
An Introduction 
to Verification of 
Visualization Techniques

Tiago Etiene
Robert M. Kirby
Cláudio T. Silva

ETIEN
E • KIRBY • SILVA 

AN
 IN

TRO
D

UC
TIO

N
 TO

 VERIFICATIO
N

 O
F VISUALIZATIO

N
 TEC

H
N

IQ
UES 

M
O

R
G

A
N

&
C

L
A

Y
P

O
O

L

An Introduction to Verification of 
Visualization Techniques
Tiago Etiene, Modelo Inc.  •  Robert M. Kirby, University of Utah  
Cláudio T. Silva, New York University

As we increase our reliance on computer-generated information, often using it as part of our decision- 
making process, we must devise tools to assess the correctness of that information. Consider, for 
example, software embedded on vehicles, used for simulating aircraft performance, or used in medi-
cal imaging. In those cases, software correctness is of paramount importance as there’s little room 
for error. Software verification is one of the tools available to attain such goals. Verification is a well 
known and widely studied subfield of computer science and computational science and the goal is to 
help us increase confidence in the software implementation by verifying that the software does what 
it is supposed to do.

The goal of this book is to introduce the reader to software verification in the context of visualiza-
tion. In the same way we became more dependent on commercial software, we have also increased 
our reliance on visualization software. The reason is simple: visualization is the lens through which 
users can understand complex data, and as such it must be verified. The explosion in our ability to 
amass data requires tools not only to store and analyze data, but also to visualize it.

This book is comprised of six chapters. After an introduction to the goals of the book, we present 
a brief description of both worlds of visualization (Chapter 2) and verification (Chapter 3). We then 
proceed to illustrate the main steps of the verification pipeline for visualization algorithms. We focus 
on two classic volume visualization techniques, namely, Isosurface Extraction (Chapter 4) and Direct 
Volume Rendering (Chapter 5). We explain how to verify implementations of those techniques and 
report the latest results in the field of verification of visualization techniques. The last chapter con-
cludes the book and highlights new research topics for the future.
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ABSTRACT
As we increase our reliance on computer-generated information, often using it as part of our
decision-making process, we must devise tools to assess the correctness of that information. Con-
sider, for example, software embedded on vehicles, used for simulating aircraft performance, or
used inmedical imaging. In those cases, software correctness is of paramount importance as there’s
little room for error. Software verification is one of the tools available to attain such goals. Verifi-
cation is a well known and widely studied subfield of computer science and computational science
and the goal is to help us increase confidence in the software implementation by verifying that
the software does what it is supposed to do.

e goal of this book is to introduce the reader to software verification in the context of
visualization. In the same way we became more dependent on commercial software, we have also
increased our reliance on visualization software. e reason is simple: visualization is the lens
through which users can understand complex data, and as such it must be verified. e explosion
in our ability to amass data requires tools not only to store and analyze data, but also to visualize
it.

is book is comprised of six chapters. After an introduction to the goals of the book, we
present a brief description of both worlds of visualization (Chapter 2) and verification (Chap-
ter 3). We then proceed to illustrate the main steps of the verification pipeline for visualization
algorithms. We focus on two classic volume visualization techniques, namely, Isosurface Extrac-
tion (Chapter 4) and Direct Volume Rendering (Chapter 5). We explain how to verify implemen-
tations of those techniques and report the latest results in the field of verification of visualization
techniques. e last chapter concludes the book and highlights new research topics for the future.

KEYWORDS
visualization, verification, isosurfaces, volume rendering, geometry processing, veri-
fiable visualization
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Preface
e term verification has become ubiquitous in both the computer science and engineering com-
munities as denoting a process that somehow convinces the user that verified tools, whether those
be circuits, algorithms, implementations, etc. are more safe, accurate, or complete than other tools
that have not been verified. Although the term verification has a common root usage within both
communities, it has evolved to mean something specific to each subarea of computer science and
of engineering. For instance, within computer science, the verification of a circuit denotes either
the exhaustive testing or proof that under all possible inputs, the circuit will produce the correct
(specified) outputs. Similarly, for software, verification relates how well an implementation rep-
resents the behavior of its specification under all possible inputs. Within the engineering world,
verification takes on a different, more nuanced meaning. One assumes that there exists an “ex-
act solution” or “exact representation” resulting from the solution of a mathematical system of
equations. In all but the most trivial circumstances, this exact solution is not attainable, and ap-
proximate solutions must be formed. e process of quantifying how well a numerical scheme
or representation approximates the exact solution is referred to as verification. Verification may
involve looking at how well (or quickly) an approximate solution converges (in an appropriate
norm) to the exact solution, or may involve identifying features or invariants of the solution that
should be maintained regardless of the approximate representation. As visualization models, al-
gorithms and implementations lie at the interface of these two branches, what does it mean to
produce verifiable visualizations?

is question motivated the research work that has become the foundation of this book.
To answer such a broad question, we started as most researchers would: by examining a concrete
example in which our ideas could be refined. We started with isosurface extraction. Many tests
and a few software bugs (which our process found) later, we realized that not only were our results
worth communicating to the community, but that there was much work still to do. We moved
to verifying different techniques used within the visualization community—in turn learning new
things along the way. We began to appreciate that verification is a process, and that articulating
the guiding principles of that process was itself a contribution to our community. e various
papers we reference outline the specific contributions of our work. is book is meant to make
that work accessible to the general reader in a pedagogical way. We hope the reader will take away
not just a particular technique, but a way of approaching and testing visualization algorithms
and their implementations. In the end, we hope that all successful visualization techniques will
produce verifiable visualizations.

Any work of this size and scope has benefitted by many people both indirectly and
directly. We wish to thank our collaborators that helped to shape this work, in particular Luis
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Gustavo Nonato, Carlos Eduardo Scheidegger, Julien Tierny, omas J. Peters, Valerio Pascucci,
Daniel Jönsson, Timo Ropinski, João Luiz Dihl Comba, Anders Ynnerman, Lis Custódio, and
Sinésio Pesco. We also thank the various faculty and students at the SCI Institute (University of
Utah) with whom we sharpened our ideas. In addition, we would like to thank the various Federal
Funding Agencies that have supported our research efforts over the years. e papers we reference
which are co-authored by us detail those acknowledgements. Lastly, we would like to thank our
spouses, without whose patience and encouragement we would probably not have made it this
far.

Tiago Etiene, Robert M. Kirby, and Cláudio T. Silva
December 2015



1

C H A P T E R 1

Introduction
e scientific method, as introduced by Aristotle, was formulated around the idea of postulating
a model (or ideal in the Platonic sense) of natural phenomenon, making observations to vali-
date one’s model, and correcting the model based upon discrepancies between the phenomena
and nature. Sir Francis Bacon is attributed with extending this process to include the idea of
the controlled experiment. No longer were the scientists limited to passively observing the world
around them to deduce the correctness of the model. is gave rise to the idea of devising con-
trolled experiments designed to evaluate the correctness of the hypothesis in a systematic manner.
is systematic process allowed the model to evolve based upon the lessons learned through the
experiment. e late Microsoft researcher Dr. Jim Gray argued in [51] that since Bacon, there
have been four paradigms of scientific discovery: experimental science, theoretical science, com-
putational science, and data science. e first two of these paradigms reigned from the time of
Bacon through the early part of the 20th century. Since the advent of computing, the latter two
paradigms have risen to prominence.

With the advent of modern computing, the first of the two paradigms, called simulation
science, has emerged. In this paradigm, the experiment now employedwithin the scientificmethod
consists of the computational solution of the model. e scientific method underlying simulation
science is composed of the following stages.

• Scientific Problem of Interest (Problem Identification). Statement of the scientific or engi-
neering problem of interest. Questions should be developed in such a way that quantifiable
metrics for determining the level of success of the simulation science endeavor can be eval-
uated.

• Modeling. e development of a model that abstracts the salient features of the problem
of interest in such a way that exploration and evaluation of the model allows an answer to
the questions specified concerning the problem of interest. Modeling techniques include,
but are not limited to, deterministic or probabilistic, discrete or continuous mathematical
models. Means of validating the model (determining the error introduced due to the model
abstraction of the real phenomenon) should be established.

• Computation. e generation of algorithms and implementations that accurately and effi-
ciently evaluate the model over the range of data needed to answer the questions of interest.
is simulation of the physical phenomenon by computational expression of the model pro-
vides the experiment upon which the simulation scientific method hinges.



2 1. INTRODUCTION

• Evaluation. e distillation and evaluation of the data produced through computational
simulation to answer the questions of interest and to provide quantifiable determination of
the success of the experiment. Methods such as scientific visualization provide a means of
tying the simulation results to the problem of interest.

e use of simulation science as a means of scientific inquiry is increasing at a tremen-
dous rate. It is now used in a diversity of fields such as aircraft and automobile design, climate
modeling, and drug design. e process of mathematically modeling physical phenomena, experi-
mentally estimating important key modeling parameters, numerically approximating the solution
of the mathematical model, and computationally solving the resulting algorithm has inundated
the scientific and engineering worlds, allowing for rapid advances in our modern understanding
and utilization of the world around us. But at the end of the day, how do we know that our com-
putational results are “right?” at is to say, how do you know that they should be trusted, or to
what level should they be trusted?

is book was motivated by the use of visualization as a means of evaluation in the third
paradigm, but it is relevant to both the simulation science paradigm and the data science paradigm.
Visualization is often employed as part of the simulation science pipeline. It is the lens through
which scientists often examine their data for deriving new science, and the lens used to view
modeling and discretization interactions within their simulations. In [24], we proposed that vi-
sualization itself must be explicitly considered with similar scrutiny as other parts of the pipeline
if it is to be used as part of this scientific process.

Examining the pipeline itself and understanding what procedures need to be in place to
help ensure that its results are meaningful and reliable falls under the general heading of “V&V”
– Validation and Verification—within the simulation science community. We define validation
and verification as follows (definitions are taken directly from [2]).

• Validation. e process of determining if a mathematical model of a physical event repre-
sents the actual physical event with sufficient accuracy.

• Verification. e process of determining if a computational model obtained by discretizing
a mathematical model of a physical event and the code implementing the computational
model can be used to represent themathematical model of the event with sufficient accuracy.

Based upon these two definitions, it is easy to see that fundamental to simulation science
is the idea of the “error budget”—those assumptions and approximations that introduce error
(or approximations) into the simulation process and their corresponding impact (or cost) on the
scientific pipeline. Quantification, and ideally elimination, of modeling errors (those errors intro-
duced through the choice of a mathematical model to describe observable data), approximation
error (those errors introduced in the numerical computation of solutions of the model), and un-
certainty errors (those errors due to variation in model parameters) are critical components of the
scientific process. ey allow scientists to judiciously evaluate which component of the process
described above (e.g., modeling, numerical approximations) requires refinement in comparison
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with the real phenomenon of interest. Over the last 40 years, tremendous effort has been exerted
in the pursuit of numerical methods that are both flexible and accurate, hence providing suffi-
cient fidelity to be employed in the numerical solution of a large number of models and sufficient
quantification of accuracy to allow researchers to focus their attention on model refinement and
uncertainty quantification. It is in light of this that the verification process currently used in sim-
ulation science has been solidified; it is a means of “proving the mettle” of the computational and
mathematical model [2].

e verification process is commonly partitioned into two areas recognizable to most vi-
sualization researchers: solution verification and code verification. In solution verification, effort
is directed toward assuring the accuracy of the input data, estimating the numerical approxima-
tion error due to discretization, and assuring the accuracy of the resulting simulation output data.
In code verification, effort is directed toward finding and removing source-code mistakes and
finding and removing (numerical) algorithmic errors. When these two forms of “debugging” are
accomplished, they allow researchers not only to correct and refine their scientific tools, but also to
build a confidence in the design and handling of the scientific tool and the corresponding results
it produces.

When these results are then to be used in the scientific setting, differences between compu-
tational and experimental results can be examined in light of the assumptions that were employed
in the model generation and simulation. If visualization is the lens through which simulation sci-
entists view their data, is that lens free of flaws? Is it possible that visual discrepancies between
simulation and experimental results could be due to assumptions and approximations built into
the visualization method? Are the visualization techniques designed based upon (and, in par-
ticular, to respect) properties of the model and the simulation used to generate the data being
visualized? To place visualization firmly within the scientific process, it must undergo the same
level of rigorous analysis.

VERIFIABLEVISUALIZATION
Data visualization has become an indispensable means of presenting data due to its ability to
succinctly summarize and support ideas and concepts that are being examined or presented. A
basic premise of visualization is that visual information can be processed at a much higher rate
than raw numbers and text. As the cliché goes, “A picture is worth a thousand words” [23].
Visualization techniques and systems [22, 43, 44, 48, 55] have thus emerged as a key enabling
technology in this endeavor: helping people explore and explain data by allowing the creation of
both static and interactive visual representations.

Visualizations libraries such as Kitware’s VTK contain a very large number of highly com-
plex visualization algorithms with thousand of lines of code implementing them. e most pow-
erful of these algorithms are often based on complex mathematical concepts, e.g., Morse-Smale
complex [9], spectral analysis [45], and partial differential equations (PDEs) [3]. Robust im-
plementations of these techniques require the use of nontrivial techniques (e.g., simulation of
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simplicity [10], linear systems solvers [6], and Delaunay meshing [50]). e overall complexity
and size of these datasets leave no room for inefficient code, thus making their implementation
even more complex. On top of all this, hardware keeps changing quickly and many platforms
need to be supported. In particular, the use of GPUs just adds to the overall complexity. Given
all this complexity, an important question that must be asked is whether the derived visualizations are
correct—both mathematically and perceptually.

As we become more reliant on computational algorithms and systems in our day-to-day
lives, there is an increasing need to develop metrics by which we can attest to the “quality” of the
hardware and software components that we employ. Good design specifications are not enough as
many stages of development exist between the conceptual design phase and the finished product.
Furthermore, system complexity has been increasing rapidly, making it easy for “bugs” to creep
inside even the most carefully designed and implemented codes.

e issue of guaranteeing correctness of complex systems has been studied in different
contexts and it continues to be an active area of research [17, 18, 26]. In computer science, such
considerations have proved to be important in areas such as circuit and software design. In the
context of engineering, such considerations are important in the modeling and simulation of
physical phenomena. Although the specific processes used in these two areas can vary significantly,
they have at their core a common root paradigm, that of validation and verification.

Despite the fact that visualizations are widely used, the problem of verifying visualization
algorithms and techniques has been largely overlooked [16, 20, 24, 54, 60]. Although there are ad
hoc solutions for testing implementations, no technique provides a commonly accepted frame-
work for verifying the (mathematical) accuracy, reliability, and robustness of visualization tools.

As mentioned earlier, this is distinct from, but intimately related to, questions of percep-
tion and visual representation efficacy or correctness. In fact, there has been substantial anecdotal
evidence of visualization techniques whose flaws caused the misinterpretation of the underlying
phenomena. Some researchers have even argued that the problem is so acute that users should
avoid third-party visualization tools due to their concern about potentially incorrect results [24].

But what does it mean to produce verifiable visualizations? is book presents our efforts in
trying to formally define a process. We start the book with a brief introduction to visualization in
Chapter 2. is is followed by a brief description of validation and verification in simulation sci-
ence in Chapter 3. rough a simple example, we illustrate the main steps necessary to implement
a V&V pipeline. e next two chapters form the technical core of the book where we undertake
a formal verification study of the correctness of isosurfacing and volume rendering techniques. In
Chapter 4, we introduce the tools necessary for the verification of geometrical properties of iso-
surface extraction algorithms. In Chapter 5, we introduce the principles of verification of volume
rendering algorithms. e final chapter, Chapter 6, provides concluding remarks and highlights
new research topics for the future.
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C H A P T E R 2

Visualization in the RealWorld
In this chapter, we briefly introduce the field of “visualization” and explain the goal of this book—
to introduce techniques capable of answering the question “How do I know that the visualization I
see is correct?” We will focus on the importance of visualization and why it should be verified. We
start by introducing the many flavors of visualization, followed by a brief history and applications.
en, we explain the typical pipeline used in scientific visualization, covering the process of data
acquisition, filtering, and mapping. Next, we explain how different errors can affect that pipeline.
We list some of the many error sources that hinder visualizations and present an historical account
of the pursuit of the correctness of a well-known visualization technique. Last, we introduce some
of the current practices within the visualization community and demonstrate the need for more
tools for verifying visualizations.

