equations
(PDEs). Recently, machine learning (ML) solvers have attracted much attention. Compared to
traditional numerical methods, ML solvers do not require complex mesh (and finite element) designs,
are simple to implement, and can solve inverse problems efficiently and conveniently. The most
popular ML solver is the physics-informed neural network (PINN) (Raissi et al., 2019). Consider a
PDE of the following general form,

F [u](x) = f(x) (x ∈ Ω), u(x) = g(x) (x ∈ ∂Ω) (1)

where F is the differential operator, Ω is the domain, and ∂Ω is the boundary of the domain. To solve
the PDE, the PINN uses a deep neural network (NN) ûθ(x) to model the solution u. It samples Nc

collocation points {xj
c}

Nc
j=1 from Ω and Nb points {xj

b}
Nb
j=1 from ∂Ω, and minimizes a loss,

θ∗ = argminθ Lb(θ) + Lr(θ), (2)

where Lb(θ) =
1
Nb

∑Nb

j=1

(
ûθ(x

j
b)− g(xj

b)
)2

is the boundary term to fit the boundary condition,

and Lr(θ) =
1
Nc

∑N
j=1

(
F [ûθ](x

j
c)− f(xj

c)
)2

is the residual term to fit the equation.
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Despite many success stories, the PINN often struggles to solve PDEs with high-frequency and
multi-scale components in the solutions. This is consistent with the “spectrum bias” observed in
NN training Rahaman et al. (2019). That is, NNs typically can learn the low-frequency information
efficiently but grasping the high-frequency knowledge is much harder. To alleviate this problem, the
recent work Wang et al. (2021) proposes to construct a set of random Fourier features from zero-mean
Gaussian distributions. The random features are then fed into the PINN layers for training (see (2)).
While effective, the performance of this method is unstable, and is highly sensitive to the number and
scales of the Gaussian variances, which are difficult to choose beforehand.

In this paper, we resort to an alternative arising ML solver framework, Gaussian processes (GP) (Chen
et al., 2021; Long et al., 2022a). We propose GP-HM, a GP solver for High frequency and Multi-scale
PDEs. By leveraging the Wiener-Khinchin theorem, we can directly model the solution in the
frequency domain and estimate the target frequencies from the covariance function. We then develop
an efficient learning algorithm to scale up to massive collocation points, which are critical to capture
high frequencies. The major contributions of our work are as follows.

• Model. To flexibly capture the dominant frequencies, we use a mixture of student t or
Gaussian distributions to model the power spectrum of the solution. According to the
Wiener-Khinchin theorem, we can derive the GP covariance function via inverse Fourier
transform, which contains the component weights and frequency parameters. We show that
by estimating the weights in the log domain, it is equivalent to assigning each weight a
Jeffreys prior, which induces strong sparsity, automatically removes excessive frequency
components, and drives the remaining toward the ground-truth. In this way, our GP model
can effectively extract the solution frequencies. Our covariance function derived from the
Gaussian mixture power spectrum corresponds to the known spectral mixture kernel. We
therefore are the first to realize its rationale and benefit for PDE solving.

• Algorithm. To enable efficient and scalable computation, we place all the collocation points
and the boundary (and/or initial) points on a grid, and model the solution values at the
grid with the GP prior (finite projection). To obtain the derivative values in the equation,
we compute the GP conditional mean via kernel differentiation. Next, we multiply our
covariance function at each input dimension to obtain a product covariance. We can then
derive a Kronecker product form for the covariance and cross-covariance matrices. We use
the properties of the Kronecker product and multilinear algebra to restrict the covariance
matrix calculation to each input dimension. In this way, we can greatly reduce the cost and
handle massive collocation points, without any low rank approximations.

• Result. We evaluated GP-HM with several benchmark PDEs that have high-frequency and
multi-scale solutions. We compared with the standard PINN and several state-of-the-art
variants. We also compared with spectral methods (Boyd, 2001) that linearly combine a
set of trigonometric bases to estimate the solution. In all the cases, GP-HM consistently
achieves relative L2 errors at ∼ 10−3 or ∼ 10−4 or even smaller, which are nearly always
the best. By contrast, the competing approaches often failed and gave much larger errors.
The visualization of the element-wise prediction error shows that GP-HM also recovers the
local solution values much better. We examined the learned frequency parameters, which
match the ground-truth. Our ablation study also shows enough collocation points is critical
to the success, implying the importance of our efficient learning method.

2 Gaussian Process

Gaussian processes (GPs) provide an expressive framework for function estimation. Suppose given a
training dataset D = {(xn, yn)|1 ≤ n ≤ N}, we aim to estimate a target function f : Rd → R. We
can assign a GP prior,

f(·) ∼ GP(m(·), cov(·, ·)),

where m(·) is the mean function and cov(·, ·) is the covariance function. In practice, one often sets
m(·) = 0, and adopts a kernel function as the covariance function, namely cov (f(x), f(x′)) =
k(x,x′). A nice property of the GP prior is that if f is sampled from a GP, then any derivative
(if existent) of f is also a GP, and the covariance between the derivative and the function f is the
derivative of the kernel function w.r.t the same input variable(s). For example,

cov(∂x1x2
f(x), f(x′)) = ∂x1x2

k(x,x′) (3)



where x = (x1, . . . , xd)
⊤ and x′ = (x′

1, . . . , x
′
d)

⊤. Under the GP prior, the function values at
any finite input collection, f = [f(x1), . . . , f(xN )], follow a multi-variate Gaussian distribution,
p(f) = N (f |0,K) where [K]ij = cov(f(xi), f(xj)) = k(xi,xj). This is called a GP projection.
Suppose given f , we want to compute the distribution of the function value at any input x, namely
p(f(x)|f). Since f and f(x) also follow a multi-variate Gaussian distribution, we obtain a conditional
Gaussian, p(f(x)|f) = N

(
f(x)|µ(x), σ2(x)

)
, where the conditional mean

µ(x) = cov(f(x), f)K−1f , (4)

and σ2(x) = cov(f(x), f(x)) − cov(f(x), f)K−1cov(f , f(x)), cov(f(x), f) = k(x,X) =
[k(x,x1), . . . , k(x,xN )] and X = [x1, . . . ,xN ]⊤.

