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Abstract—We propose an approach for verification of volume rendering correctness based on an analysis of the volume rendering

integral, the basis of most DVR algorithms. With respect to the most common discretization of this continuous model (Riemann

summation), we make assumptions about the impact of parameter changes on the rendered results and derive convergence curves

describing the expected behavior. Specifically, we progressively refine the number of samples along the ray, the grid size, and the pixel

size, and evaluate how the errors observed during refinement compare against the expected approximation errors. We derive the

theoretical foundations of our verification approach, explain how to realize it in practice, and discuss its limitations. We also report the

errors identified by our approach when applied to two publicly available volume rendering packages.

Index Terms—Discretization errors, volume rendering, verifiable visualization, verification, testing
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1 INTRODUCTION

IN the last several decades, the visualization and graphics
communities have developed a wide range of volume

rendering techniques. As they are used in several different
disciplines of science, and thus form a basis for new
scientific insights, it is essential to assess their reliability
and identify errors. Furthermore, the increasing complexity
of volume rendering algorithms makes the correctness of
the algorithm itself as well as its potentially error-prone
implementations complementary and equally important
issues. Being that volume rendering is essential in areas
such as medical imaging, where accuracy and precision play
a crucial role, a formal methodology for assessing correct-
ness is highly desirable [18], [32]. While verification has
been widely adopted in many different branches of
computer science— see model checking [3], fuzzing [12],
and convergence analysis [38]—there has not been signifi-
cant work accomplished on a formalized praxis for asserting

the correctness of visualization techniques. In this paper, we
present a new verification approach for direct volume
rendering techniques as well as its theoretical background.
We use the word verification in the same sense as Babuska
and Oden [1]: “verification is the process of determining if
a computational model, and its corresponding numerical
solution, obtained by discretizing the mathematical model
(with corresponding exact solution) of a physical event, and
the code implementing the computational model can be
used to represent the mathematical model of the event with
sufficient accuracy.” The presented methodology is based
on order-of-accuracy and convergence analysis [38], which
we can apply after deriving the expected behavior of the
algorithms under observation.

To allow the verification of volume rendering algorithms,

we start with an analysis of the volume rendering integral

(VRI) and the most common discretization of this continuous

model—Riemman summation. This analysis gives us insight

into the expected behavior of the observed algorithms, which

is essential to perform verification [14]. In this sense, our

main assumption, serving as a foundation for the proposed

verification approach, is that discretization errors of the

implementations under verification should behave as the

errors introduced by the discretization of the volume

rendering integral. Based on this, we can mathematically

derive the expected behavior from the discretization of the

volume rendering integral and verify existing implementa-

tions through convergence analysis by comparing their

actual behavior to the expected behavior. Based on the

results of this comparison, we can assess the correctness of

the implementation under verification. To get further in-

sights about deviations from the expected behavior, we

present an investigation of the sensitivity of this method. We

can demonstrate that our methodology is capable of

increasing the confidence in volume rendering algorithms.

To our knowledge, the proposed approach is the first step

toward the verification of DVR algorithms. Thus, it can be
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seen as an important contribution toward a formal verifica-
tion methodology of volume rendering techniques [35]. Our
main contributions are:

. we derive the theoretical foundations necessary for
verifying volume rendering with order-of-accuracy
and convergence analysis. We analyze the volume
rendering integral and its (common) discretization
using Riemann summation to derive an algor-
ithm’s expected behavior when being subject to
parameter changes;

. we explain how to exploit these theoretical founda-
tions to perform a practical verification of imple-
mented volume rendering algorithms, such that it
can be easily used for the verification of existing
volume rendering frameworks;

. we discuss the limitations of the proposed concepts
by analyzing frequently occurring errors and by
documenting those errors we could identify when
applying the presented methodology to two widely
used volume rendering frameworks, VTK [39] and
Voreen [27] (see Fig. 1).

2 RELATED WORK

Critical decisions in fields such as medical imaging often
rely on images produced by volume rendering algorithms,
where it is of utmost importance that the results are correct
[4]. The multitude of algorithm components and their
interactions make this guarantee a challenge. As a conse-
quence, many authors focus on specific aspects of the
problem such as numerical aspects of the evaluation of the
volume rendering integral, shading, transfer functions, and
interpolation schemes. The quality of volume rendering has
always been of central interest to the community, and
relying on visual inspection is a common practice. Meissner
et al. [26] evaluate volume rendering techniques using the
human visual system as a reference, while more recently,
Smelyanskiy et al. [40] present a domain expert guided
comparison scheme. While those approaches are valuable,
the need for a more systematic evaluation is discussed in
several papers [11], [15], [16], [18]. See Pommert and Höhne
[32], [33] for a survey.

Among several aspects to consider in the correctness of
volume rendering algorithms, one of the most important is
the approximation of the volume rendering integral. The

solution with linearly interpolated attributes is presented by
Williams and Max [44], with further discussions on its
numerical stability by Williams et al. [45]. Interpolant
approximations and errors [5], [28], [29], [31], gradient
computation [42], and opacity correction [23] are also the
subject of analysis with regard to numerical accuracy. The
idea of preintegration enables high-quality, accurate and
efficient algorithms using graphics hardware [7], [22], [37].
Similarly, VTK currently uses partial pre-integration, in
particular for unstructured grids [30]. Note that although
there has been work on high-order and high-accuracy
volume rendering—to the best of our knowledge—none of
these approaches attempted to evaluate the convergence
rate of the standard discretization process of the volume
rendering integral.

The use of a verification framework has only recently
been discussed in scientific visualization, despite the vast
literature on verification in computer science. Globus and
Uselton [11] first pointed out the need to verify not only
visualization algorithms but also their implementations,
and Kirby and Silva [18] suggested a research program
around verification. The verification of isosurface algo-
rithms was discussed by Etiene et al. [8], [9], where a
systematic evaluation identified and corrected problems in
several implementations of isosurface extraction techni-
ques. Zheng et al. [47] address CT reconstruction and
interpolation errors in direct volume rendering algorithms
using a verifiable framework based on projection errors. In
contrast, our work focuses on the verification of the final
image produced through direct volume rendering.

3 VERIFICATION

Before presenting our verification procedure, let us con-
sider four of the techniques used for code verification in
computational science [38]: expert judgment, a procedure in
which a field expert determines if the output of an
implementation is correct by evaluating the results; error
quantification, which is the quantification of the discretiza-
tion errors when compared to an analytical solution, a
benchmark solution or some ground-truth; convergence
analysis, a procedure in which one evaluates if the
discretization errors converge to zero as a function of
some parameter; and order-of-accuracy, a procedure where
one evaluates if the discretization errors decrease according
to the expected rate. In this list, the expert judgment is the
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Fig. 1. (a) It shows the result of our verification procedure for data set refinement. The blue line corresponds to the initial behavior, which deviates
from the expected slope (solid dark line). After fixing the issues, we obtain the orange curve, with a slope closer to the expected one. (b) and (c) show
a human torso, displaying the blood vessels and the spine, before and after our changes. (d) It shows the difference between (b) and (c).



least rigorous test, followed by error quantification and
convergence analysis. Order-of-accuracy is widely recog-
nized as the most rigorous code verification tool [1], [19],
[35], [38]. In this paper, we focus on the latter two methods,
namely, convergence analysis and order-of-accuracy. Be-
fore we dive into these methods, let us first consider some
of the limitations of the expert analysis and error
quantification.