2.1 VISUALIZINGDATA
We live in the age of data, an age defined by the use of data to augment our capacity to under-
stand and solve real-world challenges. In medicine, for instance, data helps medical diagnosis.
In business, customer data is a rich source of information about customer tendencies and needs.
For the individual, data can provide insights into one’s health via sensors that measure weight and
blood pressure. ese are only a small fraction of the applications that benefit from understanding
data. Nevertheless, data serves no purpose if it cannot be analyzed. As our capacity to amass and
store data grows, so does the need to analyze, explore, extract meaning, and present that data to
empower its users. e multitude of sources—the census, weather, medicine, satellites, numeri-
cal simulations, wearables, to name a few—adds to the problem. As the goal is to learn as much
information from the data as possible, a combination of statistics, computer software, and data
visualization is essential to allow us to gain insights from data.

Even though this combination of tools is taken for granted nowadays, it is not straightfor-
ward to realize that “data visualization” should be part of this tool set. In fact, there was a time
when statistical graphics did not enjoy the prestige that it does today, as it was thought of as just a
means “for showing the obvious to the ignorant” [52], or not as rigorous as numerical calculations.
By visualizing data, the user is exposed to features that may be hard to understand otherwise. e
Anscombe’s quartet is a classic example advocating the need to visualize data [1]. e quartet is
composed of four distinct sets of .x; y/ pairs, whose mean, variance, linear regression, and other
metrics are nearly identical (see Table 2.1). In other words, by these measures, the datasets are
also nearly identical. By using a simple plot, however, one can clearly see that the opposite is true
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Table 2.1: e Anscombe’s quartet. Each dataset possesses nearly identical mean, variance, linear
regression, and other metrics. By these metrics, the four datasets are also nearly identical.

Dataset I Dataset II Dataset III Dataset IV
x y x y x y x y

10 8.04 10 9.14 10 7.46 8 6.58
8 6.95 8 8.14 8 6.77 8 5.76
13 7.58 13 8.74 13 12.74 8 7.71
9 8.81 9 8.77 9 7.11 8 8.84
11 8.33 11 9.26 11 7.81 8 8.47
14 9.96 14 8.1 14 8.84 8 7.04
6 7.24 6 6.13 6 6.08 8 5.25
4 4.26 4 3.1 4 5.39 19 12.5
12 10.84 12 9.13 12 8.15 8 5.56
7 4.82 7 7.26 7 6.42 8 7.91
5 5.68 5 4.74 5 5.73 8 6.89

(a) Dataset I (b) Dataset II (c) Dataset III (d) Dataset IV

Figure 2.1: Scatterplot of the Anscombe’s quartet shown in Table 2.1. e line in the figure is the
linear regression of each dataset.

(see Figure 2.1). By visualizing the data, the user is able to make better decisions regarding, for
instance, the best mathematical model for adjusting the data (Figure 2.1 is not well represented
by a linear model) to detect outliers, clusters, and potentially other information not easily acces-
sible from the data table and other statistical summaries. As the cliché goes, “a picture is worth a
thousand words,” or “a thousand numbers.”

2.1.1 PRECURSORSOFMODERNVISUALIZATIONS
Of course, Anscombe’s quartet is not the first successful display of quantitative data. Although the
field of data visualization is relatively new, the use of images to depict information is much older.
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(a) Cholera Map by John Snow (1854) (b) Severe Storm [59]

(c) Napoleon’s March by Charles Minard (1869)

Figure 2.2: Classic visualization examples.

One of the first known uses of data visualization is a time-series depiction of heavenly bodies,
dating back to the 10th century [14]. Since then, many visualizations have achieved the hall of
fame. In particular, we mention three important cases, the first of which is John Snow’s cholera
map—a simple yet powerful visualization of cases of cholera in central London (see Figure 2.2(a)).
A map of central London was enriched with stacked bars representing deaths from cholera and
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dots representing water pumps. By looking at the data in a map, John Snow was able to observe
that cholera cases were concentrated around one water pump in central London, which was then
removed in order to avert the crisis. e second example is the seminal Napoleon’s March by
Charles Minard (see Figure 2.2(c)), a depiction of a multivariate dataset describing the shrink-
age of the French emperor’s army as they marched toward Moscow. A third example, this one
contemporary, is the “Study of a Numerically Modeled Severe Storm” (see Figure 2.2(b)) by Wil-
helmson et al. [59]. e authors developed an animation depicting the intricacies of a storm. e
image was generated by sensory data from storms and the numerical solution of partial differen-
tial equations. A redesigned version of the same image can be found in Tufte [53]. Visualization
helps users make sense of great amounts of data and can provide a basis for decision-making. e
interested reader will find more information about the aforementioned cases and, more broadly,
the history of data visualization in the excellent book chapters by Friendly [14] and Tufte [52].

Visualizations have became commonplace and within reach of the general public. Newspa-
pers, for instance, make extensive use of visualization to improve storytelling and communicate
findings in a variety of subjects, from sports to international affairs. In addition, many tools have
been developed specifically for using visualizations to solve problems. Tools such as NameVoy-
ager [57]—a web-based visualization of the number of babies with a user-selected name born per
year—have great social appeal. Another well-known example is ManyEyes, a collaborative plat-
form for building visualizations. ManyEyes allows users to upload their own data or work with
publicly available data. Such visualizations go beyond the typical task-oriented approach toward
a more social approach [19, 57], where users engage with each other during the process of data
exploration.

We have not yet made any distinction among the many subfields of visualization, notably,
information visualization, visual analytics, and scientific visualization. e visualization tech-
niques developed within each of these communities can greatly enhance the capabilities of par-
ticular users. For instance, techniques developed for the medical community can be very different
from those developed with newspaper readers in mind. Each group will have specific data chal-
lenges that must be dealt with—for example, the data type, data size, data processing choices, and
display requirements. e scientific computing community, for example, uses computer capabili-
ties to understand phenomena such as fluid flow, weather prediction, and combustion simulation.
By the end of the 1980s, the advances in computer power and numerical techniques allowed the
scientific computing community to generate huge amounts of data from numerical computations.
Nevertheless, the results were hard to evaluate—and even visualize—because there was no tech-
nology available for presenting the ever-increasing amount of information. As the Anscombe’s
quartet exemplifies, analyzing the data in terms of numbers alone is not enough. In response to
the lack of appropriate technology and techniques, a panel of experts wrote a report on the impor-
tance of visualization for scientific computing and encouraged the National Science Foundation
(NSF) to develop this new field, which was then called Visualization in Scientific Computing
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(ViSC). Since then, ViSC, known today as scientific visualization (SciVis), has matured and is
now part of the pipeline of users from many disciplines across science [34].

e NSF report was an important milestone in the development of the visualization com-
munity. For over two decades, conferences have been dedicated exclusively to research of new
visualization techniques applied to a variety of domains. In particular, IEEE VIS (Visual An-
alytics, Information Visualization, and Scientific Visualization) and EuroVis conferences have
been in the forefront of the visualization field, producing some of the most exciting research in
the area. e first edition of the IEEE VIS (known at the time as IEEE Visualization) was held
in 1990, with 54 papers published in the conference proceedings. e IEEE VIS held in 2014
included over 1000 attendees, and 134 papers were published in the conference proceedings.

Our focus is on verification of visualization, a subfield of scientific visualization (see Fig-
ure 2.3). In particular, we will describe a tool to investigate the correctness of two widely used
visualization techniques available in the scientific visualization literature. We start by describing
a simplified visualization pipeline.

Figure 2.3: We are interested in the verification of visualization algorithms and implementations, a
subfield of scientific visualization.

2.2 VISUALIZATIONPIPELINE
Consider the following scenario: a man experiencing pain in his head consults a doctor. After
several physical examinations, the doctor recommends the patient have his head scanned by a
computerized tomography (CT) machine. e doctor hopes to find the cause of the pain by
exploring a 3D model of the patient’s head. What is the process behind building that model?

e typical steps involved in the visualization of scientific data are the following: data ac-
quisition, filtering, and mapping. In our example, data acquisition happens while the patient lies
down on a table; the CT machine takes several x-rays, from multiple angles, as illustrated in
Figure 2.4(a). is step is perhaps the most familiar to the general public, as the patient must
interact directly with the machine that generates the images. Nevertheless, by themselves, these
images do not provide an idea of the internal structures of the patient’s head and cannot be used
for medical diagnosis. In the filtering step, the data is manipulated and prepared before gener-
ating a 3D model. e preparation involves the reconstruction of the region of space through
which the x-rays travel. Each tissue layer inside the patient’s head has a different x-ray attenua-
tion coefficient. us, to reconstruct a 3D image, we need to build a 3D field, such that an x-ray
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(a) Acquisition (b) Filtering (c) Mapping

Figure 2.4: Visualization pipeline.

going through it would be attenuated by the same amount as detected by the CT scan (see Fig-
ure 2.4(b)). Other examples of filtering include downsampling (for instance, moving data from
16-bit to 8-bit precision), noise removal, and smoothing. e last step, data mapping, can be
done via volume rendering the 3D field or extracting polygonal meshes that represent the inter-
nal structures (Figure 2.4(c)). (We will review both algorithms in Chapters 4 and 5.) After that,
the doctor can evaluate a 3D model of the patient’s head and deliver an appropriate diagnosis.

e visualization allows the doctor to make decisions based on what she sees. ere is an
underlying assumption at play: the visualization can be used for decision-making because it can
be “trusted,” i.e., it correctly represents the objects of interest in the patient’s head. However, the
visualization is clearly not an exact representation of all the complexities of the patient, but only
a model (an approximation). It is important to understand what has been left out—i.e., what
was ignored in the process—and what has been included—i.e., artifacts that do not represent
any structure in the patient’s head. Both can be understood by rigorously evaluating the decisions
made at every stage of the pipeline: what kind of internal structures a CT machine can detect,
how many images should be taken and at which radiation level, what algorithm should be used to
reconstruct the 3D field, and which visualization method should be applied.¹ In other words, each
decision is accompanied by error sources,² either intrinsic to the methodology used or introduced
by external factors. As these errors sources creep in, the resultant image quality and reliability
are affected. e diligent researcher is aware of these errors and tries to mitigate their effects.

¹Even the choice of a CT machine as a way to investigate the patient’s body already constrains the range of tissues that can
be represented by the model. Because x-rays are used, only certain types of tissues will attenuate the x-rays enough to be
perceptible, such as bones and skin; muscles, on the other hand, will not be represented. An MRI machine, for instance, has
different constrains and can reveal other structures within the patient’s body.
²Here the word “error” does not translate to “bad image,” but any influence that causes the results to deviate from what the
image should represent. A well-understood error source can be useful to the verification of visualization techniques.
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For many decades now, other communities, such as computer science and computational science,
have built tools to mitigate the diverse sources of errors. Examples of such tools include software
testing (unit test, regression test, etc.), verification and validation, and version control systems.
Visualization, on the other hand, needs a more tailored set of tools to make it more reliable. In
the next section, we will review some of the tools often used in the visualization community to
mitigate errors, thus building reliable visualizations. In this book, we will introduce techniques
that help mitigate errors during the data mapping step of particular visualization techniques.

2.3 BUILDINGRELIABLEVISUALIZATIONS
In our previous example, a visualization was used to help a doctor diagnose the cause of head
pain. is is an illustration of how visualizations can be used in critical situations. In many fields
of science, visualization is the lens through which scientists understand and evaluate their data
[24]. e increased importance and widespread adoption of visualization tools entails reliability.
As decisions are increasingly made by evaluating visualizations, the consequences of unreliable
visualization range from wasted time caused by misleading results to unnecessary surgical proce-
dures. Some of the errors that may creep in during the visualization pipeline include those due to
acquisition problems (e.g., the patient moved during data collection), numerical truncation (the
data was downsampled), implementation errors (the code has a bug), even algorithmic errors (the
implementation is correct, but the underlying algorithm is wrong). ere is no one method ca-
pable of dealing with all these errors. roughout the years, each of these errors has been studied
and dealt with to improve the quality of the overall pipeline, some more than others. As an ex-
ample of the difficulty behind fixing these problems, we report next an historical account of the
pursuit of a solution for the ambiguity problem of an Marching Cubes (MC) algorithm, a classic
visualization algorithm.

2.3.1 THEPURSUITOFACORRECTMARCHINGCUBESALGORITHM
Medical equipment such as a CT scan or MRI provides a way of looking into the patient’s body
without surgical intervention. e results of using such equipment are not 3D models of organs
but only raw data. In our previous example, the data is numbers representing the x-ray attenuation
produced by a CT machine. e MC algorithm [30] is one of the classic techniques for mapping
data to 3D virtual models with which users can interact as well as manipulate and evaluate.

e 3D virtual models are called isosurface. An isosurface I is the set of points for which a
function f has a constant value c. One can think of isosurfaces as regions in space with similar
properties. In our example, the isosurface I could represent the patient’s skin tissue, bones, ar-
teries, etc.; the similar property function f is the attenuation coefficient for each body part, i.e.,
how much an x-ray traversing through an artery, bone, skin, etc., is absorbed in the process; and
the constant value c is the attenuation value associated with the region of interest (for instance,
the skin instead of bones). Figure 2.5 shows two isovalues a user might be interested in: the first



12 2. VISUALIZATION INTHEREALWORLD

(a) Skin and bones (b) Skin (c) Bones

Figure 2.5: Isosurfaces corresponding to the skin and bones. (a) A side view of the skin and bones;
(b) and (c) show the skin and bones, respectively. Both the skin and bones were extracted from the
same scalar field, using the same method but with different isovalues.

is associated with the skin and the second with bones. Mathematically, an isosurface is defined
as follows.

Definition 2.1 Let x 2 Rn be a point in Rn, c 2 R a constant and f W Rn 7! R a real-valued
function. e isosurface I , with corresponding isovalue c, is defined as:

I D fxjf .x/ D cg: (2.1)

In R2, I i is an isoline. e function f defines a height field, and the isolines are level-
sets, or the regions in a map with constant elevation (see Figure 2.6). A hiker walking through a
mountain trail that happens also to be an isoline will never go up or down the mountain but will
walk at the same altitude throughout the trail.

Marching Cubes is one of the most important and widely used isosurface extraction tech-
niques. It has an array of advantages that help make it popular, the first of which is simplicity.
e MC algorithm can easily be explained and understood, both in 2D and 3D. e case table
is straightforward and the method simple to implement. e MC algorithm is also robust. Re-
gardless of the input grid, the algorithm will always stop and provide a surface as output. e
MC algorithm is also fast, each voxel is visited only once, and the processing can be made in
parallel. An enormous body of work has been published over the years, extending the MC in
several directions. For a comprehensive discussion of MC-based isosurface techniques and the
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Figure 2.6: Isolines (black lines) of a scalar field (left). By mapping each point of the scalar field to
altitude, we obtain a surface with bumps that resemble mountains (right). e isolines represent the
points with the same altitude.

(a) Reference (b) Close, incorrect (c) Distant, correct (d) Close, correct

Figure 2.7: (a) An isosurface. Two problems are shown: (b) is topologically incorrect, but geometri-
cally close; and (c) is geometrically distant, but topologically correct. (d) e correct approximation of
(a).

many improvements—geometry quality, parallel processing, view-dependent rendering, among
others—we refer the interested reader to the survey by Newman and Yi [39]. We will discuss in
detail the verification of isosurface extraction techniques in Chapter 4. For now, we will show
some of the challenges researchers have faced throughout the years in the search for a correct MC
algorithm.

