
   

 
Subject-Motion Correction in HARDI Acquisitions: Choices and
Consequences

 
Shireen Y. Elhabian, Yaniv Gur, Clement Vachet, Joseph Piven, Martin Andreas Styner, Ilana R Leppert, Bruce Pike and
Guido Gerig

Journal Name: Frontiers in Neurology

ISSN: 1664-2295

Article type: Original Research Article

First received on: 15 Jun 2014

Revised on: 04 Nov 2014

Frontiers website link: www.frontiersin.org

Brain Imaging Methods

file:///C:/inetpub/wwwroot/FrontiersWebSite/FrontiersTemp/ProvisionalPDF///www.frontiersin.org


Frontiers in Neurology Research Article

20144 November 2014

1

Subject-Motion Correction in HARDI
Acquisitions: Choices and Consequences
Shireen Elhabian 1,6,∗, Yaniv Gur 1, Clement Vachet 1, Joseph Piven 2 for IBIS,
Martin Styner 2,3, Ilana R Leppert 4, G. Bruce Pike 4,5, Guido Gerig 1

1Scientific Computing and Imaging Institute, Salt Lake City, UT, USA.
2 Dept. of Psychiatry and 3Dept. of Computer Science, University of North
Carolina, NC, USA.
4Dept. of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal,
Quebec, Canada.
5Dept. of Radiology, University of Calgary, Calgary, Canada.
6Faculty of Computers and Information, Cairo University, Cairo, Egypt.
Correspondence*:
Shireen Elhabian
Scientific Computing and Imaging Institute, 72 Central Campus Drive, Salt Lake
City, UT, 84112, USA., shireen@sci.utah.edu

ABSTRACT2

Diffusion-weighted imaging (DWI) is known to be prone to artifacts related to motion originating3
from subject movement, cardiac pulsation and breathing, but also to mechanical issues such4
as table vibrations. Given the necessity for rigorous quality control and motion correction,5
users are often left to use simple heuristics to select correction schemes, which involves6
simple qualitative viewing of the set of DWI data, or the selection of transformation parameter7
thresholds for detection of motion outliers. The scientific community offers strong theoretical and8
experimental work on noise reduction and orientation distribution function (ODF) reconstruction9
techniques for HARDI data, where postacquisition motion correction is widely performed,10
e.g., using the open-source DTIprep software (Oguz et al., 2014), FSL (the FMRIB Software11
Library) (Jenkinson et al., 2012) or TORTOISE (Pierpaoli et al., 2010). Nonetheless, effects12
and consequences of the selection of motion correction schemes on the final analysis, and13
the eventual risk of introducing confounding factors when comparing populations, are much14
less known and far beyond simple intuitive guessing. Hence, standard users lack clear15
guidelines and recommendations in practical settings. This paper reports a comprehensive16
evaluation framework to systematically assess the outcome of different motion correction17
choices commonly used by the scientific community on different DWI-derived measures. We18
make use of human brain HARDI data from a well-controlled motion experiment to simulate19
various degrees of motion corruption and noise contamination. Choices for correction include20
exclusion/scrubbing or registration of motion corrupted directions with different choices of21
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interpolation, as well as the option of interpolation of all directions. The comparative evaluation is22
based on a study of the impact of motion correction using four metrics that quantify (1) similarity23
of fiber orientation distribution functions (fODFs), (2) deviation of local fiber orientations, (3)24
global brain connectivity via Graph Diffusion Distance (GDD) and (4) the reproducibility of25
prominent and anatomically defined fiber tracts. Effects of various motion correction choices are26
systematically explored and illustrated, leading to a general conclusion of discouraging users27
from setting ad-hoc thresholds on the estimated motion parameters beyond which volumes are28
claimed to be corrupted.29

Keywords: HARDI, subject motion, motion correction, fiber orientations, orientation distribution functions, tractography comparison,30
impact quantification31

1 INTRODUCTION

Diffusion-weighted (DW)-MRI enables probing the fiber architecture of biological tissues - in vivo -32
by encoding the microscopic direction and speed of the diffusion of water molecules (Yendiki et al.,33
2014), while reflecting the amount of hindrance experienced by such molecules along the axis of the34
applied diffusion gradient due to barriers and obstacles imposed by micro-structures (Jones et al., 2013).35
Today, diffusion tensor imaging (DTI) is the method of choice for most neuroimaging studies, e.g., autism36
(Wolff et al., 2012), schizophrenia (Gilmore et al., 2010) and Huntington’s disease (Dumas et al., 2012).37
Nonetheless, DTI assumes a homogeneous axon population inside a single voxel (Le Bihan et al., 2006)38
and fails at modeling more realistic heterogeneous populations. High angular resolution diffusion imaging39
(HARDI) (Tuch et al., 2002), on the other hand, allows the diffusion acquisition to focus on the angular40
component of the DW signal using strong gradients and long diffusion times (Jones et al., 2013)), while41
revealing the intra-voxel orientational heterogeneity, such as crossing and merging fiber bundles. The42
promising potential of HARDI-based DW-MRI in describing fiber tracts within the human brain comes43
with a price tag of a wide variety of artifacts related to the gradient system hardware, pulse sequence,44
acquisition strategy and subject motion (Soares et al., 2013). Such artifacts renders the quality of diffusion45
imaging questionable and reduces the accuracy of findings when left uncorrected (Oguz et al., 2014).46

1.1 MOTION ARTIFACTS

In today’s clinical DW-MRI acquisitions, the presence of the long and strong gradient pulses have made47
diffusion MRI more sensitive to the detrimental effects of subject motion than other MRI techniques48
(Pierpaoli, 2010; Le Bihan et al., 2006; Gumus et al., 2013). During a scanning session, the degree of49
a patient’s cooperation may vary: elderly people who may become uncomfortable during large scanning50
sessions, patients in pain who become restless and agitated during a scan and unsedated pediatric subjects51
who will not cooperate long enough to be imaged without motion artifacts. Hence, it is safe to assume52
that there are always motion artifacts in any given DW-MRI acquisition due to the increased likelihood53
of involuntary subject motion; especially with HARDI acquisitions, which use a large number of gradient54
directions resulting in longer scan times. A proof-of-concept of this hypothesis is presented in 2.1.55

This is a provisional file, not the final typeset article 2
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Figure 1. A comprehensive experimental framework for subject motion simulation to systematically evaluate the outcome of different motion correction choices commonly used by the scientific
community on HARDI-based reconstructions and tractography.
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Motion artifacts range from physiological motion (e.g., cardiac pulsation and respiration), to physical56
(voluntary or involuntary) bulk movement by the patient (Benner et al., 2011). Physiological motion can57
be controlled by gating or in the sequence design (Nunes et al., 2005), but the patient bulk movement58
during the diffusion-encoding gradient pulses leads to severe signal perturbation (Rohde et al., 2004;59
Chang et al., 2012; Mohammadi et al., 2010), which results in a significant signal phase shift or60
signal loss (Tournier et al., 2011). The effects of bulk motion are two-fold: slow bulk motion can cause61
misalignment of diffusion data between subsequent gradient applications (i.e., DWI-volumes), resulting62
in an underestimation of diffusion anisotropy (Yendiki et al., 2014), whereas fast bulk motion during63
the application of a single diffusion gradient causes inhomogeneous signal dropout/attenuation artifacts64
in the diffusion-weighted images. This dropout effect arises due to signal dephasing within the voxels65
(Benner et al., 2011; Gumus et al., 2013), which is the very phenomenon that gives rise to the DW-66
MRI contrast, leading to an overestimation of diffusion anisotropy (Yendiki et al., 2014). Although67
misalignment can be tackled by registration-based correction methods (Sakaie and Lowe, 2010), the68
signal dropout due to intragradient motion will persist (Yendiki et al., 2014), where such images are69
identified and excluded from further processing and/or scheduled for reacquisition during the same scan70
(Shi et al., 2009; Porter and Heidemann, 2009; Benner et al., 2011; Aksoy et al., 2011; Gumus et al.,71
2013). Left uncorrected, motion-corrupted datasets introduce bias in the subsequent findings due to the72
induced variability of diffusion MRI measurements, while affecting the statistical properties of diffusion73
derived measures in heterogeneous brain regions.74

1.2 MOTION CORRECTION CHOICES

The identification and elimination of slow bulk motion artifacts in HARDI data, which is characterized by75
a high b-value and low signal-to-noise (SNR) ratio, still remains a challenge. In order to allow correction76
approaches to proceed with reasonable accuracy, motion occurring between diffusion gradients can be77
treated as if it occurred all at once (Oakes et al., 2005).78

Motion effects can be reduced by real-time motion control during the acquisition (a.k.a. prospective79
motion correction) (Herbst et al., 2012; Kober et al., 2012; Caruyer et al., 2013), where the acquisition80
and the source of motion are synchronized, so that the data is never corrupted. In addition, the development81
of accelerated acquisition methods (e.g., Feinberg and Setsompop (2013)) can reduce the duration of a82
scan to minimize the susceptibility of subject motion. A comfortable padding can also be used to minimize83
head motion while urging the participant to remain without movement (Soares et al., 2013). Nonetheless84
padding is not always effective in studies involving infants (e.g., autism diagnosis Alexander et al.85
(2007)), where remaining still in the scanner may be more challenging. Nevertheless, prospective methods86
for motion correction might affect the acquisition time due to the reacquisition of motion-corrupted87
gradients (Benner et al., 2011). Such methods might also require external optical tracking systems (Aksoy88
et al., 2011), free-induction decay navigators (Kober et al., 2012) or volumetric navigators (Alhamud89
et al., 2012), which are not always available on current scanners (Caruyer et al., 2013), coupled with90
the need of time-consuming calibration steps prior to their use (Benner et al., 2011). Furthermore, rapid91
modification of diffusion gradients may induce eddy current artifacts (Gumus et al., 2013), and there is92
no guarantee that the head will move back to the original position.93

This is a provisional file, not the final typeset article 4
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Motion compensation can also be performed as a postprocessing step after acquisition, i.e., retrospective,94
to guarantee voxel-wise correspondence between different DWIs referring to the same anatomical95
structure. A common practice is to heuristically select transformation parameter thresholds for detection96
of motion outliers, where registration and interpolation are applied to gradient directions that are claimed97
to be corrupted. Software packages for image-based registration of DWIs are becoming readily available,98
e.g., FSL-MCFLIRT (Jenkinson et al., 2002, 2012), the Advanced Normalization Tools (ANTS) (Avants99
et al., 2008), TORTOISE (Pierpaoli et al., 2010) and BRAINSFit (Johnson et al., 2007) employed in100
DTIPrep (Oguz et al., 2014).101

A typical retrospective motion correction algorithm involves two stages (Sakaie and Lowe, 2010): first,102
finding the global transformation parameters that would transform all DWIs to the same coordinate frame,103
and then, applying the estimated transformations to the diffusion data. Solving for the transformation104
parameters usually involves rigidly registering the DWIs to a reference volume representing the same105
anatomical structure, but without being contaminated by motion artifacts. Examples of such a reference106
include a T2-weighted image (Rohde et al., 2004), or a nondiffusion-weighted image (a.k.a baseline107
with b-value = 0) due to its high SNR and lesser vulnerability to eddy current distortion (Netsch and108
van Muiswinkel, 2004), where the difference in intensity profiles is compensated for using normalized109
mutual information similarity measure. Another alternative is a model-based reference volume computed110
for each diffusion-weighted image based on tensor fitting (Bai and Alexander, 2008; Ben-Amitay111
et al., 2012). Model-based motion correction implicitly assumes that the original position defined by112
the baseline volume is the reference position to be aligned to (Sakaie and Lowe, 2010). Recently, it has113
been shown that model-based motion correction becomes a more powerful choice for correcting higher114
b-value diffusion imaging, which does not contain enough anatomical features to be registered accurately115
(Ben-Amitay et al., 2012).116