In visualization, expert analysis and error quantification
are, to the best of our knowledge, the only two verification
tools previously employed for verification of volume
rendering techniques [26], [28], [40]. Whereas it is easy to
envision situations where an expert may fail to predict a
code mistake, it is more difficult to see when error
quantification fails. We devise the following experiment
to understand potential limitations of both approaches. We
artificially introduced a code mistake in a volume render-
ing implementation: the trilinear interpolation was changed
from pðx; y; zÞ ¼ Axyz þ Bxyð1� zÞ þ � � � to pðx; y; zÞ ¼
AxyzþAxyð1� zÞ þ � � � We then used this implementation
to render an image whose analytical solution is known.
Finally, we compute the maximum error between the
rendered and the analytical solution, which in this case is
3:6� 10�3. How can one decide if this value is good
enough? Does the sampling distance d or the input scalar
field sðx; y; zÞ give us enough data to make an informed
decision? In this particular case, the correct interpolant
generates an image with maximum error of 3:4� 10�3: the
two images are very similar by this metric. Also, it may be
challenging, even for an expert, to notice such a small
deviation, as shown in Fig. 2. On top of this, the maximum
errors for another code mistake could be even smaller. (We
point out that this particular case can be uncovered by
“playing around” with the data or other ad hoc methods.
The goal is to show that error quantification can also fail to
predict code mistakes, even for a severe bug.) On the other
hand, we will have enough information to make such a
decision if one observes how errors behave when input
parameters change instead of quantifying them from one
image. The convergence and order-of-accuracy tests work
in this way, and they are the focus of this paper.

We advocate the use of convergence and order-of-
accuracy verification not as a replacement but as an
extension of the current testing pipeline. Note that these
are not the only approaches for assessing correctness of
computer code. As mentioned before, verification is well
developed in computer science [3], [10], [12], [46].

We apply verification in the spirit of Babuska and Oden’s
[1] procedure, which we summarize in Fig. 3. It starts with a
mathematical evaluation of the expected convergence of the
volume rendering integral (Section 5). The result of this step
is an articulation of the asymptotic error according to some
discretization parameter (step size, data set size, or pixel
size). Then, we use the volume rendering implementation
under verification to generate a sequence of images by
successive refinement of one of the discretization para-
meters. Next, we compute the observed discretization
errors by comparing these images against a reference—an
analytical solution, if one is available, or one of the rendered
images. Finally, we compare the sequence of observed
outputs against expected errors to evaluate if expected and
observed convergence match (Sections 6 and 7).

4 DISCRETIZATION ERRORS

In this section, we present the mathematical model used in
volume rendering algorithms and its expected behavior,
which we write in terms of the errors involved in each
discretization step. Let us assume the well-known low albedo
emission plus absorption model [25]. The volume rendering
integral I, as described by Engel et al. [7], is

Iðx; yÞ ¼
Z D

0

Cðsðxð�ÞÞÞ�ðsðxð�ÞÞÞ

� exp �
Z �

0

�ðsðxð�0ÞÞÞd�0
� �

d�;

ð1Þ

where D is the ray length, Cðsðxð�ÞÞÞ is the reflected/
emitted light, �ðsðxð�ÞÞÞ is the light extinction coefficient,
sðxð�ÞÞ is the scalar value at position x in the ray
parameterized by �. There are three natural ways to
discretize the equation. We will generate progressively
denser ray sampling (by refining the integration step size),
progressively larger data sets (by refining the size of the voxel
in the data set), and progressively higher-resolution images
(by refining the pixel size in the final image). Each of these
three variables will introduce errors that may appear in a
volume rendering system, where the first two of these
variables specifically impact the volume rendering integra-
tion (per pixel/ray). In the following section, we discretize
the VRI using the most common approximation in
literature—Riemann summation.

4.1 Errors Due to Step Size Refinement

In this section, we are interested in the errors generated by
successive ray step refinements (see Fig. 4). Equation (1) is
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Fig. 2. Left: the volume rendering of the torso data set using an incorrect
trilinear interpolation. Middle: Same data set with the correct interpola-
tion. Right: difference between the two images. Fig. 3. Our verification procedure works by evaluating discretization

error during refinement of one of three sampling parameters.



commonly discretized using traditional Riemann summa-
tion for numerical integration:

Z D

0

fðsðxð�ÞÞÞd� ¼
Xn�1

i¼0

fðsðxðidÞÞÞdþOðdÞ; ð2Þ

where n is the number of subintervals and d ¼ D=n. The
proof of linear convergence follows from Taylor expansion
of the integrand over small intervals d. Other methods are
available and they provide different convergence rates. For
instance, the Trapezoidal Rule is a second order method on
the integral of f .

In the case of the VRI, we approximate not only the
outer integral but also the integrand T ðsðxð�ÞÞÞ ¼
expð�

R �
0 �ðsðxð�0ÞÞÞd�0Þ. Moreover, T requires two approx-

imations: etð�Þ and the inner integral. Before we derive the
convergence rate for the VRI, let us first evaluate the
convergence of T . Throughout the text, we assume that all
transfer functions are smooth, i.e., CðsÞ; �ðsÞ 2 C1.
Although this is not the case in practice, this restriction is
useful for convergence evaluation and verification purposes.

4.1.1 Approximation of T ð�Þ
Let T ð�Þ ¼ T� ¼ e�tð�Þ, where tð�Þ ¼

R �
0 �ð�0Þd�0, and �

parameterizes a ray position. We will first approximate
tð�Þ and then T ð�Þ. Typically, the integral is solved using
Riemann summation. In the following, d ¼ D=n is the ray
sampling distance, D is the ray length, and n is the number
of subintervals along the ray:

Z �

0

�ð�0Þd�0 ¼
Xi�1

j¼0

�ðjdÞdþOðdÞ; ð3Þ

where � ¼ id. Using (3):

T ð�Þ ¼ exp �
Z �

0

�ð�0Þd�0
� �

ð4Þ

¼ exp �
Xi�1

j¼0

�ðjdÞdþOðdÞ
 !

ð5Þ

¼
Yi�1

j¼0

expð��ðjdÞdÞ
 !

expðOðdÞÞ: ð6Þ

Let us define �j ¼ �ðjdÞ. We start with a Taylor expansion of
expðOðdÞÞ:

T� ¼
Yi�1

j¼0

expð��jdÞ
 !

