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Abstract

Practical tensor data is often along with time information. Most existing tem-
poral decomposition approaches estimate a set of fixed factors for the objects in
each tensor mode, and hence cannot capture the temporal evolution of the objects’
representation. More important, we lack an effective approach to capture such
evolution from streaming data, which is common in real-world applications. To
address these issues, we propose Streaming Factor Trajectory Learning (SFTL) for
temporal tensor decomposition. We use Gaussian processes (GPs) to model the
trajectory of factors so as to flexibly estimate their temporal evolution. To address
the computational challenges in handling streaming data, we convert the GPs into
a state-space prior by constructing an equivalent stochastic differential equation
(SDE). We develop an efficient online filtering algorithm to estimate a decoupled
running posterior of the involved factor states upon receiving new data. The decou-
pled estimation enables us to conduct standard Rauch-Tung-Striebel smoothing to
compute the full posterior of all the trajectories in parallel, without the need for re-
visiting any previous data. We have shown the advantage of SFTL in both synthetic
tasks and real-world applications. The code is available at https://github.
com/xuangu-fang/Streaming-Factor-Trajectory-Learning.

1 Introduction

Tensor data is common in real-world applications. For example, one can extract a three-mode tensor
(patient, drug, clinic) from medical service records and a four-mode tensor (customer, commodity,
seller, web-page) from the database of an online shopping platform. Tensor decomposition is a
fundamental tool for tensor data analysis. It introduces a set of factors to represent the objects in
each mode, and estimate these factors by reconstructing the observed entry values. These factors
can be viewed as the underlying properties of the objects. We can use them to search for interesting
structures within the objects (e.g., communities and outliers) or as discriminate features for predictive
tasks, such as personalized treatment or recommendation.

Real-world tensor data is often accompanied with time information, namely the timestamps at which
the objects of different modes interact to produce the entry values. Underlying the timestamps can
be rich, valuable temporal patterns. While many temporal decomposition methods are available,
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most of them estimate a set of static factors for each object — they either introduce a discrete
time mode [Xiong et al., 2010, Zhe et al., 2016a] or inject the timestamp into the decomposition
model [Zhang et al., 2021, Fang et al., 2022, Li et al., 2022]. Hence, these methods cannot learn
the temporal variation of the factors. Accordingly, they can miss important evolution of the objects’
inner properties, such as health and income. In addition, practical applications produce data streams
at a rapid pace [Du et al., 2018]. Due to the resource limit, it is often prohibitively expensive to
decompose the entire tensor from scratch whenever we receive new data. Many privacy-protecting
applications (e.g., SnapChat) even forbid us to preserve or re-access the previous data. Therefore, not
only do we need a more powerful decomposition model that can estimate the factor evolution, we
also need an effective method to capture such evolution from fast data streams.

To address these issues, we propose SFTL, a Bayesian streaming factor trajectory learning approach
for temporal tensor decomposition. Our method can efficiently handle data streams, with which
to estimate a posterior distribution of the factor trajectory to uncover the temporal evolution of the
objects’ representation. Our method never needs to keep or re-visit previous data. The contribution
of our work is summarized as follows.

• First, we use a Gaussian process (GP) prior to sample the factor trajectory of each object
as a function of time. As a nonparametric function prior, GPs are flexible enough to
capture a variety of complex temporal dynamics. The trajectories are combined through
a CANDECOMP/PARAFAC (CP) [Harshman, 1970] or Tucker decomposition [Tucker,
1966] form to sample the tensor entry values at any time point.

• Second, to sidestep the expensive covariance matrix computation in the GP, which further
causes challenges in streaming inference, we use spectral analysis to convert the GP into
a linear time invariant (LTI) stochastic differential equation (SDE). Then we convert the
SDE into an equivalent state-space prior over the factor (trajectory) states at the observed
timestamps. As a result, the posterior inference becomes easier and computationally efficient.

• Third, we take advantage of the chain structure of the state-space prior and use the recent
conditional expectation propagation framework [Wang and Zhe, 2019] to develop an efficient
online filtering algorithm. Whenever a collection of entries at a new timestamp arrives,
our method can efficiently estimate a decoupled running posterior of the involved factor
states, with a Gaussian product form. The decoupled Gaussian estimate enables us to
run standard RTS smoothing [Särkkä, 2013] to compute the full posterior of each factor
trajectory independently and in parallel, without revisiting any previous data. Our method at
worst has a linear scalability with respect to the number of observed timestamps.

We first evaluated our method in a simulation study. On synthetic datasets, SFTL successfully
recovered several nonlinear factor trajectories, and provided reasonable uncertainty estimation. We
then tested our method on four real-world temporal tensor datasets for missing value prediction. In
both online and final predictive performance, SFTL consistently outperforms the state-of-the-art
streaming CP and Tucker decomposition algorithms by a large margin. In most cases, the prediction
accuracy of SFTL is even higher than the recent static decomposition methods, which have to pass
through the dataset many times. Finally, we investigated the learned factor trajectories from a
real-world dataset. The trajectories exhibit interesting temporal evolution.

2 Preliminaries

Tensor Decomposition. We denote an M -mode tensor by Y ∈ Rd1×···×dM , where each mode
m has dm dimensions, corresponding to dm objects. Each tensor entry is indexed by a tuple
ℓ = (ℓ1, . . . , ℓM ), and the value is denoted by yℓ. For decomposition, we introduce a set of
latent factors um

j ∈ RRm to represent each object j in mode m (1 ≤ m ≤ M ). One most pop-
ular tensor decomposition model is the CANDECOMP/PARAFAC (CP) decomposition [Harsh-
man, 1970], which sets R1 = . . . = RM = R, and uses the following element-wise form,
yℓ ≈ 1⊤(u1

ℓ1
◦ . . .◦uM

ℓM
) =

∑R
r=1

∏M
m=1 u

m
ℓm,r, where ◦ is the element-wise product. Another com-

monly used model is Tucker decomposition [Tucker, 1966], yℓ ≈ vec(W)⊤
(
u1
ℓ1
⊗ . . .⊗ uM

ℓM

)
=∑R1

r1=1 . . .
∑RM

rM=1

[
wr ·

∏M
m=1 u

m
ℓm,rm

]
, where W ∈ RR1×···×RM is the tensor-core parameter,

vec(·) is the vectorization, ⊗ is the Kronecker product, and r = (r1, . . . , rM ).
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Gaussian Process (GP)s are nonparametric function priors. For a function f(x), if we place a GP
prior, f ∼ GP(0, κ(x,x′)), it means f(·) is sampled as a realization of the GP with covariance
function κ, which is often chosen as a kernel function. The GP prior only models the correlation
between the function values, namely, cov (f(x), f(x′)) = κ(x,x′), and does not assume any
parametric form of the function. Hence, GPs are flexible enough to estimate various complex
functions from data, e.g., from multilinear to highly nonlinear. The finite projection of the GP is a
Gaussian distribution. That is, given an arbitrary collection of inputs {x1, . . . ,xN}, the corresponding
function values f = [f(x1), . . . , f(xN )]⊤ follow a multi-variate Gaussian prior distribution, p(f) =
N (f |0,K) where K is the covariance matrix and each [K]mn = κ(xm,xn).

3 Bayesian Temporal Tensor Decomposition with Factor Trajectories

In real-world applications, tensor data is often associated with time information, namely, the times-
tamps at which the objects of different modes interact to generate the entry values. To capture the
potential evolution of the objects’ inner properties, we propose a Bayesian temporal tensor decomposi-
tion model that can estimate a trajectory of the factor representation. Specifically, for each object j in
mode m, we model the factors as a function of time, um

j : [0,∞]→ RR. To flexibly capture a variety
of temporal evolution, we assign a GP prior over each element of um

j (t) = [um
j,1(t), . . . , u

m
j,R(t)]

⊤,
i.e., um

j,r(t) ∼ GP(0, κ(t, t′)) (1 ≤ r ≤ R). Given the factor trajectories, we then use the CP or
Tucker form to sample the entry values at different time points. For the CP form, we have

p(yℓ(t)|U(t)) = N (yℓ(t)|1⊤(u1
ℓ1(t) ◦ . . . ◦ uM

ℓM (t)), τ−1), (1)

where U(t) = {um
j (t)} includes all the factor trajectories, and τ is the inverse noise variance,

for which we assign a Gamma prior, p(τ) = Gam(τ |α0, α1). For the Tucker form, we have
p(yℓ(t)|U(t),W) = N (yℓ(t)|vec(W)⊤(u1

ℓ1
(t) ⊗ . . . ⊗ uM

ℓM
(t)), τ−1) where we place a standard

normal prior over the tensor-core, p(vec(W)) = N (vec(W)|0, I). In this work, we focus on
continuous observations. It is straightforward to extend our method for other types of observations.