Applying the estimated transformation parameters is performed using interpolation, which computes117
intensities at transformed voxel coordinates as a weighted sum of the scaled intensities at surrounding118
voxels. The diffusion gradient vectors are also reoriented to incorporate the rotational component of119
subject motion (Leemans and Jones, 2009). Interpolation is usually carried out by an exact fit of120
a continuously defined model to discrete data samples. Nonetheless, this exact fit is less appropriate121
when data is noise-corrupted, since the model is forced to fit the noise too. Although using regularized122
interpolation can tackle noisy data, it is only preferable to applying denoising followed by standard123
interpolation under the assumption that the signal is a stationary Gaussian process (Ramani et al., 2010);124
a situation that is not applicable for diffusion-weighted images, which are contaminated by Rician noise.125
Based on the central limit theorem, the (weighted) average of a large set of i.i.d. samples tends to follow a126
normal distribution. Thus, interpolation between Rician distributed samples might change the distribution127
towards a Gaussian PDF (Veraart et al., 2013). We can, therefore, argue that the denoising process128
decreases the effect of standard interpolation on altering the underlying data distribution.129

Another retrospective approach is to cast motion correction as an outlier rejection process, ranging130
from simply excluding one or more gradients bearing strong motion artifacts beyond acceptable levels of131
motion (Benner et al., 2011; Liu et al., 2010; Soares et al., 2013), to statistical methods for detecting132
and discarding voxel-wise diffusion measurements as outliers (Chang et al., 2005, 2012; Pannek et al.,133
2012). Usually discarding entire scans (a.k.a motion scrubbing in functional MRI) either can be performed134
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by visual inspection or based on predefined thresholds on estimated motion parameters (Yendiki et al.,135
2014). Nevertheless, removing gradients limits the ability to reconstruct crossing fibers, especially at136
small separation angles, due to the decreased number of distinct gradient directions needed for diffusion137
reconstruction. Moreover, scrubbing would introduce intersubject SNR and bias differences that would138
in turn affect subsequent statistical analysis (Oguz et al., 2014). On the other hand, local exclusion of139
corrupted voxels for robust diffusion reconstruction in the presence of outliers is based on the deviation140
of the observed measurements (usually after motion correction) from the assumed diffusion model. Using141
these approaches for motion correction itself would mingle the effect of being an outlier to an assumed142
model with that of being corrupted due to motion. Further, local exclusion would lead to a different143
number of DWIs locally available for each voxel, complicating subsequent analysis to avoid bias due to144
different SNR values for different brain regions (Oguz et al., 2014).145

A common concern with retrospective methods in clinical studies, whether registration-based and/or146
outlier-based, is that data with different levels of motion will be subject to different schemes of motion147
correction. For instance, patients may show more motion than controls, or sedated subjects may be148
different from nonsedated. Applying different motion correction schemes could introduce a confounding149
factor for statistical analysis of populations that show different motion patterns. Nonetheless, eyeballing150
the acquired/preprocessed DWIs prior to proceeding to further analysis is highly recommended.151

1.3 OBJECTIVE AND CONTRIBUTIONS

The lack of a comprehensive/rigorous quality control (QC) for HARDI datasets can result in considerable152
error and bias in subsequent analyses, which may affect research studies using these datasets. Most153
current software packages such as DTIPrep (Oguz et al., 2014), TORTOISE (Pierpaoli et al., 2010)154
and FSL (Jenkinson et al., 2012), which offer various tools for processing and analysis of diffusion-155
weighted images, are mostly limited to DTI datasets, which are characterized by low b-values (i.e., higher156
SNR) and fewer gradients (i.e., shorter acquisition times). Nonetheless, special care is needed for HARDI157
datasets due to their low SNR and longer acquisition times, which increase the likelihood of subject158
motion. As a part of a thorough pipeline for HARDI-QC, this paper addresses the motion correction159
aspect for slow bulk motion where users often do not fully understand the consequences of different types160
of correction schemes on the final analysis, and whether those choices may introduce confounding factors161
when comparing populations. Therefore, the presented work is directed towards clear guidelines and162
recommendations to the standard users in practical settings.163

The optimal preprocessing pipeline for HARDI sequences remains an open question and a challenge for164
real data. Questions that might arise include: Is there a threshold that would identify a motion-corrupted165
volume? How sensitive are HARDI reconstructions to such a predefined threshold? What is the impact166
of various motion correction schemes on subsequent HARDI-based reconstructions and tractography?167
So far, these questions have received, surprisingly, little attention in various DW-MRI studies of168
clinical populations. This study, then, focuses on the effect of preprocessing schemes, in particular169
motion correction, commonly deployed as a postacquisition step, on succeeding steps. We propose a170
comprehensive experimental framework (see Figure 1) that enables making use of human brain HARDI171
data from a well-controlled motion experiment to simulate various degrees of motion/noise corruption.172
The comprehensiveness is related to the systematic evaluation of the outcome of different motion173
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correction choices commonly used by the scientific community on different DWI-derived measures. To174
our knowledge, this evaluation does not exist in the literature and has not been discussed in detail.175

Choices for correction include exclusion or registration of motion corrupted directions, with different176
choices of interpolation, as well as the option of registration/interpolation of all directions versus corrupted177
directions only. The effect of denoising as a preprocessing step applied prior to motion correction is178
also investigated. Further, the choice of the reference volume used in the registration framework is179
also discussed. The comparative evaluation covers four metrics: (1) the similarity of fiber orientation180
distribution functions (fODFs) via Jensen-Shannon divergence (JSD), (2) the deviation of multiple fiber181
orientations at each voxel, (3) the global brain connectivity via Graph Diffusion Distance (GDD) and182
(4) the reproducibility of seven anatomically-defined fiber pathways via Cohen’s Kappa statistics. On the183
basis of our findings, we recommend assuming that motion is inevitable, even subtle, in the acquired scans.184
Motion correction, therefore, needs to be applied to all gradient directions without relying heuristically185
on a threshold that determines a gradient direction to be claimed as motion corrupted.186

2 MATERIALS AND METHODS

2.1 MOTION IS INEVITABLE: PROOF-OF-CONCEPT

To back up our assumption that motion is omnipresent, we analyzed data from three healthy human187
phantoms (males 30-40 years old) visiting each of the four clinical sites (Chapel Hill, Philadelphia, St.188
Louis and Seattle) as a part of the ACE-IBIS study (Autism Centers for Excellence, Infant Brain Imaging189
study (Wolff et al., 2012)), using a total of six MRI systems (two sites using both research and hospital190
scanners). All study procedures were approved by the institutional review board at each clinical site,191
and informed, written consent was obtained for all participants. In addition, the traveling phantoms sign192
consent forms at each of the sites, as per their own institutional IRBs. The sites include the University of193
Washington, Seattle, the Washington University in St. Louis, the Childrens hospital of Philadelphia, and194
the University of North Carolina at Chapel Hill. Each subject was scanned twice on a 3T Siemens Tim Trio195
scanner1 with a strict calibration of image acquisition parameters. Test-retest reliability at each site was196
established with two scans within 24 hours. The scans were acquired within one week to guarantee that197
there were no major brain changes over time. The scanning environment was well controlled. Comfortable198
padding was used to minimize head motion and patients were urged to remain without movement. Eddy199
current was compensated for using a Twice Refocused Spin Echo (TRSE) protocol2 , with FoV = 209mm,200

1 The protocol used a GRAPPA parallel imaging factor of 2 and a partial Fourier factor of 3/4, which does indeed result in non-Rician noise distributions.
However, the effect of the noise distribution is expected to be relatively small at a b values of 2000 s/mm2 (e.g., Jones and Basser (2004)) and we do not
expect the difference in noise profile to affect our conclusions in terms of the motion correction schemes.
2 In our analysis, we opt to using a prospective approach (a Twice-Refocused Spin Echo (TRSE) sequence) for eddy current compensation in order not to
introduce any alignment-based preprocessing before running motion correction that could already have a confounding effect (otherwise we would work on
resampled and interpolated images before motion detection). Further, we have eye-balled the FA map of the acquired sequences (prior to motion correction)
where the prominent edge artifact (regions of anomalous diffusion contrast resulted from misregistration of dissimilar materials) that should be visible in case
of Eddy current distortion was almost entirely absent in the TRSE images. To further support our decision, we used FSL-MCFLIRT (Jenkinson et al., 2002)
to provide the affine transformation matrix (i.e, 12 degrees of freedom) to detect the scaling and skewing parameters which might occur due to induced eddy
current where the affine transformation matrix can be written as:

M = R

 sx 0 0
0 sy 0
0 0 sz

 1 a b
0 1 c
0 0 1

+

 tx
ty
tz
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76 transversal slices, thickness = 2mm, (2mm)3 voxel resolution, matrix size = 106×106, TR = 11100ms,201
TE = 103ms, one baseline image with zero b-value and 64 DWI with b-value at 2000 s/mm2, with a total202
scan time of 12.5 minutes.203

Initially, we ran automated Quality Control on the DWIs via DTIPrep (Oguz et al., 2014), which204
includes among other steps interlaced correlation analysis for detection and removal of fast bulk motion205
within a single DWI volume, where no quantitative within-gradient motion was detected. Inspired by206
Sakaie and Lowe (2010), FSL-MCFLIRT (Jenkinson et al., 2002) was then used to provide the rigid207
transformation matrix (i.e., 6 degrees of freedom) for each volume having the baseline image as the208
reference for motion correction and normalized mutual information as the cost function. It is worth noting209
that MCFLIRT employs a global-local hybrid optimization method for robust affine registration that is210
specifically tailored to brain images. Within a multiresolution framework, four scales were used (8, 4, 2211
and 1 mm, i.e., supervoxel vs. subvoxel). At each scale, volumes were resampled after initial filtering212
to reduce the effect of noise. Further, we tested motion correction based on denoised HARDI sequences213
using the Joint Rician LMMSE filter (Tristán-Vega and Aja-Fernández, 2010) implemented as part of214
3D Slicer (www.slicer.org), and found that the quantified motion with and without noise reduction was215
very similar.216

To quantify motion, we used the magnitude of the translation vector (in mm) as well as the axis-217
angle rotation representation (in degrees) (Yendiki et al., 2014). The boxplots in Figure 2 show the218
rotational and translational components of the motion being detected from a total of 24 DWI datasets,219
showing an average of 0.39o rotation and 0.61mm translation. The graphs in Figure 2 illustrate the220
arbitrariness of a common calculation of percentage of motion correction to determine the number of221
affected scans, here shown as a function of thresholding on the estimated motion parameters. While this222
experiment attributes the estimated rotation and translation parameters to actual subject motion, a part of223
the experimentally obtained parameters may be due to some imaging/image-processing uncertainty and224
also to image differences due to anatomical properties of the object (e.g. tissue orientation) that make225
the images ”look” different even if they were perfectly aligned. To backup our analysis, we conducted226
another experiment where we contaminated a single DWI dataset with two independent realizations of227
rician noise such that the two generated DWI images were perfectly aligned because they were the exact228
same image. Then, we ran motion correction where all DWI images were aligned to the same baseline,229
we obtain similar motion parameters although we are registering two independent acquisitions of the230
same subject. We therefore conclude that the transformation parameter estimates from FSL-MCFLIRT231
(Jenkinson et al., 2002) are resilient to noise and may primarily caused by subject motion during a DWI232
scan, or eventually also by relative motion between subject and scans if considering atifacts due to pulse233
sequence and scanner technology.234

2.2 LIVING PHANTOM: ACQUISITION AND GOLD STANDARD GENERATION

Unlike conventional MRI, where realistic phantoms exist (Collins et al., 1998), there is no widely235
acceptable realistic DWI phantom for the assessment of different processing tasks (Tristán-Vega and236

where R is the rotation matrix, sx, sy , sz ∈ R are the scaling parameters, a, b, c ∈ R are the skewing parameters and tx, ty , tz ∈ R are the translation
parameters. Table 4 reports the average and standard deviation (along all gradient directions per dataset) of the estimated transformation parameters where all
datasets tend to have a unit scale with minimal skewing values. These values confirm the decision of bypassing eddy current compensation in our analysis.
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Figure 2. Average and standard deviation of the percentage of motion-corrupted gradient directions as a function of thresholding on the estimated rotation
angle in degrees (left) and the estimated translation magnitude in mm (right) for three human phantoms scanned twice at four clinical sites. The boxplots show
the overall statistics of estimated motion parameters.