ð1þOðdÞÞ ð7Þ

¼
Yi�1

j¼0

expð��jdÞ þ
Yi�1

j¼0

expð��jdÞOðdÞ: ð8Þ

Part I. Let us focus on the second term in the right-hand
side of (8). The first observation is that it contains only
approximation errors, which means that we are interested
only in its asymptotic behavior. Let us expand it using first-
order Taylor approximation and use the fact that
�jd ¼ OðdÞ:

Yi�1

j¼0

1�OðdÞð ÞOðdÞ ¼ 1þOðdÞð ÞiOðdÞ; ð9Þ

where the change in the sign is warranted because the goal
is to determine the asymptotic behavior. For i ¼ 1, only one
step is necessary for computing the volume rendering
integral along the ray, and the previous equation will
exhibit linear convergence. Nevertheless, in the general
case, the numerical integration requires multiple steps,
hence errors accumulate, and the convergence may change.
Thus, we set i ¼ n. Knowing that ð1þOðdÞÞn ¼ Oð1Þ (see
Appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2013.90) and inserting (9) into (8) we obtain

T� ¼
Yi�1

j¼0

expð��jdÞ þOðdÞOð1Þ ð10Þ

¼
Yi�1

j¼0

�
1� �jdþOðd2Þ

�
þOðdÞ: ð11Þ

Part II. We now show that the first term on the right side
of (11) also converges linearly with respect to d. In the
course of this section, we omit the presence of the term OðdÞ
in (11) for the sake of clarity. Let us define the set K as the
set of indices j for which 1� �jd ¼ 0. The size of K is
denoted as jKj ¼ k. We also define K as the set of indices j
for which 1� �jd 6¼ 0, and jKj ¼ i� k. Equation (11) can be
written as

T� ¼
Y
j2K

�
1� �jdþOðd2Þ

�0
@

1
A Y

j2K
Oðd2Þ

 !
ð12Þ

¼
Y
j2K

1� �jdþOðd2Þ
� �0

@
1
AOðd2kÞ: ð13Þ

Because 1� �jd 6¼ 0 for j 2 K:

T� ¼
Y
j2K

ð1� �jdÞ 1þ Oðd2Þ
1� �jd

� �0
@

1
AOðd2kÞ: ð14Þ

From the definition of big O notation, 1=ð1� �jdÞ ¼ Oð1Þ;
hence,
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Fig. 4. Step size refinement. The figure shows an isosurface of a trilinear
function defined on the volume. Fig. 5. Isosurface of a randomly generated scalar field defined at

different resolutions. The (piecewise) trilinear surface is the same
regardless of the grid size.



T� ¼
Y
j2K

ð1� �jdÞð1þOð1ÞOðd2ÞÞ

0
@

1
AOðd2kÞ ð15Þ

¼
Y
j2K

ð1� �jdÞð1þOðd2ÞÞ

0
@

1
AOðd2kÞ ð16Þ

¼
Y
j2K

1� �jd

0
@

1
Að1þOðd2ÞÞi�kOðd2kÞ: ð17Þ

In real-world implementation, k 6¼ 0 implies that at least

one of the terms 1� �jd ¼ 0. Hence, the code accumulating

the value of T , T ¼ T � ð1� tj � dÞ, will invariably return

T ¼ 0. This can also be seen in our theoretical analysis. For

k 6¼ 0, the entire right-hand side of (17) is the approximation

error. The larger k is—i.e., the more zeroes in the product of

(17)—the faster the sequence converges to zero due to the

Oðd2kÞ factor. So, when k 6¼ 0, one obtains a high-order

approximation of T� ¼ 0. Nevertheless, because we want to

recover the approximation errors for the general case

(T� 6¼ 0), we set k ¼ 0 in (17), and i ¼ n (for the same

reasons as previously stated):

T� ¼
Yn�1

j¼0

1� �jd
 !

ð1þOðd2ÞÞn: ð18Þ

Using the fact that ð1þOðd2ÞÞn ¼ 1þOðdÞ and ð1þ
OðdÞÞn ¼ Oð1Þ (see Appendix, available in the online

supplemental material):

T� ¼
Yn�1

j¼0

1� �jd
 !

ð1þOðdÞÞ ð19Þ

¼
Yn�1

j¼0

1� �jd
 !

þOðdÞ
Yn�1

j¼0

ð1þOðdÞÞ
 !

ð20Þ

¼
Yn�1

j¼0

1� �jd
 !

þOðdÞð1þOðdÞÞn ð21Þ

¼
Yn�1

j¼0

1� �jd
 !

þOðdÞOð1Þ ð22Þ

¼
Yn�1

j¼0

1� �jd
 !

þOðdÞ: ð23Þ

We finish our derivation by adding the previously omitted

OðdÞ:

T� ¼
Yn�1

j¼0

1� �jd
 !

þOðdÞ þOðdÞ ð24Þ

¼
Yn�1

j¼0

1� �jd
 !

þOðdÞ: ð25Þ

4.1.2 Approximation of the Outer Integral

Let ~Ti be the approximation of T ð�iÞ. We write T ð�iÞ ¼ Ti ¼
~Ti þOðdÞ, and Ci ¼ CðidÞ. In typical volume rendering
implementations, the outer integral is also approximated
using a Riemann summation. Thus,

Iðx; yÞ ¼
Xn�1

i¼0

CðidÞ�ðidÞTidþOðdÞ ð26Þ

¼
Xn�1

i¼0

Ci�id ~Ti þOðdÞ
� �

þOðdÞ ð27Þ

¼
Xn�1

i¼0

Ci�i ~Tidþ
Xn�1

i¼0

Ci�idOðdÞ þOðdÞ: ð28Þ

Because both �i and Ci are bounded, one can write
Ci�idOðdÞ ¼ Oðd2Þ and

X
i

Oðd2Þ ¼ nOðd2Þ ¼ D
d
Oðd2Þ ¼ OðdÞ:

The above equation can be rewritten as

Iðx; yÞ ¼
Xn�1

i¼0

CðidÞ�ðidÞd ~Ti þOðdÞ: ð29Þ

We have now showed that the dominant error when
considering step size in the VRI is of order OðdÞ. In other
words, when decreasing the step size by half, the error
should be reduced by a factor of a half.

4.1.3 Numerical Integration Techniques

The interplay between the approximation errors of the inner
and outer integrals is nontrivial; here, we demonstrate this
fact with a simple numerical example. Table 1 shows the
result of using different integration methods for the inner
and outer integrals along a single ray. We simulate the
integration along a single ray to compute these quantities
numerically. For this experiment, we assume: x 2 ½0; D�,
�ðsðxÞÞ ¼ cosðsðxÞÞ, CðsðxÞÞ ¼ sinðsðxÞÞ, sðxÞ ¼ x, and thus,
the solution for the VRI is I ¼ 1� exp ð� sinðDÞÞðsinðDÞ þ
1Þ. To evaluate the effects of the discretization errors of the
integrals, we further assume that expðxÞ does not introduce
errors. The computation of the convergence rate is detailed
in Section 5. The results shown in Table 1 suggest that one
needs to improve the accuracy of both the inner and outer
integrals to obtain a high-order method.