Suppose we have a collection of observed entry values and timestamps, D =
{(ℓ1, y1, t1), . . . , (ℓN , yN , tN )} where t1 ≤ · · · ≤ tN . We denote the sequence of timestamps
when a particular object j of mode m participated in the observed entries by smj,1 < . . . < smj,cmj ,
where cmj is the participation count of the object. Note that it is a sub-sequence of {tn}. From
the GP prior, the values of each um

j,r(t) at these timestamps follow a multi-variate Gaussian
distribution, p(um

j,r) = N (um
j,r|0,Km

j ) where um
j,r = [um

j,r(s
m
j,1), . . . , u

m
j,r(s

m
j,cmj

)]⊤2 and Km
j is the

covariance/kernel matrix computed at these timestamps. The joint probability with the CP form is

p({um
j,r}, τ,y) =

∏M

m=1

∏dm

j=1

∏R

r=1
N (um

j,r|0,Km
j ) · Gam(τ |α0, α1)

·
∏N

n=1
N (yn|1⊤(u1

ℓn1
(tn) ◦ . . . ◦ uM

ℓnM
(tn)), τ

−1). (2)

The joint probability with the Tucker form is the same except that we use the Tucker likelihood
instead and multiply with the prior of tensor-core p(W).

While this formulation is straightforward, it can introduce computational challenges. There are many
multi-variate Gaussian distributions in the joint distribution (2), i.e., {N (um

j,r|0,Km
j )}. The time

and space complexity to compute each N (um
j,r|0,Km

j ) is O
((

cmj
)3)

and O
((

cmj
)2)

, respectively.
With the increase of N , the appearance count cmj for many objects can grow as well, making the
computation cost very expensive or even infeasible. The issue is particularly severe when we handle
streaming data — the number of timestamps grows rapidly when new data keeps coming in, so does
the size of each covariance matrix.

3.1 Equivalent Modeling with State-Space Priors

To sidestep expensive covariance matrix computation and ease the inference with streaming data,
we follow [Hartikainen and Särkkä, 2010] to convert the GP prior into an SDE via spectral analysis.

2For convenience, we abuse the notation a little bit: we denote by um
j,r(·) trajectory function and by um

j,r the
values of the trajectory function at the observed timestamps.
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We use a Matérn kernel κν (t, t
′) = a

(√
2ν
ρ ∆

)ν

Γ(ν)2ν−1 Kν

(√
2ν
ρ ∆

)
where Γ(·) is the Gamma function,

∆ = |t− t′|, a > 0, ρ > 0, Kν is the modified Bessel function of the second kind, and ν = p+ 1
2

(p ∈ {0, 1, 2, . . .}) as the GP covariance. Via the analysis of the power spectrum of κν , we can show
that if f(t) ∼ GP(0, κν(t, t

′)), it can be characterized by a linear time-invariant (LTI) SDE, with
state z = (f, f (1), . . . , f (p))⊤ where f (k) ∆

= dkf/dtk,

dz

dt
= Az+ η · β(t), (3)

where β(t) is a white noise process with diffusion σ2,

A =


0 1

. . . . . .
0 1

−c0 . . . −cp−1 −cp

 , η =


0
...
0
1

 .

Both σ2 and A are obtained from the parameters in κν . Due to the space limit, we leave the detailed
derivation in Appendix (Section A). The LTI-SDE is particularly useful in that its finite set of states
follow a Gauss-Markov chain, i.e., the state-space prior. Given arbitrary t1 < . . . < tL, we have

p(z(t1), . . . , z(tL)) = p(z(t1))
∏L−1

k=1
p(z(tk+1)|z(tk)),

where p(z(t1)) = N (z(t1)|0,P∞), p(z(tk+1)|z(tk)) = N (z(tk+1)|Fkz(tk),Qk), P∞ is the sta-
tionary covariance matrix computed by solving the matrix Riccati equation [Lancaster and Rodman,
1995], Fn = exp(∆k ·A) where ∆k = tk+1 − tk, and Qk = P∞ −AkP∞A⊤

k . Therefore, we do
not need the full covariance matrix as in the standard GP prior, and the computation is much more
efficient. The chain structure is also convenient to handle streaming data as we will explain later.

We therefore convert the GP prior over each factor trajectory um
j,r(t) into an LTI-SDE. We de-

note the corresponding state by zmj,r(t). For example, if we choose p = 1, then zmj,r(t) =
[um

j,r(t); du
m
j,r(t)/dt]. For each object j in mode m, we concatenate all its trajectory states into

one, zmj (t) = [zmj,1(t); . . . ; z
m
j,R(t)]. Then on all of its timestamps smj,1 < . . . < smj,cmj , we obtain a

state-space prior

p(hm
j,1) = N (hm

j,1|0,P∞), p(hm
j,k+1|hm

j,k) = N (hm
j,k+1|F

m

j,kh
m
j,k,Q

m

j,k), (4)

where hm
j,k

∆
= zmj (smj,k), P∞ = diag(P∞, . . . ,P∞), F

m

j,k = diag
(
Fm

j,k, . . . ,F
m
j,k

)
, Fm

j,k =

e(s
m
j,k+1−smj,k)A, Q

m

j,k = diag
(
Qm

j,k, . . . ,Q
m
j,k

)
, and Qm

j,k = P∞ − Fm
j,kP∞

(
Fm

j,k

)⊤
.

The joint probability of our model with the CP form now becomes

p({hm
j,k}, τ,y) = p(τ)

∏M

m=1

∏dm

j=1
p(hm

j,1)
∏cmj −1

k=1
p(hm

j,k+1|hm
j,k)

·
∏N

n=1
N (yn|1⊤(u1

ℓn1
(tn) ◦ . . . ◦ uM

ℓnM
(tn)), τ

−1). (5)

Note that in the likelihood, each um
ℓnm

(tn)(1 ≤ j ≤M) is contained in a corresponding state vector
hm
ℓnm,k such that smℓnm,k = tn (by definition, we then have hm

ℓnm,k = zmℓnm
(tn)). The joint probability

with the Tucker form is similar, which we omit to save the space.

4 Trajectory Inference from Streaming Data

In this section, we develop an efficient, scalable algorithm for factor trajectory estimation from
streaming data. In general, we assume that we receive a sequence of (small) batches of observed
tensor entries, {B1,B2, . . .}, generated at different timestamps, {t1, t2, . . .}. Each batch Bn is
generated at timestamp tn and tn < tn+1. Denote by Dtn all the data up to timestamp tn, i.e.,
Dtn = B1 ∪ . . . ∪ Bn. Upon receiving Bn+1, we intend to update our model without revisiting Dtn

4
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Figure 1: A graphical representation of our factor trajectory learning, from which we can see {Θn+1,Bn+1} are
independent to Dtn conditioned on Θn and the noise inverse variance τ , namely, Θn+1,Bn+1 ⊥ Dtn |Θn, τ .

to provide the trajectory posterior estimate, {p(um
j (t)|Dtn+1

)|∀t ≥ 0, 1 ≤ m ≤ M, 1 ≤ j ≤ dm},
where Dtn+1

= Dtn ∪ Bn+1.

To this end, we first observe that the standard state-space model with a Gaussian likelihood has
already provided a highly efficient streaming inference framework. Denote by xn and yn the state
and observation at each step n, respectively. To handle streaming observations {y1,y2, . . .}, we only
need to compute and track the running posterior p(xn|y1:n) upon receiving each yn, where y1:n

denotes the total data up to step n. This is called Kalman filtering [Särkkä, 2013], which only depends
on the running posterior at step n− 1, i.e., p(xn−1|y1:n−1), and is highly efficient. After all the data
is processed (suppose it stops at step N ), we can use Rauch-Tung-Striebel (RTS) smoother [Särkkä,
2013] to efficiently compute the full posterior of each state, p(xn|y1:N ), from backward, which does
not need to re-access any previous observations (see Section B in Appendix).

However, one cannot apply the above framework outright to our model, since the tensor decomposition
likelihood of each observed entry couples the states of multiple factor trajectories, see (1) — which
correspond to the participated objects at different modes. That means, the factor-state chains of
different objects are dynamically intertwined through the received data. The multiplicative form of
these states in the likelihood render the running posterior of each trajectory intractable to compute,
not to mention running RTS smoother. To address this challenge, we take advantage of the chain
structure and use the recent conditional Expectation propagation (CEP) framework [Wang and Zhe,
2019] to develop an efficient online filtering algorithm, which approximates the running posterior of
the involved factor states as a product of Gaussian. Thereby, we can decouple the involved factor
state chains, and conduct standard RTS smoothing for each chain independently.