3 Gaussian Process PDE Solvers

Covariance Design. When the PDE solution u includes high frequencies or multi-scale information,
one naturally wants to estimate these target frequencies outright in the frequency domain. To this end,
we consider the solution’s power spectrum, S(s) = |û(s)|2 where û(s) is the Fourier transform of
u, i indicates complex numbers and s denotes the frequency. The power spectrum characterizes the
strength of every possible frequency within the solution. To flexibly capture the dominant high and/or
multi-scale frequencies, we use a mixture of student t distributions to model the power spectrum,

S(s) =
∑Q

q=1
wqSt(s;µq, ρ

2
q, ν) (5)

where wq > 0 is the weight of component q, St stands for student t distribution, µq is the mean,
ρq is the inverse variance, and ν is the degree of freedom. Note that wq does not need to be
normalized (their summation is not necessary to be one). Each student t distribution characterizes
one principle frequency (µq), and also robustly models the (potentially many) minor frequencies
with a fat tailed density (Bishop, 2007). An alternative choice is a mixture of Gaussian, S(s) =∑Q

q=1 wqN (s;µq, ρ
2
q). But the Gaussian distribution has thin tails, hence is sensitive to long-tail

outliers and can be less robust (in capturing minor frequencies).

Next, we convert the spectrum model into a covariance function to enable our GP solver to flexibly
estimate the target frequencies. According to the Wiener-Khinchin theorem (Wiener, 1930; Khint-
chine, 1934), for a wide-sense stationary random process, under mild conditions, its power spectrum1

and the auto-correlation form a Fourier pair. We model the solution u as drawn from a stationary GP,
and the auto-correlation is the covariance function, denoted by k(x, x′) = k(x− x′). We then have

S(s) =

∫
k(z)e−i2πszdz, k(z) =

∫
S(s)ei2πzsds (6)

where z = x− x′. Therefore, we can obtain the covariance function by applying the inverse Fourier
transform over S(s). However, the straightforward mixture form in (5) will lead to a complex-valued
covariance function. To obtain a real-valued covariance, inside each component we add another
student t distribution with mean −uq so as to cancel out the imaginary part after integration. In
addition, to make the derivation convenient, we scale the inverse variance and degree of freedom by a
constant. We use the following power spectrum model,

S(s) =
∑Q

q=1
wq

(
St(s;µq, 4π

2ρ2q, 2ν) + St(s;−µq, 4π
2ρ2q, 2ν)

)
. (7)

Applying inverse Fourier transform in (6), we can derive the following covariance function,

kStM(x, x′) =
∑Q

q=1
wqγν,ρq

(x, x′) cos(2πµq(x− x′)) (8)

where γν,ρq
(x, x′) = 21−ν

Γ(ν)

(√
2ν |x−x′|

ρq

)ν

Kν(
√
2ν |x−x′|

ρq
) is the Matérn kernel with degree of

freedom ν and length scale ρq, and Kν is the modified Bessel function of the second kind. The
details of the derivation is left in Appendix. We now can see that the frequency information µq and

1To be well-posed, the power spectrum for a random process is defined in a slightly different way (taking the
limit of a windowed signal), but it reflects the same insight; see (Lathi, 1998; Grimmett and Stirzaker, 2020) for
details.



component weights wq are embedded into the covariance function. By learning a GP model, we
expect to capture the true frequencies of the solution. One can also construct a symmetric Gaussian
mixture in the same way, and via inverse Fourier transform obtain

kGM(x, x′) =
∑Q

q=1
wq exp

(
−ρ2q(x− x′)2

)
· cos(2π(x− x′)µq). (9)

This is known as the spectral mixture kernel (Wilson and Adams, 2013), which was originally
proposed to construct an expressive stationary kernel according to its Fourier decomposition, because
in principle the Gaussian mixture can well approximate any distribution, as long as using enough
many components. Wilson and Adams (2013) shows that the spectral mixture kernel can well recover
many popular kernels, such as rational quadratic and periodic kernel. In this paper, we take a different
motivation and viewpoint. We argue that a similar design can be very effective in extracting dominant
frequencies in PDE solving.

How to determine the component number? Since the number of dominant frequencies is unknown
apriori, the solution accuracy can be sensitive to the choice of the component number Q. A too small
Q can miss important (high) frequencies while a too big Q can bring in excessive noisy frequencies.
To address this problem, we set a large Q (e.g., 50), initialize the frequency parameters µq across
a wide range, and then optimize the component weights in the log domain. This is equivalent to
assigning each wq a Jefferys prior. Specifically, define wq = log(wq). Since we do not place an
additional prior over wq , we can view p(wq) ∝ 1. Then we have

p(wq) = p(wq)

∣∣∣∣dwq

dwq

∣∣∣∣ ∝ 1

wq
. (10)

The Jeffreys prior has a very high density near zero, and can induce strong sparsity during the learning
of wq (Figueiredo, 2001). Accordingly, the excessive frequency components can be automatically
pruned, and the learning drives the remaining µq’s toward the target frequencies. This have been
verified by our experiments; see Fig. 5 in Section 6.