Although MC has many advantages, at the time of its publication there were also problems.
Ideally, surfaces extracted with any isosurface extraction technique should be both geometrically
close and topologically equivalent to the isosurface I . e former states that points over the ex-
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tracted surface mesh should be close to the isosurface I , whereas the latter states that the shapes
of both M and I are the same. Figure 2.7 illustrates these concepts; see also Figure 2.8.

(a) Isosurface (b) Lorensen and Cline

(c) Disambiguation (d) Chernyaev

(e) Custodio et al.

Figure2.8: Figure (a) shows the isosurface of interest. (b)–(e) Illustrates howMC-based techniques—
used to extract a triangular mesh from isosurfaces—yield distinct results.

Here we describe the pursuit of an MC algorithm capable of preserving the shape of f .
Suppose one wants to extract the isosurface illustrated in the Figure 2.8(a). Let us assume (a)
to be a model of an artery. is case is challenging because it contains thin features that can be
hard to represent. We will illustrate how the different MC-based techniques could fail with our
hypothetical artery.

Soon after Lorensen and Cline’s Marching Cube’s article was published in 1987, its first
problem surfaced [30]. In 1988, Dürst [8] described a problem with the polygonization of some
pairs of neighboring cells. Because neighboring cells can be processed independently, surface
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cracks—i.e., holes that expose the interior of the surface—may appear. In our example, this is
illustrated in Figure 2.8(b).

is problem was elegantly solved in 1991 by Nielson and Hamann’s Asymptotic Decider
[41]. e authors noted that the genesis of the problem is cells, which do not agree on the correct
surface tiling. e proposed solution is simple: an unambiguous method to decide whether to join
or separate the interior of the scalar field f . Nielson and Hamann proposed to use the sign of
the critical point of the ambiguous face as the criterion to join or split the scalar field interior. In
1994, Montani et al. [37] published an alternative solution based on a consistent evaluation of the
face signs. We illustrate a possible outcome in the Figure 2.8(c). Note that the resulting image no
longer contain holes, but it fails to preserve the shape of (a).

ese techniques ended the pursuit of a crack-free surface on MC. Nevertheless, in 1991
Natarajan [38] noted that even though these techniques produced crack-free surfaces, they did
not preserve the shape of the isosurface, which is illustrated in our example by the fact that Fig-
ure 2.8(c) could have been connected in a different way. Another type of ambiguity is the interior
ambiguity. In 1994, Natarajan looked at a critical point inside a grid cell to solve that problem; in
the same year, Chernyaev published a new algorithm called MC 33 [4]. e name comes from the
expansion of the MC lookup table to 33 cases (instead of 15) to cover all ambiguous topology.³
Chernyaev also proposed a new procedure to select among the 33 cases.

Although the algorithms proposed by Chernyaev and Natarajan seemed to have solved the
problem of interior ambiguity, it was found later that they do not always produce topologically
correct triangulated surfaces. For instance, in 2003, Lopes and Brodlie [29] showed that Natara-
jan’s work did not take into account the fact that some grid cubes may have two body saddles. As
a result, some cases could be misclassified, leading to incorrect topology. We illustrate a possi-
ble outcome in Figure 2.8(d). Although the proposed algorithms preserve the topology for most
cases, they can fail to correctly connect some features.

Lopes and Brodlie extended theNatarajan tests in order to correctly retrieve the topology of
isosurfaces, but not all cases were included [39], which could still result in the wrong topology. In
addition, the algorithm proposed is more complicated and, as far as we know, no implementation
is available. Only in 2001 was a formal proof showing all possible cases of a topologically correct
Marching Cubes published by Nielson [40]. Nielson also described a new algorithm for solving
the interior ambiguity, but no implementation was provided.

Many of the techniques discussed thus far were not accompanied by an implementation that
could be tested outside the laboratories in which they were developed. In 2003, Lewiner et al.
implemented Chernyaev’s technique and addressed some of its problems [27, 28]. Nevertheless,
core problems were not addressed, thus sometimes leading to incorrect results. In 2013, Custodio
et al. [5] uncovered problems in the work of both Chernyaev and Lewiner et al. Interestingly, both
implementation and algorithmic problems were uncovered. e authors proposed further changes

³Interestingly, two of the 33 cases were redundant, which means that only 31 cases are needed [29]. e technique, nevertheless,
is still called Marching Cubes 33.
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(a) VolVis dataset. (b) Marschner-Lobb dataset.

Figure 2.9: Two examples of datasets used for verification purposes. (a) Fuel data, from the VolVis.org
project. VolVis is a rich repository of volumetric data. (b) e Marschner-Lobb dataset is a widely used
verification technique. Over 470 TVCG articles have referenced it.

to Chernyaev’s algorithm and its implementation to achieve a topologically correct isosurface
extraction technique.

is story highlights the difficulty in devising a provably correct algorithm and its correct
implementation. Many of the pitfalls faced through the development of a topologically correct
algorithm and implementation could be avoided by a systematic, thorough verification, as is done
in other communities. We present some of the tools that can be used for verifying isosurface
extraction algorithms in detail in Chapter 4. Before introducing these tools, we first review some
of the practices already employed for verifying visualizations.

2.4 PATHTOVERIFICATION
e visualization community has been very active in the pursuit of techniques that increase the
reliability of algorithms and implementations. roughout the years, many steps have been taken
toward building a culture of verification. For instance, Montani, Scateni, and Scopigno [37] pro-
posed a technique for solving the previously explained MC ambiguity problem. e authors pro-
posed a general solution, and thus, they needed to stress-test their code to demonstrate the reli-
ability of the solution when dealing with the complex cases described in the literature. ey used
two approaches to verify their technique: (i) a function for which they knew the topology, so they
could test whether the results are correct and accurate; and (ii) real-world datasets. Both solu-
tions help increase code reliability, but as we will see in the next few chapters, sometimes it is not
enough. Al Globus is one of the first researchers to formally acknowledge the need for verifying
visualizations. Globus and Uselton [16] argue that visualization not only should be thoroughly
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verified, but the results of the verification process should be made available. Without some level
of verification, visualizations are only “pretty pictures” [15]. e authors put it harshly:

Other than blind faith, there is no reason to believe the results from visualization
systems are more than approximately accurate most of the time.

Globus and Uselton use the term “evaluation” to encompass both human-centric evaluation and
traditional verification and testing techniques. e authors note the need for many of the eval-
uation techniques we see today, such as benchmark datasets tailored to certain visualization tech-
niques, error characterization, and experiments with users. Over the years, some benchmark datasets
have been built and are now widely used. For instance, the VolVis project [35] is a rich source
of volume data for testing volume visualization techniques. Another is the “Marschner-Lobb
dataset,” developed by Marschner and Lobb [32] and used to compare several reconstruction fil-
ters. is dataset (shown in Figure 2.9) has also become a standard in volume visualization. In
the next chapter, we explain an alternative method for verifying isosurface extraction algorithms
that can be used along with other techniques.
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C H A P T E R 3

Validation and Verification in
Simulation Science

In this chapter, we seek to highlight some places one can recognize validation and verification
(V&V) in the simulation science process, and to help glean from these examples some of the
general principles of V&V. For those interested in the history of V&V in engineering, we point
the interested reader to [42].

e use of simulation science as a means of scientific inquiry is increasing at a tremendous
rate. e process of mathematically modeling physical phenomena, experimentally estimating
important key modeling parameters, numerically approximating the solution of the mathemati-
cal model, and computationally solving the resulting algorithm has inundated the scientific and
engineering worlds. In particular, the process has allowed for rapid advances in our understanding
and utilization of the world around us. As more and more science and engineering practitioners
advocate the use of computer simulation for the analysis and prediction of physical and biolog-
ical phenomena, the computational science and engineering community has began to ask very
introspective questions, such as the following [2].

• Can computer-based predictions be used as a reliable basis for making crucial decisions?

• How can one assess the accuracy or validity of a computer-based prediction?

• What confidence (or error measures) can be assigned to a computer-based prediction of a
complex event?

In 2004, Patrick Roache [46] put forth the call to simulation scientists to take seriously the
issue of V&V.

In an age of spreading pseudoscience and anti-rationalism, it behooves those of us
who believe in the good of science and engineering to be above reproach whenever
possible. Public confidence is further eroded with every error we make. As Robert
Laughlin noted in this magazine, “there is a serious danger of this power [of sim-
ulations] being misused, either by accident or through deliberate deception.” Our
intellectual and moral traditions will be served well by conscientious attention to ver-
ification of codes, verification of calculations, and validation, including the attention
given to building new codes or modifying existing codes with specific features that
enable these activities.
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In Roache’s view, “conscientious attention” to these issues is necessary for simulation science
to progress as a well-respected, actionable tool in the hands of those seeking public good. Based
on Roache’s quote and using [2] as our guide, let us first define verification and validation.

• Verification is the process of assessing software correctness and numerical accuracy of the
solution to a given mathematical model.

• Validation is the process of assessing the physical accuracy of a mathematical model based
on comparisons between computational results and experimental data.

Validation and verification (V&V) are thus considered the primary processes for assessing
and quantifying the accuracy of computational results. From these definitions, we can make a few
observations about how validation and verification interact and the focus of each process.

First, let us discuss the interaction of V&V. We have listed verification before validation
because of the onion-shell nature of the V&V process. Most validation efforts use a computa-
tional (numerical) simulation code, and hence the entire validation process is in part predicated
on proper verification having been done. Furthermore, the verification process can often be de-
lineated into two nested components: algorithmic (numerical) verification and code verification.
Given a model written in some mathematical form, the first stage in driving toward a solution is to
make choices concerning the numerical approximations that will be used (and their correspond-
ing algorithms). Once these choices have been made, one then must decide how to transform
these high-level algorithms into executable code (through a choice of programming language,
etc.). Only when one has gotten to the point of executable code does one obtain (in the best case)
an actual “solution” to the problem of interest. How accurate that solution is depends on cascad-
ing effects: (1) how accurately was the algorithm transformed or transcribed into executable code
(i.e., are there any coding bugs); (2) how good of an approximation does the chosen numerical
algorithm provide; and lastly, assuming something that is bug-free and for which one have rea-
sonable confidence in the numerical approximation, (3) how accurately does the model describe
the physical phenomena of interest? e first two questions concern the areas of code verification
and numerical (algorithmic) verification; the last question concerns the question of validation.
Clearly, they build upon each other—requiring care at every step and tests that highlight possible
deficiencies at every level.

As an example of this process, consider the following: imagine one were attempting to
verify the correctness of a numerical implementation of Hookean dynamics—weight suspended
by a spring as shown in Figure 3.1 (bottom left). e spring is stretched out, and if the string is
overextended (pulling on the dangling object), we would find that the spring-mass system would
oscillate. Natural damping in the spring will cause the oscillation to diminish in amplitude to the
point that the spring is once again stretched out, balancing its internal forces with the load placed
on it by the block.

Now imagine that we write down the ordinary differential equation system expressing the
oscillator of the spring and solve it numerically. In Figure 3.1, we provide two graphs where a
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Figure 3.1: Hookean dynamics example: A diagram showing a block suspended by a spring (top).
Displacement of the block if pulled down from its resting position (left). is figure is used to discuss
numerical verification. e figure on the right is the same as the left but now with a coding bug
introduced (right).

small mistake due to the choice of the numerical scheme and its parameters was made in the
oscillatory frequency. e graph shows two examples of an oscillator, but which is correct? If
we were interested only in the resting position, you might say you do not care as they give the
same result. However, if we were interested in the particular dynamics of the problem, we would
care. In this case, if we were to decrease the time step used in the numerical scheme, we would
see that the red curve slowly “converges” to the blue curve—demonstrating to us that through the
verification process we know that we must be careful about making any particular statement about
the oscillating frequency without stating clearly what time integration scheme we used. In the
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second graph (Figure 3.1 (right)), we demonstrate a case where the numerical scheme is run with
sufficient fidelity that the response amplitudes are the same, but a coding bug was introduced,
which caused the final resting position to be slightly off. If only the two plots are shown, would
we be able to tell what issues caused what? Maybe, in the rightmost plot, the numerical scheme
approximated the tension coefficient for the spring incorrectly, yielding slightly different resting
positions. Or maybe in the left plot, an indexing error caused a slight phase shift in the solutions
that was eventually overcome by the damping nature of the problem.

3.1 ACANONICALEXAMPLE
To help the reader understand components of the verification process, let us consider the following
example. Consider that we need to compute the integral of a trigonometric function given by:

I D

Z �=2

0

cos.x/dx D sin.�=2/: (3.1)

In this particular case, we know the exact solution, so we have something against which
we can compare our answers. Imagine that the above equation is a mathematical model of some
natural phenomena. As we said earlier, we are not at this stage testing the “validity” (i.e., valida-
tion) of this model, but rather want to figure out how to discretize it using numerical methods
and ascertain how close we are to the answer. We begin by transforming our mathematical model
into a numerical approximation (expression). In this case, let us consider using both Riemann
integration and trapezoidal rule integration, given by:

R.h/ D

NX
iD0

h cos.ih/ (3.2)

T .h/ D

NX
iD0

1

2
h .cos.ih/C cos..i C 1/h// ; (3.3)

where N denotes the number of intervals, i.e., N D �=.2h/. We define the error in the Rie-
mann approximation as ER.h/ D jI �R.h/j and the error in the trapezoidal approximation as
ET .h/ D jI � T .h/j. From knowledge of the methods, we know that Riemann integration has
first-order error characteristics—that is, if we decrease the spacing h that we use in our numerical
approximation by half, we expect the error to go down by a factor of half. For trapezoidal rule
integration, we expect second-order behavior: decreasing the spacing by half will lead to the er-
ror going down by a factor of four. ese statements are the aforementioned “characteristics” or
properties of the numerical approximation that we use as part of the verification process. When
testing our implementation, we want to see if these properties of the schemes can be realized. If
they are, we gain further confidence that our scheme has been properly implemented. If they do
not, we need to figure out if we have incorrectly implemented something or if we have not met one
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of the assumptions upon which the numerical methods were built (such as assumed smoothness
of the integrand, etc.).

Once we have decided the numerical schemes we will employ, we then implement them in
computer code. In this case, we have provided the Matlab code.

% Code comparing Riemann and Trapezoidal Rule Integration
for i = 1:6,

% set spacing
dx = 0.5*pi/(2^(i+4));
riem = 0;
trpz = 0;
for j=0:(2^(i+4)),

riem = riem + dx*cos(dx*j);
% Trapezoidal rule
trpz = trpz + 0.5*dx*(cos(dx*j)+cos(dx*(j+1)));

end
spc(i) = dx;
% error for Riemann integration
err_riem(i) = abs(1.0-riem);
% error for Trapezoidal rule integration
err_trpz(i) = abs(1.0-trpz);

end

If we run the code given above and plot the results of the error against spacing on a log-log
plot, we will obtain the results shown in Figure 3.2. e red circles denote the errors in the approx-
imation using Riemann integration, and the blue circles denote the error using the trapezoidal
rule.

is example serves to demonstrate two points. First, it shows us how we can use character-
istics of the numerical methods we have chosen to give us some criterion against which to verify
our code. Here we are able to state the numerical approximation as made concrete by our Mat-
lab code demonstrates characteristic behavior, which does not mean that we can declare it to be
bug-free (without error). Indeed, if you take the Matlab code above and change the j loop index
to start from 1 instead of 0 – i.e., purposely insert a bug—you will get the same error plot for the
range of spacing we have provided. Why? Verification is a process that requires a variety of tests
(i.e., test harness) that in different ways “test the mettle” of the choices that were made and their
implementations. is particular test, although useful in telling us that we have gotten the basic
characteristics of the numerical methods right, does not have high enough fidelity (sensitivity to
things such as loop indices) to tell us whether or not there is an indexing bug. Verification cannot
be accomplished by a single magic test. Rather, it is a continual process of evaluating of our codes
to see if they meet our expectations. If they do not, we need to inquire why.
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Figure 3.2: Error between our numerical approximation and the true solution versus mesh spacing.
Red denotes Riemann integration and blue denotes trapezoidal rule integration.