Aja-Fernández, 2009, 2010). Existing phantoms simulate crossing sections in two and three dimensions,237
but they are not representative of white matter complex architecture with multiple fiber crossing, bending238
and branching. The lack of realistic phantoms motivates us to base our analysis on living (human)239
phantoms being scanned under well-controlled environments and propose a HARDI-based QC to yield240
motion- and noise-free datasets. Acquired DWIs were preprocessed (refer to Figure 1(a)) to obtain nearly241
noise-free and motion-free datasets according to the following pipeline, and therefore to be used as a gold242
standard for reconstruction and tractography.243

2.2.1 HARDI-based Quality Control (QC): The QC process starts with identifying individual volumes244
having fast bulk (intra/within-gradient) motion using the signal dropout score proposed in Benner et al.245
(2011). The score was computed for each slice in each volume, where slices with a score greater than 1246
were considered to have suspect signal dropout. Based on a zero-tolerance strategy, any volume having at247
least one slice with signal dropout was excluded from further analysis. It is worth noting that no within-248
gradient motion was detected in our phantom acquisitions. Each gradient was then independently denoised249
to reduce noise using the Rician LMMSE estimator with an 11×11 neighborhood (Aja-Fernández et al.,250
2008) implemented in 3D Slicer (www.slicer.org) where the noise parameter is automatically estimated.251
Using DTIPrep (Oguz et al., 2014), interslice brightness artifacts were detected via normalized correlation252
analysis between successive slices within a single DWI volume, where corrupted gradients were excluded253
before being streamed into the next steps. Further, interlaced correlation analysis (Oguz et al., 2014)254
was used for detection and removal of venetian blind artifacts (seen when motion occurs between the255
interleaved parts of an individual gradient volume) and fast bulk motion within a single DWI volume,256
where no quantitative within-gradient motion was detected.257

For each DW-MRI scan, iterative FSL-MCFLIRT (Sakaie and Lowe, 2010) was used to correct for258
intergradient subtle motion (< 1o rotation and < 0.8mm translation), with the baseline volume as the259
reference for rigid alignment (i.e., six degrees of freedom with normalized mutual information as the cost260
function). The corresponding diffusion-weighting gradient vectors were reoriented accordingly (Leemans261
and Jones, 2009). To palliate the effect of spatial intensity inhomogeneities, N4 correction (Tustison262
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et al., 2010) was performed where the bias field was computed from the baseline volume and subsequently263
applied to all diffusion-weighted images. For further noise reduction, the Joint LMMSE (Tristán-Vega264
and Aja-Fernández, 2010) (www.slicer.org) was used to exploit the joint information from neighboring265
gradients from motion-corrected sequences. To avoid over-blurring, we used a 2 × 2 × 2 neighborhood266
with six neighboring gradients.267

2.2.2 Atlas-Guided Parcellation: For automated tractography selection and the quantification of whole268
brain connectivity, we defined a subject-specific unbiased atlas via DTI-derived data from HARDI269
sequences belonging to the same subject/phantom. This results in a tensor atlas, where we can define270
a detailed parcellation of neuroanatomical structures, and map it back to each raw scan. This reduces271
registration variability between each phantom data when defining the parcellation in subject spaces. The272
full process entails atlas creation and parcellation definition, as detailed in the following.273

(a) Co-registration and Atlas Building:274

To define a common reference space, our framework is centered around the creation of a DTI atlas,275
generated as an unbiased average atlas from the study dataset via a deformable atlas building strategy.276
Unbiased atlas building is used to provide one-to-one mapping between the image data and the template277
atlas, wherein the atlas is built from the population of data as the centered image with the smallest278
deformation distances. The overall registration framework, similar to what has been presented in Verde279
et al. (2013), proceeds in four steps: (1) image preprocessing via skull-stripping and tensor estimation, (2)280
affine alignment, (3) unbiased diffeomorphic atlas computation via GreedyAtlas module in AtlasWerks3281
software (SCIInstitute, 2014) and (4) a refinement step via symmetric diffeomorphic registration using282
the Advanced Normalization Tools - ANTS (Avants et al., 2008).283

Image preprocessing: A brain masking is first performed on the baseline images using FSL-BET2284
(Brain Extraction Tool) (Smith, 2002) to remove all nonbrain parts of the image. BET2 uses a surface285
model approach to robustly and accurately carry out the segmentation. We then model tensors using the286
brain masks from the initial DWI datasets by using weighted least squares estimation, and then extract287
related scalar maps such as fractional anisotropy (FA) images.288

Affine alignment: The second step applies affine registration of baseline images to a previously defined289
baseline template. A multithreaded, coarse-to-fine registration scheme using mattes mutual information290
metric is employed in that regard (Johnson et al., 2007). The transformations are applied to curvature FA291
maps. The use of curvature FA as feature to derive registration has initially been presented by Goodlett292
et al. (2009). It is defined as the maximum eigenvalue of the Hessian of the FA image, therefore measuring293
image intensity curvature (second derivative) in the direction of largest curvature which acts like a 3D294
ridge detector. It is computed by convolution of the FA image with a set of Gaussian second derivatives295
with a fixed aperture, proportional to the size of the white matter structures. The curvature feature image296
proved to be an efficient detector of the 3D manifold skeleton of major fiber bundles which occur as tubular297
or sheet-like thin structures (similarly to the TBSS software), with the strongest response at their center.298

3 http://www.sci.utah.edu/software/atlaswerks.html
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It is thus commonly used by our group when building population atlases to optimize correspondence of299
fiber tract geometries, and integrated into our freely distributed software package (Verde et al., 2013).300
The curvature FA maps are thus mapped to this template space, and then the intensity is rescaled via301
histogram matching.302

Atlas building: We then use an unbiased deformable atlas-building procedure (Joshi et al., 2004)303
that applies large deformation diffeomorphic metric mapping transformations to these intensity rescaled304
mapped curvature FA images. The procedure relates individual datasets to the subject-specific atlas305
template space by means of nonlinear, invertible transformation. Tensor maps are transformed into the306
atlas space with tensor reorientation by the finite strain approach (Alexander et al., 2001), taking into307
account both affine transformation and nonlinear deformation. The transformed tensor images are finally308
averaged using the Riemannian framework proposed in Fletcher and Joshi (2007), resulting in a three309
dimensional average tensor atlas.310

Atlas refinement: An additional step is performed by direct symmetric diffeomorphic registration of311
initial FA images to the previously created DTI-FA atlas via the Advanced Normalization Tools - ANTS312
(Avants et al., 2008). In our experience, this dual stage procedure has been shown to produce a sharper313
atlas with improved registration accuracy, most likely attributable to the use of local normalized cross-314
correlation as the image similarity metric. Final affine transformation and deformation fields are then315
available from subject space to atlas space.316

(b) White Matter Parcellation:317

We used the publicly available JHU-DTI-SS (a.k.a. ”Eve”) atlas described in Oishi et al. (2009).318
Defined as a single subject template, it includes both structural (T1w,T2w) and DTI images with white319
matter map parcellations, defining 176 hand-segmented core and peripheral regions of interest (ROIs).320
A multithreaded, coarse-to-fine diffeomorphic registration scheme using the cross-correlation metric via321
ANTS is employed on FA images between the Eve atlas and the subject-specific atlas. The computed322
deformation field is then applied to the Eve white matter label map. We can then map the parcellation,323
now defined in our subject atlas space, back to raw data in the initial image space, via the use of324
previously computed displacement fields. On a specific note, we concatenated the transformations from325
Eve atlas space to our initial images in order to directly map the parcellation and avoid the use of multiple326
interpolations. The white matter parcellation map is then defined both in the subject-specifc atlas space327
and in each individual subject space.328

2.3 SUBJECT MOTION: BETWEEN SIMULATION AND CORRECTION

2.3.1 Human Motion Simulation As a pilot study, one human phantom was asked to be rescanned329
with his head tilted to simulate noticeable motion. The two datasets, after being QCed (see 2.2.1), were330
then used to construct motion-corrupted sequences (see Figure 1(b)). Based on the alignment of the331
baseline images of the two scans (original and tilted) using FSL-MCFLIRT, about 12o of rotation and332
7 mm of translation were detected, whereas less than 1o of rotation and 0.8mm of translation were333
found when aligning individual DWIs to their corresponding baseline image. It is worth noting that the334
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quantified motion between the acquired datasets (i.e., untilted versus tilted brains) can be classified as335
severe subject motion (Ben-Amitay et al., 2012). We then arbitrarily considered the first out of the two336
scans as the ”motion-free” sequence and used it as a reference for performance evaluation of different337
motion correction schemes. A random percentage of DW images (10, 30, 50, 70 and 90%, each with five338
distinct random sets of gradient directions) drawn from the second scan (tilted brain) were mixed with the339
first scan to construct 25 motion-corrupted datasets. Noisy sequences were generated by simulating Rician340
noise based on seven levels of SNRs from 4 to 20 (Burdette et al., 2001), yielding 175 (5 experiments ×341
5 corruption percentages × 7 SNR levels) sequences.342

2.3.2 Motion Correction Schemes Correction for subject motion involves four main decision variables343
(see Figure 1(c)), where each distinct combination of choices defines a motion correction scheme. The344
first variable is which reference volume is to be used in the alignment process. Two options are available345
(Sakaie and Lowe, 2010): baseline-based (e.g., Rohde et al. (2004)) and model-based (e.g., Bai and346
Alexander (2008); Ben-Amitay et al. (2012)). In this context, we use the FMAM (Fit Model to All347
Measurements) method (Bai and Alexander, 2008) where target images for registration were generated348
by first fitting the diffusion tensor to the DWIs, followed by diffusion simulation to provide target images349
of similar contrast to the DWIs. Notice that with > 50% motion corrupted, model-based reconstruction350
infers the spatial position/orientation from the gradients corresponding to the tilted brain due to its351
majority (i.e., gradients of the untilted brain are considered the motion-corrupted directions). Therefore,352
with model-based correction for sequences having more than 50% corrupted directions, the tilted brain353
was used as a reference for performance evaluation.354

The second variable denotes whether the correction is performed based on raw or denoised DWIs,355
where the denoising process should not take into account joint information between diffusion gradients356
due to motion corruption. In our experiments, we denoised motion-corrupted sequences using the Rician357
LMMSE estimator (Aja-Fernández et al., 2008), where each gradient was independently denoised.358

