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Abstract—In inverse electrocardiography (ECG), the problem
of finding activation times on the heart noninvasively from body
surface potentials is typically formulated as a nonlinear least
squares optimization problem. Current solutions rely on iterative
algorithms which are sensitive to the presence of local minima. As
a result, improved initialization approaches for this problem have
been of considerable interest. However, in experiments conducted
on a subject with Wolff-Parkinson-White syndrome, we have
observed that there may be a mismatch between favorable
solutions of the optimization problem and solutions with the
desired physiological characteristics. In this work, we use a
method based on a convex optimization framework to explore
the solution space and analyze whether the optimization criteria
target their intended objective.

I. INTRODUCTION

The inverse problem of electrocardiography (ECG) is to
estimate source parameters on or in the heart given a geometric
and conductivity model of the torso volume and observed
electric potentials on the body surface. Activation-based in-
verse ECG models the functional sources of the heart at
any location on the heart surface (synthesized by closing the
ventricular endocardium to its epicardium, for example) as
having two sequential states: off, then on [1]. One can model
the on/off waveform behavior of each source during the QRS
complex of a heart beat as a phase-shifted step function, a
parameterization that reduces the temporal behavior of each
source to a single unknown variable: the activation time [2].
Because this waveform parameterization is nonlinear in the
unknown activation time, the inverse problem is typically
formulated as a nonlinear least squares (NLLS) minimization
problem. It turns out that this problem is not convex and that
its objective function tends to have many suboptimal local
minima.

This has led to several attempts to incorporate the observed
data and prior physiological knowledge into initialization
methods, with the belief that local minima found near these
initializations are likely to be close to being optimal. An
important example is the Fastest Route Algorithm (FRA),
an initialization method that employs a simplified wavefront
propagation model based on finding the shortest path on a
graph. In this method, each edge that connects two nodes
of the graph that represents the heart surface is weighted
by an assumed propagation velocity [3], [4]. Each node on
the surface is considered as a candidate for the site of first

activation. An initial earliest node is selected by choosing the
resulting wavefront, as determined by the estimated propa-
gation pattern which would follow from a signal triggering
activation at that node, whose predicted body surface potentials
(BSPs) have the highest correlation with the data. Wavefronts
arising from later breakthroughs are then also considered and
combined node-wise by retaining the activation time of the
first wavefront to arrive [5], [6]. The emphasis of this method
is on choosing an initialization with physiologically-plausible
propagation behavior that is consistent with the measured
BSPs.

More recently, we introduced a method of initialization that
reformulates the NLLS problem as an optimization problem
with non-convex constraints, relaxes the constraints to be
convex, and then solves the new problem for a globally optimal
solution. This solution is typically infeasible for the NLLS
problem because it does not satisfy the original non-convex
constraints, but we suggested in [7] one possible method that
solved for the nearest neighbor to the convex relaxation solu-
tion in the original non-convex constraint set and subsequently
used this point as initialization for the NLLS problem. We
found that this method of initialization yielded solutions that
were close to ground truth in experiments conducted on data
simulated from known activation times and perturbed with
pseudorandom “measurement” noise.

However, when conducting experiments with clinical data
recorded from a subject with Wolff-Parkinson-White (WPW)
syndrome (published previously in [8]–[10]), we observed
what appeared to be a mismatch between the optimization cri-
teria and our intended objective. The measured BSPs exhibited
typical WPW behavior during the QRS complex, with extra
activations initiated from the Kent bundle (whose location
was determined invasively). It was previously reported that
FRA-initialized candidate solutions to the NLLS problem were
able to localize the initial activations [10]. These candidate
solutions had activation patterns exhibiting propagation con-
sistent with cardiac electrophysiology. Surprisingly, we were
able to find physiologically-inadequate candidate solutions
that outperformed the FRA-initialized solutions in terms of
objective value. Furthermore, we found that the duration of
the upstroke in this optimization setting can have a significant
effect on the objective value. In this paper, we use the convex
relaxation to explore the solution space and examine whether
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Fig. 1: Isochronal activation time maps of candidate solutions (left to right: FRA-initialized, “last”, “best”, and convex relaxation)
for the WPW fusion heart beat, rows showing alternate views. Plot of objective values (black=convex relaxation, blue=“last”,
magenta=“best”, red=smooth FRA-initialized (upstroke=10ms), green=FRA-initialized) for a range of regularization parameters.

the NLLS objective function targets the solutions we wish to
find.

We begin the rest of the paper by presenting the NLLS prob-
lem, its convex relaxation, and briefly explaining the nearest
neighbor initialization method in the Background section. In
the Methods section, we introduce an optimization procedure
that, together with the convex relaxation, we use to explore
the solution space of the NLLS problem. In the Experiments
section, we report the results we obtained by applying FRA
and our newer methods to two clinical WPW datasets. We
analyze the results and their implications in the Discussion
section below.