GP Solver Model to Enable Fast Computation. To fulfill efficient and scalable calculation, we
multiply our covariance function at each input dimension to construct a product kernel,

cov(f(x), f(x′)) = κ(x,x′|Θ) =
∏d

j=1
kStM(xj , x

′
j |θq). (11)

where θq = {wq, µq, ρq} and Θ = {θq}Qq=1 are the kernel parameters. Note that the product kernel
is equivalent to performing a (high-dimensional) nonlinear feature mapping for each input dimension
and then computing the tensor-product across the features. It is a highly expressive structure and
commonly used in finite element design (ARNOLD et al., 2012). Next, we create a grid on the
domain Ω. We can randomly sample or specially design the locations at each input dimension, and
then construct the grid through a Cartesian product. Denote the locations at each input dimension j
by hj = [hj1, . . . , hjMj

], we have an M1 × . . .×Md grid,

G = h1 × . . .× hd = {x = (x1, . . . , xd)|xj ∈ hj , 1 ≤ j ≤ d}. (12)

We will use the grid points on the boundary ∂Ω to fit the boundary conditions and all the grid points
as the collocation points to fit the equation.

Denote the solution values at G by U = {u(x)|x ∈ G}, which is an M1×. . .×Md array. According to
the GP prior over u(·), we have a multi-variate Gaussian prior distribution, p(U) = N (vec(U)|0,C),
where vec(·) is to flatten U into a vector, C is the covariance matrix computed from G with kernel
κ(·, ·). Denote the grid points on the boundary by B = G ∩ ∂Ω. To fit the boundary condition, we
use a Gaussian likelihood, p(g|uB) = N (g|ub, τ

−1
1 I), where g = vec ({g(x)|x ∈ B}), ub are the

values of U on B (flatten into a vector), and τ1 > 0 is the inverse variance. Next, we want to fit the
equation at G. To this end, we need to first obtain the prediction of all the relevant derivatives of u in
the PDE, e.g., ∂x1

u and ∂x1x2
u, at the grid G. Since u’s derivatives also follow the GP prior, we use

the kernel derivative to obtain their cross covariance function (see (3)), with which to compute the GP
conditional mean (conditioned on U ) as the prediction. Take ∂x1u and ∂x1x2u as examples. We have

∂x1
u(x) = ∂x1

k(x,G)C−1vec(U), ∂x1x2
u(x) = ∂x1x2

k(x,G)C−1vec(U), (13)

where k(x,G) = [k(x,x′
1), . . . , k(x,x

′
M )] where M =

∏
j Mj and all x′

j constitute G. We can
accordingly predict the values of the all the relevant u derivatives at G, and combine them to obtain



the PDE (see (1)) evaluation at G, which we denote by H. To fit the GP model to the equation, we use
another Gaussian likelihood, p(0|U) = N (0|vec(H), τ−1

2 I), where 0 is an virtual observation, and
τ2 > 0. Note that we use the same framework as in (Chen et al., 2021; Long et al., 2022b). However,
there are two critical differences. First, rather than randomly sample the collocation points, we
place all the collocation points on a simple grid. Second, rather than assign a multivariate Gaussian
distribution over the function values and all of its derivatives, we only model the distribution of the
function values (at the grid). We then use the GP conditional mean to predict the derivative values.
As we will discuss in Section 4, these modeling strategies, coupled with the product covariance (11),
enable highly efficient and scalable computation, yet do not need any low rank approximations.

4 Algorithm

We maximize the log joint probability2 to estimate U , the kernel parameters Θ, and the likelihood
inverse variances τ1 and τ2. To flexibly adjust the influence of the boundary likelihood so as to
balance the competition between the boundary and equation likelihoods (Wang et al., 2020a;c), we
introduce a free hyper-parameter λb > 0, and maximize the weighted log joint probability,

L(U ,Θ, τ1, τ2) = logN (vec(U)|0,C) + λb · logN (g|ub, τ
−1
1 I) + logN (0|vec(H), τ−1

2 I)

=− 1

2
log |C| − 1

2
vec(U)⊤C−1vec(U) + λb

[
Nb

2
log τ1 −

τ1
2
∥ub − g∥2

]
+

M

2
log τ2 −

τ2
2
∥vec(H)∥2 + const. (14)

Naive computation of L is extremely expensive when the grid is dense, namely, M is large. That
is because the covariance matrix C is between all the grid points, of size M ×M (M =

∏
j Mj).

Also, to obtain H, we need to compute the cross-covariance between every needed derivative in the
PDE and u across all the grid points. Consequently, the naive computation of the log determinate
and inverse of C (see (14) ) and the required cross-covariance take the time and space complexity
O(M3) and O(M2), respectively, which can be infeasible even when each Mj is relatively small.
For example, when d = 3, and M1 = M2 = M3 = 100, we have M = 106 and the computation of
C will be too costly to be practical (on most computing platforms).