The third variable entails the mode of correction, i.e., registration-based versus outlier-based. The first359
choice explores two options: (1) only aligning and interpolating the corrupted gradient directions to mimic360
the situation where a predefined motion parameter threshold is used to claim whether a DWI volume is361
motion-corrupted, (2) assuming there is always motion, forcing the alignment and interpolation of all DWI362
volumes. Note that both options involve the reorientation of the diffusion gradient vectors corresponding363
to the corrupted volumes (Leemans and Jones, 2009) to incorporate the rotational component of364
subject motion. In the second choice, i.e., outlier-based, we mimic the motion scrubbing approach,365
where we exclude the affected gradient directions from subsequent computations (i.e., diffusion profile366
reconstruction and tractography). Eventually, the interpolation step in the registration-based choices367
introduces the fourth variable where we study the impact of using trilinear and sinc interpolants.368

It is important to stress that, in our motion simulation paradigm (i.e., randomly mixing DW volumes369
from a tilted-brain dataset), the identity of the motion-corrupted directions is known apriori without370
any use of parameters. This prior information is used via the outlier-based correction, as well as the371
interpolate corrupted directions choices. Nonetheless, in practice, this apriori information corresponds to372
heuristically set thresholds on the estimated motion parameters beyond which volumes are claimed to be373
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corrupted/outliers. For example, a rotation threshold of 0.5o and a translation threshold of about one voxel374
spacing are set by default in DTIprep (Oguz et al., 2014).375

2.4 RECONSTRUCTION AND TRACTOGRAPHY

The reconstruction and whole brain tractography were computed for the motion corrected sequences376
as well as the motion-free sequences (gold standard generated in Section 2.2, followed by automatic377
tractography selection for seven major fiber bundles (see Figure 1(d)).378

We employed the constrained spherical deconvolution (CSD) technique (Tournier et al., 2007) to379
reconstruct fiber orientation distributions functions (fODFs) from the DWI data using the diffusion380
imaging Python (DiPy) library (Garyfallidis et al., 2014). The fiber response function was estimated381
from the corpus callosum region, defined by the white matter parcellation (see 2.2.2), where it is known382
to have single fibers. In particular, we used an ROI at the center of the corpus callosum and of a radius383
that would include all its voxels. The response function was estimated in that region from the voxels with384
FA higher than 0.7.385

Part of our analysis is based on comparing brain connectivity graphs, which are represented as weighted386
graphs and computed from fiber tractography results. Whole brain tractography was performed using387
the EuDX deterministic tracking technique (Garyfallidis, 2012), which is implemented in the DiPy388
library (Garyfallidis et al., 2014), using random seeding inside the brain region and a turning-angle389
threshold of 30o between two connected voxels (as suggested by Parizel et al. (2007) to provide sufficient390
fiber density while minimizing the number of spurious tracts).391

To extract brain connectivity graphs from the fiber tractography results, we used the 176 core and392
peripheral ROIs defined in the white matter parcellation (see 2.2.2). Let Nij denote the total number393

of streamlines connecting the i−th and j−th ROIs, each with length lijk ∀k ∈ [1, Nij ], and the edge394

weights wij computed as follows (Hammond et al., 2013b): wij = 1
Nij

∑Nij

k=1
1

lijk
. The normalization by395

the tracts length gives a higher connection strength to short tracts to compensate for the signal attenuation396
as a function of tract length. It is worth noting that the concept of using the connection strength or other397
measures to weight the graph edges was previously discussed in several papers (e.g., Kaiser (2011);398
Rubinov and Sporns (2010)).399

For tract-based analysis, an automatic tractography selection method was performed to select a subset400
of detected tracts from the whole brain tractography result corresponding to a specific white matter401
structure. Starting from the Eve-atlas-based white matter parcellation map defined in the subject space402
(see 2.2.2), the pass-through and not-pass-through volumes of seven fundamental fiber bundles (left and403
right hemispheres) were defined. To remove fibers that do not belong to the pathway of interest, we404
used the geometrical constraints specific for different fiber bundles as defined in de Luis-Garcı́a et al.405
(2013), where the anatomical characteristics of these fiber bundles are defined in Jellison et al. (2004).406
We report the matching results from seven major fiber bundles: corpus callosum (CC), cingulum of the407
cingulate gyrus (CG), corticospinal tract (CST), fornix (FX), inferior fronto-occipital tract (IFO), inferior408
longitudinal fasciculus (ILF) and uncinate fasciculus (UNC).409
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2.5 MOTION CORRECTION CONSEQUENCES: EVALUATION METRICS

The influence of various motion correction choices on subsequent reconstruction and tractography is410
evaluated according to voxel-based, global connectivity-based as well as tract-based metrics (see Figure411
1(e)), detailed as follows.412

2.5.1 Voxel-based Metrics In order to measure similarities between the original motion-free fODFs413
and the fODFs corresponding to the motion corrected images, we use the Jensen-Shannon divergence414
(JSD), which has been used to quantify differences between ODFs in various studies, e.g., Chiang et al.415
(2008); Cohen-Adad et al. (2011). Given two probability distributions P andQ, the JSD metric is defined416
as follows:417

JSD(P‖Q) =
1

2
[DKL(P‖M) +DKL(Q‖M)] , (1)

whereM = (P +Q)/2 andDKL is the Kullback-Leibler divergence. In our case, P andQ are represented418
as discrete distributions; therefore, the KL divergence takes the following form: DKL(P‖Q) =419 ∑

i Pi log
Pi
Qi

, where i is the discrete sample index. The JSD is for PDFs, but we compute it for normalized420
fODFs. We believe it is a good measure since it reveals subtle changes in PDFs so we can also keep track421
of changes in fiber volumes as well as orientations.422

In addition to comparing fODFs, we are interested in quantifying local deviations in fiber orientations423
due to motion correction. Since brain connectivity maps are inferred by tracking local fiber orientations424
extracted from fODFs, distortions in those directions may lead to unreliable brain connectivity maps.425
Therefore, it is important to study the impact of motion correction on fiber orientations by directly426
comparing the local fiber orientations before and after correction. To that end, we use the mean angular427
deviation measure θ defined as follows:428

θki,j =
180

π

∣∣∣cos−1(vki .v
k
j )
∣∣∣ , θ =

1

N

N∑
k=1

θki,j , (2)

where N is the number of fibers compared, and vki and vkj correspond to the orientations of fiber k, with429
and without motion correction. Before averaging the deviations, we match the fibers, such that fiber j has430
the closest direction to fiber i. If the number of fibers is different, we compare the fibers that are present431
in both voxels. For example, if we have three fibers after motion correction, whereas before correction432
there were only two, we compare the two closest fiber directions. The fiber orientations were computed433
using the DiPy peak extraction tool (with 0.4 relative peak threshold and 20o minimum separation angle).434
We allowed up to five orientations in each voxel (N = 5). Since general image transformation does not435
necessarily preserve the original ordering of the fiber orientations, we first match the fibers based on the436
angular distance between each pair before computing the mean deviation.437

2.5.2 Global Connectivity-based Metric Once the brain connectivity graphs were generated for the438
different sequences, we compared them by means of the graph diffusion distance (GDD) metric, which439
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has been proposed in Hammond et al. (2013a). The GDD is a novel distance measure for comparing440
weighted graphs, which takes into account the graph structure in addition to the edge weights, compared441
to the Frobenius norm, which is sensitive only to the edge weights. For an explanation of the differences442
between the GDD and the Frobenius norm, see the Barbell graph example in Hammond et al. (2013a).443

The GDD is based on the diffusion maps framework (Nadler et al., 2005). Let A1 and A2 be weighted444
adjacency matrices for N vertices, that is, A1 and A2 are symmetric, nonnegative, N × N real matrices445
with zeros along the principle diagonal. The (unnormalized) graph Laplacian operator is defined by Ln =446
Dn − An (for n = 1, 2), where Dn is a diagonal degree matrix for the adjacency An, i.e., (Dn)i,i =447 ∑N

j=1(An)i,j .448

Given adjacency matrices A1 and A2, the columns of the Laplacian exponential kernels, exp(−tL1) and
exp(−tL2), describe the different diffusion patterns centered at each vertex generated by diffusion up to
time t under the two sets of weighted edges. Measuring the sum of squared differences between these
patterns, summed over all the vertices, yields

ξ2gdd(A1, A2; t) =
∑
i,j

((exp(−tL1))i,j − (exp(−tL2))i,j)
2

= || exp(−tL1)− exp(−tL2)||2F (3)

where || · ||F is the matrix Frobenius norm. This defines a family of distance measures ξ, depending449
on the information propagation time t. The graph diffusion distance is given by ξ at the time of450
maximal difference, i.e., dgdd(A1, A2) = maxt ξgdd(A1, A2; t). Here, we compute dgdd(A1, A2) by first451
diagonalizing L1 and L2 and using the exponential mapping. Then, Eq. (3) allows the computation of452
ξ(A1, A2; t) for any fixed t. Finally, we optimize over t by a line search to give dgdd(A1, A2).453

2.5.3 Tract-based Metric The spatial matching between motion-free and motion-corrected tracts was454
examined using Cohen’s Kappa statistic (Landis et al., 1977). The streamlines for a specific fiber tract455
(e.g., CST, IFO ...) are first converted to a binary volume with the same dimension and spacing of the456
raw DWI, where voxels that were occupied by at least one streamline were assigned a value 1. The457
two tracking results to be matched were then superimposed to identify: (1) voxels that did not contain458
streamlines in either result (NN), (2) voxels that contain streamlines in both results (PP) and (3) voxel that459
contain streamlines in one of the results (PN or NP)4. The Kappa statistic measures the level of agreement460
of the tracking results and corrects for agreement expected by chance. Hence Kappa is computed based461
on the probability of agreement P (a) and the probability of expected agreement due to chance P (e) as462
(Hallgren, 2012),463

κ =
P (a)− P (e)
1− P (e)

, (4)

4 P denotes positive and N denotes negative.
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where,464

P (a) =
NN + PP

PP + PN +NP +NN
,

P (e) =
(NP + PP )(PN + PP ) + (NP +NN)(PN +NN)

(PP + PN +NP +NN)2
.