Specifically, denote the sequence of timestamps when each object j of mode m has showed up in the
data stream up to tn, by smj,1 < smj,2 < . . . < smj,cmj,n where cmj,n is the object’s appearance count up to
tn. Denote by Imn the indexes of all the objects of mode m appearing in Bn. Hence, for every object
j ∈ Imn , we have smj,cmj,n = tn, and hm

j,cmj,n

∆
= zmj (tn) is the factor state of the object at tn. Upon

receiving each Bn, we intend to approximate the running posterior of all the involved factor states
and noise inverse variance τ with the following decoupled form,

p(τ, {hm
j,cmj,n
|j ∈ Imn }1≤m≤M |Dtn) ≈ q(τ |Dn)

∏M

m=1

∏
j∈Im

n

q(hm
j,cmj,n
|Dtn), (6)

where q(τ |Dtn) = Gam(τ |an, bn), and q(hm
j,cmj,n
|Dtn) = N (hm

j,cmj,n
|µ̂m

j,cmj,n
, V̂m

j,cmj,n
). To this end,

let us consider given the approximation at tn, how to obtain the new approximation at tn+1 (i.e., upon
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receiving Bn+1) in the same form of (6). To simplify the notation, let us define the preceding states of
the involved factors by Θn = {hm

j,cmj,n
|j ∈ Imn+1}m, and the current states by Θn+1 = {hm

j,cmj,n+1
|j ∈

Imn+1}m. First, due to the chain structure of the prior over each {hm
j,cmj,k
|k = 0, 1, 2, . . .}, we can see

that conditioned on {Θn, τ}, the current states Θn+1 and the new observations Bn+1 are independent
of Dtn . This is because in the graphical model representation, {Θn, τ} have blocked all the paths
from the old observations Dtn to the new state and observations [Bishop, 2007]; see Fig. 1 for an
illustration. Then, we can derive that
p(Θn+1,Θn, τ |Dtn+1

) ∝ p(Θn+1,Θn, τ,Bn+1|Dtn) = p(Θn, τ |Dtn)p(Θn+1,Bn+1|Θn, τ,Dtn)

= p(Θn, τ |Dtn)p(Θn+1|Θn)p(Bn+1|Θn+1, τ), (7)
where p(Θn, τ |Dtn) is the running posterior at tn,

p(Θn+1|Θn) =

M∏
m=1

∏
j∈Im

n+1

p(hm
j,cmj,n+1

|hm
j,cmj,n

),

each p(hm
j,cmj,n+1

|hm
j,cmj,n

) is a conditional Gaussian distribution defined in (4), and

p(Bn+1|Θn+1, τ) =
∏

(ℓ,y)∈Bn+1
N
(
y|1⊤ (u1

ℓ1
(tn+1) ◦ · · · ◦ uM

ℓM
(tn+1)

)
, τ−1

)
. Since

p(Θn, τ |Dtn) takes the form of (6), we can analytically marginalize out each hm
j,cmj,n

∈ Θn,
and obtain

p
(
Θn+1, τ |Dtn+1

)
∝ Gam(τ |an, bn)

∏M

m=1

∏
j∈Im

n+1

N (hm
j,cmj,n+1

|µ̂m
j,cmj,n+1

, V̂m
j,cmj,n+1

) (8)

·
∏

(ℓ,y)∈Bn+1

N
(
y|1⊤ (u1

ℓ1(tn+1) ◦ · · · ◦ uM
ℓM (tn+1)

)
, τ−1

)
.

If we view the R.H.S of (8) as a joint distribution with Bn+1, then our task amounts to estimating
the posterior distribution, i.e., the L.H.S of (8). The product in the CP likelihood (and also Tucker
likelihood) renders exact posterior computation infeasible, and we henceforth approximate

N
(
y|1⊤ (u1

ℓ1(tn+1) ◦ · · · ◦ uM
ℓM (tn+1)

)) ∝∼ M∏
m=1

N
(
um
ℓm(tn+1)|γm

ℓm ,Σm
ℓm

)
Gam(τ |αℓ, ωℓ) (9)

where ∝∼ means approximately proportional to. To optimize these approximation terms, we use the
recent conditional Expectation propagation (CEP) framework [Wang and Zhe, 2019] to develop an
efficient inference algorithm. It uses conditional moment matching to update each approximation
in parallel and conducts fixed point iterations, and hence can converge fast. We leave the details in
the Appendix (Section C). Once it is done, we substitute the approximation (9) into (8). Then the
R.H.S of (8) becomes a product of Gaussian and Gamma terms over each state and τ . We can then
immediately obtain a closed-form estimation in the form as (6). At the beginning, when estimating
p(Θ1, τ |Dt1), since the preceding states Θ0 = ∅, we have an = α0, bn = α1, µ̂m

j,cmj,n+1
= 0, and

V̂m
j,cmj,n+1

= P∞ in (8), which is the prior of each hm
j,cmj,1

and τ (see (4)).

In this way, we can continuously filter the incoming batches {B1,B2, . . .}. As a result, for the factor
state chain of every object j in every mode m, along with each timestamp smj,k, we can online estimate
and track a running posterior approximation {q(hm

j,k|Dtsm
j,k

)|k = 1, 2, . . .}, which is a Gaussian
distribution. Hence, we can run the standard RTS smoother, to compute the full posterior of every
factor state, with which we can compute the posterior of the trajectory at any time point t [Bishop,
2006]. Our method is summarized in Algorithm 1.

Algorithm Complexity. The time complexity of our algorithm processing a batch Bn is O(|Bn|R3)
where | · | is the size. The time complexity of RTS smoother for a particular object j in mode m is
O(R3cmj,N ), where N is the total number of timestamps. The space complexity of our algorithm is
O(∑M

m=1

∑dm

j=1 c
m
j,NR2), which is to track the running posterior of the factor state at each appearing

timestamp for every object. Since cmj,N ≤ N , the complexity of our algorithm is at worst linear in N .

5 Related Work

Many tensor decomposition methods have been developed, such as [Yang and Dunson, 2013, Rai
et al., 2014, Zhe et al., 2015, 2016b,a, Tillinghast et al., 2020, Pan et al., 2020b, Fang et al., 2021a,b,
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Algorithm 1 Streaming Factor Trajectory Learning (SFTL)

1: Input: kernel hyper-parameters a, ρ, ν = p+ 1
2 (p ∈ {0, 1, 2, . . .})

2: n← 0
3: while Receiving a new batch of entreis Bn+1 do
4: if n = 0 then
5: Set an = a0, bn = b0, µ̂m

j,cmj,n+1
= 0, and V̂m

j,cmj,n+1
= P∞ in (8).

6: Goto 9.
7: end if
8: Retrieve the involved preceding factor states Θn = {hm

j,cmj,n
|j ∈ Imn+1}m and their running

posterior, p(Θn, τ |Dtn) ≈ Gam(τ |an, bn)
∏M

m=1

∏
j∈Im

n+1
N (hm

j,cmj,n
|µ̂m

j,cmj,n
, V̂m

j,cmj,n
).

9: According to (8) and (9), use conditional Expectation Propagation to calcu-
late the running posterior of the current factor states, p(Θn+1, τ |Dtn+1

) ≈
Gam(τ |an+1, bn+1)

∏M
m=1

∏
j∈Im

n+1
N (hm

j,cmj,n+1
|µ̂m

j,cmj,n+1
, V̂m

j,cmj,n+1
).

10: if Needed then
11: Run RTS smoothing on any factor state chain {hm

j,k|k = 1, 2, . . .} of interest.
12: end if
13: n← n+ 1
14: end while
15: Run RTS smoothing for every factor state chain {hm

j,k|k = 1, 2, . . .}.
16: Return: {q(hm

j,k|D)|k = 1, 2, . . .}1≤m≤M,1≤j≤dm
, q(τ |D), where D is all the data received.

Tillinghast and Zhe, 2021, Tillinghast et al., 2022, Fang et al., 2022, Zhe and Du, 2018, Pan et al.,
2020a, Wang et al., 2020, Pan et al., 2021, Wang et al., 2022]. For temporal decomposition, most
existing methods augment the tensor with a discrete time mode to estimate additional factors for
time steps, e.g., [Xiong et al., 2010, Rogers et al., 2013, Song et al., 2017, Du et al., 2018, Ahn
et al., 2021]. The most recent works have conducted continuous-time decomposition. Zhang et al.
[2021] used polynomial splines to model a time function as the CP coefficients. Li et al. [2022] used
neuralODE [Chen et al., 2018] to model the entry value as a function of latent factors and time point.
Fang et al. [2022] performed continuous-time Tucker decomposition, and modeled the tensor-core as
a time function. To our knowledge, [Wang et al., 2022] is the first work to estimate factor trajectories.
It places a GP prior in the frequency domain, and samples the factor trajectories via inverse Fourier
transform. It then uses another GP to sample the entry values. While successful, this method cannot
handle streaming data, and the black-box GP decomposition lacks interpretability.