Thanks to that (1) our prior distribution is only on all the function values at the grid, and (2) our
covariance function is a product over each input dimension (see (11)). We can derive a Kronecker
product structure in C, namely, C = C1 ⊗ . . .⊗Cd, where Cj = kStM(hj ,hj) is the kernel matrix
on hj — the locations at input dimension j, of size Mj ×Mj . Note that we can also use kGM in (9).
Using the Kronecker product properties (Minka, 2000), we obtain

log |C| =
∑d

j=1

M

Mj
log |Cj |,

C−1vec(U) =
(
C−1

1 ⊗ . . .⊗C−1
d

)
vec(U) = vec

(
U ×1 C

−1
1 ×2 . . .×d C

−1
d

)
, (15)

where ×j is the tensor-matrix product at mode j. Accordingly, we can first compute the local log
determinant and inverse at each input dimension (i.e., for each Cj), which reduces the time and
space complexity to O(

∑d
j=1 M

3
j ) and O(

∑d
j=1 M

2
j ), respectively. Then we perform the multilinear

operation in the last line of (15), i.e., sequentially multiplying the array U with each C−1
j , which

takes the time complexity O
(
(
∑d

j=1 Mj)M
)

. The computational cost is dramatically reduced.

Furthermore, since our product covariance function is factorized over each input dimension, the cross
covariance between any derivative of u and u itself still maintains a product form — because only
the kernel(s) at the corresponding input dimension(s) need to be differentiated. For example,

cov(∂x1x2
u(x), u(x′)) = ∂x1x2

κ(x,x′) = ∂x1x2

∏
j
κ(xj , x

′
j)

= ∂x1κ(x1, x
′
1) · ∂x2κ(x2, x

′
2) ·

∏
j>2

κ(xj , x
′
j). (16)

2We found that performing posterior inference over U and other parameters, e.g., variational inference, will
degrade the solution accuracy, which partly be because the inference/optimization is much more complicated
and challenging.



Accordingly, we can also obtain Kronecker product structures in predicting each derivative of u. Take
∂x1x2

u as an example. According to (13), we can derive that

∂x1x2u(x) = (∂x1k(x1,h1)⊗ ∂x2k(x2,h2)⊗ . . .⊗ k(xd,hd))
(
C−1

1 ⊗ . . .⊗C−1
d

)
vec(U)

=
(
∂x1k(x1,h1)C

−1
1 ⊗ ∂x2k(x2,h2)C

−1
2 ⊗ . . .⊗ k(xd,hd)C

−1
d

)
vec(U)

= vec
(
U ×1 ∂x1k(x1,h1)C

−1
1 ×2 ∂x2k(x2,h2)C

−1
2 ×3 k(x3,h3)C

−1
3 ×4 . . .×d k(xd,hd)C

−1
d

)
.

Denote the values of ∂x1x2
u at the grid M by ∂x1x2

U ∆
= {∂x1x2

u(x)|x ∈ M}. Then it is
straightforward to obtain ∂x1x2

U = U ×1 ∇1C1 ×2 ∇1C2, where ∇1 means taking the deriva-
tive w.r.t the first input variable, and we have ∇1C1 = [∂h11

k(h11,h1); . . . ; ∂h1M1
k(h1M1

,h1)]

and ∇1C2 = [∂h21
k(h21,h2); . . . ; ∂h2M2

k(h2M2
,h2)]. Hence, we just need to perform two tensor-

matrix products, which takes O((M1+M2)M) operations, and is efficient and convenient. Similarly,
we can compute the prediction of all the associated u derivatives in the PDE operator, with which we
can obtain H — the PDE evaluation at the grid in (14). We can then use automatic differentiation to
calculate the gradient to maximize (14).

Algorithm Complexity. The time complexity of our algorithm is O(
∑

j M
3
j + (

∑
j Mj)M). The

space complexity is O(
∑

j M
2
j +M), including the storage of the covariance matrix at each input

dimension, and the solution estimate at grid G, namely U .

5 Related Work

Although the PINN has many success stories, e.g., (Raissi et al., 2020; Chen et al., 2020; Jin et al.,
2021; Sirignano and Spiliopoulos, 2018; Zhu et al., 2019; Geneva and Zabaras, 2020; Sahli Costabal
et al., 2020), the training is known to be challenging, which is partly due to that applying differential
operators over the NN can complicate the loss landscape (Krishnapriyan et al., 2021). Recent works
have analyzed common failure modes of PINNs which include modeling problems exhibiting high-
frequency, multi-scale, chaotic, or turbulent behaviors (Wang et al., 2020c;b;a; 2022), or when the
governing PDEs are stiff (Krishnapriyan et al., 2021; Mojgani et al., 2022). One class of approaches
to mitigate the training challenge is to set different weights for the boundary and residual loss
terms. For example, Wight and Zhao (2020) suggested to set a large weight for the boundary loss
to prevent the dominance of the residual loss. Wang et al. (2020a) proposed a dynamic weighting
scheme based on the gradient statistics of the loss terms. Wang et al. (2020c) developed an adaptive
weighting approach based on the eigen-values of NTK. Liu and Wang (2021) employed a mini-max
optimization and update the loss weights via stochastic ascent. McClenny and Braga-Neto (2020)
used a multiplicative soft attention mask to dynamically re-weight the loss term on each data point
and collocation point. Another strategy is to modify the NN architecture so as to exactly satisfy
the boundary conditions, e.g., (Lu et al., 2021; Lyu et al., 2020; Lagaris et al., 1998). However,
these methods are restricted to particular types of boundary conditions, and are less flexible than
the original PINN framework. Tancik et al. (2020); Wang et al. (2021) used Gaussian distributions
to construct random Fourier features to improve the learning of the high-frequency and multi-scale
information. The number of Gaussian variances and their scales are critical to the success of these
methods. But these hyperparameters are quite difficult to choose.