4.2 Errors Due to Data Set Refinement

For the purposes of this paper, we assume that no additional
errors will be created during the refinement of the scalar field.
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TABLE 1
Effects of the Different Integration Methods



Hence, we need to find an interpolation function that fulfills

the so called two-scaling property. Fortunately, B-splines

fulfill the two-scale property [41]; we choose the linear B-

spline, which results in the well-known trilinear interpolator.
Care must be taken on the refinement step. In this paper, we

will choose a refinement factor of two, which simplifies to a

simple averaging of the nearest neighbors (see Fig. 5). The

errors introduced so far remain unchanged:

Iðx; yÞ ¼
Xn�1

i¼0

Cð~sðxiÞÞ�ð~sðxiÞÞd ~T ð~sðxiÞÞ þOðdÞ: ð30Þ

The previous equation shows that the grid size refine-

ment errors are constant and due to sources other than the

grid size N , such as the OðdÞ term.

4.3 Errors Due to Pixel Size Refinement

The final source of errors we investigate comes from the

finite number of rays sent into the image. This error is not

one that arises due to the VRI discretization per se, but

rather due to how the VRI is used to render the final image
seen by the viewer. We quantify these errors by creating a

sequence of images of progressively higher resolution, and

then examine the supremum of the difference between

values of the finite approximations of the volume-rendered

image and the true solution. In this section, we assume that
the derivatives along image axes of the volume rendering

integral exist.
Denote the true volume-rendered image as Iðx; yÞ. The

approximation is constructed by sampling Iðx; yÞ in a finite

subset of the domain (in our case, a square lattice of

increasing resolution). At a level of detail j, ~Ijðx; yÞ denotes

the nearest-neighbor interpolation of the sampled values,
and the error is measured as Ej ¼ supðx;yÞ2½0;1�2 jIðx; yÞ �
~Ijðx; yÞj. Effectively, this procedure assigns to the entire

square pixel the value sampled in its center, but evaluates

the error over the entirety of the pixel values. Fig. 6 illustrates

the process.
We use the notation I ¼ Iðx; yÞ, Iji ¼ Ijðxi; yiÞ, and

�i ¼ ðx; yÞ � ðxi; yiÞ. In what follows, the Taylor expansion
assumes a fixed level of detail j. We omit the superscript j

for the sake of clarity. Let us write the values of I as a Taylor

series expansion (Hi ¼ Hðxi; yiÞ is the Hessian and Ixi and

Iyi are the partial derivatives of Ii at ðxi; yiÞ):

I ¼ ~Ii þrITi �i þ
1

2
�Ti Hi�i þ � � � ð31Þ

¼ ~Ii þO
�
rITi �i

�
ð32Þ

¼ ~Ii þO
��
Ixi ; I

y
i

�T ðx� xi; y� yiÞ�; ð33Þ

where ~Ii is a nearest-neighbor reconstruction from a square
lattice for the pixel ðxi; yiÞ at a given level j. In the regime
where the Hessian terms are negligible, the dominant errors
(and hence the supremum of the difference) occur when
ðx� xi; y� yiÞ ¼ ðh; hÞ, where h is half the pixel size. Thus,

I ¼ Ii þOðhÞ ð34Þ

¼
Xn�1

i¼0

Cð~sðxiÞÞ�ð~sðxiÞÞ ~Tdð~sðxiÞÞÞ

þOðhÞ þOðdÞ:
ð35Þ

As can be seen, the error in the pixel approximation decays
linearly with the pixel size. Equation (35) contains all the
errors we examine for verification purposes, and it will be
the basis for our analysis in Section 5.

Two practical aspects that are worth noting. In practice, the
supðx; yÞ of the error over a pixel ðx; yÞ cannot be computed.
Thus, we use a finite high-resolution image as a proxy for the
true solution. This allows us to evaluate the maximum error
over a pixel. Note also that colors are evaluated at pixel
center, as shown in Fig. 6. Also, often the final image is not a
smooth function. However, our goal is not to provide a
characterization of discretization errors that can be used in
any arbitrary setting, but instead one that can be used for
verification purposes. Therefore, to use the analysis outlined
above, one must manufacture scalar fields and transfer
functions which yield a smooth function (see Section 6).

5 CONVERGENCE COMPUTATION

The heart of our method is the evaluation of the discretiza-
tion errors. Once we have the discretization errors, we can
evaluate the order-of-accuracy and convergence rate. The
error computation and analysis will proceed differently
depending on whether an analytical solution for the VRI is
available or not. We highlight that previous frameworks for
verification of visualization algorithms could benefit from
the fact that analytical solutions can be easily constructed
[9]. For the case of the VRI, this is no longer true, and
therefore we should not rely on known solutions. We
describe two ways in which to proceed with the conver-
gence analysis. First, we will show how to calculate errors
using a known solution, and then how to do so when the
analytical solution is not known a priori.

5.1 Numerical Errors Using a Known Solution

When a solution F ðx; yÞ for the VRI is known, the procedure
is equivalent to the Method of Manufactured Solutions [1].
In the previous section, we have shown that the solution F
can be written as

F ðx; yÞ ¼ Iðx; yÞ þOðrkÞ ¼ Iðx; yÞ þ �rk þHOT; ð36Þ

where I is the approximated image, r is the discretization
parameter, and � 2 IR is a constant, multiplicative factor that
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Fig. 6. Pixel refinement. Typically, the VRI is evaluated only at pixel
centers (top). The value at the center is then interpolated in the domain
defined by the pixel size (bottom) using nearest-neighbor interpolation to
obtain ~Ii. In a correct implementation, as i increases, ~Ii approaches the
true solution I.



is not a function of the data set. An important assumption is
that the HOT, or “higher order terms,” are small enough that
they do not affect the convergence of order k 2 IR, i.e., high-
order derivatives of F must have negligible impact in the
asymptotic convergence of I [38]. This formulation implies
that not all solutions F are suitable for verification purposes,
only those for which the HOT are negligible. In addition,
integration methods whose approximation errors cannot be
written as shown cannot be compared by only evaluating k,
as we propose next. The expected value of k for the cases of
step size and pixel size refinement is k ¼ 1, whereas we do
not expect to see error reduction when examining grid size
refinement. This implies that the pixel intensity converges to
the true solution at a rate determined by k, and thus the error
can be written as

eðx; yÞ ¼ Iðx; yÞ � F ðx; yÞ � �rk: ð37Þ

One can evaluate the convergence for all pixels in the image
using L2, L1, or other norms. Henceforth, we adopt the L1
norm because it provides a rigorous and yet intuitive way
of evaluating errors: it tells us that the maximum image
error should decay at the same rate k. Mathematically, the
error is then:

E ¼ sup
x;y
ðeðx; yÞÞ ¼ sup

x;y
ðjIðx; yÞ � F ðx; yÞjÞ ¼ �rk: ð38Þ

We denote individual images (and the respective errors)
by a subscript i. For each image Ii, we first calculate the
supremum of the absolute difference supx;yðjF ðx; yÞ �
Iiðx; yÞjÞ. We then compute the observed convergence rate
k by taking logarithms of both definitions of E and
solving the resulting equations for logð�Þ and k in a least-
squares sense:

logEi ¼ log sup
x;y
ðjF ðx; yÞ � Iiðx; yÞjÞ

¼ logð�Þ þ k logðriÞ:
ð39Þ

The system of equations has as many equations as the
number of images and calculated errors. We note that the
solution F ðx; yÞ cannot always be computed analytically
[25]. In the general case, we need an alternative method for
determining the error.