3 RESULTS

The fODFs and the whole brain tractography were computed for the 3, 150 motion corrected sequences465
(175 datasets × 18 correction schemes), as well as the motion-free sequences, followed by automatic466
tractography selection for seven major fiber bundles.467

Voxel-based Metrics: The average JSD metric was computed using the fODF reconstruction from468
the ”motion-free” dataset, not corrupted by mixing DWI directions from the tilted-brain scan, as a469
reference (i.e., presenting only subtle motion inherent to a scan). We differentiated between regions470
where multiple fibers were detected versus single fiber regions. Figure 3 shows the average JSD values471
for single and multiple fiber regions as a function of motion corrupted percentage for different SNR levels472
and as a function of SNR levels for different motion corrupted percentages. Figure 4 illustrates sample473
reconstructions from motion-free versus motion-corrected datasets for different corrupted percentages and474
different motion correction choices. Table 1 shows the effect of the denoising process prior to applying475
motion correction on the average JSD values for single and multiple fiber regions as a function of SNR476
levels for different motion corrupted percentages. Figure 5 shows the average deviation of local fiber477
orientations (for the first two dominant detected fibers per voxel) as a function of motion corrupted478
percentage, as well as SNR levels.479

Global Connectivity Metric: Figure 6 shows the average graph diffusion distance (GDD) metric480
as function of both the corrupted directions percentage and the SNR levels. The metric compares the481
weighted connectivity graphs from the whole brain tractography of the ”motion-free” dataset to that of482
the motion-corrected datasets. It is worth noting that the tractography of the tilted brain dataset is used as483
a reference for model-based corrections when the corrupted percentage exceeds 50%. Figure 7 visualizes484
the brain connectivity being represented circularly using the Circos software (Krzywinski et al., 2009)485
where the parcellated structures (refer to Table 3 for their full names) are displayed on a connectogram486
representing left and right hemispheres symmetrically positioned along the vertical axis. The weighted487
connectivity matrix computed as described in 2.4 was normalized to attain a unit maximum. Each entry in488
the normalized connectivity matrix corresponds to an interregion link with thickness proportional to the489
entry weight. To avoid dense visualization, all entries with weight < 0.15 were discarded.490

Tract-based Metric: Table 2 shows the average Cohen’s Kappa statistic computed for corpus callosum491
(CC), corticospinal tract (CST) and inferior fronto-occipital tract (IFO) (where other pathways showed492
similar trend) based on automatic tractography selection using whole brain tractography of raw datasets493
(denoised datasets showed similar trends due to the robust fODF estimation, yet their graphs were omitted494
due to space limitation). Figures 8-12 show sample tractography selections for the aforementioned tracts495
from the untilted motion-free dataset as well as selections from motion-corrected datasets with different496
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corrupted gradient directions. Correction choices shown include outlier-based (i.e., motion scrubbing) and497
registration-based (using baseline and model-based reference volumes). Also pass-through (in green) and498
not-pass-through (in red) volumes (i.e., isosurfaces) are shown. Their definitions along with the geometric499
constraints employed to remove fibers, which do not belong to the pathway of interest, can be found in500
de Luis-Garcı́a et al. (2013).501

4 DISCUSSION

In this section, we discuss the impact of different motion correction choices using local as well as global502
metrics.503

4.1 VOXEL-BASED RESULTS

Heterogeneous regions are more affected by motion correction, showing larger average JSD in general504
when compared to the single fiber regions, regardless of the correction mode, interpolation scheme or505
reference volume employed (see Figure 3).506

The impact of motion scrubbing (removing gradient directions) becomes more pronounced with507
more motion-corrupted directions when compared to registration-based correction (see Figure 3(a)).508
Meanwhile, the JSD values indicate minimal deformations in fODFs reconstructed for baseline-based509
correction at high SNR levels compared to model-based correction, whereas both choices show510
comparable average JSD values at low SNR levels. This complies with the conclusions presented in511
Sakaie and Lowe (2010).512

Forcing the correction and interpolation of all gradient directions shows comparable performance513
compared to the correction and interpolation of only the corrupted directions (see Figure 3(a)). This514
observation discourages the choice of heuristic parameters on motion parameters beyond which directions515
are claimed to be corrupted and interpolated. Further, interpolation of all directions causes less impact on516
the reconstructed fODFs at low corrupted percentages (< 50%). We can assume, therefore, that motion is517
omnipresent and can be corrected for by the alignment and interpolation of all gradient directions.518

On the interpolation aspect of correction, the sampling theory suggests the sinc kernel as the ideal519
interpolation kernel; nonetheless, this gives rise to the Gibbs phenomena (i.e., ringing) due to kernel520
truncation. This explains the smaller fODF deformation when using trilinear interpolation compared521
to sinc interpolation. Trilinear interpolation, which is much faster, is probably sufficient for motion522
correction.523

In Figure 3(b), one can observe the comparable impact of different motion correction choices at low524
motion corruption percentages (< 30%). Whereas with higher motion corruption, a situation that is525
encountered in studies including infants, for example, motion scrubbing shows a significant impact on526
the reconstructed fODFs even at high SNR levels. This effect is more pronounced in regions with crossing527
fibers where the ability to resolve fiber crossings is deteriorated especially as the separation angle of the528
fibers decreases.529
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Table 1. The effect of denoising on the average +/- standard deviation of Jensen-Shannon divergence
(JSD) values for single fiber regions and multiple fiber regions as a function of SNR levels for different
motion corrupted percentages

Baseline-based Motion Correction (Single Fiber Regions)
Corrupted Directions Percentage SNR Levels
30% 4 8 10 12 14 16 20
Interpolate Corrupted Directions (trilinear): raw 0.360240 +/- 0.045598 0.233751 +/- 0.057661 0.206071 +/- 0.056631 0.185168 +/- 0.053253 0.168574 +/- 0.050516 0.155135 +/- 0.047892 0.135391 +/- 0.043761
Interpolate ALL Directions (trilinear): raw 0.334243 +/- 0.059883 0.215623 +/- 0.062502 0.194581 +/- 0.060456 0.176716 +/- 0.055924 0.162974 +/- 0.052476 0.150333 +/- 0.050609 0.133550 +/- 0.046793
Interpolate Corrupted Directions (trilinear): denoised 0.352849 +/- 0.040460 0.231980 +/- 0.055656 0.202870 +/- 0.054822 0.184626 +/- 0.052840 0.167100 +/- 0.049906 0.153834 +/- 0.047516 0.135224 +/- 0.043508
Interpolate ALL Directions (trilinear): denoised 0.329328 +/- 0.059218 0.211255 +/- 0.061444 0.190899 +/- 0.058799 0.175393 +/- 0.055475 0.161398 +/- 0.051984 0.150292 +/- 0.050625 0.133699 +/- 0.046593

70% 4 8 10 12 14 16 20
Interpolate Corrupted Directions (trilinear): raw 0.410600 +/- 0.031331 0.318959 +/- 0.050478 0.286541 +/- 0.055425 0.252046 +/- 0.057168 0.230605 +/- 0.055139 0.214138 +/- 0.053860 0.190215 +/- 0.048155
Interpolate ALL Directions (trilinear): raw 0.402799 +/- 0.036878 0.314221 +/- 0.054400 0.284747 +/- 0.059198 0.252745 +/- 0.059908 0.233456 +/- 0.057853 0.216581 +/- 0.056865 0.192958 +/- 0.051800
Interpolate Corrupted Directions (trilinear): denoised 0.402564 +/- 0.029625 0.313242 +/- 0.049651 0.284339 +/- 0.052764 0.250802 +/- 0.056173 0.231370 +/- 0.054575 0.208578 +/- 0.052739 0.190779 +/- 0.047920
Interpolate ALL Directions (trilinear): denoised 0.398054 +/- 0.038274 0.310018 +/- 0.054334 0.282856 +/- 0.057399 0.251609 +/- 0.058948 0.234186 +/- 0.057342 0.210697 +/- 0.055260 0.194545 +/- 0.051417

Baseline-based Motion Correction (Multiple Fiber Regions)
Corrupted Directions Percentage SNR Levels
30% 4 8 10 12 14 16 20
Interpolate Corrupted Directions (trilinear): raw 0.429747 +/- 0.014377 0.374981 +/- 0.028244 0.357056 +/- 0.032396 0.335591 +/- 0.035592 0.319182 +/- 0.036475 0.304666 +/- 0.037237 0.281099 +/- 0.037361
Interpolate ALL Directions (trilinear): raw 0.420579 +/- 0.017062 0.365135 +/- 0.029617 0.349272 +/- 0.032369 0.330066 +/- 0.034023 0.316609 +/- 0.034180 0.300648 +/- 0.035244 0.278706 +/- 0.034553
Interpolate Corrupted Directions (trilinear): denoised 0.408211 +/- 0.013658 0.361212 +/- 0.027941 0.345386 +/- 0.032180 0.328742 +/- 0.035251 0.314137 +/- 0.036364 0.300747 +/- 0.036693 0.279468 +/- 0.036236
Interpolate ALL Directions (trilinear): denoised 0.415004 +/- 0.016909 0.357705 +/- 0.029817 0.342500 +/- 0.032743 0.325475 +/- 0.033581 0.312227 +/- 0.034740 0.300567 +/- 0.034321 0.279097 +/- 0.033992

70% 4 8 10 12 14 16 20
Interpolate Corrupted Directions (trilinear): raw 0.441668 +/- 0.009944 0.406974 +/- 0.020601 0.394218 +/- 0.025143 0.371914 +/- 0.028719 0.359955 +/- 0.030159 0.349868 +/- 0.030453 0.326731 +/- 0.028539
Interpolate ALL Directions (trilinear): raw 0.438858 +/- 0.010475 0.400544 +/- 0.019045 0.387314 +/- 0.024494 0.369097 +/- 0.027007 0.358079 +/- 0.028551 0.348511 +/- 0.028087 0.327357 +/- 0.026651
Interpolate Corrupted Directions (trilinear): denoised 0.428357 +/- 0.009559 0.398647 +/- 0.020752 0.387550 +/- 0.024170 0.364179 +/- 0.028253 0.353670 +/- 0.029828 0.342159 +/- 0.029064 0.324294 +/- 0.027985
Interpolate ALL Directions (trilinear): denoised 0.434734 +/- 0.010609 0.396470 +/- 0.019646 0.385026 +/- 0.023381 0.364260 +/- 0.026451 0.353628 +/- 0.027830 0.343153 +/- 0.026418 0.326491 +/- 0.025983

Model-based Motion Correction (Single Fiber Regions)
Corrupted Directions Percentage SNR Levels
30% 4 8 10 12 14 16 20
Interpolate Corrupted Directions (trilinear): raw 0.362824 +/- 0.044584 0.234789 +/- 0.057672 0.202436 +/- 0.054992 0.185053 +/- 0.052774 0.168921 +/- 0.051011 0.154412 +/- 0.048760 0.137016 +/- 0.044368
Interpolate ALL Directions (trilinear): raw 0.341529 +/- 0.055268 0.216935 +/- 0.061572 0.190353 +/- 0.057184 0.177338 +/- 0.053845 0.164345 +/- 0.051940 0.151763 +/- 0.049245 0.137129 +/- 0.044860
Interpolate Corrupted Directions (trilinear): denoised 0.355832 +/- 0.038952 0.233300 +/- 0.055329 0.200942 +/- 0.053886 0.183426 +/- 0.051732 0.168669 +/- 0.050471 0.156186 +/- 0.048501 0.137568 +/- 0.044271
Interpolate ALL Directions (trilinear): denoised 0.337800 +/- 0.054166 0.214965 +/- 0.060579 0.188046 +/- 0.056021 0.174993 +/- 0.053265 0.163170 +/- 0.051443 0.153666 +/- 0.049561 0.139043 +/- 0.045272

70% 4 8 10 12 14 16 20
Interpolate Corrupted Directions (trilinear): raw 0.437995 +/- 0.020398 0.401102 +/- 0.027875 0.395116 +/- 0.029187 0.392917 +/- 0.028751 0.394547 +/- 0.029421 0.394157 +/- 0.029765 0.393072 +/- 0.029627
Interpolate ALL Directions (trilinear): raw 0.424515 +/- 0.023969 0.389511 +/- 0.029832 0.385682 +/- 0.030147 0.385935 +/- 0.029025 0.389897 +/- 0.030270 0.390043 +/- 0.030282 0.389524 +/- 0.030102
Interpolate Corrupted Directions (trilinear): denoised 0.433672 +/- 0.019802 0.392704 +/- 0.026322 0.385278 +/- 0.027166 0.382104 +/- 0.026334 0.382479 +/- 0.027435 0.383047 +/- 0.028099 0.382639 +/- 0.027850
Interpolate ALL Directions (trilinear): denoised 0.423772 +/- 0.023811 0.386144 +/- 0.029342 0.380362 +/- 0.029573 0.378202 +/- 0.028394 0.380366 +/- 0.029042 0.381810 +/- 0.029858 0.382169 +/- 0.029354