3.2 A REALISTICEXAMPLE
As a realistic example from the engineering literature, let us examine Kirby and Yosibash [25].
In this work, a well-known numerical method was applied to a new application. e application
is called von-Karman plate dynamics, which is a set of equations expressing the motion of a thin
plate under a load. A schematic diagram of the problem is given in Figure 3.3. In this chapter, we
will summarize two studies that were contained in Kirby and Yosibash [25]—a spatial convergence
study and a temporal convergence study—both of which were needed as verification steps before
demonstrating new results.

Spatial Convergence
To verify that the numerical scheme proposed in Kirby and Yosibash [25] satisfied the bound-
ary conditions and that we still obtain the spectral convergence expected of the Chebyshev-
collocation method (the numerical method used in the article), we solved the linear bi-harmonic
equation subjected to the boundary conditions, initial conditions, and a forcing function in such
a way that an exact solution is available.

In Figure 3.4, we plot the discrete L1 error defined as

L1 D max
xi ;xj

juapprox.xi ; xj / � uexact.xi ; xj /j (3.4)

taken over the collocation point grid .xi ; xj / vs. the number of points used per direction evaluated
at the time t D 1. A time step of �t D 10�6 was used (so that given the second-order conver-
gence in time our numerical integrator, we should expect time dicretization errors on the order of
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Figure 3.3: Schematic of the problem of interest: thin plate dynamics (left). An example of the dis-
placement field obtained by placing the plate under a load with clamped boundary conditions (right).
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Figure 3.4: Discrete L1 error vs. the number of grid points used per direction in the Chebyshev
collocation scheme. Data shown is taken at t D 1 with �t D 10�6.

10�12 and hence spatial errors should dominate); the exact solution was used to initialize the time
integrator. Observe in Figure 3.4 that on a log-linear plot, a straight line is obtained, indicating
an exponential convergence rate to the exact solution with increasing N .
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is example serves to demonstrate the correctness of both the Chebyshev-collocation
method and the boundary condition implementation used for a bi-harmonic PDE. As mentioned
earlier, the verification process does not guarantee that the code is bug-free, but rather it shows
that the numerical algorithm and its implementation meet the theoretical conditions established
in the method development.

3.2.1 TEMPORALDISCRETIZATION
To discretize the von-Karman system in time we have chosen to employ the Newmark-ˇ scheme
[21]. For this example, we will go into a little more detail so that the reader can see the connection
between the numerical method choice and its characteristics. We use the average acceleration
variant of the Newmark-ˇ scheme (with Newmark parameters  D 1

2
and ˇ D 1

4
), which exhibits

second-order convergence in time, and is unconditionally stable under linear analysis.
e variant of the Newmark�ˇ scheme that we employed can be algorithmically described

as follows. Assume one is given the equation:

m RuC c PuC ku D g; (3.5)
where the forcing g may be a function of the solution u. Discretizing in time we obtain the
expressions at time level n and nC 1, respectively:

m Run C c Pun C kun D gn

m RunC1 C c PunC1 C kunC1 D gnC1: (3.6)

e average acceleration variant of the Newmark-ˇ scheme (see [21]) is given by the fol-
lowing time difference equations:

PunC1 D Pun C
�t
2

. Run C RunC1/

unC1 D un C�t Pun C
.�t/2

4
. Run C RunC1/ ; (3.7)

where the local truncation error of these equations is O.�t2/. We can now combine equations
(3.6) and (3.7) to yield the following equation for the solution u at time level nC 1 given infor-
mation at time level n and the forcing function g at time level nC 1:

�
4m

�t2
C

2c

�t
C k

�
unC1 D

gnC1 Cm

�
4un

�t2
C

4 Pun

�t
C Run

�
C c

�
2un

�t
C Pun

�
: (3.8)

After substituting in the spatial discretization operators discussed previously, we arrive at
a set of linear equations to solve. Given the linearity of the system, we can directly invert the
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Figure 3.5: Discrete L1 error vs. the time step �t . e comparison is done at time t D 1.

operator on the left-hand side to yield the solution unC1 in terms of the solution un and the
forcing g.x1; x2; t / evaluated at the new time level tnC1. In Figure 3.5, we plot the discrete L1

error versus the time step for a spatial discretization of N D 21 points per collocated direction.
Observe that on a log-log plot, we obtain a straight line of slope 2:0, indicating that second-order
convergence has been achieved.
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C H A P T E R 4

Isosurface Verification
In this chapter, we introduce the tools necessary for the verification of geometrical properties of
isosurface extraction algorithms. As isosurfaces are ubiquitous tools used in scientific visualization,
it makes sense to first understand how the ideas of error analysis and verification can be applied
in the context of isosurfaces. We start by introducing the concept of isosurfaces and the problem
of isosurface extraction. We then provide an overview of the verification technique, followed by
a detailed description and application of the technique to real-world cases.

4.1 AN ISOSURFACEEXTRACTIONPRIMER

4.1.1 MATHEMATICALDEFINITION
A scalar field f 0 is a function that takes a point in an n-dimensional space and assigns a real
value to it. A well-known example of a scalar field is a weather map. A temperature (real value)
is assigned to each point of a map (2D space). Another example is the data generated by a CT
scan. An attenuation (real value) is assigned to each point in the 3D space where the patient lies.
Given a scalar field f 0, a level set is defined as follows.

Figure 4.1: Top: as the isovalue increases, the set of points composing the isosurfaces changes accord-
ingly. e isovalues of the isosurfaces above varied from 153–210. Notice how both the geometry and
topology change as the isovalue increases. Bottom: approximation of the isosurfaces via triangulation.
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Definition 4.1 Let x 2 Rn be a point in Rn, c 2 R a constant, and f 0 W Rn 7! R a real-valued
function. e level set I , with corresponding isovalue c, is defined as:

I D fxjf 0.x/ D cg:

Without loss of generality, we can assume c D 0:

I D fxjf .x/ D f 0.x/ � c D 0g

D fxjf .x/ D 0g: (4.1)

Level sets are also written as I D f 0�1.c/ D f �1.0/, the preimage of f .
We are mainly interested in the case where n D 3, f .x/ D f .x; y; z/ D 0, although higher

dimensions are possible [58]. We will use the term isosurface to refer to 2-manifold level sets (see
Figure 4.1). In a nutshell, amanifold surface is one in which the neighborhood of any of its points is
homeomorphic to a (half-) disc. In other words, the neighborhood around a point looks like a (half-)
Euclidean plane.¹ Next, we review one of the most commonly used technique for approximating
isosurfaces using triangular meshes. e goal of this chapter is to introduce an algorithm for
verify isosurface extraction techniques. How is an isosurface approximated? Typically, isosurfaces
are approximated via triangulations.

4.1.2 ISOSURFACEAPPROXIMATION
In the general case, isosurfaces cannot be represented exactly by a computer; thus, they are ap-
proximated.e scientific visualization literature is rich inmethods for approximating isosurfaces.
Here we are interested in approximations via triangulated meshes using the Marching Cubes (MC)
algorithm. A triangulation is defined as follows.

Definition 4.2 Let V D fvig, E D fej g, and F D ftkg be a set of vertices, edges, and triangles,
respectively. We say that the set T D fV; E; F g is a triangulation if for any a 2 T and b 2 T , the
intersection a \ b D ; or a \ b 2 T . A valid triangulation, e.g., , should intersect only
at edges and vertices. If the intersection between triangles does not occur at edges, e.g.,
we say that T is not a triangulation, but a triangle soup.

e process of converting an isosurface into a triangulated mesh is referred to as polygoniza-
tion or isosurface extraction. Many techniques can be used for polygonization of implicit surfaces;
reviewing them is outside the scope of this chapter. We refer the interested reader to the book
by Wenger [58] for a comprehensive review of isosurfaces. Here we review the extraction of sur-
faces based on the popular MC algorithm. MC is one of the simplest, fastest, and most robust
techniques for isosurface extraction. We will illustrate how MC works in 2D space. Albeit its
¹e (half-) disc condition is necessary in order to exclude degenerated cases, such as f .x; y; z/ D 0, where c D 0 leads to a
level set containing all points in R3. e neighborhood of any point of the level set is not a disc but a solid sphere. Another
example is f .x; y; z/ D xyz, where c D 0 leads to a level set that is the intersection of three planes. e neighborhood
around the origin is not a single plane but the intersection of three planes.
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implementation in the 3D case is more complicated, the ideas used in 2D extend naturally to the
3D case.

e isosurface extraction starts with the scalar field f . In practice, the scalar field f is not
known at all x but only for a finite number of points in space. Typically, these points are located at
the vertices of a rectilinear grid, shown in Figure 4.2. Hence, the first step of isosurface extraction
algorithms is the interpolation of vertices values to produce a continuous scalar field. In 2D, a
bilinear interplant is used. Its 3D counterpart is the trilinear interplant: Nf .x; y/ D axy C bx C c.
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+1 +1+1+1+1+1
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Isocontour f(x,y) = 0

Figure 4.2: e MC 2D table cases. Only positive nodes (represented by the red dots) are shown
for the sake of clarity. e left image shows all cases, and the right image shows the surface patches
produced by each case.

Isocontour Extraction

e MC algorithm operates in each grid cell inde-
pendently, checking whether the isocontour of interest in-
tersects with that cell. Accounting for symmetry and ro-
tation, there are only four types of intersections between
the isocontour and a 2D cell, illustrated in the image on
the right. e blue dots represent scalar values below the
isovalue of interest c, whereas the red dots represent values
above c. e isocontour starts at one grid edge that con-
tains scalar values above and below c and progresses until
it reaches another edge of the same configuration. e bottom-right cell illustrates an ambiguous
case in which both the continuous and the dashed isocontours are valid for that configuration.
e ambiguity is solved by evaluating the sign of the critical point at the saddle point in that cell
[41]. If the function value of the critical point is greater than c, then we separate the blue dots,
as in ; otherwise, we separate the red dots, as in . is simple approach guarantees a
consistent triangulation of ambiguous cases. ese four cases represent the MC lookup table. For
each cell, the MC algorithm must decide which case it belongs to and trace the isocontour within
that cell.
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Algorithm 1 e Marching Cubes algorithm.

MC.V; c/

� Let V be an input scalar field and c the isovalue of interest
1 for each pixel center .x; y/ and ray direction w

2 do Add n samples fxi D x.id/gn1 along w

3 for each xi

4 do si D s.xi/

5 �i D �.si /

6 Ci D C.si /

7 I D I C .1 � ˛/Ci

8 ˛ D ˛ C .1 � ˛/˛i

9 return I

e lookup table and interpolation naturally extend to 3D volumes. Instead of only four
cases, the table for the 3D cases contains 16 cases, some of which contain ambiguous configura-
tions (see Figure 4.3). If not handled properly, these ambiguities can generate holes in the sur-
faces.² In this book, we will not be concerned with the table ambiguities, as they do not change the
geometrical properties of isosurfaces. e algorithm for the 3D case is similar to that of the 2D.
e result of the MC algorithm is a triangulation. Figure 4.4 shows an example of the extraction
of the surface of an artery with an aneurism. e right image shows the typical MC triangulation
pattern. Each of the triangles comes from a single voxel of the volume shown on the left.

4.2 OVERVIEWOFTHEVERIFICATIONPROCEDURE
Let VN �N �N be an N �N �N rectilinear grid where the scalar field f is defined, c is an iso-
value, and I is the MC implementation we wish to verify.³ Our goal is to verify whether the
triangulated surface TN �N �N D I.VN �N �N ; c/ is correct in the sense that its geometrical prop-
erties are representative of the actual isosurface I D fxjf .x/ D cg. We will verify: (1) whether
the function value at the centroid of each triangle t 2 T is a good approximation of the isovalue
c; and (2) whether the normal En of each triangle vertex t is a good approximation of the gradi-
ent at the same point.⁴ We note two aspects of the verification process, a practical aspect and a
theoretical one. In this section, we focus on the practical aspects of the verification of isosurfaces.

²See Section 2.3.1 for an historical account of the pursuit of a correct MC.
³Although our main focus is on MC-like techniques, the verification tool presented here is by no means restricted to that class
of techniques. In fact, the verification tool treats the implementation under verification as a blackbox, and thus any isosurface
extraction technique can be verified. Nevertheless, the interpretation of the results changes depending on the algorithm used.
⁴Of course, other geometrical properties can be used in the verification process, e.g., curvature or area.
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Figure 4.3: 3D cases for MC. Left: e data input consists of a rectilinear grid equipped with scalar
values at each of its nodes. e blue dots represent points for which f .x/ < 0, and red dots are those
with f .x/ > 0.

Figure 4.4: 3D mesh extracted using the MC algorithm. e box is the delimiter of the scalar field,
which was obtained by a C-arm x-ray scan of a human head. e isosurface shows an artery of the
right side of the head. e triangles extracted from the MC table are visible. e mesh corresponds to
the isovalue c D 40.

e theoretical concepts described in this chapter are implemented within verifier , an
open-source tool for verifying the correctness of isosurface extraction techniques. e first step
is to install the verifier by typing the following into a shell environment:

$ curl -L http://tiagoetiene.github.io/verifier/install.sh | sh
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e command shown above will download and install the verifier for isosurface extraction
algorithms. verifier works by generating a set of grids (scalar fields) that will serve as input
to the isosurface extraction technique under verification. verifier will then make a log file
containing the results of the verification process. We start using it by simply typing:

$ verifier -N=4 --log=output.pdf <enter>

Once enter is hit, the verifier will never stop; instead, it will keep listening to any changes to
the directory. To exit, just press ctrl + c .e output of the verification tool is V , a set of N

volumes containing synthetic volume data with varying degrees of resolution. Mathematically,
V D fVni �ni �ni

gNiD0. In the next step, the user runs the isosurface extraction technique under
verification with the generated grids as input:

$ iso --grid=V_111 --output=T_111 [other options] <enter>
$ iso --grid=V_222 --output=T_222 [other options] <enter>
$ iso --grid=V_333 --output=T_333 [other options] <enter>
$ iso --grid=V_444 --output=T_444 [other options] <enter>

e output is a set T of N triangles meshes, each related to one of the volumes. Mathematically,
T D fTi jTi D I.Vni �ni �ni

; c/gNiD0. Once T is available, verifier will detect it, read it, and
output a document with the results of the verification procedure: a number k representing how fast
the isosurface algorithm converges to the correct result and a plot illustrating the results of the test.
k is a summary of the quality of the meshes produced by I.V; c/. More specifically, verifier
tests whether the vertices and normals of Ti converge to the correct position and normals of the
isosurface I known to verifier . ese ideas are illustrated in Figure 4.5. e idea behind the
verification procedure is to detect whether the results of the isosurface extraction technique respect
the properties of a known isosurface I . In the next section, we present in detail how geometrical
properties can be used for isosurface extraction and how we evaluate the results. At the core of
the verifier is the evaluation of the discretization errors of the triangular approximation of
isosurfaces.e reader interested in the results of the application of the verifier to well-known
isosurface extraction techniques should skip to Section 4.5.

4.3 DISCRETIZATIONERRORS
In order to verify isosurface extraction techniques, we must know what to expect from the output
of the isosurface extraction technique under verification. We focus on how two properties of
isosurfaces—algebraic distance and normal—are affected by its approximation via triangulation.
e main results of this section are:
i the algebraic distance of a triangulation converges quadratically to the isosurface I as a function
of the voxel size h; and
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ii the triangulation normals converge linearly to the isosurface normal as a function of the voxel
size h.

ese two properties provide the expected behavior of MC-like implementations. e rest of this
section is dedicated to the derivation of these properties. Readers interested in the implementation
of the verifier should skip to the next section.

4.3.1 ALGEBRAICDISTANCECONVERGENCEERRORS
e algebraic distance measures the difference between the function value of the triangulated sur-
face and the isosurface I . e figure on the right illustrates the concept. As the voxel size dimin-
ishes, or equivalently, the grid is refined, the triangulation (shown in orange) better approximates
the isosurface (shown in gray).