Earlier works (Graepel, 2003; Raissi et al., 2017) have used the GP for solving linear PDEs with noisy
measurement of source terms. The recent work (Chen et al., 2021) develops a general approach for
solving both linear and nonlinear PDEs. Long et al. (2022b) proposed a GP framework to integrate
various differential equations. These methods use SE and Matérn kernels and are challenging to
capture high-frequency and multi-scale solutions. In addition, they cannot scale up to a large number
of collocation points due to the huge covariance matrix among the target function and its derivative
values. The computational advantage of using Kronecker product structures have been realized
in (Saatcci, 2012), and applied in other tasks, such as nonparametric tensor decomposition (Xu et al.,
2012), sparse approximation with massive inducing points (Wilson and Nickisch, 2015; Izmailov
et al., 2018), and high-dimensional output regression (Zhe et al., 2019). However, in machine learning
applications, data is typically not observed at a grid and the Kronecker product has a limited usage.
By contrast, for PDE solving, it is natural to estimate the solution values on a grid, which opens the
possibility of using Kronecker products for efficient computation. To our knowledge, our work is the
first to realize this benefit and use the Kronecker product structure to efficiently solve PDEs.



6 Experiment

To evaluate GP-HM, we considered three commonly-used benchmark PDE families in the literature
of machine learning solvers (Raissi et al., 2019; Wang et al., 2021; Krishnapriyan et al., 2021).
Following the prior works, we fabricated a series of solutions to thoroughly examine the performance.

The Poisson Equation. We first considered 1D and 2D Poisson equations with different source
functions that lead to various scale information in the solution. We used Dirichlet boundary conditions.

uxx = f(x), x ∈ [0, 2π],

uxx + uyy = f(x, y), (x, y) ∈ [0, 2π]× [0, 2π]. (17)

For the 1D Poisson equation, we created source functions f that give the following high-frequency
and multi-frequency solutions, u1 = sin(100x), u2 = sin(x) + 0.1 sin(20x) + 0.05 cos(100x),
u3 = sin(6x) cos(100x), and u4 = x sin(200x). In addition, we tested with a challenging hybrid
solution that mixes a high-frequency with a quadratic function, u5 = sin(500x)− 2(x− 0.5)2 where
we set x ∈ [0, 1]. For the 2D Poisson equation, we tested with the following multi-scale solutions,
u6 = sin(100x) sin(100y) and u7 = sin(6x) sin(20x) + sin(6y) sin(20y).

Allen-Cahn Equation. We next considered 1D and 2D Allen-Cahn (nonlinear diffusion-reaction)
equations with different source functions and Dirichlet boundary conditions.

uxx + u(u2 − 1) = f(x), x ∈ [0, 2π],

uxx + uyy + u(u2 − 1) = f(x, y), (x, y) ∈ [0, 1]× [0, 1]. (18)

For the 1D equation, we tested with solutions u1 = sin(100x) and u2 = sin(6x) cos(100x). For
the 2D equation, we created the source f that gives the following mixed-scale solution, u =
(sin(x) + 0.1 sin(20x) + cos(100x)) · (sin(y) + 0.1 sin(20y) + cos(100y)) .

Advection Equation. Third, we evaluated with a 1D advection (one-way) equation,

ut + 200ux = 0, x ∈ [0, 2π], t ∈ [0, 1]. (19)

We used the Dirichlet boundary conditions, and the solution has an analytical form, u(x, t) =
h(x− 200t) where h(x) is the initial condition for which we chose as h(x) = sin(x).

We compared with the following state-of-the-art ML solvers: (1) standard PINN, (2) Weighted
PINN (W-PINN) that up-weight the boundary loss to reduce the dominance of the residual loss,
and to more effectively propagate the boundary information, (3) Rowdy (Jagtap et al., 2022), PINN
with an adaptive activation function, which combines a standard activation with several sin or cos
activations. (4) RFF-PINN, feeding Random Fourier Features to the PINN (Wang et al., 2021). To
ensure RFF-PINN achieves the best performance, we followed (Wang et al., 2020c) to dynamically
re-weight the loss terms based on NTK eigenvalues (Wang et al., 2020c). (5) Spectral Method (Boyd,
2001), which approximations the solution with a linear combination of trigonometric bases, and
estimates the basis coefficients via least mean squares. In addition, we also tested (6) GP-SE and (7)
GP-Matérn, GP solvers with the square exponential (SE) and the Matérn kernel. The details about
the hyperparameter setting and tuning is provided in Section B of Appendix. We denote our method
using the covariance function based on (8) and (9) by GP-HM-StM and GP-HM-GM, respectively.