Model-based Motion Correction (Multiple Fiber Regions)
Corrupted Directions Percentage SNR Levels
30% 4 8 10 12 14 16 20
Interpolate Corrupted Directions (trilinear): raw 0.431485 +/- 0.013919 0.374890 +/- 0.027681 0.355161 +/- 0.030889 0.340584 +/- 0.034561 0.322469 +/- 0.035754 0.306188 +/- 0.036843 0.282984 +/- 0.037859
Interpolate ALL Directions (trilinear): raw 0.424731 +/- 0.016649 0.366541 +/- 0.029399 0.348776 +/- 0.031170 0.336014 +/- 0.033028 0.319378 +/- 0.034755 0.303846 +/- 0.035464 0.283342 +/- 0.035411
Interpolate Corrupted Directions (trilinear): denoised 0.409946 +/- 0.012715 0.361122 +/- 0.027406 0.344173 +/- 0.030754 0.331062 +/- 0.034374 0.316224 +/- 0.035922 0.302532 +/- 0.036504 0.281484 +/- 0.036670
Interpolate ALL Directions (trilinear): denoised 0.420245 +/- 0.016382 0.360538 +/- 0.029426 0.342159 +/- 0.030712 0.328595 +/- 0.032733 0.314057 +/- 0.034207 0.300968 +/- 0.035322 0.283460 +/- 0.034162

70% 4 8 10 12 14 16 20
Interpolate Corrupted Directions (trilinear): raw 0.452994 +/- 0.010220 0.417146 +/- 0.015161 0.410814 +/- 0.016068 0.406033 +/- 0.016404 0.408391 +/- 0.017131 0.407360 +/- 0.017038 0.402509 +/- 0.019258
Interpolate ALL Directions (trilinear): raw 0.441239 +/- 0.011757 0.402898 +/- 0.020790 0.398061 +/- 0.020777 0.397453 +/- 0.019135 0.401401 +/- 0.018495 0.401485 +/- 0.017602 0.395939 +/- 0.018965
Interpolate Corrupted Directions (trilinear): denoised 0.448519 +/- 0.009997 0.407138 +/- 0.014850 0.399052 +/- 0.015820 0.393196 +/- 0.015699 0.393496 +/- 0.016721 0.393950 +/- 0.016122 0.389538 +/- 0.017035
Interpolate ALL Directions (trilinear): denoised 0.440633 +/- 0.011008 0.399459 +/- 0.020710 0.390507 +/- 0.021431 0.385709 +/- 0.020485 0.387375 +/- 0.020483 0.389474 +/- 0.019294 0.384891 +/- 0.019050

Further, baseline-based motion corrections show minimal JSD values with higher corruption levels (>530
50%) when compared to model-based corrections, regardless of the interpolation scheme employed. The531
difference in performance between baseline-based and model-based becomes more significant as the SNR532
level increases.533

The denoising process yields smaller JSD values for low SNR levels (< 12) (see Table 1), while534
providing comparable performance for baseline-based and model-based motion correction choices.535
The slight decrease of JSD values for denoised datasets compared to the raw ones is due to536
the fODF reconstruction processes where we use the constrained spherical deconvolution (CSD)537
technique (Tournier et al., 2007). In an iterative manner, the deconvolution process in CSD applies a538
nonnegativity constraint on the estimated fODFs as negative fiber orientation densities are physically539
impossible. This process provides fODFs estimates that preserve the angular resolution while being540
robust to noise. Yet, as a word of caution, the denoising process, when applied to motion-corrupted541
datasets, should not take into consideration the joint information from diffusion gradients since voxel-wise542
correspondence between different diffusion volumes is not guaranteed.543

In Figure 4, one can observe the significant impact of motion scrubbing (i.e., outlier-based correction)544
on the reconstructed fODFs for mildly corrupted datasets (e.g., 30% corrupted directions). Further, it can545
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be noticed that with > 50% motion corruption, model-based reconstruction infers the spatial position546
from the gradients corresponding to the tilted brain due to its majority (i.e., gradients of the untilted brain547
are considered the motion-corrupted directions).548

Due to the insufficient number of gradients and unbalanced sampling of the q-space, the impact of549
motion scrubbing on the estimated fiber orientations becomes evident as SNR decreases and/or corrupted550
directions increase (see Figure 5).551

Although interpolating all directions versus corrupted directions reports comparable orientation552
deviation with lower impact on fractionally corrupted datasets (< 50%), we still favor forcing such a553
process to all directions to avoid the ad-hoc process of thresholding motion parameters.554

Nonetheless, one can notice the peaked performance of the orientation deviation at 50% corrupted555
directions for model-based motion correction choices. The explanation of this phenomenon is based on556
the fact that, with > 50% of the gradients being corrupted (i.e., corresponding to the tilted brain), the557
formed reference volumes would instead infer its anatomical structure from the tilted brain. For highly558
corrupted datasets, the gradients corresponding to the untilted brains become the corrupted directions (i.e.,559
a 70% corruption will have a performance similar to the 30% case).560

Model-based corrections display higher impact on the JSD of the reconstructed fODFs at higher levels of561
motion corruption, but such corrections have a smaller impact on the fiber orientation deviations especially562
when interpolating all directions (trilinear interpolant). This change of JSD metric implies an increase in563
the overall fODF volume when compared to the reconstructions from the motion-free dataset, yet the564
fODFs maintain the voxel-wise fiber crossing structure. This observation is more pronounced for fibers565
with the largest fiber volume fraction.566

4.2 GLOBAL CONNECTIVITY-BASED RESULTS

Whereas there is a slight performance difference between GDD values computed based on raw567
datasets versus those from denoised dataset, thanks to the fODF reconstruction that is robust to noise568
contamination, one may observe consistent findings when GDD is compared to the JSD metric. In569
particular, the global brain connectivity is least affected by the motion correction step when forcing570
the alignment and interpolation of all gradient directions without setting a predefined threshold to571
claim corrupted volumes. There is a significant difference between GDD values obtained from trilinear572
interpolation compared to sinc interpolation. This implies that the impact of sinc interpolation on the573
fODFs, being encoded by the JSD metric, yields global brain connectivity that is different from the574
”motion-free”-based brain connectivity.575

Whereas the effect of motion correction is evident at higher corrupted percentages (except for motion576
scrubbing), one can notice the effect of noise where the impact of motion correction becomes more577
significant at low SNRs (< 12), while different correction choices (except motion scrubbing) render578
slight performance difference at high SNRs (> 12). Moreover, being consistent with different SNR levels,579
the baseline-based correction choices yield connectivity graphs with minimal deviations (smaller GDD)580
compared to their corresponding model-based choices.581
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On the contrary, motion scrubbing displays a different behavior. The GDD values from the scrubbed582
datasets, though maximal compared to the other correction choices, are decreasing with higher SNR583
levels for < 50% corrupted directions, but this behavior is soon changed to the opposition direction for584
≥ 50% corrupted directions, see Figure 6(b). This change of behavior is perceivable in Figure 6(a) where585
the GDD values are maximal at 50% corruption percentage for high SNR levels (> 12), whereas such a586
peak occurs even at low corrupted percentages (e.g., 30%) for low SNRs (< 12). This phenomenon can587
be explained as follows: with high percentage of motion-contaminated gradients, the scrubbing (outlier-588
based) option tends to produce an inadequate set of gradients for accurate fODF estimation due to the589
exclusion of too many gradients. This unbalanced sampling of the q-space, henceforth, biases the CSD590
process to converge to an incorrect solution, producing inaccurate fiber orientation and in turn imprecise591
brain connectivity. Hence, the increase of the GDD values with higher SNRs beyond 30% corrupted592
directions is due to having more short tracts connecting nearby region of interests while being assigned to593
larger weights in the graph construction step (see 2.4).594

In Figure 7, one can observe the motion scrubbing behavior where the links become denser with higher595
corrupted percentages, implying the detection of more short tracts connecting nearby ROIs. On the other596
hand, the baseline-based choice reveals comparable connectograms to the motion-free ones while model-597
based counterpart tend to add more shorter tracts.598

4.3 TRACT-BASED RESULTS

Being consistent with the results from the other metrics, motion scrubbing shows a significant decrease in599
the degree of tract agreement when increasing the percentage of motion corruption, which in turn leads600
to discarding more gradient directions. With < 50% corrupted directions, the tract agreement degree601
increases with higher SNR levels, yet such a trend changes with ≥ 50% where shorter or no tracts being602
detected, which deviates from being anatomically realistic; see for example the top row of Figures 8-12603
where tracts can be even missed even at 70% corruption. The CST and IFO tracts are good examples of604
long tracts that are not recovered by motion scrubbing beyond 10% motion corruption, see Figures 10605
and 11. Nonetheless, the maximal agreement is achieved when aligning and interpolating all gradient606
directions to correct for motion regardless of the reference volume used in the registration process (i.e.,607
baseline versus model-based). It can be observed in Figures 8-12 that model-based motion correction608
is able to recover longer tracts at high corruption percentages compared to the baseline-based motion609
correction.610

5 CONCLUSIONS: GUIDELINES FOR MOTION CORRECTION IN HARDI
ACQUISITIONS

Although there is excellent theoretical work on DWI acquisition parameters and ODF reconstruction611
schemes, as well as their effects on the quality and crossing fiber resolution, standard users lack clear612
guidelines and recommendations on the best ways to approach and correct for motion in practical613
settings. This work investigated motion correction using transformation and interpolation of affected DWI614
directions versus the exclusion of subsets of DWIs, and its impact on the reconstructed fODFs, local615
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fiber orientations, brain connectivity and detection of fiber tracts. The various effects were systematically616
explored and illustrated via living phantom data, leading to the general conclusion that motion, even617
subtle, exists in every acquired DW scan and special care is needed to correct for motion. In the following,618
we summarize the findings of our analysis, which might serve as guidelines for users in practice:619

- Although least recommended, motion scrubbing (removing corrupted gradient directions) can be used620
in studies with well-controlled environments and involving not-in-pain adults or sedated subjects,621
where minimal subject motion is anticipated (i.e., < 10% motion corruption). Yet, this gradient622
removal should not result in unbalanced sampling of the q-space since the gradient distribution should623
be as uniform as possible on the sphere.624

- Voxel-wise reconstructions, tractography and global brain connectivity are least affected by the625
motion correction step when forcing the alignment and interpolation of all gradient directions without626
setting predefined thresholds to claim corrupted volumes.627

- Using voxel-wise reconstructions that are robust to noise, the denoising process can be considered628
unnecessary prior to applying motion correction. Nonetheless, if applied, the denoising algorithms629
should not take into account joint information from different diffusion gradients since voxel-wise630
correspondence is not guaranteed.631

- Baseline-based correction choices can be used in studies involving voxel-wise scalars, which depend632
on the volume of the reconstructed ODFs, especially with highly motion-corrupted datasets.633

- Model-based correction choices, on the other hand, are recommended for studies requiring the634
recovery and analysis of long tracts, e.g., CST and IFO, especially with highly motion-corrupted635
datasets.636

- Trilinear interpolation, although much faster compared to sinc, is probably sufficient for motion637
correction, where the global brain connectivity is least affected.638