Current Bayesian streaming tensor decomposition methods include [Du et al., 2018, Fang et al., 2021a,
Pan et al., 2020b, Fang et al., 2021b], which are based on streaming variational Bayes [Broderick
et al., 2013] or assumed density filtering (ADF) [Boyen and Koller, 1998]. ADF can be viewed as
an instance of Expectation Propagation (EP) [Minka, 2001] for streaming data. EP approximates
complex terms in the probability distribution with exponential-family members, and uses moment
matching to iteratively update the approximations, which essentially is a fixed point iteration. To
address the challenge of intractable moment matching, Wang and Zhe [2019] proposed conditional
EP (CEP), which uses conditional moment matching and Taylor expansion to compute the moments
for factorized approximations. The theoretical guarantees and error bound analysis for EP and ADF
have been studied for a long time, such as [Boyen and Koller, 1998, Dehaene and Barthelmé, 2015,
2018]. The most recent work [Fang et al., 2022] also uses SDEs to represent GPs and CEP framework
for inference, but their GP prior is placed on the tensor-core, not for learning factor trajectories, and
their method is only for static decomposition, and cannot handle streaming data.

6 Experiment

6.1 Simulation Study

We first conducted a simulation study, for which we simulated a two-mode tensor, with two nodes
per mode. Each node is represented by a time-varying factor: u1

1(t) = − sin3(2πt), u1
2(t) =(

1− sin3( 12πt)
)
sin3(3πt), u2

1(t) = sin(2πt), and u2
2(t) = − cos3(3πt) sin(3πt) sin(2πt). Given
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Figure 2: The learned factor trajectories from the synthetic data. The shaded region indicates the posterior
standard deviation.

RMSE FitRecord ServerRoom BeijingAir-2 BeijingAir-3

Static

PTucker 0.656± 0.147 0.458± 0.039 0.401± 0.01 0.535± 0.062
Tucker-ALS 0.846± 0.005 0.985± 0.014 0.559± 0.021 0.838± 0.026
CP-ALS 0.882± 0.017 0.994± 0.015 0.801± 0.082 0.875± 0.028
CT-CP 0.664± 0.007 0.384± 0.009 0.64± 0.007 0.815± 0.018
CT-GP 0.604± 0.004 0.223± 0.035 0.759± 0.02 0.892± 0.026
BCTT 0.518± 0.007 0.185± 0.013 0.396± 0.022 0.801± 0.02
NONFAT 0.503± 0.002 0.117± 0.006 0.395± 0.007 0.882± 0.014
THIS-ODE 0.526± 0.004 0.132± 0.003 0.54± 0.014 0.877± 0.026

Stream

POST 0.696± 0.019 0.64± 0.028 0.516± 0.028 0.658± 0.103
ADF-CP 0.648± 0.008 0.654± 0.008 0.548± 0.015 0.551± 0.043
BASS-Tucker 0.976± 0.024 1.000± 0.016 1.049± 0.037 0.991± 0.039
SFTL-CP 0.424± 0.014 0.161± 0.014 0.248± 0.012 0.473± 0.013
SFTL-Tucker 0.430± 0.010 0.331± 0.056 0.303± 0.041 0.439± 0.019

MAE

Static

PTucker 0.369± 0.009 0.259± 0.008 0.26± 0.006 0.263± 0.02
Tucker-ALS 0.615± 0.006 0.739± 0.008 0.388± 0.008 0.631± 0.017
CP-ALS 0.642± 0.012 0.746± 0.009 0.586± 0.056 0.655± 0.018
CT-CP 0.46± 0.004 0.269± 0.003 0.489± 0.006 0.626± 0.01
CT-GP 0.414± 0.001 0.165± 0.034 0.55± 0.012 0.626± 0.011
BCTT 0.355± 0.005 0.141± 0.011 0.254± 0.007 0.578± 0.009
NONFAT 0.341± 0.001 0.071± 0.004 0.256± 0.004 0.626± 0.007
THIS-ODE 0.363± 0.004 0.083± 0.002 0.345± 0.004 0.605± 0.013

Stream

POST 0.478± 0.014 0.476± 0.023 0.352± 0.022 0.486± 0.095
ADF-CP 0.449± 0.006 0.496± 0.007 0.385± 0.012 0.409± 0.029
BASS 0.772± 0.031 0.749± 0.01 0.934± 0.037 0.731± 0.02
SFTL-CP 0.242± 0.006 0.108± 0.008 0.15± 0.003 0.318± 0.008
SFTL-Tucker 0.246± 0.001 0.216± 0.034 0.185± 0.029 0.278± 0.011

Table 1: Final prediction error with R = 5. The results were averaged from five runs.

these factors, an entry value at time t is generated via y(i,j)(t) ∼ N
(
u1
i (t)u

2
j (t), 0.05

)
. We randomly

sampled 500 (irregular) timestamps from [0, 1]. For each timestamp, we randomly picked two entries,
and sampled their values accordingly. Overall, we sampled 1,000 observed tensor entry values.

We implemented SFTL with PyTorch [Paszke et al., 2019]. We used ν = 3
2 and a = ρ = 0.3 for the

Matérn kernel. We streamed the sampled entries according to their timestamps, and ran our streaming
factor trajectory inference based on the CP form. The estimated trajectories are shown in Fig. 2. As
we can see, SFTL recovers the ground-truth pretty accurately, showing that SFTL has successfully
captured the temporal evolution of the factor representation for every node. It is interesting to observe
that when t is around 0, 0.5 and 1, the posterior standard deviation (the shaded region) increases
significantly. This is reasonable: the ground-truth trajectories overlap at these time points, making it
more difficult to differentiate/estimate their values at these time points. Accordingly, the uncertainty
of the estimation increases. In Section D of Appendix, we further provide the root-mean-square error
(RMSE) in recovering the four trajectories, and sensitivity analysis of the kernel parameters.
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Figure 3: Online prediction error with the number of processed entries (R = 5).

6.2 Real-World Applications

Next, we examined SFTL in four real-world datasets: FitRecord, ServerRoom, BeijingAir-2, and
BeijingAir-3. We tested 11 competing approaches. We compared with state-of-the-art streaming
tensor decomposition methods based on the CP or Tucker model, including (1) POST [Du et al.,
2018], (2) BASS-Tucker [Fang et al., 2021a] and (3) ADF-CP [Wang and Zhe, 2019], the state-of-
the-art static decomposition algorithms, including (4) P-Tucker [Oh et al., 2018], (5) CP-ALS and (6)
Tucker-ALS [Bader and Kolda, 2008]. For those methods, we augment the tensor with a time mode,
and convert the ordered, unique timestamps into increasing time steps. We also compared with the
most recent continuous-time decomposition methods. (7) CT-CP [Zhang et al., 2021], (8) CT-GP, (9)
BCTT [Fang et al., 2022], (10) THIS-ODE [Li et al., 2022], and (11) NONFAT [Wang et al., 2022],
nonparametric factor trajectory learning, the only existing work that also estimates factor trajectories
for temporal tensor decomposition. Note that the methods 4-11 cannot handle data streams. They
have to iteratively access the data to update the model parameters and factor estimates. The details
about the competing methods and datasets are provided in Appendix (Section E).

For all the competing methods, we used the publicly released implementations of the original authors.
The hyper-parameter setting and turning follows the original papers. For SFTL, we chose ν from
{ 12 , 3

2}, a from [0.5, 1] and ρ from [0.1, 0.5]. For our online filtering, the maximum number of CEP
iterations was set to 50 and the tolerance level to 10−4. For numerical stability, we re-scaled the
timestamps to [0, 1]. We examined the number of factors (or factor trajectories) R ∈ {2, 3, 5, 7}.
Final Prediction Accuracy. We first examined the final prediction accuracy with our learned
factor trajectories. To this end, we followed [Xu et al., 2012, Kang et al., 2012], and randomly
sampled 80% observed entry values and their timestamps for streaming inference and then tested the
prediction error on the remaining entries. We also compared with the static decomposition methods,
which need to repeatedly access the training entries. We repeated the experiment five times, and
computed the average root mean-square-error (RMSE), average mean-absolute-error (MAE), and
their standard deviations. We ran our method based on both the CP and Tucker forms, denoted by
SFTL-CP and SFTL-Tucker, respectively. We report the results for R = 5 in Table 1. Due to the
space limit, we leave the other results in the Appendix (Table 4,5, and 6). As we can see, SFTL
outperforms all the streaming approaches by a large margin. SFTL even obtains significantly better
prediction accuracy than all the static decomposition approaches, except that on Server Room, SFTL
is second to THIS-ODE and NONFAT. Note that SFTL only went through the training entries for
once. Although NONFAT can also estimate the factor trajectories, it uses GPs to perform black-box
nonlinear decomposition and hence loses the interpretability. Note that NONFAT in most case also
outperforms the other static decomposition methods that only estimate time-invariant factors. The
superior performance of SFTL and NONFAT shows the importance of capturing factor evolution.