5.2 Numerical Errors When the True Solution Is
Unknown

In the case where the true solution is unknown a priori,
using a numerical approximation in a high-precision
context (i.e., a gold standard solution) to compute a
reference image is a valid approach for verification [20].
The main disadvantage of this approach is that it might
mask errors that appear in the reference image itself. Our
slightly different approach requires neither an analytical
solution nor a numerical approximation, but still retains a
high sensitivity to errors. Suppose we want to verify the
convergence of a sequence of images Ii with riþ1 ¼ cri,
where c 2 ð0; 1Þ is a constant factor. As we have seen in the
previous section, the approximation for the solution F at
resolution i and iþ 1 can be written, respectively, as

F ðx; yÞ ¼ Iiðx; yÞ þO
�
rki
�

¼ Iiðx; yÞ þ �rki þHOT;
ð40Þ

F ðx; yÞ ¼ Iiþ1ðx; yÞ þO
�
rkiþ1

�
¼ Iiþ1ðx; yÞ þ �rkiþ1 þHOT:

ð41Þ

Again, we assume that the HOT are negligible. Now, we

subtract (41) from (40) to eliminate the unknown F :

0 ¼
�
Iiþ1ðx; yÞ þ �rkiþ1

�
�
�
Iiðx; yÞ þ �rki

�
ð42Þ

0 ¼ Iiþ1ðx; yÞ � Iiðx; yÞ þ �rkiþ1 � �rki : ð43Þ

Thus, the convergence order k can be computed by

evaluating the errors involved in the subtraction of

consecutive images:

eiðx; yÞ ¼ Iiþ1ðx; yÞ � Iiðx; yÞ ¼ ��rkiþ1 þ �rki ð44Þ

¼ �ð1� ckÞrki : ð45Þ

As before, we use the L1 norm to compute the maximum

error among all pixels:

Ei ¼ sup
x;y
ðeiðx; yÞÞ

¼ sup
x;y
ðjIiþ1ðx; yÞ � Iiðx; yÞjÞ ¼ �ð1� ckÞrki :

ð46Þ

Thus, the observed convergence is again computed by

taking logarithms of both sides. We then write y ¼
log�ð1� ckÞ to hide the dependency of the term in k and

determine y and k via least-squares:

logEi ¼ log�ð1� ckÞrki ð47Þ

¼ log�ð1� ckÞ þ k log ri ð48Þ

¼ yþ k log ri: ð49Þ

In the case of the grid size test, the linear regression

measures the constant error due to sources other than the

grid size, because no approximation errors with respect to

the grid size N are introduced.
Equation (49) shows us how to compute the convergence

rate using only the images obtained from the VRI approx-

imation and consequently avoiding any bias and/or

limitations introduced by simple manufactured solutions

or numerical approximations using reference images. We

have generated sequences of images based on the refine-

ments in the following section. The steps are shown in

Algorithm 1.

Algorithm 1. A simple algorithm for verification via step

size, data set size or pixel size.

VERIFICATION PROCEDURE ðG; �ðsÞ; d0; N0; h0; �Þ
1 . Let G be the scalar field

2 . Let �ðsÞ be a transfer function

3 . Let d0, N0 �N0 �N0 and h0 be the initial step size,

data set size and pixel size respectively
4 . Let � 2 fstep; dataset; pixelg
5 F0  VOLUMERENDERINGðG; �ðsÞ; d0; N0; h0Þ
6 For i 1 to # tests

7 do REFINE(di;Ni; or hi depending on �)

8 Fi  VOLUMERENDERINGðG; �ðsÞ; di; Ni; hiÞ
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9 if there is an analytical solution I:
10 then Ei ¼ maxx;yjIðx; yÞ � Fiðx; yÞj
11 else Ei ¼ maxx;yjFi�1ðx; yÞ � Fiðx; yÞj
12 Linear regression of Ei using Equations (39) or (49)

6 APPLICATION EXAMPLES

We present the results of applying our verification frame-
work to two mature and widely used libraries, namely
VTK and Voreen. We stress that the goal here is first to
show that our verification technique is very sensitive to
changes that cause the output image to deviate from the
correct solution; second, it is very easy to apply and, thus,
can help developers and practitioners to gain confidence in
their implementations.

6.1 Implementations under Verification

VTK. The VTK library provides several implementations of
well-known volume rendering techniques. In our tests, we
included two modules from version 5.6.1: vtkVolumeR-
ayCastMapper (RCM) and vtkFixedPointVolumeR-

ayCastMapper (FP). The RCM module accepts as input
scalar fields with 8- or 16-bit precision and internal
computations are performed with single or double preci-
sion. FP accepts input data sets with up to 32 bits of
precision but it uses 15-bit fixed-point arithmetic internally.
Both techniques use back-to-front compositing. We have
also modified the VTK source to capture 15- and 32-bit
precision images for FP and RCM, respectively.

Voreen. As opposed to the tested modules in VTK,
Voreen uses the graphics processing unit (GPU) and front-
to-back compositing for its implementations. From the ray
casting processors available within Voreen, we have chosen
the SingleVolumeRaycaster, which is the standard
processor in most Voreen workspaces. At the time of
writing, version 2.6.1 is the latest, and the one we verified.
We made minor modifications to the code so that floating
point data of the format Nearly Raw Raster Data NRRD [17]
could be imported and smaller step sizes could be used.

6.2 System Setup

The grid lies in the domain ½0; 2�3 for VTK and ½0; 1�3 for
Voreen. The scalar values at grid nodes are chosen from a
uniform random distribution. The camera is centered at the
xy plane and is aimed along the z-axis. We did not include
shading since that gives a more complex VRI. To verify
shaded results, a different theoretical analysis is necessary.
The images can be generated using both perspective and
parallel projections. We only use postclassification, which
simplifies the analysis. In addition, we assume an identity
opacity transfer function (that is, the opacity is exactly equal
to the sampled scalar). We do this because for every pair of
scalar field and opacity transfer function, there is another
scalar field (which admittedly need to be of finer resolution)
that, when combined with the identity transfer function,
represents the composition arbitrarily well. The function
composition arising from volume classification can increase
the high-frequency content of a volume 2, and a full
treatment of the impact of arbitrary transfer functions on
the convergence of the integral remains a topic for future
explorations. In addition, this assumption enabled much of

the theoretical analysis that would not be possible other-
wise, while still being stringent enough to uncover issues in
the implementations.

To apply verification via step size refinement, we start
with d0 ¼ 1

2 and a refinement factor of half, diþ1 ¼ 1
2 di. We

use a data set of size 23 because we have experienced that
low-resolution grids with random scalar fields are effective
at stressing the code for debugging purposes.