Solution Accuracy. We report the relative L2 error (normalized root-mean-square error) of each
method in Table 1 and 2. The best result and the smaller error between GP-HM-StM and GP-HM-GM
are made bold. We can see that our method achieves the smallest solution error among all the cases
except that for the 1D Poisson equation with solution u2, RFF-PINN is the best. However, in all the
cases, the solution error of GP-HM achieves at least 1e-3 level. In quite a few cases, our method
even reaches an error around 1e-6 and 1e-7. It shows that GP-HM can successfully solve all these
equations. By contrast, GP solvers using the plain SE and Matérn kernel result in several orders
of the magnitude bigger errors. The standard PINN and W-PINN basically failed to solve every
equation. While Rowdy improved upon PINN and W-PINN in most cases, the error is still quite
large. The inferior performance of the spectral method implies that only using trigonometric bases
is not sufficient. With the usage of the random Fourier features, RFF-PINN can greatly boost the
performance of PINN and W-PINN in many cases. However, in the most cases, it is still much inferior
to GP-HM. The performance of RFF-PINN is very sensitive to the number and scales of the Gaussian
variance, and these hyper-parameters are not easy to choose. We have tried 20 settings and report the
best performance (see Section B in Appendix).



Method 1D 2D
u1 u2 u3 u4 u5 u6 u7

PINN 1.36e0 1.40e0 1.00e0 1.42e1 6.03e−1 1.63e0 9.99e−1
W-PINN 1.31e0 2.65e−1 1.86e0 2.60e1 6.94e−1 1.63e0 6.75e−1

RFF-PINN 4.97e−4 2.00e−5 7.29e−2 2.80e−1 5.74e−1 1.69e0 7.99e−1
Spectral method 2.36e−2 3.47e0 1.02e0 1.02e0 9.98e−1 1.58e−2 1.04e0

Rowdy 1.70e0 1.00e0 1.00e0 1.01e0 1.03e0 2.24e1 7.36e−1
GP-SE 2.70e−2 9.99e−1 9.99e−1 3.19e−1 9.75e−1 9.99e−1 9.53e−1

GP-Matérn 3.32e−2 9.8e−1 5.15e−1 1.83e−2 6.27e−1 6.28e−1 3.54e−2
GP-HM-GM 3.99e−7 2.73e−3 3.92e−6 1.55e−6 1.82e−3 6.46e−5 1.06e−3
GP-HM-StM 6.53e−7 2.71e−3 3.17e−6 8.97e−7 4.22e−4 6.87e−5 1.02e−3

Table 1: Relative L2 error in solving 1D and 2D Poisson equations, where uj’s are different high-
frequency and multi-scale solutions: u1 = sin(100x), u2 = sin(x) + 0.1 sin(20x) + 0.05 cos(100x),
u3 = sin(6x) cos(100x), u4 = x sin(200x), u5 = sin(500x)− 2(x− 0.5)2, u6 = sin(100x) sin(100y) and
u7 = sin(6x) sin(20x) + sin(6y) sin(20y).

Method 1D Allen-cahn 2D Allen-cahn 1D Advection
u1 u2

PINN 1.41e0 1.14e1 1.96e1 1.00e0
W-PINN 1.34e0 1.45e1 2.03e1 1.01e0

RFF-PINN 1.24e−3 2.46e−1 7.17e−1 9.96e−1
Spectral method 2.34e−2 2.45e1 2.45e1 2.67e0

Rowdy 1.30e0 1.31e0 1.18e0 1.03e0
GP-SE 2.74e−2 1.06e−2 3.48e−1 9.99e−1

GP-Matérn 3.32e−2 5.16e−2 2.96e−1 9.99e−1
GP-HM-StM 7.71e−6 4.76e−6 2.99e−3 9.08e−4
GP-HM-GM 4.91e−6 4.24e−6 5.78e−3 3.59e−3

Table 2: Relative L2 error in solving 1D, 2D Allen-cahn equations and 1D advection equation, where u1 and
u2 are two test solutions for 1D Allen-cahn: u1 = sin(100x), u2 = sin(6x) cos(100x). The test solution
for 2D Allen-cahn is (sin(x) + 0.1 sin(20x) + cos(100x)) · (sin(y) + 0.1 sin(20y) + cos(100y)), and for 1D
advection equation is sin(x− 200t).

Point-wise Error. We then show the point-wise solution error in Fig. 2, 3, 4, and in Appendix
Fig. 6, 7, 8. We can see that GP-SE is difficult to capture high frequencies. While GP-Matérn is
better, it is unable to grasp all the scale information. RFF-PINN successfully captured multi-scale
frequencies in Fig. 2, but it failed in more challenging cases as in Fig. 3 and 4. In 2D Poisson
and 1D Advection, the point-wise error of both GP-HM-StM and GP-HM-GM is quite uniform
across the domain and is close to zero (dark blue); see Fig. 4, and in Appendix Fig. 7, 8. By
contrast, the other methods exhibit large errors in a few local regions. Together these results show
that GP-HM not only gives a superior global accuracy, but locally recovers individual solution values.
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Figure 1: The solution error using different grid resolutions.

Frequency Learning. Third, we
investigated the learned component
weights wq and frequencies µq of GP-
HM. In Fig. 5, we show the results
for two Poisson equations. As we can
see, although the number of compo-
nents Q is set to be much more than
the true frequencies, the estimation of
most weights wq is very small (less
than 10−10). That means, excessive
frequency components have been au-
tomatically pruned. The remaining
components with significant weights completely match the number of true frequencies in the solution.
The frequency estimation µq is very close to the ground-truth. This demonstrates that the implicit
Jefferys prior (by optimizing wq in the log space) can indeed implement sparsity, select the right
frequency number, and recover the ground-truth frequency values.