II. BACKGROUND

In this section, we review a framework for the activation-
based problem as an optimization problem and use it to show
how the original NLLS problem can be equivalently expressed
as a non-convex constrained optimization problem. We explain
how a convex relaxation can be obtained and one method of
converting its global solution into a feasible initialization for
the NLLS problem.

For the remainder of the paper we assume that the data is
regularly sampled in time and we only consider those samples
that correspond to the QRS complex of a single heartbeat.
At any given time, the linear relationship between a vector
of body surface potentials, y ∈ RM , and a vector of on/off
sources on the heart, x ∈ RN , is y = Ax, where A is the
forward matrix that results from solving the forward problem
on spatially discretized heart and body surface domains. Fur-
thermore, we assume that the waveforms for the sources are
unit step functions whose true amplitudes are known (a vector
v) and have been multiplicatively absorbed into the linear
forward model (A← A diag(v)) for notational simplicity.

In order to reformulate the NLLS problem as a constrained
optimization problem, we define an alternative set of con-
straints to describe the nonlinearly parameterized waveforms.
The original nonlinear parameterization is that every source,
xn, has the waveform

xn(t) = u(t− τn) =
{

0 , t− τn < 0
1 , t− τn ≥ 0

where τn is the activation time. Using this parameterization,
the original NLLS problem is

minimize
∑

t ‖y(t)−Ax(t)‖22 + λ‖Lx(t)‖22

where L is a Tikhonov regularization matrix, λ is the regu-
larization parameter, and the optimization variables are the
activation times. The Gauss-Newton algorithm and similar
nonlinear least squares solvers require that the objective func-
tion is differentiable, so a smoothed step function (with a spec-
ified upstroke duration) is typically used and the subsequent
approximate version of the original NLLS problem is solved
instead [2], [11].

If we let QRS correspond to the sample times t = 1, . . . , T
then we can define a source matrix X that contains all of
the temporal samples of each spatial source such that Xn,t =
xn(t). Key characteristics of this matrix are that its values are
either 0 or 1, are nondecreasing as the column index increases,
and that they always increase from 0 to 1 between column
indices 1 and T .

Let D be a first-order temporal differencing matrix (i.e. D
is T × T with 1 on the diagonal and −1 on the subdiagonal).
If we define the sets R and E as

R = {X ∈ R(N×T ) | 0 ≤ X ≤ 1, XDT ≥ 0,

XDT1(T×1) = 1(N×1)}
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E = {X ∈ R(N×T ) | tr(XTX) = 1T
(N×1)X1(T×1)}

(where 1(i×j) denotes a i×j matrix of ones) then X ∈ R∩E .
Thus we can express the original NLLS problem as a con-
strained optimization problem

minimize ‖Y −AX‖2F + λ‖LX‖2F
subject to X ∈ R ∩ E

where the optimization variable is the matrix X and ‖·‖F
denotes the Frobenius norm. We showed this problem was
non-convex in [7] and formulated a convex relaxation by
relaxing the domain from R ∩ E to R. Theoretically, if the
solution to the convex relaxation satisfies X ∈ E , it is the
global solution to the non-convex problem as well. In general,
the convex relaxation does not solve the original problem
because of infeasibility. In this case, the objective value f(X)
for the convex relaxation is simply a lower bound on the
objective value of the original constrained problem (which
follows from R ∩ E ⊂ R and convex f ). If the solution is
infeasible, one can find its nearest neighbor in the feasible set
and use that as initialization for the NLLS problem [7].

III. METHODS

In this section we describe an optimization procedure that
solves a sequence of alternate NLLS problems that approaches
the original NLLS problem. This is done by using a sequence
of parameter values that effectively transforms a subset of the
convex domain R into R∩ E in its limit.

We start by modeling the values of a source matrix X
as samples taken at regular intervals from an underlying
continuous-time function. Rather than limit the function for
each row to phase-shifted unit step functions, we use an arbi-
trary function hn that is non-decreasing with values between
0 and 1. Therefore we have

Xn,t = xn(t) = hn(β(t− τn))

where β is a time scaling parameter and τn is the phase
shift. Given these conditions, as β goes from 1 → ∞, X
approaches the set R∩E . Thus, as an alternate NLLS problem,
we minimize the least squares objective function from the
original NLLS with this new parameterization (for fixed β and
variable τn). We note that this alternate NLLS problem and
the original NLLS problem have the same convex relaxation.

We initialize the sequence of optimization problems with the
convex relaxation, Xc, such that β = β0 = 1, the initial phase
shifts τn are the activation times from the nearest neighbor
initialization method, and the waveforms hn are chosen such
that X = Xc. We use a Gauss-Newton solver to search for
a local minimizer, using this solution to initialize the next
problem in the sequence with β = β1 > β0. The procedure
continues in this manner until X is within some specified
precision of its nearest neighbor in R∩ E .