Let lbe the cell size. For verification via data set refinement
we start with 23 grid nodes, and we refine grid cells until we
reach 5133 nodes, corresponding to cell sizes liþ1 ¼ 1

2 li. Step
size is fixed at d ¼ 10�2. This is done to evaluate the effects of
discretization errors due only to grid refinement.

For verification via pixel size refinement, we start by
generating images with 322 pixels using the implementa-
tion under verification, and then continue to refine pixel
size until we reach 1;0242 pixels. The pixel size h is refined
according to hiþ1 ¼ 1

2hi. The errors are computed taking the
difference between the rendered image and an analytical
solution. In this case, we use an analytical solution for the
volume rendering integral in the domain ½0; 1�2. We assume
the following: sðx; y; zÞ ¼ z cosðxyÞ, �ðsÞ ¼ sinðsÞ, xð�Þ ¼
ðx; y; �Þ, CðsÞ ¼ 1 and ray length D ¼ 1. The analytical
solution is then

Iðx; yÞ ¼ 1� exp
cosðcosðxyÞÞ

cosðxyÞ � 1

cosðxyÞ

� �
: ð50Þ

The data set size used is 5133, and the step size is set at
d ¼ 10�5 to mitigate sampling errors. Both step and data set
size are fixed to only evaluate errors due to pixel size
refinement.

For VTK, we also have the following setup: no auto
adjustment of the step size d; single thread; interpolation
type is set to linear. For Voreen, we enabled floating point
buffers in the pipeline. The Voreen version under verifica-
tion does not support parallel projection.

The errors are computed using the L1 norm and are
given by the maximum distance between two images,
defined as ei ¼ maxx;yjIiðx; yÞ � Iiþ1ðx; yÞj, where Iiðx; yÞ is
the pixel with center in ðx; yÞ of the image Ii rendered with
the implementation under verification. If a solution F is
available, ei ¼ maxx;yjIiðx; yÞ � F ðx; yÞj.

In the following sections, we report the results of
applying the verification framework with known and
unknown exact solutions to three volume rendering
implementations. Table 2 indicates where one can find the
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TABLE 2
Each Cell Indicates Where the Results for Each Type

of Test Can Be Found in the Paper



verification results based on the type of solution (known or
unknown), the convergence parameters, and also the
projection step used.

6.3 Observed Behavior

The results of our verification procedure are summarized in
Fig. 7. We tested both VTK and Voreen and found
unexpected behaviors. We emphasize that this does not
immediately translate into a code mistake but only that a
deeper investigation is needed. To find the reason for the
unexpected behavior, we analyzed the source code of the
given systems. We expect linear convergence when step
size or pixel size are refined (k ¼ 1) and constant error when
data set refinement is used.

FP. The results obtained for the FP module (blue curves
in Figs. 7a, 7b, and 7c) were different from expected for all
tests. The 15-bit fixed-point precision could, to some extent,
justify this behavior. Still, we only expected this influence to
have a negative effect after a certain threshold for step size.

The perspective projection curve shown in Fig. 7a, for
instance, has what appears to be a constant error when
using step size refinement and perspective projection.
We expect the error to decrease for large values of d;
we acknowledge that when d is too small, the errors due to
15-bit fixed-point precision will dominate. After investigat-
ing the reason for this deviation, we found that depending
on the pixel position, some rays might cross only half of the
volume instead of the full volume. In other words, instead
of sampling the ray in n locations, for some pixels the ray
was only sampled n

2 times. This is a combination of several
factors which includes domain size, step size, and ray
direction. Details can be found in the supplementary
material, available online.

Using our synthetic data set, we observed a “+” pattern
shown in Fig. 8(left). The darker regions are precisely the
pixels where the ray does not cover the whole domain.
Artifacts may also be seen in standard data sets such as the
Carp shown in Fig. 10. The orange curves in Figs. 7a, 7b,
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Fig. 7. Each plot shows the convergence experiments for one particular implementation and one particular type of convergence. The behavior before
any changes to the source code were made are shown in blue. The results of the changes are shown by the orange lines. The black line indicates the
expected slope from the theoretical analysis. Notice the black lines indicate only the expected slope of the results. Any line parallel to the black
indicator line has the same slope and is equally acceptable. The convergence order is denoted by k. Notice also that the data set refinement test
does not introduce errors and, thus, all that is expected is a constant error.



and 7c show the convergence results after modifying VTK’s
source. Notice that for step size refinement using perspec-
tive projection, the convergence curve changed from 0.02 to
0.92 for the first seven samples. For the eighth and ninth
samples, the error slightly increases. A similar phenomenon
occur in the parallel convergence curve. The curve starts to
diverge in the high-resolution regime (parallel and per-
spective projection plot). This is likely to be due to the limit
of 15-bit fixed point arithmetic. Although the pixel size
refinement convergence for perspective projection substan-
tially improved (from 0.01 to 0.94), the convergence curves
for parallel projection remained similar, which can be
explained by the OðdÞ error.

RCM. The RCM module (blue curves in Figs. 7d, 7e, and
7f) produces nearly linearly converging sequences when
refining the step size or pixel size. However, data set
refinement with either perspective or parallel projection
fails to present the expected constant error. Analyzing the
source code, we found the discrepancy to be due to the
number of steps taken when marching inside the volume.
For instance, suppose that the step size is set in such a way
that 200 steps are required to traverse the volume. Instead
of 200 steps, the RCM module used values between 195 and
199 steps, depending on some conditions. The consequence
of this deviation is shown in Fig. 9.

The orange curves in Figs. 7d, 7e, and 7f show the
convergence results for the RCM module after fixing the
issue that prevented code convergence. It consists of

changing the epsilon values used during the computation
of the number of steps. Notice that the behavior is close to
the expected one and the errors are very small (10�5). The
convergence curve using pixel size refinement is close to
linear for large pixel size but seems to be converging to
some positive value. This might be due to other sources of
error which become dominant after sufficient refinement.

Voreen. Our first ray refinement tests did not result in
linear convergence for Voreen (blue line in Fig. 7g) due to
the early ray termination (ERT). By simply adapting the
ERT threshold, we were able to obtain the expected
convergence for ray refinement (orange line in the Fig. 7g).

As can be seen in the Fig. 7i, the blue curve indicates that
increasing the resolution of the data set decreases the error.
We remind the reader that using our upsampled data, as
described in Section 4.2, rendering the same scalar field
represented by a different number of voxels should not
affect the result. For Voreen, the unexpected behavior was
caused by sampling at incorrect texture locations. More
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Fig. 8. The figure shows images rendered using VTK 5.6.1. In our
experiments, the “þ” pattern became more evident in two cases: when
coarse data sets are used, and/or high number of sampling points along
the ray are used. Darker pixels belong to regions where the ray
traverses only half of the volume, preventing convergence. The image
on the middle shows the result using our modified version of VTK. The
convergence curve improved significantly after the issue was fixed. Note
that this effect only occurs when perspective projection is used. For
orthogonal projection, the problem is not noticeable. For the conver-
gence analysis, we used a scalar field given by Sðx; y; zÞ ¼ xyz, D ¼ 1,
transfer function �ðsÞ ¼ s in the domain ½0; 1�3, and solution for the VRI
given by Iðx; yÞ ¼ 1� expð�xy=2Þ, which means the integration is along
z (from zero to one).