Influence of Collocation Point Quantity. Fourth, we examined how the number of collocation
points influences the solution accuracy. To this end, we tested with a 1D Poisson and 2D Poisson
equation, whose solutions include high frequencies. In Fig. 1, we show the solution accuracy with
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Figure 4: Point-wise solution error for 2D Allen-cahn equation, and the solution is
(sin(x) + 0.1 sin(20x) + cos(100x)) (sin(y) + 0.1 sin(20y) + cos(100y)).
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Figure 5: The learned component weights and frequency values. For each number pair a(b) in the figure, “a” is
the learned frequency by GP-HM, and “b” is the ground-truth. The expressions on the top are the solutions.

different grid sizes (resolutions). We can see that in both PDEs, using low resolutions gives much
worse accuracy, e.g., less than 200 in 1D and 200× 200 in 2D Poisson. The decent performance is
obtained only when resolutions is high enough, e.g., 300 in 1D and 400× 400 in 2D Poisson. That
means, the number of collocation points is large (particularly for 2D problems, e.g., 160K collocation
points for the resolution 400× 400). However, it is extremely costly or practically infeasible for the
existent GP solvers to incorporate massive collocation points, due to the huge covariance matrix.
Our GP solver model (defined on a grid) and computational method can avoid computing the full
covariance matrix, and highly efficiently scale to high resolutions. The results have demonstrated the
importance and value of our model and computation method.

Learning behavior and efficiency. Finally, we investigated the learning behavior and computational
efficiency of GP-HM as compared with the PINN and its variants. Due to the space limit, we leave
the results and discussion in Section C of Appendix.



7 Conclusion

We have presented GP-HM, a GP solver specifically designed for high-frequency and multi-scale
PDEs. On a set of benchmark tasks, GP-HM shows promising performance. This might motivate
alternative directions of developing machine learning solvers. In the future, we plan to develop more
powerful optimization algorithms to further accelerate the convergence and to investigate GP-HM in
a variety of practical applications.
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Appendix

A Covariance Function Derivation

In this section, we show how to obtain our covariance function in (8) of the main paper. We leverage
the fact that the student t density is a scale mixture of Gaussians with a Gamma prior over the inverse
variance,

p(x|µ, a, b) =
∫ ∞

0

N (x|µ, τ−1)Gam(τ |a, b)dτ

=
ba

Γ(a)

(
1

2π

)1/2 [
b+

(x− µ)2

2

]−a−1/2

Γ(a+ 1/2). (20)

The key to obtain this is to leverage the form of the normalizer of the Gamma distribution. When
merging terms in the Gaussian and Gamma prior in the integration, one can construct another
unnormalized Gamma distribution. Accordingly, the integration w.r.t τ gives rises to the normalizer.

If we set ν = 2a and λ = a/b, we immediately obtain the standard student t density,

St(x|µ, λ, ν) = Γ(ν/2 + 1/2)

Γ(ν/2)

(
λ

πν

)1/2 [
1 +

λ(x− µ)2

ν

]−ν/2−1/2

, (21)

where µ is the mean, λ is the precision (inverse variance) parameters, and ν is the degree of freedom.

Next, we observe that the spectral density of a Matérn covariance function is a student t density (Ras-
mussen and Williams, 2006). Given the Matérn covariance

γν,ρq
(x, x′) =

21−ν

Γ(ν)

(√
2ν

|x− x′|
ρq

)ν

Kν(
√
2ν

|x− x′|
ρq

), (22)

the spectral density is St(s; 0, 4π2ρ2, 2ν). That means,

γν,ρ(∆) =

∫ ∞

−∞
St(s; 0, 4π2ρ2, 2ν) exp{i2πs ·∆}ds, (23)

where ∆ = |x− x′|. From the scale-mixture form (20), we can set â = ν and b̂ = â/(4π2ρ2), and
obtain

St(s; 0, 4π2ρ2, 2ν) =

∫ ∞

0

N (s|0, τ−1)Gam(τ |â, b̂)dτ. (24)

Substituting (24) into (23), we have

γν,ρ(∆) =

∫ ∞

0

Gam(τ |â, b̂)
∫ ∞

−∞
N (s|0, τ−1) exp{i2πs ·∆}dsdτ. (25)

Consider the inverse Fourier transform,∫ ∞

−∞
St(s;µ, 4π2ρ2, 2ν) exp(i2π∆ · s)ds

=

∫ ∞

0

Gam(τ |â, b̂)
∫ ∞

−∞
N (s|µ, τ−1) exp (i2πs ·∆)dsdτ (26)

we observe that

F−1[N (s|µ, τ−1)] =

∫
N (s|µ, τ−1) exp (i2πs ·∆)ds

= exp
(
−2π2τ−1∆2

)
exp (i2πµ ·∆)

= F−1[N (s|0, τ−1)] exp (i2πµ ·∆)

=

∫
N (s|0, τ−1) exp (i2πs ·∆)ds · exp (i2πµ ·∆) , (27)



where F−1 is the inverse Fourier transform, and i indicates complex numbers. Note that when we
set µ = 0, from the second line, we see F−1[N (s|0, τ−1)] = exp

(
−2π2τ−1∆2

)
. That means, the

inverse transform just moves out a Fourier basis with frequency µ.

Substitute (27) into (25), we obtain∫ ∞

−∞
St(s;µ, 4π2ρ2, 2ν) exp(i2π∆ · s)ds

=

∫ ∞

0

Gam(τ |â, b̂)
∫ ∞

−∞
N (s|0, τ−1) exp (i2πs ·∆)dsdτ · exp(i2πµ ·∆)

= γν,ρ(∆) · exp(i2πµ ·∆).