Online Predictive Performance. Next, we evaluated the online predictive performance of SFTL.
Whenever a batch of entries at a new timestamp has been processed, we examined the prediction
accuracy on the test set, with our current estimate of the factor trajectories. We repeated the evaluation
for five times, and examine how the average prediction error varies along with the number of processed
entries. We show the results for R = 5 in Fig. 3, and the others in Appendix (Fig. 5, 6, and 7). It
is clear that SFTL in most cases outperforms the competing streaming decomposition algorithms
by a large margin throughout the course of running. Note that the online behavior of BASS-Tucker
was quite unstable and so we excluded it in the figures. It confirms the advantage of our streaming
trajectory learning approach — even in the streaming scenario, incrementally capturing the time-
variation of the factors can perform better than updating fixed, static factors. To confirm the advantage
of SFTL in computational efficiency, we report the running time in Section G of Appendix.
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Figure 4: The learned factor trajectories of object 1, 2, 3 in mode 1, 2, 3, respectively, from ServerRoom data.
The shaded region shows one standard deviation and the dashed line indicates the biggest timestamp in the data.

Investigation of Learning Results. Finally, we investigated our learned factor trajectories. We
set R = 3 and ran SFTL-CP on ServerRoom. In Fig. 4, we visualize the trajectory for the 1st air
conditioning mode, the 2rd power usage level, and the 3rd location. The shaded region indicates the
standard deviation, and the red dashed line the biggest timestamp in the data. First, we can see that
the posterior variance of all the trajectories grow quickly when moving to the right of the red line.
This is reasonable because it is getting far away from the training region. Second, for each object,
the first and second trajectories (1st and 2nd column in Fig. 4) exhibit quite different time-varying
patterns, e.g., the local periodicity in u1

1,2(t) and u2
2,2(t), the gradual decreasing and increasing trends

in u3
3,1(t) and u3

3,2(t), respectively, which imply different inner properties of the object. Third, it is
particularly interesting to see that the third trajectory for all the objects appear to be close to zero, with
relatively large posterior variance all the time. This might imply that two factor trajectories have been
sufficient to represent each object. Requesting for a third trajectory is redundant. More important,
our model is empirically able to detect such redundancy and returns a zero-valued trajectory.

7 Conclusion

We have presented SFTL, a probabilistic temporal tensor decomposition approach. SFTL can
efficiently handle streaming data, and estimate time-varying factor representations. On four real-
world applications, SFTL achieves superior online and final prediction accuracy.
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Appendix

A Spectral Analysis and LTI-SDE

We consider the Matérn kernel family,

κν (t, t
′) = a

(√
2ν
ρ ∆

)ν
Γ(ν)2ν−1

Kν

(√
2ν

ρ
∆

)
, (10)

where ∆ = |t− t′|, Γ(·) is the Gamma function, a > 0 and ρ > 0 are the amplitude and length-scale
parameters, respectively, Kν is the modified Bessel function of the second kind, ν > 0 controls
the smoothness. Since κν is a stationary kernel, i.e., κν(t, t

′) = κν(t − t′), according to the
Wiener-Khinchin theorem [Chatfield, 2003], if

f(t) ∼ GP(0, κν(t, t
′)),

the energy spectrum density of f(t) can be obtained by the Fourier transform of κν(∆),

S(ω) = a
2
√
πΓ( 12 + ν)

Γ(ν)
α2ν

(
α2 + ω2

)−(ν+ 1
2 ) , (11)

where ω is the frequency, and α =
√
2ν
ρ . We consider the commonly used choice ν = p+ 1

2 where
p ∈ {0, 1, 2, . . .}. Then we can observe that

S(ω) =
σ2

(α2 + ω2)p+1
=

σ2

(α+ iω)p+1(α− iω)p+1
, (12)

where σ2 = a 2
√
πΓ(p+1)

Γ(p+ 1
2 )

α2p+1, and i indicates an imaginary number. We expand the polynomial

(α+ iω)p+1 =
∑p

k=0
ck(iω)

k + (iω)p+1, (13)

where {ck|0 ≤ k ≤ p} are the coefficients. From (12) and (13), we can construct an equivalent
system to generate the signal f(t). That is, in the frequency domain, the system output’s Fourier
transform f̂(ω) is given by∑p

k=1
ck(iω)

kf̂(ω) + (iω)p+1f̂(ω) = β̂(ω), (14)

where β̂ is the Fourier transform of a white noise process β(t) with spectral density (or diffusion)

σ2. The reason is that by construction, f̂(ω) = β̂(ω)
(α+iω)p+1 , which gives exactly the same spectral

density as in (12), S(ω) = |f̂(ω)|2. We then conduct inverse Fourier transform on both sides of (14)
to obtain the representation in the time domain,∑p

k=1
ck

dkf

dtk
+

dp+1f

dtp+1
= β(t), (15)

which is an SDE. Note that β(t) has the density σ2. We can further construct a new state z =

(f, f (1), . . . , f (p))⊤ (where each f (k) ∆
= dkf/dtk) and convert (15) into a linear time-invariant (LTI)

SDE,

dz

dt
= Az+ η · β(t), (16)

where

A =


0 1

. . . . . .
0 1

−c0 . . . −cp−1 −cp

 , η =


0
...
0
1

 .
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For a concrete example, if we take p = 1 (and so ν = 3
2 ), then A = [0, 1;−α2,−2α], η = [0; 1],

and σ2 = 4aα3.

The LTI-SDE is particularly useful in that its finite set of states follow a Gauss-Markov chain, namely
the state-space prior. Specifically, given arbitrary t1 < . . . < tL, we have

p(z(t1), . . . , z(tL)) = p(z(t1))
∏L−1

k=1
p(z(tk+1)|z(tk)),

where p(z(t1)) = N (z(t1)|0,P∞), p(z(tk+1)|z(tk)) = N (z(tk+1)|Fkz(tk),Qk), P∞ is the sta-
tionary covariance matrix computed by solving the matrix Riccati equation [Lancaster and Rodman,
1995], Fn = exp(∆k ·A) where ∆k = tk+1 − tk, and Qk = P∞ −AkP∞A⊤

k . Therefore, we do
not need the full covariance matrix as in the standard GP prior, and the computation is much more
efficient. The chain structure is also convenient to handle streaming data as explained in the main
paper.

Note that for other type of kernel functions, such as the square exponential (SE) kernel, we can
approximate the inverse spectral density 1/S(ω) with a polynomial of ω2 with negative roots, and
follow the same way to construct an LTI-SDE (approximation) and state-space prior.

B RTS Smoother

Consider a standard state-space model with state xn and observation yn at each time step n. The
prior distribution is a Gauss-Markov chain,

p(xn+1|xn) = N (xn+1|Anxn,Qn),

p(x0) = N (x0|m0,P0).

Suppose we have a Gaussian observation likelihood,

p(yn|xn) = N (yn|Hnxn,Wn).

Then upon receiving each yn, we can use Kalman filtering to obtain the exact running posterior,

p(xn|y1:n) = N (xn|mk,Pk),

which is a Gaussian. After all the data has been processed — suppose it ends after step N — we can
use Rauch–Tung–Striebel (RTS) smoother [Särkkä, 2013] to efficiently compute the full posterior of
each state from backward, which does not need to re-access any data: p(xn|y1:N ) = N (xn|ms

n,P
s
n),

where

m−
n+1 = Anmn, P−

n+1 = AnPnA
⊤
n +Qn,

Gn = PnA
⊤
n [P

−
n+1]

−1,

ms
n = mn +Gn

(
ms

n+1 −m−
n+1

)
,

Ps
n = Pn +Gn[P

s
n+1 −P−

n+1]G
⊤
n . (17)

As we can see, the computation only needs the running posterior p(xn|y1:n) = N (·|mn,Pn) and
the full posterior of the next state p(xn+1|y1:N ) = N (·|mn+1,Pn+1). It does not need to revisit
previous observations y1:N

C Details about Online Trajectory Inference

In this section, we provide the details about how to update the running posterior according to (8) and
(9) (in the main paper) with the conditional EP (CEP) framework [Wang and Zhe, 2019].

C.1 EP and CEP framework

We first give a brief introduction to the EP and CEP framework. Consider a general probabilistic
model with latent parameters θ. Given the observed data D = {y1, . . . ,yN}, the joint probability
distribution is

p(θ,D) = p(θ)

N∏
n=1

p(yn|θ). (18)
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Our goal is to compute the posterior p(θ|D). However, it is usually infeasible to compute the exact
marginal distribution p(D), because of the complexity of the likelihood and/or prior. EP therefore
seeks to approximate each term in the joint probability by an exponential-family term,

p(yn|θ) ≈ cnfn(θ), p(θ) ≈ c0f0(θ), (19)

where cn and c0 are constants to ensure the normalization consistency (they will get canceled in the
inference, so we do not need to calculate them), and

fn(θ) ∝ exp(λ⊤
nϕ(θ)), (0 ≤ n ≤ N)

where λn is the natural parameter and ϕ(θ) is sufficient statistics. For example, if we choose a
Gaussian term, fn = N (θ|µn,Σn), then the sufficient statistics is ϕ(θ) = {θ,θθ⊤}. The moment
is the expectation of the sufficient statistics.