Note that the triangulation is only an approximation, and approximation errors cannot be
completely eliminated. To see the errors, we colored the triangulation by using f (see Figure 4.6).
Because the triangulation T represents an isosurface, we expect f .x/ D 0 for all x 2 T . By col-
oring all points of the triangulation (bottom row), we can see that this is not the case. e color
of the function value at points close to the edge of the voxels closely resembles the color of the
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Figure 4.5: Verification pipeline. e pipeline starts with a known implicit function f .x; y; z/ D

x2 C y2 C z2 � 1. We are interested in the isosurface I D f �1.c/. e verifier first step is build
volumes Vni �ni �ni

. ese volumes serve as input data to the isosurface technique under verification
I. e output of I is a triangular mesh Ti , which is used to compute approximation errors between
Ti and I . Last, the verifier generates a human readable report with the results of the verification
procedure.
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(a) (b)

Figure 4.6: (a) A 2D example of error decay as the input grid is refined. (b) e error between the
isosurface (left) and its approximation (right).

isosurface (gray). Nevertheless, as we navigate the triangulation toward the center of the triangles,
errors are introduced, and the function value is no longer the same as the isosurface because, for
those points, f < 0 (colored in blue). As the grid is refined, the effect is mitigated, but never
eliminated. In order to verify isosurface extraction techniques, we must understand how fast the
function value at the triangle converges to the isovalue of interest f 0.xt/! c, or equivalently
f .xt/! 0, as the voxel size h! 0. e theorems shown in this section were extracted from
Etiene et al. [13].

eorem 4.3 Let T be a triangulation approximating an isosurface I D fx 2 R3jf .x/ D cg, c

be an isovalue, and xt 2 T a vertex. e algebraic distance between T and the isosurface f .x/ D c

converges quadratically with respect to the grid size h:

jf .xt / � Qf .xt /j D O.h2/: (4.2)

Proof. In order to understand the errors introduced, we will use a simple Taylor expansion as-
suming linear interpolation along the grid edges. Let C D Œ0; h�3 be a 3D grid cell and ijk its
vertices. e function value is known only at the grid vertices, which we write as fijk D f .xijk/,
and xijk D .xi ; yj ; zk/. rough a Taylor expansion of f , one can evaluate f at a point x 2 C

as:
f .x/ D fijk Crfijk �

�
x � xijk

�
CO.h2/; (4.3)

where rfijk is the gradient of f in xijk and h the grid cell size. Let the linear approximation of
f in x be defined by:

Qf .x/ D fijk Crfijk �
�
x � xijk

�
(4.4)
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(a) (b)

Figure 4.7: Normal convergence in (a) 2D and (b) 3D voxel. As the grid is refined, the approximation
error descreases.

and consider a point xt such that xt is a point on the isosurface of Qf D c. e algebraic distance
between the exact isosurface f .x/ D c and the linearly approximated isosurface can be measured
by jf .xt / � Qf .xt /j. From Equations 4.3 and 4.4:

jf .xt / � Qf .xt /j D jfijk Crfijk �
�
xt � xijk

�
CO.h2/ � Qf .xt/j

D j Qf .xt /CO.h2/ � Qf .xt /j D O.h2/: (4.5)

us, the linearly approximated isosurface is of second-order accuracy. 2

4.3.2 NORMALCONVERGENCEERRORS
e rationale for normal convergence is similar to that of algebraic convergence, although the
error analysis is more complex. Figure 4.7 illustrates the normal convergence as the input grid
is refined. Intuitively, one expects the triangulated surface normals to converge to the isosurface
normal as the grid size increases. In other words, the angle between the triangle normal n.x; y; z/

and the isosurface normal rf .x; y; z/ should diminish as the grid is refined. As before, we need
to evaluate how fast the triangulation normals converge to the isosurface normal. e main result
of this section, which will be used for verification purposes, is the following.

eorem 4.4 Let nt be the normalized normal vector of a triangle t (computed as the cross product of
its edges) and n.x; y; z/ the normalized normal vector at a point .x; y; z/ 2 t . e dot product between
nt and n.x; y; z/ converges linearly to 1 with respect to the grid size h:

nt � n.x; y; z/ D 1CO.h/:

e above theorem states that the angle between the triangle normal nt , and the correct,
known, normal n goes to 0 as the cell size h! 0, and it does so linearly. In order to prove this
result, we first prove the following theorem.
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eorem 4.5 Let T be a triangulation approximating an isosurface I D fx 2 R3jf .x/ D cg and
t 2 T a triangle. e normalized normal vector nt of triangle t (computed as the cross product of its
edges) converges linearly toward the normalized isosurface normal n.x; y; z/ at any point .x; y; z/ 2 t

with respect to the grid size h:

nt D n.x; y; z/C .O.h/; O.h/; O.h// :

Proof. Our goal is to evaluate how normal vector errors accumulate. We assume that triangle
normals are computed using the standard cross product between triangle edges. We will first
derive the isosurface normal and then compare it with the approximated normal computed using
the triangle mesh. Assume that the isosurface f .x; y; z/ D 0 can be locally parameterized as
˚.u; v/ D .u; v; g.u; v//. Consider the triangle t D p1p2p3 defined by the points p1; p2, and p3

approximating the isosurface ˚ in the grid cell. Without loss of generality, let us translate the
grid cell so that one of its corners lies on p1, the origin of the coordinate system in which ˚ is
defined (see Figure 4.7), and so that the normals n and nt are computed at p1. e normal n1 at
p1 is:

n1 D
@˚

@u
�

@˚

@v
D

�
�

@g

@u
; �

@g

@v
; 1

�
: (4.6)

Let p1 D ˚.u1; v1/ D ˚.0; 0/, p2 D ˚.u2; v2/ D ˚.u2; 0/, and p3 D ˚.u3; v3/ D

˚.0; v3/, u2; v3 > 0. e triangle normal np1p2p3
will be approximated using the cross product

in R3:

nt D .p2 � p1/ � .p3 � p1/

D .u2 � u1; v2 � v1; g.u2; v2/ � g.u1; v1//

� .u3 � u1; v3 � v1; g.u3; v3/ � g.u1; v1//

D

0@ i j k

u2 � u1 v2 � v1 g.u2; v2/ � g.u1; v1/

u3 � u1 v3 � v1 g.u3; v3/ � g.u1; v1/

1A
D

0@ i j k

u2 0 g.u2; 0/

0 v3 g.0; v3/

1A
D .�v3g.u2; 0/;�u2g.0; v3/; u2v3/ : (4.7)

Equation 4.7 is the approximation obtained in practice. However, numerical errors are not
explicitly represented. We solve this problem by first expanding g.u; v/ around .u0; v0/. Let
gu; gv; guu; guv, and gvv be the partial derivatives of the first and second order of g at .u0; v0/.
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en:

g.u; v/ D g.u0; v0/C gu.u � u0/C gv.v � v0/C
1

2Š

�
.u � u0/2guu C 2.u � u0/.v � v0/guv C .v � v0/2gvv

�
C � � �

D ugu C vgv C
1

2Š

�
u2guu C 2uvguv C v2gvv

�
C � � �

D ugu C vgv CE.u; v/: (4.8)

e term E.u; v/ is the error involved in the approximation. Replacing Equation 4.8 into Equa-
tion 4.7:

nt D .�v3g.u2; 0/;�u2g.0; v3/; u2v3/

D .�v3u2gu � v3E.u2; 0/;�u2v3gv � u2E.0; v3/; u2v3/

D u2v3

�
�gu �

E.u2; 0/

u2

;�gv �
E.0; v3/

v3

; 1

�
D u2v3

�
.�gu;�gv; 1/C

�
O.h2/

O.h/
;

O.h2/

O.h/
; 0

��
D u2v3

��
�

@g

@u
;�

@g

@v
; 1

�
C .O.h/; O.h/; 0/

�
D c .n1 C e/ : (4.9)

We now normalize nt . Given that jjn1 C ejj�1 D jjn1jj
�1 CO.h/⁵ and jjn1jje D e D

.O.h/; O.h/; 0/:

nt D
c .n1 C e/

jjc .n1 C e/ jj

D
n1 C e

jjn1 C ejj

D
n1

jjn1 C ejj
C

e

jjn1 C ejj

D
n1

jjn1jj
C e: (4.10)

2
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us, we also need to derive the order of accuracy of the dot product between the two
normal vectors. Next, we prove eorem 4.4.

Proof. Recall that e D .O.h/; O.h/; O.h//. Given that e � v D O.h/, where v is a normalized
vector:

nt � n1 D .n1 C e/ � n1

D n1 � n1 C e � n1

D 1CO.h/: (4.11)

2

4.4 VERIFICATIONALGORITHM
ederivation shown in the previous sections can be used to interpret the results of the verification
process. Both algebraic distance and surface normal converge as a function of the grid cell size
h. us, our verification procedure will progressively refine the input grid data and evaluate how
errors decay. For algebraic distance, we evaluate errors as:

Ei D max
xt 2T
jf .xt / � Qfi .xt /j

D max
xt 2T
jO.h2/j

D max
xt 2T
jˇxt

h2
i CHOTj; (4.12)

where ˇ 2 RC, hi is the grid cell size, andHOT are high-order terms.We assume that high-order
terms can be neglected, and thus:

Ei D max
xt 2T
jˇxt

h2
i j: (4.13)

⁵Let jjnjj D O.1/:

jjn C ejj�1 D


a C O.h/
b C O.h/
c C O.h/


�1

D ..a C O.h//2 C .b C O.h//2 C .c C O.h//2/� 1
2

D .a2 C b2 C c2 C O.h//� 1
2

D .jjnjj2 C O.h//� 1
2

D .1 C O.h//� 1
2 =jjnjj

D exp.�
1

2
log.1 C O.h///=jjnjj

D exp.�
1

2
.O.h/ � O.h2///=jjnjj

D exp.O.h//=jjnjj

D .1 C O.h//=jjnjj

D jjnjj�1 C O.h/:
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e error analysis for normal convergence is similar. e pseudocode in Algorithm 2 shows how
verifier can be implemented. In both cases, the error has the following format:

Ei D ˇhk
i ; (4.14)

where k is the observed convergence rate. e observed rate is compared to the theoretical rate
(quadratic for algebraic distance, k D 2, and linear for normals, k D 1). By taking the logarithm,
k becomes the slope of the line connecting all observations Ei (see bottom image in Algorithm 2).

log Ei D k log.ˇhi /: (4.15)

Algorithm 2 An algorithm for isosurface geometry verification.

V.f; c; h0; M/

� Let f W R3 ! R be a scalar field and c 2 R be an isovalue
� Let I D fx 2 R3jf .x/g be an isosurface
� Let h0 be the initial grid cell size
� Let M be the number of meshes to be generated for testing convergence
� Let IE() be the technique under verification

1 F0  IE(G; c)
2 for i  1 to M

3 do hi D
1
2
hi�1

4 Ti  IE(Ghi
; c)

5 E
alg
i D maxxt 2Ti

jf .xt/ � cj� Algebraic distance errors
6 Enorm

i D maxt2Ti
jrf .xt/ � nt j� Normal errors

7 Linear regression of fEig
M
iD1 using Equation (5.44):

e slope of the line is k, the expected convergence rate.
e practitioner evaluates whether the observed behavior (the line slope) is
close enough to the expected one (k D 2 for algebraic distance and k D 1

for normal convergence).

4.5 APPLICATIONEXAMPLES
We apply the concepts illustrated in the previous section on two isosurface extraction implemen-
tations. e results presented in this section can be found in Etiene et al. [13]. We refer the
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interested reader to that article for a thorough evaluation including other geometrical properties
and implementations.

VTK Marching Cubes e first implementation we verify is VTK’s implementation of the
Marching Cubes algorithm [49]. Although there are other implementations available, we use
VTK’s implementation as it is a reliable library that has been thoroughly tested and has a sizable
community behind it.

Macet: Macet [7] extends MC to improve the shape of the triangles in a mesh, thus improving
mesh quality. Macet changes grid edges of the MC cases before their triangulation.

In order to compute the errors as shown in the previous section, we must define a scalar
field f . We will use the following f in our tests:

f .x/ D f .x; y; z/ D x2
C y2

C z2
� 1; (4.16)

and isovalue c D 0. e grid is defined in the domain Œ�4; 4�3, with an initial grid cell size h1 D 1

(an initial grid of resolution 8 � 8 � 8).We progressively refine the grid cell by hiC1 D hi=2, hence
doubling the resolution. After each step of refinement, we resample the grid using f , instead of
interpolating results, to avoid adding other error sources.

4.6 RESULTS
We applied the verification algorithm to the implementations shown in the previous sections.

4.6.1 VTKMARCHINGCUBES
VTK’s implementation of the MC algorithm obtained the best results in our tests. e results
for both algebraic distance and normal tests were close to the theoretical result, namely k D 1:94

and k D 0:93, respectively. e figure shows the convergence curve for the algebraic distance
test. Note that a positive result does not establish the implementation under verification as bug-
free. e conclusion that can be drawn is conservative: “the test was not able to find issues that
prevented convergence to the correct result.” Typically, the verification procedure can reveal the
presence of bugs but not the absence.

4.6.2 MACET
e expected convergence rate for algebraic convergence tests is k D 2. Our first results with
Macet—shown in red—revealed that, after a certain number of refinements, the error remained
constant.e plot shows a sharp error decline in the first refinement level, but then it slowlymoves
toward a fixed error value. e end result is a convergence rate of k D 0:98. is result suggests a
source of errors other than the grid resolution becoming dominant after the first refinement.

e reason for the convergence problem lies in the way Macet solves the problem of poor
triangle quality in one of the MC cases. To improve quality, Macet places an extra vertex outside



4.7. DISCUSSION 43

Figure 4.8: VTK’s MC algebraic distance test. e expected and obtained curves are identical, which
increases our confidence in the correctness of the algorithm.

the isosurface. Specifically, the implementation uses the center of the grid cell as one of the triangle
vertices. Because the position of the new vertex is always at the center of the grid cell, the point
often falls outside the isosurface and also changes the convergence plot. By forcing the inserted
point onto the isosurface, the convergence curves change drastically (shown in blue). Note that,
although the convergence rate is nearly zero, the numerical errors are low. e reason is that our
implicit function is a simple distance field around a source point, and Macet uses a high-order
spline interpolation which approximates the vertex position better than linear interpolation. Our
theoretical analysis assumes that the isosurface extraction technique uses linear interpolation along
edges in order to determine vertex position, not a high-order spline.

e normal convergence test also revealed the same problem. e expected convergence
rate of k D 1 was not attained, and instead k D �0:12 was obtained. After fixing the problem
just described, one obtains k D 0:75.⁶

4.7 DISCUSSION
A primary advantage of the verification procedure outlined in this chapter is that it is a nonin-
trusive method. e verification treats the implementation under verification as a blackbox, thus

⁶e latter result is much superior to the former, but it still begs the question of whether the result is close enough to the
expected linear convergence rate. A more detailed investigation may reveal new sources of error responsible for “slowing
down” the progress toward the correct normal vectors.
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Figure 4.9: Macet’s normal and algebraic distance test. e red curves show the convergence results
before fixing an issue with the implementation. e blue curves show the result after the issue was
fixed.

allowing easy integration with existing verification pipelines. On the other hand, the verification
procedure does not provide clues as to where a bug may be hidden. In fact, errors in the verifi-
cation procedure itself translate into a flawed convergence analysis. erefore, when a mismatch
between expected and obtained results occurs, the practitioner must carefully evaluate not only
the code under verification but also the steps involved in obtaining the results.