Therefore, when we model the spectral density S(s) as a mixture of student-t distribution,

S(s) =

Q∑
q=1

wq

(
St(s;µq, 4π

2ρ2q, 2ν) + St(s;−µq, 4π
2ρ2q, 2ν)

)
, (28)

It is straightforward to obtain the following covariance function,

kStM(x, x′) =

Q∑
q=1

wq · γν,ρq
(x, x′) cos(2πµq(x− x′)). (29)

B Experimental Settings

We implemented our method with JAX (Frostig et al., 2018) while all the competing methods with
Pytorch (Paszke et al., 2019). For all the kernels, we initialized the length-scale to 1. For the Matérn
kernel (component), we chose ν = 5/2. For our method, we set the number of components Q = 30,
and initialized each wq = 1/Q. For 1D Poisson and 1D Allen-cahn equations, we varied the 1D
mesh points from 400, 600 and 900. For 2D Poisson, 2D Allen-cahn and 1D advection, we varied
the mesh from 200× 200, 400× 400 and 600× 600. We chose an ending frequency F from {20,
40, 100}, and initialize uq’s with linspace(0, F, Q). We used ADAM for optimization, and
the learning rate was set to 10−2. The maximum number of iterations was set to 1M, and we used
the summation of the boundary loss and residual loss less than 10−6 as the stopping condition. The
solution estimate U was initialized as zero. We set the λb = 500. For W-PINN, we varied the
weight of the residual loss from {10, 103, 104}. For Rowdy, we combined tanh with sin activation,
ϕ(x) = tanh(x) +

∑K
k=2 n sin((k − 1)nx). We followed the original Rowdy paper (Jagtap et al.,

2022) to set the scaling factor n = 10 and varied K from 3, 5 and 9. For the spectral method, we
used 200 Trigonometric bases, including cos(nx) and sin(nx) where n = 1, 2, . . . , 100. We used
the tensor-product for the 2D problems and 1D advection. We used the least mean square method
to estimate the basis weights. To run RFF-PINNs, we need to specify the number and scales of the
Gaussian variances to construct the random features. To ensure a broad coverage, we varied the
number of variances from {1, 2, 3, 5}. For each number, we set the variances to be the commonly
used values suggested by authors, {1, 20, 50, 100}, combined with randomly sampled ones. The
detailed specification is given by Table 3. There are in total 20 settings. We report the best result of
RFF-PINN from these settings. For all the PINN based methods, we varied the number of collocation
points from 10K and 12K.

Number Scales
1 1, 20, 50, 100, rand(1, [1,K])
2 3× rand (2, {1, 20, 50, 100, rand(1, [1,K])}) , 2× rand(2, [1,K])
3 3× rand (3, {1, 20, 50, 100, rand(1, [1,K])}) , 2× rand(3, [1,K])
5 2× {1, 20, 50, 100, rand(1, [1,K])}, 3× rand(5, [1,K])

Table 3: The number and scales of the Gaussian variances used in RFF-PINN, where rand(k,A) means
randomly selecting k elements from the set A without replacement, l× means repeating the sampling to generate
l configurations, and K is the maximum candidate frequency for which we set K = 200.
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Figure 6: Prediction for the 1D Poisson equation with solution x sin(200x).
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Figure 7: Point-wise solution error for 2D Poisson equation and the solution is u(x) = sin(6x) sin(20x) +
sin(6y) sin(20y).
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Figure 8: Point-wise solution error for 1D Advection equation and the solution is sin(x− 200t).
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Figure 9: The learning curve.

C Learning Behavior and Computational Efficiency

We examined the training behavior of our method. As shown in Fig. 9, with the covariance based
on the student t mixture, GP-HM can converge faster or behave more robustly during the training.
Overall, in most cases, GP-HM with covariance based on the student t mixture performs better than
with Gaussian mixture.

The computation efficiency of GP-HM is comparable to PINN-type approaches. For example, on
solving 1D Poisson and Allen-cahn equations, the average per-iteration time of GP-HM (mesh 200),
PINN and RFF-PINN are 0.006, 0.004 and 0.004 seconds. For 2D Poisson and Allen-cahn equations



and 1D advection, the average per-iteration time of GP-HM (mesh 200× 200) is 0.022 seconds while
PINN and RFF-PINN (with two scales) took 0.006 and 0.02 seconds, respectively. We examined the
running time on a Linux workstation with NVIDIA GeForce RTX 3090 GPU. Thanks to the usage of
the grid structure and the product covariance, our GP solver can scale to a large number of collocation
points, without need for additional low rank approximations.

D Limitation and Discussion

The learning of GP-HM can automatically prune useless frequencies and meanwhile adjusts µq

for the preserved components, namely, those with nontrivial values of wq, to align with the true
frequencies in the solution. However, the selection and adjustment of the covariance components
often require many iterations, like tens of thousands, see Fig. 9a. More interestingly, we found that
the first-order optimization approaches, like ADAM, perform well, yet the second-order optimization,
which in theory converges much faster, such as L-BFGS, performs badly. This might be because the
component selection and adjustment is a challenging optimization task, and might easily encounter
inferior local optimums. To overcome this limitation and challenge, we plan to try with alternative
sparse prior distribution over the weights wq , such as the horse-shoe prior and the spike-and-slab prior,
to accelerate the pruning and frequency learning. We also plan to try other optimization strategies,
such as alternating updates of the component weights and frequencies, to see if we can accelerate the
convergence and if we can embed and take advantage of the second-order optimization algorithms.
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