Fig. 9. The two figures show images rendered before and after fixing an
issue with the number of ray samples in the RCM module. This change
was motivated by a mismatch in the data set convergence test. Although
the images are indistinguishable to the human eye, the errors (computed
as the difference between images, shown on the right) are large enough
to change the expected convergence rate. For both images, we applied
our verification procedures on a grid with a scalar field given by
Sðx; y; zÞ ¼ xyz and transfer function �ðsÞ ¼ s in the domain ½0; 1�3.
Hence, the solution for the VRI is Iðx; yÞ ¼ 1� expð�xy=2Þ. (a) uses
data set refinement while (b) uses pixel size refinement.

Fig. 10. A CT scan of a carp, rendered with VTK 5.6.1 and Fixed-Point Raycast Mapper (FP). On the left, we see the artifacts (dark lines) that
prevented FP convergence. In the middle, we see the results after fixing the issues that prevented convergence. The artifacts are no longer visible.
On the right we see the difference image.



specifically, internally, Voreen assumed that the texture
data are node centered when, in fact, OpenGL uses grid
centered data. In this case, both the volume and transfer
function values were affected. In OpenGL, the texture
coordinates of a texture of resolution Rm lie in the domain
½0; 1�m, where m is the texture dimension. Since the data
values are grid centered, this means that the outer most
data values are located at ½ 1

2R ; 1� 1
2R� with the settings used

in Voreen. We will refer to the domain in which the data
values lie as the data domain. For volume rendering, the
integration of a ray should be done over the data domain,
but for Voreen, the entry and exit points of the rays went
outside of that domain which caused the unexpected
behavior. To obtain the expected constant convergence,
we apply the following transformation to the input texture
coordinate p (see orange line in Fig. 7i):

p0 ¼ 1

2R
þ p 1� 1

R

� �
; p 2 ½0 1�: ð51Þ

Equation (51) scales and translates the texture coordinate
to be in the domain ½ 1

2R ; 1� 1
2R�

m, where the data values lie.
The effect of transforming the input coordinate for a real-
world example can be seen in Fig. 1. We provide an
explanation for why this does not affect ray entry and exit
point sampling, and also discuss the implications of
different boundary values in the supplementary material,
available online. Although the scaling of texture coordinates
has been addressed for multiresolution volumes [24], to our
knowledge, it has not been applied to the sampling of
transfer functions [6], [21], [36]. There are other solutions for
recovering the expected convergence rate, which include
changing the way we refine our sampling grid to match
OpenGL grid centered data. However, we have chosen this
solution for several reasons. First, it matches Voreen’s initial
assumption on node-centered data; it does not require
special treatment at the border of the domain; and due to its
simplicity, it is easy to implement. We have contacted
Voreen developers and the issue found was indeed
identified as a bug. The proposed solution will be adopted
into Voreen’s next release.

No unexpected behavior could be detected for pixel size
convergence as shown in Fig. 7h, neither before nor after
changing the texture coordinate sampling. Both curves lie
near the expected behavior (0.93 and 0.94).

7 DISCUSSION

The convergence analysis presented in the previous section
helped us to identify unexpected behavior in two stable and
widely used frameworks. Unexpected behavior is not
indicative of an implementation bug but rather a warning
about potential problems. For instance, some valid design
decisions might affect the convergence results. Consider
the widely used ERT acceleration technique. Depending on
the thresholds involved, the convergence results might
deviate from the ideal, and the expected curve is recovered
once this feature is turned off. In this sense, the verification
tool can help the developer to identify portions of the code
that introduce numerical errors and quantify their effect
on the final image. The issue with the RCM module is

another example. The data set size convergence curve was
unexpectedly linear because of a small variation in the
number of steps. While this particular issue might not be
harmful, we were able to learn and reason about its
consequences after the verification process was done.
Furthermore, “minor” bugs and even design decisions
cannot be ignored as they can mask more complex mistakes.
Therefore, one will be more confident after the design
decisions that affect convergence are “turned off” and the
expected convergence is recovered. The FP module, on the
other hand, significantly deviates from the ideal number of
steps required to march inside the volume. Although we
could force VTK to march the expected number of steps, we
are still investigating possible solutions to and conse-
quences of this issue. To promote an unexpected behavior
to a bug, we need interaction with the developers of the
code to confirm the code mistake, which was the case with
Voreen. One should be aware of the discussed issues when
implementing a volume rendering algorithm as their
consequences are often not discussed in the literature [6].

7.1 Test Sensitivity

A verification technique ideally should be sensitive to any
deviation from the correct implementation. Unfortunately,
in practice, verification has limited scope, and we gain
confidence if it helps us understand the code behavior, test
sensitivity, and reveal bugs. There are several ways to
attain this goal: Yang et al. [46] applied model checking
to filesystem verification and reported unknown bugs;
Howden [13] evaluated the efficacy of dynamic and static
testing for the detection of known real bugs of a
mathematical library; Knupp and Salari [19], on the other
hand, used the order-of-accuracy verification procedure to
uncover known manufactured bugs in a proof-of-concept
code. In software engineering, the process of evaluating a
testing suite by injecting defects into a program is known
as mutation testing [34].

We already presented the results of applying our
verification framework to two libraries and with our
experiments we confirm the previously reported sensitivity
of convergence analysis [38]. We went further to explore
other scenarios in volume rendering that may affect the
convergence curve. Thus, in the spirit of mutation testing,
we created new versions of VTK which contain known
issues. Table 3 shows the results of some of the performed
tests. In our experiments, we observed that some issues did
not affect the observed behavior. The reason for this is that
an incomplete set of tests [19] was performed, as shown
with test #10 in Table 3. In that case a bug in the G and B
color lookups went unnoticed because our framework only
used the R channel. Once the verification framework
includes all three channels, the convergence behavior does
not match the expectations, hence revealing an aberrant
behavior that should be investigated. For bug #9, we
swapped two of the polynomial coefficients, but they were
equal for the scalar field used and thus the bug was not
detected. After changing the scalar field to sðx; y; zÞ ¼
1xyzþ 2xyþ 3xzþ � � � the convergence curve no longer
matches the expected one, and thus the bug is detected. Bug
#11 was introduced in a matrix-vector multiplication
routine which turned out to be dead code. However, for
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bug #12, the loop range was slightly incorrect and it was
not detected, even after additional changes to the verifica-
tion framework.