We therefore approximate the joint probability with

p(θ,D) = p(θ)

N∏
n=1

p(yn|θ) ≈ f0(θ)

N∏
n=1

fn(θ) · const. (20)

Because the exponential family is closed under product operations, we can immediately obtain a
closed-form approximate posterior q(θ) ≈ p(θ|D) by merging the approximation terms in the R.H.S
of (20), which is still a distribution in the exponential family.

Then the task amounts to optimizing those approximation terms {fn(θ)|0 ≤ n ≤ N}. EP repeatedly
conducts four steps to optimize each fn.

• Step 1. We obtain the calibrated distribution that integrates the context information of fn,

q\n(θ) ∝ q(θ)

fn(θ)
,

where q(θ) is the current posterior approximation.
• Step 2. We construct a tilted distribution to combine the true likelihood,

p̃(θ) ∝ q\n(θ) · p(yn|θ).
Note that if n = 0, we have p̃(θ) ∝ q\n(θ) · p(θ).

• Step 3. We project the tilted distribution back to the exponential family,

q∗(θ) = argmin
q

KL(p̃∥q)

where q belongs to the exponential family. This can be done by moment matching,

Eq∗ [ϕ(θ)] = Ep̃[ϕ(θ)]. (21)

That is, we compute the expected moment under p̃, with which to obtain the parameters
of q∗. For example, if q∗(θ) is a Gaussian distribution, then we need to compute Ep̃[θ]
and Ep̃[θθ

⊤], with which to obtain the mean and covariance for q∗(θ). Hence we obtain
q∗(θ) = N (θ|Ep̃[θ],Ep̃[θθ

⊤]− Ep̃[θ]Ep̃[θ]
⊤)

• Step 4. We update the approximation term by

fn(θ) ≈
q∗(θ)

q\(θ)
. (22)

In practice, EP often updates all the fn’s in parallel, and uses damping to avoid divergence. It
iteratively runs the four steps until convergence. In essence, this is a fixed point iteration to optimize
a free energy function (a mini-max problem) [Minka, 2001].

The critical step in EP is the moment matching (21). However, in many cases, it is analytically
intractable to compute the moment under the tilted distribution p̃, due to the complexity of the
likelihood. To address this problem, CEP considers the commonly used case that each fn has a
factorized structure,

fn(θ) =
∏
m

fnm(θm), (23)
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where each fnm is also in the exponential family, and {θm} are mutually disjoint. Then at the
moment matching step, we need to compute the moment of each θm under p̃, i.e., Ep̃[ϕ(θm)]. The
first key idea of CEP is to use the nested structure,

Ep̃[ϕ(θm)] = Ep̃(θ\m)Ep̃(θm|θ\m)[ϕ(θm)], (24)

where θ\m = θ\θm. Therefore, we can first compute the inner expectation, i.e., conditional moment,

Ep̃(θm|θ\m)[ϕ(θm)] = g(θ\m), (25)

and then seek for computing the outer expectation, Ep̃(θ\m)[g(θ\m)]. The inner expectation is often
easy to compute (e.g., with our CP/Tucker likelihood). When fn is factorized individually over
each element of θ, this can always be efficiently and accurately calculated by quadrature. However,
the outer expectation is still difficult to obtain because p̃(θ\m) is intractable. The second key idea
of CEP is that since the moment matching is also between q(θ\m) and p̃(θ\m), we can use the
current marginal posterior to approximate the marginal titled distribution and then compute the outer
expectation,

Ep̃(θ\m)[g(θ\m)] ≈ Eq(θ\m)[g(θ\m)]. (26)

If it is still analytically intractable, we can use the delta method [Oehlert, 1992] to approximate the
expectation. That is, we use a Taylor expansion of g(·) at the mean of θ\m. Take the first-order
expansion as an example,

g(θ\m) ≈ g
(
Eq(θ\m)[θ\m]

)
+ J

(
θ\m − Eq(θ\m)[θ\m]

)
where J is the Jacobian of g at Eq(θ\m)[θ\m]. Then we take the expectation on the Taylor approxi-
mation instead,

Eq(θ\m)

[
g(θ\m)

]
≈ g

(
Eq(θ\m)[θ\m]

)
. (27)

The above computation is very convenient to implement. Once we obtain the conditional moment
g(θ\m), we simply replace the θ\m by its expectation under current posterior approximation q, i.e.,
Eq(θ\m)[θ\m], to obtain the matched moment g(Eq(θ\m)[θ\m]), with which to construct q∗ in Step 3
of EP (see (21)). The remaining steps are the same.

C.2 Running Posterior Update

Now we use the CEP framework to update the running posterior p(Θn+1, τ |Dtn+1
) in (8) via the

approximation (9). To simplify the notation, let us define vm
lm

∆
= um

ℓm
(tn+1), and hence for each

(ℓ, y) ∈ Bn+1, we approximate

N
(
y|1⊤ (v1

ℓ1 ◦ . . . ◦ vM
ℓM

)
, τ−1

)
≈

M∏
m=1

N (vm
ℓm |γm

ℓm ,Σm
ℓm)Gam(τ |αℓ, ωℓ). (28)

If we substitute (9) into (8), we can immediately obtain a Gaussian posterior approximation of each
vm
ℓm

and a Gamma posterior approximation of the noise inverse variance τ . Then dividing the current
posterior approximation with the R.H.S of (28), we can obtain the calibrated distribution,

q\ℓ(vm
ℓm) = N (vm

ℓm |βm
ℓm ,Ωm

ℓm),

q\ℓ(τ) = Gam(τ |α\ℓ, ω\ℓ), (29)

where 1 ≤ m ≤M . Next, we construct a tilted distribution,

p̃(v1
ℓ1 , . . . ,v

M
ℓM , τ) ∝ q\ℓ(τ) ·

M∏
m=1

q\ℓ(vm
ℓm) · N

(
y|1⊤ (v1

ℓ1 ◦ . . . ◦ vM
ℓM

)
, τ−1

)
. (30)

To update each N (vm
ℓm
|γm

ℓm
,Σm

ℓm
) in (28), we first look into the conditional tilted distribution,

p̃(vm
ℓm |V

\m
ℓ , τ) ∝ N (vm

ℓm |βm
ℓm ,Ωm

ℓm) · N
(
y|
(
vm
ℓm

)⊤
v
\m
ℓ , τ−1

)
(31)
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where V\m
ℓ is {vj

ℓj
|1 ≤ j ≤M, j ̸= m}, and

v
\m
ℓ = v1

ℓ1 ◦ . . . ◦ vm−1
ℓm−1

◦ vm+1
ℓm+1

◦ . . . ◦ vM
ℓM .

The conditional tilted distribution is obviously Gaussian, and the conditional moment is straightfor-
ward to obtain,

S(vm
ℓm |V

\m
ℓ , τ) =

[
Ωm

ℓm
−1 + τv

\m
ℓ

(
v
\m
ℓ

)⊤]−1

, (32)

E[vm
ℓm |V

\m
ℓ , τ ] = S(vm

ℓm |V
\m
ℓ , τ) ·

(
Ωm

ℓm
−1βm

ℓm + τyv
\m
ℓ

)
, (33)

where S denotes the conditional covariance. Next, according to (27), we simply replace τ , v\m
ℓ ,

and v
\m
ℓ

(
v
\m
ℓ

)⊤
by their expectation under the current posterior q in (32) and (33), to obtain the

moments, i.e., the mean and covariance matrix, with which we can construct q∗ in Step 3 of the EP
framework. The computation of Eq[τ ] is straightforward, and

Eq[v
\m
ℓ ] = Eq[v

1
ℓ1 ] ◦ . . . ◦ Eq[v

m−1
ℓm−1

] ◦ Eq[v
m+1
ℓm+1

] ◦ . . . ◦ Eq[v
M
ℓM ],

Eq[v
\m
ℓ

(
v
\m
ℓ

)⊤
] = Eq[v

1
ℓ1

(
v1
ℓ1

)⊤
] ◦ . . . ◦ Eq[v

m−1
ℓm−1

(
vm−1
ℓm−1

)⊤
]

◦ Eq[v
m+1
ℓm+1

(
vm+1
ℓm+1

)⊤
] ◦ . . . ◦ Eq[v

M
ℓM

(
vM
ℓM

)⊤
].