One may wonder that using a gold standard which was obtained by motion correction (among other QC639
steps) using some of the methods under investigation could raise questions on reliability of the conclusions640
presented. Hence, in order to support the validity of the conclusions drawn from this study, we conducted641
the same set of experiments using the raw acquired data without performing any quality control. Figure 13642
shows a sample result of the average JSD and local fiber orientation deviation metric for reconstructions643
based on gold standards generated from the QCed phantom datasets as well as the raw phantom datasets.644
Being consistent with the conclusions drawn from the reconstructions based on the QCed datasets, regions645
with crossing fibers are more affected by motion correction, showing larger average JSD in general when646
compared to the single fiber regions. The impact of motion scrubbing becomes more evident with more647
motion-corrupted directions when compared to the registration-based correction. Moreover, the peaked648
performance of the orientation deviation at 50% corrupted directions for model-based motion correction is649
also maintained. Further, forcing the interpolation of all gradients directions would have minimal impact650
on the reconstructions when compared to the choice of interpolating motion corrupted directions via651
setting a predefined threshold beyond which a direction is claimed to be corrupted.652
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6 LIMITATIONS AND FUTURE WORK

The primary message of this paper is that care should be taken in deciding the processing pipeline653
for any DW-MRI (esp. HARDI) at hand, this involves, for example, the acquisition protocol (i.e. less654
redundant gradients would discourage the choice of motion scrubbing) and the participating subjects (i.e.655
elderly in pain, infants, unsedated subjects versus healthy adults where variable motion severity levels are656
anticipated). Nonetheless, the presented analysis attains some limitations which can be outlined as follow:657

• One-subject analysis: As a controlled motion experiment, we could use a scan session of subjects658
with repeated scans where the second shows bulk motion relative to the first one. The existing659
phantom data contains repeated scans taken in different sessions within 24 hours and hence they have660
to be seen as independent scans for the same subject. As a pilot study, we therefore asked one healthy661
volunteer to be scanned twice in a single scan session while tilting the head between the two scans.662
This enables us to mix gradients between the two scans from the same subject this cannot be done663
with the existing repeated independent scans. We understand that reporting our results with more than664
a pair of datasets (tilted and untilted brain) would support our analysis, and we will collect more scans665
with this experimental design in our future annual phantom scan sessions. Nonetheless, we think666
that this experiment, even with its limitations, contributes to establish an experimental framework667
that would guide the scientific community in systematically evaluating the outcomes of different668
preprocessing steps. In the future, we will prospectively plan to obtain more of such datasets, also669
including navigator shots for estimation of rotation, to extend this analysis.670

• Anatomical geometric correction: Echo-planner imaging (EPI) distortion, in contrast to Eddy671
current that affects only diffusion-weighted images, would affect all images in the acquired sequence672
regardless of their level of diffusion sensitization. Hence, EPI distortion correction would involve673
acquiring additional data for either B0 mapping or a dedicated T1 or T2-weighted structural target.674
That’s a primary reason behind ignoring EPI correction in most MRI processing pipelines (Irfanoglu675
et al., 2012). With the availability of such additional data, EPI correction would involve nonlinear676
spatial warping that employ interpolation, a decision variable under investigation of the presented677
work. Hence, we favored to bypass this step in order not to inter-mingle interpolation due to motion678
correction and that of EPI correction. However, we think that the analysis/correction of inter-gradient679
spatial distortions, and its effect on ODF reconstruction, is an important issue which we together with680
the scientific community need to address.681

• Better gold standard generation: The living phantoms were healthy volunteers who were aware682
of the whole process and were keen to remain without motion. Nonetheless, the investigation of683
prospective navigators is an promising idea for future work to provide different types of ground truth684
data and to get motion estimates directly from the scanner rather than only via postprocessing.685
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Figure 3. The average Jensen-Shannon divergence (JSD) values (lower is better) for reconstructions based on raw datasets (denoised ones share similar performance) as (a) a function of motion
corrupted percentage for different SNR levels and (b) a function of SNR levels for different motion corrupted percentage. The first and third columns show JSDs single fiber regions while the second
and fourth columns show such values for reconstructions based on multiple fiber regions. Notice the impact of motion scrubbing (removing gradient directions), which becomes more significant with
more motion-corrupted directions when compared to registration-based correction. Further the impact of motion scrubbing is rendered evident for 10% corrupted gradients.
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Figure 4. Sample fODFs reconstruction from untilted and tilted motion-free datasets as well as reconstruction from motion-corrected datasets with 10%, 30% and 70% corrupted gradient directions.
Correction choices shown include outlier-based (i.e., motion scrubbing) and registration-based (using baseline and model-based reference volumes).
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Figure 5. The average fiber orientation deviation (lower is better) for reconstructions based on raw datasets (denoised ones share similar performance) as (a) a function of motion corrupted percentage
for different SNR levels and (b) a function of SNR levels for different motion corrupted percentage. The first and third columns show orientation deviation for the first detected fiber having the largest
volume fraction while the second and fourth columns show such values for the second detected fiber having the second largest volume fraction. Notice that local fiber orientations are more affected by
motion scrubbing as SNR decreases and/or corrupted directions increase.
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Figure 6. The average graph diffusion distance (GDD) (lower is better) for the whole brain tractography derived from the raw datasets (denoised ones share
similar performance) as (a) a function of the corrupted directions percentage for different SNR levels and (b) a function of SNR levels for different motion
corrupted percentages. Notice the different behavior displayed by motion scrubbing for ≥ 50% corrupted directions, which due to having more short tracts
connecting nearby region of interests while being assigned to larger weights in the graph construction step
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Figure 7. Sample reconstructed connectomic profile (i.e., connectogram) from untilted and tilted motion-free datasets as well as connectograms from motion-
corrected datasets with 10%, 30% and 70% corrupted gradient directions. Correction choices shown include outlier-based (i.e., motion scrubbing) and
registration-based (using baseline and model-based reference volumes). Notice the tendency of motion scrubbing to add more links between nearby ROIs at
corruption percentages, implying the detection of more short tracts.
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Table 2. The average Cohen’s Kappa statistic (higher is better) of different anatomically-defined fiber
pathways (other pathways show similar trend) based on automatic tractography selection based on whole
brain tractography of raw datasets (denoised ones share similar performance) for different corrupted
directions percentages.

Corpus callosum (CC) SNR Levels
10% 4 8 10 12 14 16 20
Baseline Reference: Motion Scrubbing 0.337569 0.512323 0.549884 0.583176 0.608084 0.623132 0.653595
Baseline Reference: Interpolate Corrupted Directions (trilinear) 0.371873 0.527897 0.560684 0.597392 0.610865 0.625269 0.641443
Baseline Reference: Interpolate ALL Directions (trilinear) 0.430934 0.565719 0.604035 0.612666 0.623576 0.645637 0.650286
Model-based Reference: Interpolate Corrupted Directions (trilinear) 0.372998 0.533756 0.56661 0.597997 0.610078 0.625306 0.645364
Model-based Reference: Interpolate ALL Directions (trilinear) 0.432495 0.56421 0.590059 0.616106 0.628666 0.643482 0.648159

30% 4 8 10 12 14 16 20
Baseline Reference: Motion Scrubbing 0.121185 0.240279 0.295196 0.342217 0.367067 0.397206 0.426858
Baseline Reference: Interpolate Corrupted Directions (trilinear) 0.344391 0.480168 0.510159 0.517193 0.519918 0.529172 0.536126
Baseline Reference: Interpolate ALL Directions (trilinear) 0.397277 0.508548 0.520689 0.522688 0.528747 0.52865 0.531048
Model-based Reference: Interpolate Corrupted Directions (trilinear) 0.34037 0.483498 0.511051 0.522758 0.53595 0.536208 0.54493
Model-based Reference: Interpolate ALL Directions (trilinear) 0.391228 0.510303 0.522294 0.531674 0.541776 0.538634 0.546074

50% 4 8 10 12 14 16 20
Baseline Reference: Motion Scrubbing 0.195245 0.234216 0.24072 0.239568 0.234356 0.228969 0.212593
Baseline Reference: Interpolate Corrupted Directions (trilinear) 0.32114 0.43416 0.463943 0.456179 0.456507 0.455066 0.441334
Baseline Reference: Interpolate ALL Directions (trilinear) 0.354402 0.447591 0.476502 0.460336 0.464282 0.455952 0.435115
Model-based Reference: Interpolate Corrupted Directions (trilinear) 0.308208 0.424219 0.454309 0.455936 0.456871 0.465054 0.477503
Model-based Reference: Interpolate ALL Directions (trilinear) 0.344133 0.443797 0.459322 0.459972 0.462699 0.46546 0.47007

70% 4 8 10 12 14 16 20
Baseline Reference: Motion Scrubbing 0.178267 0.178831 0.178042 0.163248 0.164247 0.158891 0.152246
Baseline Reference: Interpolate Corrupted Directions (trilinear) 0.314508 0.391142 0.408141 0.417553 0.420105 0.412033 0.405891
Baseline Reference: Interpolate ALL Directions (trilinear) 0.327764 0.395117 0.405833 0.415301 0.421643 0.402026 0.401629
Model-based Reference: Interpolate Corrupted Directions (trilinear) 0.290382 0.405799 0.440177 0.452235 0.479685 0.479166 0.504993
Model-based Reference: Interpolate ALL Directions (trilinear) 0.330574 0.428458 0.455009 0.46612 0.482178 0.478169 0.496215

Corticospinal tract (CST) SNR Levels
10% 4 8 10 12 14 16 20
Baseline Reference: Motion Scrubbing 0.255609 0.511582 0.59193 0.647802 0.681451 0.708302 0.733556
Baseline Reference: Interpolate Corrupted Directions (trilinear) 0.288567 0.568014 0.636962 0.674537 0.700027 0.714401 0.741004
Baseline Reference: Interpolate ALL Directions (trilinear) 0.383782 0.673544 0.709478 0.732921 0.735943 0.74033 0.753895
Model-based Reference: Interpolate Corrupted Directions (trilinear) 0.290589 0.561405 0.636853 0.673316 0.699448 0.713441 0.739494
Model-based Reference: Interpolate ALL Directions (trilinear) 0.377735 0.663838 0.703892 0.723948 0.732407 0.741558 0.751347

30% 4 8 10 12 14 16 20
Baseline Reference: Motion Scrubbing 0.08445 0.181213 0.223927 0.250415 0.278556 0.304034 0.338546
Baseline Reference: Interpolate Corrupted Directions (trilinear) 0.282041 0.52623 0.598869 0.626852 0.636781 0.643479 0.651485
Baseline Reference: Interpolate ALL Directions (trilinear) 0.366403 0.61723 0.665015 0.67397 0.663454 0.668005 0.671065
Model-based Reference: Interpolate Corrupted Directions (trilinear) 0.273331 0.521025 0.603001 0.639991 0.658976 0.671995 0.67978
Model-based Reference: Interpolate ALL Directions (trilinear) 0.347568 0.612903 0.655906 0.678086 0.6801 0.692068 0.686448

50% 4 8 10 12 14 16 20
Baseline Reference: Motion Scrubbing 0.167928 0.215559 0.227706 0.231256 0.238757 0.233776 0.237475
Baseline Reference: Interpolate Corrupted Directions (trilinear) 0.274988 0.47285 0.528849 0.56997 0.578886 0.581467 0.58602
Baseline Reference: Interpolate ALL Directions (trilinear) 0.329036 0.540045 0.567838 0.60573 0.596126 0.594135 0.599463
Model-based Reference: Interpolate Corrupted Directions (trilinear) 0.25215 0.466852 0.518179 0.553814 0.56339 0.584337 0.596757
Model-based Reference: Interpolate ALL Directions (trilinear) 0.300971 0.519456 0.551479 0.574403 0.578095 0.603384 0.609796