Aside from the defects injected into VTK, the following is
a list of details known to affect the convergence curve: ERT,
as explained before; opacity correction, when using the
analytical solution of the volume rendering integral; hard-
coded tolerance constants, the famous “epsilons”; off-by-one
indexing problems (sometimes VTK does not render pixels
in the first or last column of an image); improper volume
sampling (cell centered versus grid centered scalar fields);
high-frequency transfer functions; high-frequency scalar fields;
incorrect texture coordinate mapping, as reported with Voreen;
inconsistent number of steps through the volume, as reported
with FP and RCM; and so on. From all the observed
situations where the step/data set/pixel size convergence
was affected, many of these are deliberate design decisions,
minor mistakes during the verification procedure or minor
problems with the implementation itself which can be easily
fixed. Note that those issues were not all inside the ray
integration routine itself, but in a variety of locations,
spanning from preprocessing steps to OpenGL texture
sampling of data. Our verification procedure was sensitive
enough to detect all these situations.

7.2 Other Volume Rendering Techniques

While we focus on ray casting, our approach can be
extended to other techniques. Because the core of our
method is a discretization of the VRI, the only requirement
is to formulate the volume rendering algorithm as a
numerical approximation to the true integral. Splatting
[43], for instance, uses a reconstruction kernel before
accumulating the contributions of voxels into the final
image. This approach is substantially different from ray
casting in the way it approximates the VRI, and so the
asymptotic errors involved will have to account for errors in
both accumulation and filter reconstruction [28].

Algorithmic improvements for volume rendering may
require a more careful approach. For example, preintegra-
tion computes the results of the integral with high precision
over sample intervals and stores them in a lookup table.
This increases efficiency and quality, since fewer steps are
typically needed [7]. How the table approximates the
integral will affect the convergence rate: if there is an
analytical solution, then no error is associated with d

intervals; otherwise, a numerical approximation scheme
might be used which means the error will depend on
d0 ¼ d=m, where m is the number of sample points used in
that interval and the integration method used. For example,
if a linear approximation is used for the VRI during ray
integration (instead of a standard sum of rectangles, as
done above), the final approximation should have second
order accuracy.

7.3 Manufactured Solutions

In the interest of brevity, verification via pixel size and the
results presented in Table 3 were generated from an
analytical solution for the volume rendering integral.
Notice, still, that the use of an analytical solution for
verification is known as the Method of Manufactured
Solutions [1] and can be a more rigorous procedure than
convergence analysis alone [38]. In this way, we can verify
that the results generated by an implementation is conver-
ging at the expected rate to the correct solution. The
disadvantage lies in the difficulty of designing solutions
that are simultaneously simple (so that we can write the
theoretical convergence analysis down) and yet expressive
(so that the experiment analysis catches bugs).

8 LIMITATIONS

Both the discretization and verification procedures have
limitations. In the discretization of the VRI equation, we
assume that the solution Iðx; yÞ is smooth. Moreover,
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TABLE 3
This Table Shows the Sensitivity of Convergence Verification for Different Scenarios in a Volume Renderer

We applied our step size verification using a manufactured solution with a scalar field given by Sðx; y; zÞ ¼ xyzþ xyþ xzþ yzþ xþ yþ zþ 1 and
transfer function �ðsÞ varying linearly from zero to one for s 2 ½0;maxðSðx; y; zÞÞ�. On the right, we show what part of the volume rendering algorithm
was affected by the issue. On the bottom, the first row shows the rendered images for each of the issues. The second row shows the error difference
between the exact and rendered solutions. See Section 7.1 for an explanation of the undetected issues.



we assume that high-order terms are negligible. This
assumption implies that we can safely discard all high-
order terms when deriving the errors. In addition, the
verification is done in a controlled fashion to avoid other
error sources, as shown in Fig. 7a. Additional asymptotic
analysis is necessary for each new error source. Also, I
must be defined everywhere in the image plane. For
instance, this condition is violated if we change the camera
position and orientation. One needs to account for these
transformation in xð�Þ, an extra complication in the
generation of analytical solutions.

The verification process has the same limitations pre-
viously described but it also has practical limitations. For
instance, one may be able to observe that the convergence
rate may not be the expected one for low sampling rates.
However, this is not due to the random scalar field
generated (which is a trilinear function and thus can be
represented exactly with the trilinear interpolant) but high-
frequency details in � or C. This may lead to a violation of
the Nyquist rate. Because the process is iterative, the
expected convergence must be recovered once the resolu-
tion is fine enough, assuming that the implementation
under verification is correct. Another limitation is related to
the number of rays used per pixel. Many implementations
can shoot several rays per pixel, although this work assumes
that only one ray is used. Also, because the verification
procedure considers the code as a blackbox, it does not
provide clues on the reasons for the unexpected behavior.

The scope of the mistakes that can be found by the
verification procedure is not clearly defined. All we can say
is that it can find bugs that actively affects the convergence
of the method [19]. A common example of bugs that cannot
be found by this type of procedure are bugs that affect the
performance: the code is slower due to the mistake but the
convergence rate is still the same [35]. The results shown in
Table 3 are a first attempt to understand the scope of
problems that can be fixed by the verification procedure.

Currently, our verification procedure is focused on the
solution for the VRI without shading and other improve-
ments on the final image quality. Hence, if one wants to use
our verification procedure in an implementation that
supports, for instance, shading, the feature will need to be
deactivated. Lastly, for the case of data set refinement, we
assume that the underlying scalar field is defined by a
piecewise-trilinear function.

9 CONCLUSION AND FUTURE WORK

In this paper, we present verification techniques for volume
rendering based on the use of convergence analysis. Using
these techniques, we successfully found discrepancies in the
behavior of the volume rendering algorithms of two widely
used visualization packages. We note that we do not see our
techniques as a replacement for the currently used direct
visual inspection or expert evaluations, but instead as a way
to complement those approaches, and lead to a more
comprehensive way to evaluate visualization software. By
providing attractive quantitative alternatives, we hope to
help make evaluation of visualization software both easier
and more effective, and also contribute to a higher level of
user trust in visual data analysis. We believe the use of

verification techniques will be of increasing importance as

the field of visualization matures and visualization methods

are used in a wide range of commercial and societal areas of

highest importance.
There is ample opportunity for future work. Extending

our approach to deal with volume shading and level-of-

detail techniques would be interesting and relevant

research as these are widely used in practice. Another

important problem would be to explore the verification of

unstructured volume rendering techniques. Lastly, there is

room for improving the approximation error for the three

presented refinements. In addition, a new way for compar-

ing the convergence curves that allows one to gain insight

on the correctness of the implementation under verification

is another welcomed step.

ACKNOWLEDGMENTS

The authors thank Dr. Sergey Yakovlev, Dr. Blake Nelson,

Stefan Lindholm, and the anonymous reviewers for their

helpful comments. This work was in part supported by

ARO W911NF-08-1-0517 and W911NF-12-1-0375 (Program

Manager Dr. Mike Coyle), CNPq (processes 200498/2010-0,

569239/2008-7, and 491034/2008-3), US National Science

Foundation (NSF) grants (CNS-0751152, IIS-0844572, CNS-

1229185, CNS-1153503, IIS-0905385, IIS-1142013, and AGS-

0835821), the Department of Energy, the Excellence Center
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