Similarly, to update Gam(αℓ, ωℓ) in (28), we first observe that the conditional titled distribution is
also a Gamma distribution,

p̃(τ |Vℓ) ∝ Gam(τ |α̃, ω̃) ∝ Gam(τ |α\ℓ, ω\ℓ)N (y|1⊤vℓ, τ
−1), (34)

where vℓ = v1
ℓ1
◦ . . . ◦ vM

ℓM
, and

α̃ = α\ℓ +
1

2
,

ω̃ = ω\ℓ +
1

2
y2 +

1

2
1⊤vℓv

⊤
ℓ 1− y1⊤v. (35)

Since the conditional moments (the expectation of τ and log τ ) are functions of α and ω, when using
the delta method to approximate the expected conditional moment, it is equivalent to approximating
the expectation of α̃ and ω̃ first, and then use the expected α̃ and ω̃ to recover the moments. As a
result, we can simply replace vℓ and vℓv

⊤
ℓ in (35) by their expectation under the current posterior,

and we obtain the approximation of Eq[α̃] and Eq[ω̃]. With these approximated expectation, we then
construct q∗(τ) = Gam(τ |Eq[α],Eq[ω]) at Step 3 in EP. The remaining steps are straightforward.
The running posterior update with the Tucker form likelihood follows a similar way.

D More Results on Simulation Study

D.1 Accuracy of Trajectory Recovery

We provide the quantitative result in recovering the factor trajectories. Note that there is only one
competing method, NONFAT, which can also estimate factor trajectories. We therefore ran our
method and NONFAT on the synthetic dataset. We then randomly sampled 500 time points in the
domain and evaluate the RMSE of the learned factor trajectories for each method. As shown in
Table 2, the RMSE of NONFAT on recovering u1

1(t) and u2
1(t) is close to SFTL, showing NONFAT

achieved the same (or very close) quality in recovering these two trajectories. However, on u1
2(t) and

u2
2(t), the RMSE of NONFAT is much larger, showing that NONFAT have failed to capture the other

two trajectories. By contrast, SFTL consistently well recovered them.

D.2 Sensitive Analysis on Kernel Parameters

To examine the sensitivity to the kernel parameters, we used the synthetic dataset, and randomly
sampled 100 entries and new timestamps for evaluation. We then examined the length-scale ρ and
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u1
1(t) u1

2(t) u2
1(t) u2

2(t)
SFTL 0.073 0.082 0.103 0.054
NONFAT 0.085 0.442 0.096 0.443

Table 2: RMSE in recovering trajectories on the simulation data.

ρ 0.1 0.3 0.5 0.7 0.9

Matérn-1/2 SFTL-CP 0.091 0.064 0.059 0.056 0.057
SFTL-Tucker 0.060 0.055 0.056 0.056 0.057

Matérn-3/2 SFTL-CP 0.062 0.061 0.074 0.093 0.112
SFTL-Tucker 0.061 0.059 0.078 0.101 0.129

(a) Prediction RMSE with a = 0.3 and varying ρ.

a 0.1 0.3 0.5 0.7 0.9

Matérn-1/2 SFTL-CP 0.056 0.064 0.057 0.059 0.063
SFTL-Tucker 0.065 0.055 0.054 0.055 0.055

Matérn-3/2 SFTL-CP 0.072 0.061 0.063 0.060 0.059
SFTL-Tucker 0.098 0.059 0.064 0.062 0.061

(b) Prediction RMSE with ρ = 0.3 and varying a.

Table 3: Sensitive analysis of amplitude a and length-scale ρ on synthetic data.

amplitude a, for two commonly-used Matérn kernels: Matérn-1/2 and Matérn-3/2. The study was
performed on SFTL based on both the CP and Tucker forms. The results are reported in Table 3.
Overall, the predictive performance of SFTL is less sensitive to the amplitude parameter a than to
the length-scale parameter ρ. But when we use Matérn-1/2, the performance of both SFTL-CP and
SFTL-Tucker is quite stable to the length-scale parameter ρ. When we use Matérn-3/2, the choice of
the length-scale is critical.

E Real-World Dataset Information and Competing Methods

We tested all the methods in the following four real-world datasets.

• FitRecord3, workout logs of EndoMondo users’ health status in outdoor exercises. We
extracted a three-mode tensor among 500 users, 20 sports types, and 50 altitudes. The entry
values are heart rates. There are 50K observed entry values along with the timestamps.

• ServerRoom4, temperature logs of Poznan Supercomputing and Networking Center. We
extracted a three-mode tensor between 3 air conditioning modes (24◦, 27◦ and 30◦), 3 power
usage levels (50%, 75%, 100%) and 34 locations. We collected 10K entry values and their
timestamps.

• BeijingAir-25, air pollution measurement in Beijing from year 2014 to 2017. We extracted a
two-mode tensor (monitoring site, pollutant), of size 12× 6, and collected 20K observed
entry values (concentration) and their timestamps.

• BeijingAir-3, extracted from the same data source as BeijingAir-2, a three-mode tensor
among 12 monitoring sites, 12 wind speeds and 6 wind directions. The entry value is the
PM2.5 concentration. There are 15K observed entry values at different timestamps.

We first compared with the following state-of-the-art streaming tensor decomposition methods based
on the CP or Tucker model. (1) POST [Du et al., 2018], probabilistic streaming CP decomposition
via mean-field streaming variational Bayes [Broderick et al., 2013] (2) BASS-Tucker [Fang et al.,
2021a] Bayesian streaming Tucker decomposition, which online estimates a sparse tensor-core via a

3https://sites.google.com/eng.ucsd.edu/fitrec-project/home
4https://zenodo.org/record/3610078#%23.Y8SYt3bMJGi
5https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+

Air-Quality+Data
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spike-and-slab prior to enhance the interpretability. We also implemented (3) ADF-CP, streaming CP
decomposition by combining the assumed density filtering and conditional moment matching [Wang
and Zhe, 2019].

Next, we tested the state-of-the-art static decomposition algorithms, which have to go through the
data many times. (4) P-Tucker [Oh et al., 2018], an efficient Tucker decomposition algorithm that
performs parallel row-wise updates. (5) CP-ALS and (6) Tucker-ALS [Bader and Kolda, 2008],
CP/Tucker decomposition via alternating least square (ALS) updates. The methods (1-6) are not
specifically designed for temporal decomposition and cannot utilize the timestamps of the observed
entries. In order to incorporate the time information for a fair comparison, we augment the tensor
with a time mode, and convert the ordered, unique timestamps into increasing time steps.

We then compared with the most recent continuous-time temporal decomposition methods. Note
that none of these methods can handle data streams. They have to iteratively access the data to
update the model parameters and factor estimates. (7) CT-CP [Zhang et al., 2021], continuous-
time CP decomposition, which uses polynomial splines to model a time-varying coefficient λ
for each latent factor, (8) CT-GP, continuous-time GP decomposition, which extends [Zhe et al.,
2016a] to use GPs to learn the tensor entry value as a function of the latent factors and time
yℓ(t) = g(u1

ℓ1
, . . . ,uK

ℓK
, t) ∼ GP(0, κ(·, ·)), (9) BCTT [Fang et al., 2022], Bayesian continuous-

time Tucker decomposition, which estimates the tensor-core as a time-varying function, (10) THIS-
ODE [Li et al., 2022], which uses a neural ODE [Chen et al., 2018] to model the entry value as a
function of the latent factors and time, dyℓ(t)

dt = NN(u1
ℓ1
, . . . ,uK

ℓK
, t) where NN is short for neural

networks. (11) NONFAT [Wang et al., 2022], nonparametric factor trajectory learning, the only
existing work that also estimates factor trajectories for temporal tensor decomposition. It uses a
bi-level GP to estimate the trajectories in the frequency domain and applies inverse Fourier transform
to return to the time domain.

F More Results about Prediction Accuracy

We report for R = 2, R = 3 and R = 7, the final prediction error (after the data has been processed)
of all the methods in Table 4, Table 5, and Table 6, respectively. We report for R = 2, R = 3 and
R = 7, the online predictive performance of the streaming decomposition approaches in Fig. 5, Fig.
6, and Fig. 7, respectively.
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Figure 5: Online prediction error with the number of processed entries (R = 2)
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Figure 6: Online prediction error with the number of processed entries (R = 3)

G Running Time

As compared with static (non-streaming) methods, such as BCTT, our method is faster and more
efficient. That is because whenever new data comes in, the static methods have to retrain the model
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RMSE FitRecord ServerRoom BeijingAir-2 BeijingAir-3

Static

PTucker 0.606± 0.015 0.757± 0.36 0.509± 0.01 0.442± 0.142
Tucker-ALS 0.914± 0.01 0.991± 0.016 0.586± 0.016 0.896± 0.032
CP-ALS 0.926± 0.013 0.997± 0.016 0.647± 0.041 0.918± 0.031
CT-CP 0.675± 0.009 0.412± 0.024 0.642± 0.007 0.832± 0.035
CT-GP 0.611± 0.009 0.218± 0.021 0.723± 0.01 0.88± 0.026
BCTT 0.604± 0.019 0.715± 0.352 0.504± 0.01 0.799± 0.027
NONFAT 0.543± 0.002 0.132± 0.002 0.425± 0.002 0.878± 0.014
THIS-ODE 0.544± 0.005 0.142± 0.004 0.553± 0.015 0.876± 0.027