A second important issue is the choice of the scalar field that is used as a manufactured
solution. For the sake of simplicity, we have chosen a simple distance function. Nevertheless,
development pipelines may benefit from more advanced functions. e choice of the scalar field is
an important one. e simpler the scalar field, the less likely it is to reveal any potential issues with
the isosurface extraction technique.⁷ e results of the verification algorithm cannot determine the
absence of problems. Instead, the results increase our confidence in the implementation under
verification.

e hardest part of the verification procedure is the derivation of the expected (theoreti-
cal) behavior of algorithms. In Section 4.3, we derived the approximation errors for the algebraic
distance and normal approximations between the isosurface f D c and its MC-based triangula-

⁷In fact, we did observe this limitation in practice. We used the manufactured solution given by f .x; y; z/ D x C y to verify
an isosurface extraction implementation known to have bugs, and the results were successful. Other scalar fields, on the other
hand, revealed the known problem.
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tion. ese results can readily be used by anyone interested in verifying isosurface algorithms. e
verification procedure can be further improved by testing other properties of isosurfaces, such as
curvature, area, or volume. In this case, one must derive the theoretical analysis for that property
of interest, which can be quite complex. Nevertheless, suppose that one is interested in knowing
whether a given property converges to any solution as the grid is refined. In that case, one can
build the convergence plot to see whether the implementation being verified produces results that
converge toward the solution or not. By plotting convergence in this way, extra care must be taken
because the code under verification may contain a bug and still converge to the correct solution.⁸

Besides the challenge of deriving the theoretical analysis of different isosurface properties,
there is also the challenge of other isosurface extraction techniques. An example is advancing
front techniques. ese techniques typically build a triangulation by adding triangles on top of the
isosurface without a lookup table. ese techniques define (semiautomatically) a suitable triangle
size when building a triangulation. In this case, the approximation may depend not only on the
grid size but also on other properties, such as the triangle size. e theoretical analysis of these
algorithms must consider errors introduced not by the grid size but by the triangle size.

Lastly, as we briefly described in Chapter 2, two aspects of isosurfaces should be considered
when discussing about isosurfaces: geometry and topology. In this chapter, we have dealt only with
the former. e latter is also important and a deeper investigation is beyond this introduction to
the verification of isosurfaces, but it is detailed elsewhere [12].

4.8 CONCLUSION
e role of isosurface extraction techniques in the scientific pipeline has grown beyond merely
generating pretty pictures. It is now fundamental to scientific inquiry. Hence, these techniques
should be thoroughly verified. e technique presented in this chapter is an important step to-
ward reliable isosurface extraction techniques. A number of steps can further increase the trust-
worthiness of the verification algorithm and, consequently, build a reliable isosurface extraction
technique.

e main ingredients of the verification procedure are the manufactured solution and the
theoretical results describing the behavior of the isosurface techniques. A public database of man-
ufactured solutions would greatly help developers in the process of verifying the results of isosur-
face extraction techniques. Such a database would lift a hefty burden from their shoulders as they
would not have to develop manufactured solutions—which should be robust enough to verify an
implementation—from scratch.

In addition, a public database of theoretical results can be very useful not only for verifi-
cation purposes but also to inform users of what to expect from isosurface extraction techniques.
Such a database provides theoretical guarantees about the algorithms, not implementations, and
⁸Some code mistakes will affect the rate of convergence but not the convergence per se. An example is a high-order interpolation
that uses wrong sampling positions (node- vs. cell-centered). e method will converge, but not at higher rates, as expected
from a high-order method, which means that the extra computational effort spent on the high-order interpolant is lost because
the convergence rate is mainly affected by the mistake introduced in the sampling position.
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is composed of a set of (i) the geometrical property of interest, (ii) the approximation method, (iii)
the isosurface extraction algorithm used to implement it, and (iv) the expected order of accuracy.
For instance, what is the expected convergence of the (i) Gaussian curvature computed using the
(ii) angle deficit method, of a triangulation built using (iii) Afront (an advancing front technique)?
A database containing multiple instances of these three items for a variety of isosurface extraction
technique can help users find the appropriate errors for each technique being used. Also, a public
database of verified code is a valuable source for those interested in using only verified isosurface
extraction techniques.

Along with the theory explained in this chapter, we provide a code that can be used to
verify isosurface extraction techniques. e code is available at http://tiagoetiene.github
.io/verifier/ along with its documentation and examples. In the next chapter, we discuss the
verification of volume rendering techniques, another method for visualizing volumetric data.

http://tiagoetiene.github.io/verifier/
http://tiagoetiene.github.io/verifier/
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Volume Rendering Verification
In this chapter, we introduce a technique for the verification of volume rendering algorithms. We
start with a description of the volume rendering algorithm, and then discuss the the standard
discretization procedures, and finally, how this information can be used to verify the algorithm
correctness. At the core of the verification procedure, we use the order of accuracy and error
convergence analysis. We show how a simple black-box algorithm can be used to verify volume
rendering techniques.

5.1 A VOLUMERENDERINGPRIMER
Direct volume rendering comprises a set of techniques developed for the visualization of volume
data, e.g., data acquired from CT machines. e term “direct” is used to differentiate this type
of volume rendering from other volumetric techniques that require intermediate geometry to
visualize the data, such as isosurfaces (see Chapter 4). Direct volume rendering techniques—
henceforth simply volume rendering techniques—act upon the volume data and generate an image,
rather than a geometrical surface that needs to be further rasterized.¹

e main idea behind volume rendering algorithms is to mimic the behavior of a ray of
light going through a particle cloud. e interaction between the ray of light and the suspended
particles in the environment can be modeled by a mathematical equation known as the volume
rendering integral (VRI).e solution of the VRI depends on a variety of factors, such as input data
and numerical accuracy, and many of the algorithms available in the literature account for these
factors. In this section, we provide the intuition behind the interactions but omit the equations
derived from them that lead to the volume rendering equation. Instead, we refer the interested
reader to the excellent work of Nelson Max on optical models for direct volume rendering for a
detailed description and derivations [33].

In the simplest ray-particle interaction, the light traverses the particle cloud and part of
its energy is absorbed by the particles in its way (Figure 5.1(a)), which happens because particles
are not perfectly transparent. e equation below shows the volume rendering equation of an
absorption-only model:

T D exp
 
�

Z D

0

�.s.x.�0///d�0

!
; (5.1)

¹Volume rendering does not replace isosurfaces and vice versa. Volume rendering techniques can better evaluate surfaces that
do not contain a clear separation boundary, such as a cloud. Isosurface techniques, on the other hand, provide geometrical
information that can be used to infer surface properties such as area, volume, and curvature.
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(a) Absorption (b) Emission (c) Scattering

Figure 5.1: Ray-particle interaction modes. Absorption: the incoming ray hits a suspended particle
and part of its energy is lost. Emission: the incoming ray hits a glowing suspended particle and more
energy is transmitted along with it. Scattering: the incoming ray hits a suspended particle and it is
scattered in many directions.

where the solution T of the integral is the transparency of the medium, D is the ray length,
�.s/ is the light extinction coefficient, and s.x.�// is the scalar value at position x in the ray
parameterized by �. Another possible ray-particle interaction involves the emission of light as the
ray traverses the particle cloud (Figure 5.1(b)). Each of the particles may have enough energy to
emit light that adds up to the incoming ray. e equation derived from this scenario is:

I D

Z D

0

C.s.x.�///�.s.x.�///d�; (5.2)

where C.s.x.�/// is the emitted light and the remaining terms are the same as before. In nature,
both cases occur simultaneously and at different degrees, and thus they are used as the basis of
many volume rendering algorithms available in the literature. More specifically, the emission-
absorption model is commonly referred to as the VRI. In this chapter, we will consider only the
verification of volume rendering algorithms implementing the emission-absorption model:

I D

Z D

0

C.s.x.�///�.s.x.�/// � exp
 
�

Z �

0

�.s.x.�0///d�0

!
d�: (5.3)

e previous equation has terms from both emission and absorption models. Another ray-particle
interaction takes into account scattering. As the ray hits a particle, it may be not only absorbed,
but also scattered in multiple directions (Figure 5.1(c)). Modern volume rendering engines do
take scattering into account, but for simplicity we will consider only the VRI described in Equa-
tion (5.3). See Max [33] for more details.

5.1.1 SOLVINGTHEVOLUMERENDERINGEQUATION
Equation (5.3) can be solved analytically only in special cases. We will use analytical solutions in
Section 5.4 as part of the algorithm that verifies volume rendering techniques. Nonetheless, in
the general case, Equation (5.4) must be solved numerically. A well-known approach for solv-
ing the VRI is via volume ray casting (see Figure 5.2). In volume ray casting, a ray starting at a
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Figure 5.2: Four steps of the volume ray casting algorithm: (1) ray casting, (2) ray sampling, (3)
shading, and (4) compositing. Source: Wikimedia Commons [56].

pixel position directed toward the volume is discretized into sample points; the sample points are
then evaluated according to transfer functions, and, lastly, combined into one value via numerical
integration. e typical discretization of Equation (5.4) leads to

I D

n�1X
iD0

C.s.x.id///�.s.x.id///d

0@ iY
j D0

1 � �.s.x.jd///d

1A : (5.4)

Sample points are defined at position x.id/, where i is the i-th sample in the ray, and d D D=n,
where D is the length of the ray and n is the total number of sample points. Now, let us explain
in detail how each term on the right side of the equation is defined. x is the position of a point
within a ray, and it can be easily computed for any ray. s is the input scalar field, e.g., data from
a CT-machine. Finally, � has to be implicitly defined by the user as a transfer function.² e user
will also need to provide a relation between color and s. e intuition is the following: we expect
certain scalar values to be associated with a structure that we are interested in. For instance, the
scalar value s0 could be associated with skin tissue. us, a transfer function C can be defined as a
piecewise-linear function that is transparent for all scalar values s ¤ s0 and reddish at s D s0 (see
Figure 5.3). Algorithm 3 illustrates a volume rendering implementation.

5.2 WHYVERIFY VOLUMERENDERINGTECHNIQUES
Volume rendering techniques can be used in critical situations, such as in medical diagnosis. It is
important to make sure that the image seen on a screen can be used as a reliable basis for decision-
making, otherwise there may be undesirable consequences. Consider the following documented
example, the case of a false stenosis. A patient went through an unnecessary surgery because the
²We say implicitly because the user does not define � as a transfer function but T directly.
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Figure 5.3: Transfer functions can reveal structures of interest. In this example, a transfer function
was set to reveal detail of both of the skin and the bones.

images used to support diagnosis were misleading. e images revealed the presence of a stenosis
that did not exist in reality, a false stenosis [31].³is case illustrates the importance ofminimizing
all source of errors from the visualization pipeline to help produce trustworthy images.

e volume rendering community has developed many techniques for dealing with prob-
lems of hidden data features, uncertainty of the input data, transfer function design, and others, to
help users to maximize their chances of producing trustworthy images. We are interested in one
unexplored area of techniques developed to improve the quality of the implementation of these

³e problem of false stenosis turned out to be in the transfer function, which was hiding important details of vessels from
the rendered image. We can speculate what could have happened if the results of the transfer function were different. Let us
assume that a faulty transfer function introduced a different problem in the image, for instance salt-and-pepper noise (black
and white dots throughout the image). In this case, the problem with the transfer function is straightforward to detect because
the noise is clearly not part of any internal structure of the human body. In other words, the resulting image is very different
from our expectations. Unfortunately, in the case of false stenosis, the rendered image contained structures compatible with a
known medical condition, which makes the problem harder to detect.
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Algorithm 3 A simple algorithm for direct volume rendering via ray casting.

V R.s; �; C /

� Let ˛i � 1 � e��i d � �id be the opacity at i-th sample
� Let I be the solution of the VRI

1 for each pixel center .x; y/ and ray direction w

2 do Add n samples fxi D x.id/gn1 along w

3 for each xi

4 do si D s.xi/

5 �i D �.si /

6 Ci D C.si /

7 I D I C .1 � ˛/Ci

8 ˛ D ˛ C .1 � ˛/˛i

9 return I

techniques, i.e., techniques designed to verify volume rendering techniques. We define volume
rendering verification as in Definition 5.1.

Definition 5.1 A volume rendering technique (algorithm and implementation) is said to be
verified if it correctly solves the VRI.

Definition 5.1 is straightforward and powerful. Note that correctly solving the volume ren-
dering equation does not necessarily imply exact results, but results that could be made exact
provided that arbitrary amounts of resources are available.⁴ Because it is impossible in the general
case to produce exact results, the verification will be completed when we increase our confidence
that the results can be arbitrarily close to the exact solution. Using verification in this sense, the
visualization community typically relies on two approaches for verifying volume rendering tech-
niques: expert analysis and error quantification.

Expert analysis relies on the human visual system to detect anomalies in the image. It
is a good test⁵ and it can uncover many problems during the development cycle as it quickly
reveals large-scale problems. Nevertheless, consider the image shown in Figure 5.4(a), which was
generated with a buggy volume rendering implementation. e bug was introduced manually to
evaluate its effect on the final image [11]. It is hard to detect any problem with that image, as it

⁴For instance, infinite precision arithmetic, unlimited CPU power to solve the VRI with an infinite number of sample points,
and so on.
⁵Many everyday algorithms, e.g., quicksort, do not naturally result in an image or plot that can be visualized, but instead
produce other kinds of output. One way of debugging these algorithms is by visualizing their results to understand what went
wrong during their development. For instance, plotting the output of a sort algorithm may help reveal problems in parts of
the implementation. Nevertheless, the latter step has to be done separately. In this sense, volume rendering developers are
fortunate as the result of their work is an actual image that can be used to debug the algorithm being implemented.
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seems perfectly valid, i.e., no undesirable artifacts are present. Nonetheless, the image is certainly
not accurate from a numerical standpoint.

(a) Expert analysis (b) Error quantification (c) Error convergence (d) Order of accuracy

Figure 5.4: Several techniques can be used to verify code. e degree of rigor of the techniques in-
creases from left to right.

A second technique used for verifying volume rendering relies on an analysis of the numeri-
cal errors of volume rendering techniques. In this case, the volume rendering developer starts with
a ground truth—a trustworthy image against which the results of the software will be compared.
Next, the developer generates images that can be compared against the reference image. By doing
this, the user can measure errors in the whole image and evaluate whether the error is acceptable
(see Figure 5.4(b)). As in the case of expert analysis, in this case the user is also invited to make
a judgment about what is considered acceptable. Error quantification is more rigorous than ex-
pert evaluation in the sense that it can drive the user’s attention to regions of high error that may
raise a flag about potential problems during development. Nevertheless, a problem remains. Is an
absolute error of 0:01 small enough to consider the technique verified? Maybe 0:005‹

Both expert analysis and error quantification are straightforward to apply, but they are not
the most rigorous techniques that can be applied to verify volume rendering. In fact, two improve-
ments can make error quantification more sensitive to programming and algorithmic mistakes.
e first is convergence analysis. In convergence analysis, the user does not track errors in a single
image, but errors from successive refinement of some of the discretization parameters, for in-
stance, the ray sampling. Suppose that the initial size between ray samples is defined to be d . e
user will then quantify the errors between a reference image and the rendered image, which will
result in an error. Let us pick the maximum error among all pixels to be the error representative for
the whole image. Now, let us volume-render another image, but this time using a sample distance
of d=2. Intuition tells us that, with more samples, we will be able to obtain better images, which
translates into lower error. By plotting the errors associated with each image, we can expect the
errors to decrease as the model is refined. is process, illustrated in Figure 5.4(c), is, in a nut-
shell, convergence analysis. Convergence analysis uses successive error quantification to evaluate



5.3. DISCRETIZATIONERRORS 53
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Figure 5.5: e verification pipeline of volume rendering techniques. e rendered images are gen-
erated by the progressive refinement of the space d between sample points (left). Next, the maximum
error between the rendered images and a ground truth image is computed (middle). Finally, the error
is plotted and the convergence rate is evaluated (right).

whether errors are decreasing as expected. e tricky part is to understand what the “expected”
error decay is, which we will explain in detail in Section 5.4. Last, the order or accuracy method,
shown in Figure 5.4(d), is a refinement of convergence analysis that checks not only whether the
errors decay as d ! 0, but also the speed of decaying. e latter is considered to be the most
rigorous method for verification within the computation science and engineering community.