At the conclusion of every iteration, we store the minimiz-
ing activation times and source matrix. When the sequence
terminates, we find the nearest feasible neighbor to all of the
stored source matrices and keep the one with the best objective

value as the “best” feasible candidate solution. We also keep
the final source matrix of the sequence as the “last” candidate
solution (not necessarily feasible).

IV. EXPERIMENTS

For our experiments, we used measured body surface po-
tentials during the QRS complex of beats from a subject di-
agnosed with Wolff-Parkinson-White (WPW) syndrome. Sub-
jects with WPW have an additional conduction system called
the Kent bundle that leads to additional initial activations to
those caused by the regular conduction system. In this case,
the location of the subject’s Kent bundle was determined
invasively. We use two different beats for our experiments:
first a fusion beat (i.e. ventricular activation initiated by both
the Kent bundle and regular conduction system), and then a
Kent-bundle-only beat. The fusion beat is considered a typical
WPW beat, whereas the Kent-bundle-only beat was induced
by administration of adenosine to block the AV-node. Thus,
although exact activation patterns may not be known, much is
known about the beats that can be used to evaluate whether
candidate solutions to the inverse problem capture the correct
behavior.

For each beat, we computed candidate solutions by solving
the NLLS problem initialized by FRA, applying the opti-
mization procedure described in Methods for the “last” and
“best” candidate solutions, and solving the convex relaxation.
Optimization problems were solved for a fixed value of the
regularization parameter (λ = 1) in each case, but the objective
values of resulting candidate solutions were compared over a
wider range of regularization parameters.

V. DISCUSSION

In this paper, we described the results of a procedure
for activation-based inverse electrocardiography as applied to
data measured from a patient with WPW syndrome. In these
experiments, we explored the solution space of the NLLS
minimization problem of activation-based inverse ECG with
a number of optimization procedures: FRA-initialized NLLS,
a convex relaxation of the NLLS problem, and a sequence of
NLLS problems.

The first experiment was conducted on a fusion beat that
combined both the Kent bundle and the normal conduction
system. The results of the optimization procedures can be
seen as isochrone maps in Figure 1. The aforementioned sites
of initial activation can be seen in the candidate solution
found by FRA initialization. This candidate solution has its
earliest activation near the base of the heart where the Kent
bundle is known to be located, and a second activation on the
epicardium of the other ventricle. Furthermore, the spacing of
the isochronal contours for this activation pattern are consistent
with the behavior of propagating wavefronts. The second
experiment was conducted on an induced Kent-bundle-only
beat andits results can be seen in Figure 2. Again, in this case
the FRA-initialized candidate solution accurately localizes the
site of initial activation and captures the expected behavior of
propagating wavefronts.
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Fig. 2: Isochronal activation time maps of candidate solutions (left to right: FRA-initialized, “last”, “best”, and convex
relaxation) for the WPW Kent-bundle-only heart beat, with rows showing alternate views. Plot of objective values for a
range of regularization parameters (colors of lines same as in Fig. 1).

For the fusion beat experiment, the other three candidate
solutions that were obtained using the optimization proce-
dures described in the Background and Methods sections
loosely resemble the FRA-initialized activation pattern but
have isochronal contours that are inconsistent with propagating
wavefronts. In the case of the Kent-bundle-only beat, the
candidate solutions for the same three methods find erroneous
endocardial sites of initial activation in addition to those of the
Kent bundle. In terms of their qualitative physiological char-
acteristics and the degree to which they adhere to the known
behavior of the beats in these experiments, these three sets of
candidate solutions are clearly unfavorable in comparison to
the comparable FRA-initialized candidate solutions.

On the other hand, in Figures 1 & 2, we also plot the
objective values for these candidate solutions evaluated for
a range of regularization parameters. The green and red
curves in this plot correspond to the FRA-initialized candidate
solution and its smoothed approximation with a 10ms upstroke
duration, respectively. The other three curves correspond to
the unfavorable candidate solutions described in the previous
paragraph. As the plot shows, the unfavorable candidate so-
lutions have a lower objective value than FRA for all of the
regularization parameter values.

In theory, the objective function of an optimization prob-
lem serves as a way of ranking the suitability of candidate
solutions. The implication of the results we have presented
here is that there is a mismatch between the objective of
activation-based inverse ECG and the objective function of
the corresponding optimization problem. This suggests that
the optimization criteria for this problem need to be carefully
reviewed and modified, if necessary, to achieve the intended
goal. Another conclusion we draw from this work is that the
convex relaxation method, which compared favorably to FRA
on simulated data, does not compare favorably on this clinical
case. We are currently investigating the possible causes of this
discrepancy with an eye to improving both methods.
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