Stream

POST 0.705± 0.013 0.767± 0.155 0.539± 0.01 0.695± 0.135
ADF-CP 0.669± 0.033 0.764± 0.114 0.583± 0.07 0.54± 0.045
BASS-Tucker 1± 0.016 1± 0.016 1.043± 0.05 0.982± 0.058
SFTL-CP 0.437± 0.014 0.18± 0.019 0.323± 0.019 0.462± 0.009
SFTL-Tucker 0.446± 0.024 0.276± 0.031 0.344± 0.031 0.417± 0.035

MAE

Static

PTucker 0.416± 0.005 0.388± 0.152 0.336± 0.004 0.271± 0.053
Tucker-ALS 0.676± 0.008 0.744± 0.01 0.408± 0.008 0.669± 0.02
CP-ALS 0.686± 0.011 0.748± 0.009 0.454± 0.057 0.691± 0.016
CT-CP 0.466± 0.005 0.295± 0.029 0.49± 0.006 0.642± 0.02
CT-GP 0.424± 0.006 0.155± 0.012 0.517± 0.01 0.626± 0.01
BCTT 0.419± 0.015 0.534± 0.263 0.343± 0.003 0.579± 0.018
NONFAT 0.373± 0.001 0.083± 0.001 0.282± 0.002 0.622± 0.006
THIS-ODE 0.377± 0.003 0.097± 0.003 0.355± 0.008 0.606± 0.015

Stream

POST 0.485± 0.008 0.564± 0.091 0.368± 0.008 0.517± 0.123
ADF-CP 0.462± 0.022 0.574± 0.073 0.401± 0.029 0.415± 0.038
BASS 0.777± 0.039 0.749± 0.01 0.871± 0.125 0.727± 0.029
SFTL-CP 0.248± 0.005 0.126± 0.007 0.199± 0.005 0.311± 0.004
SFTL-Tucker 0.25± 0.01 0.203± 0.032 0.218± 0.02 0.261± 0.023

Table 4: Final prediction error with R = 2. The results were averaged from five runs.

RMSE FitRecord ServerRoom BeijingAir-2 BeijingAir-3

Static

PTucker 0.603± 0.045 0.677± 0.129 0.464± 0.012 0.421± 0.074
Tucker-ALS 0.885± 0.007 0.989± 0.014 0.559± 0.017 0.863± 0.032
CP-ALS 0.907± 0.015 0.993± 0.016 0.594± 0.031 0.901± 0.03
CT-CP 0.666± 0.008 0.5± 0.2 0.641± 0.006 0.819± 0.019
CT-GP 0.606± 0.008 0.217± 0.025 0.749± 0.014 0.895± 0.054
BCTT 0.576± 0.015 0.358± 0.082 0.454± 0.011 0.829± 0.028
NONFAT 0.517± 0.002 0.129± 0.002 0.408± 0.005 0.877± 0.014
THIS-ODE 0.528± 0.005 0.132± 0.002 0.544± 0.014 0.878± 0.026

Stream

POST 0.706± 0.034 0.741± 0.161 0.518± 0.016 0.622± 0.123
ADF-CP 0.641± 0.009 0.652± 0.012 0.542± 0.012 0.518± 0.003
BASS-Tucker 1.008± 0.017 1± 0.016 1.035± 0.038 0.99± 0.034
SFTL-CP 0.434± 0.014 0.178± 0.006 0.288± 0.017 0.454± 0.011
SFTL-Tucker 0.418± 0.01 0.289± 0.096 0.314± 0.049 0.41± 0.013

MAE

Static

PTucker 0.392± 0.009 0.323± 0.053 0.307± 0.005 0.197± 0.029
Tucker-ALS 0.648± 0.012 0.743± 0.008 0.39± 0.008 0.651± 0.018
CP-ALS 0.666± 0.013 0.746± 0.01 0.415± 0.022 0.676± 0.021
CT-CP 0.462± 0.005 0.348± 0.141 0.489± 0.006 0.632± 0.015
CT-GP 0.419± 0.005 0.158± 0.022 0.544± 0.012 0.627± 0.015
BCTT 0.392± 0.004 0.267± 0.067 0.299± 0.006 0.607± 0.027
NONFAT 0.355± 0.001 0.078± 0.001 0.265± 0.003 0.622± 0.006
THIS-ODE 0.363± 0.004 0.083± 0.002 0.348± 0.006 0.603± 0.009

Stream

POST 0.482± 0.022 0.54± 0.102 0.351± 0.009 0.442± 0.109
ADF-CP 0.445± 0.006 0.5± 0.009 0.381± 0.006 0.393± 0.009
BASS 0.822± 0.024 0.749± 0.009 0.919± 0.041 0.73± 0.018
SFTL-CP 0.246± 0.005 0.121± 0.003 0.176± 0.006 0.305± 0.006
SFTL-Tucker 0.24± 0.002 0.18± 0.042 0.196± 0.03 0.263± 0.011

Table 5: Final prediction error with R = 3. The results were averaged from five runs.
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RMSE FitRecord ServerRoom BeijingAir-2 BeijingAir-3

Static

PTucker 0.603± 0.045 0.677± 0.129 0.464± 0.012 0.421± 0.074
Tucker-ALS 0.826± 0.003 0.983± 0.016 0.586± 0.018 0.825± 0.026
CP-ALS 0.878± 0.012 0.994± 0.013 0.897± 0.215 0.863± 0.024
CT-CP 0.663± 0.008 0.384± 0.008 0.64± 0.007 0.818± 0.019
CT-GP 0.603± 0.006 0.381± 0.303 0.766± 0.016 0.904± 0.046
BCTT 0.498± 0.011 0.194± 0.017 0.368± 0.01 0.813± 0.028
NONFAT 0.497± 0.003 0.128± 0.002 0.394± 0.004 0.88± 0.013
THIS-ODE 0.138± 0.003 0.554± 0.016 0.878± 0.027

Stream

POST 0.675± 0.012 0.707± 0.14 0.519± 0.017 0.738± 0.068
ADF-CP 0.652± 0.01 0.646± 0.008 0.548± 0.012 0.552± 0.026
BASS-Tucker 0.604± 0.043 0.493± 0.071 0.391± 0.005 0.634± 0.083
SFTL-CP 0.424± 0.006 0.166± 0.013 0.256± 0.013 0.481± 0.006
SFTL-Tucker 0.448± 0.009 0.406± 0.052 0.249± 0.017 0.432± 0.019

MAE

Static

PTucker 0.353± 0.005 0.305± 0.042 0.248± 0.004 0.32± 0.038
Tucker-ALS 0.6± 0.002 0.737± 0.009 0.392± 0.011 0.619± 0.015
CP-ALS 0.64± 0.009 0.745± 0.008 0.593± 0.121 0.637± 0.015
CT-CP 0.459± 0.005 0.27± 0.003 0.488± 0.005 0.626± 0.012
CT-GP 0.412± 0.004 0.282± 0.23 0.557± 0.009 0.628± 0.01
BCTT 0.342± 0.005 0.157± 0.015 0.234± 0.005 0.581± 0.022
NONFAT 0.335± 0.002 0.077± 0.002 0.256± 0.003 0.627± 0.005
THIS-ODE 0.362± 0.002 0.089± 0.002 0.357± 0.007 0.603± 0.013

Stream

POST 0.461± 0.008 0.518± 0.087 0.357± 0.011 0.558± 0.058
ADF-CP 0.451± 0.006 0.489± 0.009 0.384± 0.014 0.411± 0.025
BASS 0.745± 0.026 0.749± 0.01 0.903± 0.044 0.721± 0.038
SFTL-CP 0.243± 0.003 0.111± 0.008 0.159± 0.004 0.323± 0.003
SFTL-Tucker 0.253± 0.004 0.273± 0.033 0.144± 0.008 0.273± 0.016

Table 6: Final prediction error with R = 7. The results were averaged from five runs.
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Figure 7: Online prediction error with the number of processed entries (R = 7)

from scratch and iteratively access the whole data accumulated so far, while our method only performs
incremental updates and never needs to revisit the past data. To demonstrate this point, we compared
the training time of our method with BCTT on BeijingAir2 dataset. All the methods were run on a
Linux workstation. From Table 7, we can see a large speed-up of our method with both the CP and
Tucker form. The higher the rank (R), the more significant the speed-up.

R = 2 R = 3 R = 5 R = 7
SFTL-CP 27.1 27.2 28.5 29.1
SFTL-Tucker 32.3 35.6 43.2 59.3
BCTT 49.5 56.1 72.1 136.7

Table 7: Running time in seconds on BeijingAir2 dataset.
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