Next, we explore the volume rendering equation and its typical discretization. e goal is to
check what the expected behavior is as one increases the number of samples per ray progressively.
We want to know not only whether the equations converge but also the speed of convergence.

5.2.1 OVERVIEWOFTHEVERIFICATIONPROCEDURE
e verification procedure is composed of four parts: (i) theoretical evaluation of the discretization
errors introduced; (ii) a ground truth, which in our case is either an analytical solution of the VRI
or the rendered images themselves; (iii) maximum error computation between the reference image
and the rendered images; and (iv) plotting the errors and evaluating whether they correspond to
the errors obtained in (i). Figure 5.5 illustrates the verification pipeline.

5.3 DISCRETIZATIONERRORS
e first step in the verification of the volume rendering algorithm is to describe how the dis-
cretization errors should behave, i.e., we must know not only whether the discretization used in
Equation (5.4) converges to the correct solution, but also the speed of convergence. e VRI is
discretized using a first-order approximation of the inner and outer integral and a second-order
approximation of the exponential term:Z D

0

f .s.x.�///d� D

n�1X
iD0

f .s.x.id///d CO.d/; (5.5)
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and
ex
D 1C x CO.x2/: (5.6)

We will plug Equations (5.5) and (5.6) into Equation (5.3) and evaluate how the error spreads
during discretization. In the next section, we present the details of the derivation of the linear
convergence. In practice, the derivation has to be done only once, and the result can be used later
for verification purposes. Readers interested in the verification algorithm can skip to Section 5.4.
e derivation shown next was extracted from Etiene et al. [11].

Approximation of the Inner Integral T .�/

Let T .�/ D T� D e�t.�/, where t.�/ D
R �

0
�.�0/d�0, and � parameterizes a ray position. We will

first approximate t .�/ and then T .�/. In the following, d D D=n is the ray sampling distance, D

is the ray length, and n is the number of subintervals along the ray:Z �

0

�.�0/d�0
D

i�1X
j D0

�.jd/d CO.d/; (5.7)

where � D id . Using Equation (5.7):

T .�/ D exp
 
�

Z �

0

�.�0/d�0

!
(5.8)

D exp

0@� i�1X
j D0

�.jd/d CO.d/

1A (5.9)

D

0@ i�1Y
j D0

exp .��.jd/d/

1A exp .O.d// : (5.10)

Let us define �j D �.jd/. We start with a Taylor expansion of exp .O.d//:

T� D

0@ i�1Y
j D0

exp
�
��j d

�1A .1CO.d// (5.11)

D

i�1Y
j D0

exp
�
��j d

�
C

i�1Y
j D0

exp
�
��j d

�
O.d/: (5.12)

e second term in the right-hand side of Equation (5.12) contains only approximation
errors (see the multiplying O.d/ term). us, we will expand it using a first-order Taylor approx-
imation and use the fact that �j d D O.d/:

i�1Y
j D0

.1 �O.d// O.d/ D .1CO.d//i O.d/; (5.13)
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where the change in the sign is warranted because the goal is to determine the asymptotic behav-
ior. For i D 1, only one step is necessary for computing the VRI along the ray, and the previous
equation will exhibit linear convergence. Nevertheless, in the general case, the numerical integra-
tion requires multiple steps, and hence errors accumulate and the convergence may change. us,
we set i D n. Knowing that .1CO.d//n D O.1/⁶ and inserting Equation (5.13) into Equation
(5.12), we obtain:

T� D

i�1Y
j D0

exp.��j d/CO.d/O.1/ (5.14)

D

i�1Y
j D0

�
1 � �j d CO.d 2/

�
CO.d/: (5.15)

Our last step is to show that the first term on the right side of Equation (5.15) also converges
linearly with respect to d . In the course of this section, we omit the presence of the term O.d/ in
Equation (5.15) for clarity. Let us define the set K as the set of indices j for which 1 � �j d D 0.
e size of K is denoted as jKj D k. We also define K as the set of indices j for which 1 � �j d ¤

0, and jKj D i � k. Equation (5.15) can be written as:

T� D

0@Y
j 2K

�
1 � �j d CO.d 2/

�1A0@Y
j 2K

O.d 2/

1A (5.16)

D

0@Y
j 2K

�
1 � �j d CO.d 2/

�1AO.d 2k/: (5.17)

Because 1 � �j d ¤ 0 for j 2 K:

T� D

0@Y
j 2K

.1 � �j d/

�
1C

O.d 2/

1 � �j d

�1AO.d 2k/: (5.18)

⁶Let .1 C ax/b=x , a; b 2 RC and x ! 0:

.1 C ax/
b
x D exp

�
b

x
log.1 C ax/

�
D exp

�
b

x
.ax C O.x2//

�
D exp.ab C O.x//
D 1 C ab C O.x/ D O.1/:

Recall that d D D=n:

.1 C O.d//n D .1 C O.d//D=d D O.1/:
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From the definition of big O notation, 1=.1 � �j d/ D O.1/; hence:

T� D

0@Y
j 2K

.1 � �j d/
�
1CO.1/O.d 2/

�1AO.d 2k/ (5.19)

D

0@Y
j 2K

.1 � �j d/.1CO.d 2//

1AO.d 2k/ (5.20)

D

0@Y
j 2K

1 � �j d

1A .1CO.d 2//i�kO.d 2k/: (5.21)

Note that k ¤ 0 implies that at least one of the terms 1 � �j d D 0. us, the code accu-
mulating the value of T , T = T * (1 - tj * d), will return T = 0. Because we want to
recover the approximation errors for the general case (T� ¤ 0), we set k D 0 in Equation (5.21),
and i D n for the same reasons as previously stated:

T� D

0@n�1Y
j D0

1 � �j d

1A .1CO.d 2//n: (5.22)

Using the fact that .1CO.d 2//n D 1CO.d/ and .1CO.d//n D O.1/:

T� D

0@n�1Y
j D0

1 � �j d

1A .1CO.d// (5.23)

D

0@n�1Y
j D0

1 � �j d

1ACO.d/

0@n�1Y
j D0

.1CO.d//

1A (5.24)

D

0@n�1Y
j D0

1 � �j d

1ACO.d/.1CO.d//n (5.25)

D

0@n�1Y
j D0

1 � �j d

1ACO.d/O.1/ (5.26)

D

0@n�1Y
j D0

1 � �j d

1ACO.d/: (5.27)
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We finish our derivation⁷ by adding the previously omitted O.d/:

T� D

0@n�1Y
j D0

1 � �j d

1ACO.d/CO.d/ (5.28)

D

0@n�1Y
j D0

1 � �j d

1ACO.d/: (5.29)

Equation (5.29) concludes the asymptotic convergence of the inner integral. Knowing that
T� converges linearly, our next step is to approximate the outer integral.

Approximation of the Outer Integral
Let QTi be the approximation of T .�i /. We write T .�i / D Ti D QTi CO.d/ and Ci D C.id/. In
typical volume rendering implementations, the outer integral is also approximated using a Rie-
mann summation. us:

I.x; y/ D

n�1X
iD0

C.id/�.id/Tid CO.d/ (5.30)

D

n�1X
iD0

Ci�id
�
QTi CO.d/

�
CO.d/ (5.31)

D

n�1X
iD0

Ci�i
QTid C

n�1X
iD0

Ci�idO.d/CO.d/: (5.32)

⁷Let .1 C ax2/b=x , a; b 2 RC and x ! 0:

.1 C ax2/
b
x D exp

�
b

x
log.1 C ax2/

�
D exp

�
b

x
.ax2 C O.x4//

�
D exp

�
abx C O.x3/

�
D 1 C abx C O.x3/
D 1 C O.x/:

Recall that d D D=n:

.1 C O.d2//n D .1 C O.d2//
D
d

D 1 C O.d/:
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Because both �i and Ci are bounded, one can write Ci�idO.d/ D O.d 2/ and
P

i O.d 2/ D

nO.d 2/ D D
d

O.d 2/ D O.d/. e above equation can be rewritten as:

I.x; y/ D

n�1X
iD0

C.id/�.id/d QTi CO.d/: (5.33)

D

n�1X
iD0

Ci�id

0@n�1Y
j D0

1 � �j d

1ACO.d/: (5.34)

We have now showed that the dominant error when considering step size in the VRI is of order
O.d/. In other words, when decreasing the step size by half, the error should be reduced by half
as well.

5.4 VERIFICATIONALGORITHMS
e derivation shown in the previous section gives us two important pieces of information: (1) it
shows that the the volume rendering discretization does indeed converge to the correct solution;
and (2) it shows how fast it converges to that solution. Based on this information, we explain two
verification procedures: convergence analysis and order of accuracy.

5.4.1 CONVERGENCEANALYSIS
e first verification algorithm tests whether the errors are reducing toward zero, regardless of the
speed of convergence. Specifically, we will measure the errors between consecutive images gen-
erated using different numbers of samples; then we will plot these errors to evaluate whether the
curve generated does indeed converge to zero. Suppose we want to verify the convergence of a se-
quence of images Ii with diC1 D

1
2
di . As we have seen in the previous section, the approximation

for the solution F at resolution i and i C 1 can be written, respectively, as:

F.x; y/ D Ii .x; y/CO.d k
i /

D Ii .x; y/C ˇd k
i CHOT; (5.35)

F.x; y/ D IiC1.x; y/CO.d k
iC1/

D IiC1.x; y/C ˇd k
iC1 CHOT; (5.36)

where .x; y/ are the screen coordinates of the pixel being evaluated and HOT are High Order
Terms, which we will assume to be negligible. Now, we subtract Equation (5.36) from Equation
(5.35) to eliminate the unknown“true image” F :

0 D .IiC1.x; y/C ˇd k
iC1/ � .Ii .x; y/C ˇd k

i / (5.37)
0 D IiC1.x; y/ � Ii .x; y/C ˇd k

iC1 � ˇd k
i : (5.38)
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us, the convergence order k can be computed by evaluating the errors involved in the subtrac-
tion of consecutive images:

ei .x; y/ D IiC1.x; y/ � Ii .x; y/ D �ˇd k
iC1 C ˇd k

i (5.39)
D ˇ.1 � .1=2/k/d k

i : (5.40)

We use the L1 norm to compute the maximum error among all pixels:

Ei D sup
x;y

.ei .x; y//

D sup
x;y

.jIiC1.x; y/ � Ii .x; y/j/ D ˇ.1 � .1=2/k/d k
i : (5.41)

us, the observed convergence is again computed by taking logarithms from both sides. We
then write y D log ˇ.1 � ck/ to hide the dependency of the term in k and determine y and k via
least-squares:

log Ei D log ˇ.1 � .1=2/k/d k
i (5.42)

D log ˇ.1 � .1=2/k/C k log di (5.43)
D y C k log di : (5.44)

Equation (5.44) shows us how to compute the convergence rate using only the images
obtained from the VRI approximation and consequently avoiding any bias and/or limitations in-
troduced by simple manufactured solutions or numerical approximations using reference images.
We have generated sequences of images based on the refinements in the following section. e
steps are shown in Algorithm 4. Note that one could use a high-precision numerical approxi-
mation as a reference image, for example, and measure the convergence toward that image. e
main disadvantage of this approach is that it might mask errors that appear in the reference image
itself.

5.4.2 ORDEROFACCURACY
e main difference between the order of accuracy method and convergence analysis is that the
order of accuracy measures the convergences toward a manufactured solution. As the name sug-
gests, a manufactured solution is an analytical solution to the VRI that can be used as the ground
truth. e advantage of using a manufactured solution over convergence analysis is that the for-
mer measures whether we are converging at the right speed to the right solution. Depending on
the type of error introduced, convergence analysis may converge at the right speed to a solution
that is not the correct one.⁸ If follows that we will need a solution to the VRI. Although the VRI
does not have a solution in the general case, we can devise solutions that are simple enough so
⁸As a simple exercise, imagine a scenario where a bug is inadvertently introduced into the I/O procedure: while reading the
input scalar field G, the software accidentally changes it to G0. A convergence analysis test will miss this problem. e issue
is that convergence analysis uses G0 to generate images, and not to build a ground truth. us, the method can change the
input data without having any real impact on the convergence of approximation errors.
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Algorithm 4 An algorithm for volume rendering verification via convergence analysis.

V.G; �; C; d0; M/

� Let G be an N �N �N scalar field
� Let � be a transfer function defining the extinction coefficient
� Let C be a transfer function defining the color
� Let d0 be the initial step size
� Let M be the number of images to be generated for testing convergence
� Let VR(� � � ) be the under verification

1 F0  VR(G; �; d0)
2 for i  1 to M

3 do di D
1
2
di�1

4 Fi  VR(G; �; C; di )
5 Ei D maxx;y jFi�1.x; y/ � Fi .x; y/j

6 Linear regression of fEig
M
iD1 using Equation (5.44):

e practitioner evaluates whether the behavior is close enough to the expected.
e slope of the line is k, the expected convergence rate.

we can find a solution but complex enough to reveal potential problems with the technique under
verification.

Let us assume that a solution F.x; y/ for the VRI is known. en, the procedure described
next is equivalent to the method of manufactured solutions [2]. e solution F can be written as:

F.x; y/ D I.x; y/CO.d k/ D I.x; y/C ˇd k
CHOT; (5.45)

where I is the approximated image, d is the sample distance, and ˇ 2 R is a constant, multiplica-
tive factor that is not a function of the dataset. An important assumption is that the HOT, or
“higher-order terms,” are small enough that they do not affect the convergence of order k 2 R,
i.e., high-order derivatives of F must have a negligible impact on the asymptotic convergence of
I [47]. is formulation implies that not all solutions F are suitable for verification purposes,
only those for which the HOT are negligible. e errors can be written as:

e.x; y/ D I.x; y/ � F.x; y/ � ˇrk : (5.46)

One can evaluate the convergence for all pixels in the image using L2, L1, or other norms.
Henceforth, we adopt the L1 norm because it provides a rigorous and yet intuitive way of eval-
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Algorithm 5 An algorithm for volume rendering verification via order of accuracy.

V.G; �; C; d0; M/

� Let G be an N �N �N scalar field
� Let � be a transfer function defining the extinction coefficient
� Let C be a transfer function defining the color
� Let I be the analytical solution of the VRI for f�; C; Gg

� Let d0 be the initial step size
� Let M be the number of images to be generated for testing convergence
� Let VR(� � � ) be the under verification

1 for i  1 to M

2 do di D
1
2
di�1

3 Fi  VR(G; �; C; di )
4 Ei D maxx;y jI.x; y/ � Fi .x; y/j

5 Linear regression of fEig
M
iD1 using Equation (5.44):

e user evaluates whether the behavior is close enough to the expected.
e slope of the line is k, the expected convergence rate.

uating errors. It tells us that the maximum image error should decay at the same rate k. Mathe-
matically, the error is then:

E D sup
x;y

.e.x; y// D sup
x;y

.jI.x; y/ � F.x; y/j/ D ˇd k : (5.47)

We denote individual images (and the respective errors) by a subscript i . For each image Ii , we first
calculate the supremumof the absolute difference supx;y .jF.x; y/ � Ii .x; y/j/.We then compute
the observed convergence rate k by taking logarithms of both definitions of E and solving the
resulting equations for log.ˇ/ and k in a least-squares sense:

log Ei D log sup
x;y

.jF.x; y/ � Ii .x; y/j/

D log.ˇ/C k log.di /: (5.48)

e system of equations has as many equations as the number of images and calculated errors.
Algorithm 5 shows the steps for volume rendering verification via order of accuracy.
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5.5 APPLICATIONEXAMPLES
Let us illustrate the concepts shown in previous sections with practical examples. Suppose we
are implementing the volume rendering algorithm and we want to verify it. What are the steps
involved in the process of verification? e first is to decide what is the expected behavior of the
errors introduced by the technique under verification. If our implementation uses the standard
discretization of the VRI using the Riemann sum, then Section 5.3 tells us that we should expect
the errors involved in our implementation to decay linearly. Next, we need to find analytical
solutions that will be used as the ground truth during the verification procedure. We use the
following analytical solution:

I.x; y/ D 1 � exp
�cos.cos.xy//

cos.xy/
�

1

cos.xy/

�
:

See Table 5.1 for an overview of all the input data used to generate this solution. Note that
this solution is applicable for the combination of transfer functions, scalar field, domain, and ray
parameterization shown in Table 5.1. us, the input for our volume rendering technique must
be identical to that used for producing the analytical solution. Last, we will use Algorithm 5 to

Table 5.1: e analytical solution I of the VRI for the set of parameters shown on the left

Input Value
domain of interest Œ0; 1�3

ray length D D 1

ray parameter �

ray position x.�/ D .x; y; �/

scalar field s.x; y; z/ D z cos.xy/

extinction coefficient tf �.s/ D sin.s/

color tf C.s/ D 1

analytical solution I I.x; y/ D 1 � exp
�

cos.cos.xy//
cos.xy/

�
1

cos.xy/

�
generate a plot containing the error decay. If the slope of the line is equivalent to the expected
order of accuracy (in our scenario k D 1), then we consider the technique to be verified.

To show the possible unexpected behaviors one can expect while using this verification
procedure, we applied our algorithm to three volume rendering techniques freely available for
download and testing: Voreen [36], VTK Fixed-Point Volume Ray Caster, and VTK Volume
Ray Caster. All algorithms presented use the standard discretization of the VRI, which means
that we should expect linear convergence.

5.6 RESULTS
In what follows, we describe the results of applying the convergence and order of accuracy tests
to three mature implementations of solutions of the VRI. Here we will test how errors behave
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Figure 5.6: Voreen convergence analysis test. e red curve shows that the early ray termination
acceleration technique does have an effect on the numerical accuracy of the method. e blue curve
shows the results of our test without early ray termination.

(converge) by progressively increasing the number of samples points per ray, i.e., reducing the ray
distance. ere are other ways to evaluate the error incurred by discretization, such as evaluating
the errors as the dataset is refined. In this case, another theoretical analysis is required to reveal
how the expected errors decay as the dataset is refined.

5.6.1 VOREEN
Voreen (Volume Rendering Engine) uses the power of GPU (Graphics Processing Units) to im-
plement real-time volume rendering algorithms. Voreen is a robust, trustworthy, and widely used
volume rendering package. We applied convergence analysis test (see Section 5.4.1) to version
2.6.1 of Voreen. Figure 5.6 shows the result of applying the convergence analysis test. e hori-
zontal axis shows the size of the step size d . We progressively reduce the step size by half in order
to compute the errors generated. e red and blue curves show the convergence before and af-
ter, respectively, fixing problems that prevented the correct convergence. e red curve converges
nicely during the first two steps of refinement, but then the maximum error remains constant,
regardless of the ray sampling. e constant error is interesting because high sampling rates are
used to obtain high precision images. Consider this: if we were to generate an image to be used as
a gold standard, we would have used high sampling rates in order to produce low-error images.
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- =
0.120

Figure 5.7: Vertebra dataset. Although the “before” and “after” images look alike, they are slightly
off, which results in an error spread throughout the whole image. Source: Etiene et al. [11].

e red curve shows us that the approximation errors will not diminish beyond a certain point as
we refine our ray. In the best case scenario, we will waste computational resources.

e nonlinear convergence was due to the early ray termination (ERT). e ERT is a
technique commonly used in volume rendering implementations as a tradeoff between speed and
accuracy. As the ray traverses the volume, the technique measures the “opacity levels” of the do-
main. If the domain becomes “too opaque,” then the system halts the ray traversal, saving time.
e issue is “too opaque:” a hardcoded threshold that developers believe to be small enough to
avoid incurring errors, but large enough to save computer power. In the end, convergence analy-
sis measures precisely how much error one should expect and the maximum step size that makes
sense for a particular threshold. By simply reducing the value of the ERT threshold, we were able
to obtain the expected convergence for ray refinement (shown in the blue curve). e slope of the
curve is nearly the expected value k D 1, which is good enough for purposes of verification.

Voreen had additional problems that were not caught by convergence analysis of the ray
step refinement d , but they were revealed by convergence analysis of progressive refinement of
the input scalar field G (see Etiene et al. [11] for details). In a nutshell, the uncovered problem
resulted in a stretching of the whole image due to boundary interpolation issues. Figure 5.7 illus-
trates the problem. e image on the left shows the incorrect result, whereas the middle image
shows the expected result, and the right image shows the difference between the correct and in-
correct. Notice that the error is small, but everywhere in the image. In this case, the problem does
not affect the visual quality of the image (as both the correct and incorrect image are indistin-
guishable). Nevertheless, this is not a guarantee that these kinds of bugs will not have an effect
on interpretation and/or other quantitative results.
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Figure 5.8: Fixed-point Volume Ray Caster order of accuracy test. e red curve shows our initial
results. Because the ray traverses only half of the input volume, the rendered images do not convergence
to the expected results. e blue curve shows the results after we fixed the ray traversal procedure.

5.6.2 VTK FIXED-POINTVOLUMERAYCAST
e VTK Fixed-Point Volume Ray Cast technique implements the standard Riemann discretiza-
tion of the VRI, but it does so using fixed-precision arithmetic. It uses 15-bits precision, instead of
the standard 32 and 64 floating-point precision, to generate images. e advantage of the fixed-
precision approach is that it can lead to better performance. All computation becomes integer
operations. So, we should expect that images generated using fixed point will be more sensitive to
small changes in the input values. e standard floating-point types can handle small step sizes
(i.e., large sampling rate), but a 15-bit fixed precision will be able to handle only relatively larger
step sizes. Figure 5.8 shows the results obtained. e red curve shows the convergence rate ob-
tained after our first test. We obtained nearly constant error decay .k D 0:02/ when we expected
a linear decay. Although the fixed-precision may explain the issue, we expect it to play a role
only after the step size d becomes too small to be represented in fixed-precision. In other words,
the approximation errors should decrease for large values of d , and increase when d is too small
(errors due to 15-bit fixed-point precision). After investigating the reason for this deviation, we
found that depending on the pixel, camera, and ray position, some rays might cross only half of
the volume instead of the full volume, which can be seen in Figure 5.9. e darker artifacts ap-
pear because the ray has not traversed the whole volume at those locations. After we fixed those
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AfterBefore 0 0.08
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Figure 5.9: Result of using the Fixed-Point Volume Ray Caster volume rendered with a synthetic
dataset. e “+” pattern is evident. Darker pixels belong to regions where the ray traverses only half
of the volume, preventing convergence. e middle images show the result of our modified version of
the VTK. e “+” pattern can also be seen in real-world datasets. Source: Etiene et al. [11]

problems, we obtained the convergence curve shown in blue. e error convergence is now much
closer to the expected linear convergence.⁹

5.6.3 VTKVOLUMERAYCASTER
e VTK Volume Ray Caster module also implements the standard Riemann discretization of
the VRI using floating-point arithmetic. One (correctly) expects better precision, and hence lower
errors, when compared to fixed-point arithmetic. e Volume Ray Caster algorithm produced the
best results of the three tested algorithms. It produced nearly linearly converging sequences when
refining the step size. Figure 5.10 shows that the red curve—the results of the volume rendering
technique before introducing any modification—has almost the expected convergence. e only
red flag raised was related to the dataset convergence test (outside the scope of this book). e test
revealed a small inconsistency in the total number of steps necessary to traverse the input volume.
By correcting the inconsistency, one obtains the blue curve.

5.7 DISCUSSION
e VTK Volume Ray Caster was the technique that performed better in convergence analysis
tests. e VTK Fixed-Point Volume Ray Caster was the only technique that produced visible ar-

⁹e convergence curve is almost linear if f we discard the last three samples, which are potentially the result of the 15-bit
fixed-precision arithmetic.



5.7. DISCUSSION 67

Figure 5.10: Volume Ray Caster order of accuracy test. No issues were revealed with the proposed
test.

tifacts. Nevertheless, the three techniques under verification manifested—either through testing
the convergence of the sample distance or through another convergence test—problems that pre-
vented us from obtaining the expected theoretical convergence rate. Notice that the fact that the
convergence rate was not obtained does not imply that the algorithm or implementation contains
problems. Rather, it serves as a warning that an issue is present in some part of the verification
pipeline. A concrete example is the early ray termination optimization (ERT). e ERT is not
a bug, but a deliberate design decision to accelerate the performance of the volume rendering
implementation. In this sense, our verification test measures the amount of numerical errors in-
troduced by this optimization, which can then be compared against the performance gains. In
other words, in this case, the verification procedure at least provided tools to measure the tradeoff
between quality and speed. It is also interesting to notice that all the techniques that were tested
are very stable and well tested. Verification through convergence analysis is sensitive enough to
detect small deviations from the ideal results.

We have applied verification to understand how real, production-quality implementations
behaved. We were looking for unknown issues within the tested code. A slightly different ap-
proach, known in software engineering as mutation testing, is to introduce changes to the code
and then see whether the verification procedure is able to detect them. In other words, we will
use the verification technique to track known, injected issues. Of course, this kind of test is not
meant to be exhaustive, but to shed light on some of the potential limitations of the verification
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procedure. e results of this test are illustrated in Table 5.2. Out of the 12 issues, 8 were detected,
i.e., the value of slope of the convergence curve substantially deviated from k D 1. ese eight in-
clude incorrect opacity accumulation and incorrect ray increment. Four issues escaped detection,
namely, issues #9 to #12. By investigating each of the issues, we were able to identify the reasons
the verification test failed. For instance, in the case of issue #10, a problem was inserted in the
green and blue component of the pixel color, not in the red component. As it turns out, the ver-
ification procedure was tailored to use only the red channel, instead of all three, which prevented
it from detecting the bug. By increasing coverage of the verification procedure, the problem can
be detected. Issue #11 turned out to be a dead-code; therefore, changing it caused no changes in
the final result.

5.8 CONCLUSIONS
e verification procedure shown in this chapter can be a powerful tool to developers interested
in implementing volume rendering techniques. e errors introduced by the discretization of the
VRI lie at the core of the verification procedure. By looking at how these errors behave as the
input parameters of the implementation under verification change, one can gain valuable insights
into the code correctness. To motivate the reader to put the concepts shown in this chapter into
practice, we designed two challenges. In the first challenge, users will try to implement a correct
emission-absorption model. Go to http://tiagoetiene.github.com/verifier to get more
information and take the challenge. As users type in their code, the implementation is automat-
ically verified in real-time, and the results are plotted, so users know how well they are doing.
If the user’s result is close to the expected, the verification is declared successful. In the second
challenge, users are responsible for implementing the verification routine. We provide a verified
volume rendering implementation. e responsibility of the user is to implement the verification
routines and provide all the input data necessary to verify the code.

http://tiagoetiene.github.com/verifier


5.8. CONCLUSIONS 69

Ta
bl
e
5.
2:

Se
ns

iti
vi
ty

of
th

e
ve

rifi
ca

tio
n

pr
oc

ed
ur

e.
O

n
th

e
rig

ht
,w

e
sh

ow
th

e
vo

lu
m

e
re

nd
er

in
g

alg
or

ith
m

an
d

th
e
lo

ca
tio

n
in

wh
ich

a
bu

g
wa

si
nt

ro
du

ce
d

(m
ar

ke
d

as
#n

/.
O

n
th

e
bo

tto
m

,t
he

fir
st

ro
w

sh
ow

st
he

im
ag

es
re

nd
er

ed
w
ith

th
e
in

tro
du

ce
d

bu
gs

.


es
ec

on
d

ro
w

sh
ow

st
he

er
ro

rb
et

we
en

th
ee

xa
ct

(le
ftm

os
ti

m
ag

ei
n

th
efi

rs
tr

ow
)a

nd
th

eg
en

er
at

ed
im

ag
es

.
e1

2
iss

ue
ss

ho
wn

be
lo

w
we

re
in

jec
te

d
in

th
eV

T
K

Vo
lu

m
eR

ay
C

as
tt

ec
hn

iq
ue

.S
ou

rc
e:

E
tie

ne
et

al.
[1

1]
.

#
Is
su

e
D

et
ec

te
d

1
In

co
rre

ct
op

ac
ity

ac
cu

m
ul

at
io

n
Ye

s
2

In
co

rre
ct

ra
yi

nc
re

m
en

t
Ye

s
3

Sm
all

ch
an

ge
st

o
ER

T
Ye

s
4

Pi
ec

ew
ise

co
ns

ta
nt

�
Ye

s
5

In
co

rre
ct

m
at

rix
-p

oi
nt

m
ul

tip
lic

at
io

n
Ye

s
6

In
co

rre
ct

ev
alu

at
io

n
of

in
te

rp
ol

an
t

Ye
s

7
U

ni
ni

tia
liz

ed
pi

xe
lc

en
te

ro
ffs

et
Ye

s
8

In
co

rre
ct

co
effi

cie
nt

sc
om

pu
ta

tio
n

1
Ye

s
9

In
co

rre
ct

co
effi

cie
nt

sc
om

pu
ta

tio
n

2
N

o
10

In
co

rre
ct

co
lo

rl
oo

ku
p

N
o

11
In

co
rre

ct
m

at
rix

m
ul

tip
lic

at
io

n
N

o
12

In
co

rre
ct

lo
op

ra
ng

e
N

o

V





R






fo
re

ac
h

pi
xe

l
do

Fi
nd

pi
xe

lc
en

te
r.

#7
/

Tr
an

sfo
rm

ra
ys

to
vo

xe
ls

sp
ac

e.
#5

;#
1
1
/

fo
re

ac
h

ste
p

alo
ng

th
er

ay
.#

1
2
/

do
C

om
pu

te
in

te
rp

ol
an

tc
oe

ff
.#

8
;#

9
/

In
te

rp
ol

at
es

ca
lar

va
lu

es
.#

6
/

C
om

pu
te

co
lo

ra
nd

op
ac

ity
.#

4
;#

1
0
/

C
om

po
sit

in
g

.#
1
/

In
cr

em
en

ts
am

pl
ep

os
iti

on
.#

2
/

C
he

ck
fo

rE
RT

.#
3
/

E
xa

ct
so

lu
tio

n
1

2
3

4
5

6
7

8
9

10
11

12





71

C H A P T E R 6

Conclusion
e term verification has become ubiquitous in both the computer science and engineering com-
munities as referring to a process that somehow convinces the user that verified tools, whether
those be circuits, algorithms, implementations, etc. aremore safe, accurate, or complete than other
tools that have not been verified. Although the term verification has a common root usage within
both communities, it has evolved to mean something specific to each subarea of computer science
and engineering. For instance, within computer science, the verification of a circuit denotes either
the exhaustive testing or proof that under all possible inputs, the circuit will produce the correct
(specified) outputs. Similarly, for software, verification refers to how well an implementation rep-
resents the behavior of its specification under all possible inputs. Within the engineering world,
verification takes on a different, more nuanced meaning. One assumes that there exists an “exact
solution” or representation resulting from the solution of a mathematical system of equations. In
all but the most trivial circumstances, this exact solution is not attainable, and approximate solu-
tions must be formed. e process of quantifying how well a numerical scheme or representation
approximates the exact solution is referred to as verification. Verification may involve looking at
how well (or quickly) an approximate solution converges (in an appropriate norm) to the exact
solution, or identifying features or invariants of the solution that should be maintained regardless
of the approximate representation. As visualization models, algorithms, and implementations lie
at the interface between the CS and CS&E communities, what does it mean to produce verifiable
visualizations, and equally importantly, does it matter if visualizations are verifiable? ese are
distinct questions from, but intimately related to, questions of perception and visual representa-
tion efficacy. e purpose of this book was to articulate clearly what the mathematical verification
of visualization models, algorithms, and implementations means in the contexts provided above;
to articulate how and why verification matters to both the “producers” of visualizations ( i.e., the
visualization community); and the “consumers” (i.e., the sciences and engineering), and to set
forth examples of verifying some commonly used visualization schemes.
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