70% 4 8 10 12 14 16 20
Baseline Reference: Motion Scrubbing 0.209264 0.213673 0.214178 0.214527 0.219481 0.206522 0.210003
Baseline Reference: Interpolate Corrupted Directions (trilinear) 0.268415 0.449839 0.495255 0.54836 0.560483 0.565741 0.553228
Baseline Reference: Interpolate ALL Directions (trilinear) 0.30485 0.486243 0.531024 0.563493 0.569974 0.578043 0.561712
Model-based Reference: Interpolate Corrupted Directions (trilinear) 0.237249 0.43595 0.511829 0.537773 0.579497 0.591882 0.617357
Model-based Reference: Interpolate ALL Directions (trilinear) 0.304681 0.493711 0.554253 0.575569 0.605093 0.610975 0.62865

Inferior fronto-occipital tract (IFO) SNR Levels
10% 4 8 10 12 14 16 20
Baseline Reference: Motion Scrubbing 0.021174 0.164388 0.253179 0.360941 0.432971 0.522092 0.538292
Baseline Reference: Interpolate Corrupted Directions (trilinear) 0.036125 0.248734 0.350268 0.41586 0.467664 0.496367 0.525266
Baseline Reference: Interpolate ALL Directions (trilinear) 0.066164 0.404309 0.453207 0.49633 0.497915 0.542272 0.55883
Model-based Reference: Interpolate Corrupted Directions (trilinear) 0.036877 0.241989 0.355478 0.41203 0.450946 0.497335 0.530589
Model-based Reference: Interpolate ALL Directions (trilinear) 0.061719 0.397744 0.476713 0.481677 0.484301 0.532199 0.553205

30% 4 8 10 12 14 16 20
Baseline Reference: Motion Scrubbing 0.017605 0.032846 0.036941 0.054356 0.069675 0.096068 0.120592
Baseline Reference: Interpolate Corrupted Directions (trilinear) 0.021015 0.193547 0.30352 0.358774 0.391792 0.417395 0.448851
Baseline Reference: Interpolate ALL Directions (trilinear) 0.040243 0.286059 0.375406 0.407854 0.415109 0.449185 0.45364
Model-based Reference: Interpolate Corrupted Directions (trilinear) 0.019676 0.190149 0.298156 0.374981 0.394936 0.440116 0.450691
Model-based Reference: Interpolate ALL Directions (trilinear) 0.036533 0.269425 0.356155 0.41894 0.417197 0.448939 0.457867

50% 4 8 10 12 14 16 20
Baseline Reference: Motion Scrubbing 0.079802 0.096081 0.088847 0.08342 0.084004 0.078977 0.074762
Baseline Reference: Interpolate Corrupted Directions (trilinear) 0.023615 0.173538 0.255646 0.303376 0.355478 0.370352 0.389862
Baseline Reference: Interpolate ALL Directions (trilinear) 0.037031 0.21137 0.287878 0.332891 0.361154 0.383244 0.388926
Model-based Reference: Interpolate Corrupted Directions (trilinear) 0.017528 0.155743 0.226579 0.260404 0.306267 0.343361 0.363517
Model-based Reference: Interpolate ALL Directions (trilinear) 0.031326 0.187443 0.250407 0.282972 0.310855 0.353314 0.350486

70% 4 8 10 12 14 16 20
Baseline Reference: Motion Scrubbing 0.103989 0.111274 0.105098 0.103238 0.107333 0.11481 0.110321
Baseline Reference: Interpolate Corrupted Directions (trilinear) 0.02605 0.137873 0.203676 0.292856 0.312459 0.329589 0.36963
Baseline Reference: Interpolate ALL Directions (trilinear) 0.034815 0.169664 0.252561 0.300767 0.314673 0.347346 0.371886
Model-based Reference: Interpolate Corrupted Directions (trilinear) 0.021983 0.185256 0.299656 0.364072 0.433785 0.458342 0.477853
Model-based Reference: Interpolate ALL Directions (trilinear) 0.043441 0.249726 0.354267 0.409827 0.471097 0.479884 0.485465
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Figure 8. Sample tractography selection for the corpus callosum (CC) from the untilted motion-free dataset as well as selections from motion-corrected
datasets with 10%, 30% and 70% corrupted gradient directions. Correction choices shown include outlier-based (i.e., motion scrubbing) and registration-based
(using baseline and model-based reference volumes). One can observe the short tracts being detected by motion scrubbing at high corruption percentages due
to the exclusion of too many gradient directions.
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Figure 9. Sample tractography selection for the cingulum of the cingulate gyrus (CG) from the untilted motion-free dataset as well as selections from
motion-corrected datasets with 10%, 30% and 70% corrupted gradient directions. Correction choices shown include outlier-based (i.e., motion scrubbing)
and registration-based (using baseline and model-based reference volumes). Notice the inability of motion scrubbing to detect an anatomically realized CG at
high corrupted percentages.
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Figure 10. Sample tractography selection for the corticospinal tract (CST) from the untilted motion-free dataset as well as selections from motion-corrected
datasets with 10%, 30% and 70% corrupted gradient directions. Correction choices shown include outlier-based (i.e., motion scrubbing) and registration-based
(using baseline and model-based reference volumes). Note that motion scrubbing cannot recover long tracts such as CST beyond 10% motion corruption.

Frontiers in Neurology 31



Elhabian et al. Subject-Motion Correction in HARDI Acquisitions: Choices and Consequences

Figure 11. Sample tractography selection for the inferior fronto-occipital tract (IFO) from the untilted motion-free dataset as well as selections from motion-
corrected datasets with 10%, 30% and 70% corrupted gradient directions. Correction choices shown include outlier-based (i.e., motion scrubbing) and
registration-based (using baseline and model-based reference volumes). Note that motion scrubbing cannot recover long tracts such as IFO beyond 10%

motion corruption. Further, motion-based motion correction tends to recover longer tracts at high motion corruption compared to baseline-based correction.
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Figure 12. Sample tractography selection for the uncinate fasciculus (UNC) from the untilted motion-free dataset as well as selections from motion-corrected
datasets with 10%, 30% and 70% corrupted gradient directions. Correction choices shown include outlier-based (i.e., motion scrubbing) and registration-based
(using baseline and model-based reference volumes). Notice the inaccurate UNC tract being detected from the motion scrubbing choice at high percentages of
motion corruption.
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Figure 13. The average Jensen-Shannon divergence (JSD) values (first row) and the average fiber orientation deviation (second and third row) a function of motion corrupted percentage for
reconstructions based on gold standards generated from (a) the QCed phantom dataset and (b) the raw phantom dataset. Notice the agreement between (a) and (b) where the impact of motion
scrubbing becomes more significant with more motion-corrupted directions when compared to registration-based correction. This effect is also rendered evident for local fiber orientations.
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Table 3. Parcellated Structures

ROI# Label Region ROI# Label Region

1 SPL L Superior parietal lobule left 89 SPL R Superior parietal lobule right
2 CG L Cingulate gyrus left 90 CG R Cingulate gyrus right
3 SFG L Superior frontal gyrus left 91 SFG R Superior frontal gyrus right
4 MFG L Middle frontal gyrus left 92 MFG R Middle frontal gyrus right
5 IFG L Inferior frontal gyrus left 93 IFG R Inferior frontal gyrus right
6 PreG L Precentral gyrus left 94 PreG R Precentral gyrus right
7 PoG L Postcentral gyrus left 95 PoG R Postcentral gyrus right
8 AG L Angular gyrus left 96 AG R Angular gyrus right
9 PreCu L Pre-cuneus left 97 PreCu R Pre-cuneus right
10 Cu L Cuneus left 98 Cu R Cuneus right
11 LG L Lingual gyrus left 99 LG R Lingual gyrus right
12 FuG L Fusiform gyrus left 100 FuG R Fusiform gyrus right
13 PHG L Parahippocampal gyrus left 101 PHG R Parahippocampal gyrus right
14 SOG L Superior occipital gyrus left 102 SOG R Superior occipital gyrus right
15 IOG L Inferior occipital gyrus left 103 IOG R Inferior occipital gyrus right
16 MOG L Middle occipital gyrus left 104 MOG R Middle occipital gyrus right
17 Ent L Entorhinal area left 105 Ent R Entorhinal area right
18 STG L Superior temporal gyrus left 106 STG R Superior temporal gyrus right
19 ITG L Inferior temporal gyrus left 107 ITG R Inferior temporal gyrus right
20 MTG L Middle temporal gyrus left 108 MTG R Middle temporal gyrus right
21 LFOG L Lateral fronto-orbital gyrus left 109 LFOG R Lateral fronto-orbital gyrus right
22 MFOG L Middle fronto-orbital gyrus left 110 MFOG R Middle fronto-orbital gyrus right
23 SMG L Supramarginal gyrus left 111 SMG R Supramarginal gyrus right
24 RG L Gyrus rectus left 112 RG R Gyrus rectus right
25 Ins L Insular left 113 Ins R Insular right
26 Amyg L Amygdala left 114 Amyg R Amygdala right
27 Hippo L Hippocampus left 115 Hippo R Hippocampus right
28 Cere L Cerebellum left 116 Cere R Cerebellum right
29 CST L Corticospinal tract left 117 CST R Corticospinal tract right
30 ICP L Inferior cerebellar peduncle left 118 ICP R Inferior cerebellar peduncle right
31 ML L Medial lemniscus left 119 ML R Medial lemniscus right
32 SCP L Superior cerebellar peduncle left 120 SCP R Superior cerebellar peduncle right
33 CP L Cerebral peduncle left 121 CP R Cerebral peduncle right
34 ALIC L Anterior limb of internal capsule left 122 ALIC R Anterior limb of internal capsule right
35 PLIC L Posterior limb of internal capsule left 123 PLIC R Posterior limb of internal capsule right
36 PTR L Posterior thalamic radiation left 124 PTR R Posterior thalamic radiation right
37 ACR L Anterior corona radiata left 125 ACR R Anterior corona radiata right
38 SCR L Superior corona radiata left 126 SCR R Superior corona radiata right
39 PCR L Posterior corona radiata left 127 PCR R Posterior corona radiata right
40 CGC L Cingulum (cingulate gyrus) left 128 CGC R Cingulum (cingulate gyrus) right
41 CGH L Cingulum (hippocampus) left 129 CGH R Cingulum (hippocampus) right
42 Fx/ST L Fornix(cres) stria terminalis left 130 Fx/ST R Fornix(cres) stria terminalis right
43 SLF L Superior longitudinal fasciculus left 131 SLF R Superior longitudinal fasciculus right
44 SFOF L Superior fronto-occipital fasciculus left 132 SFOF R Superior fronto-occipital fasciculus right
45 IFOF L Inferior fronto-occipital fasciculus left 133 IFOF R Inferior fronto-occipital fasciculus right
46 SS L Sagittal stratum left 134 SS R Sagittal stratum right
47 EC L External capsule left 135 EC R External capsule right
48 UNC L Uncinate fasciculus left 136 UNC R Uncinate fasciculus right
49 PCT L Pontine crossing tract left 137 PCT R Pontine crossing tract right
50 MCP L Middle cerebellar peduncle left 138 MCP R Middle cerebellar peduncle right
51 Fx L Fornix (column and body) left 139 Fx R Fornix right
52 GCC L Genu of corpus callosum left 140 GCC R Genu of corpus callosum right
53 BCC L Body of corpus callosum left 141 BCC R Body of corpus callosum right
54 SCC L Splenium of corpus callosum left 142 SCC R Splenium of corpus callosum right
55 RLIC L Retrolenticular part of internal capsule left 143 RLIC R Retrolenticular part of internal capsule right
56 RN L Red nucleus left 144 RN R Red nucleus right
57 SN L Substancia nigra left 145 SN R Substancia nigra right
58 Tp L Tapatum left 146 Tp R Tapatum right
59 CN L Caudate nucleus left 147 CN R Caudate nucleus right
60 P L Putamen left 148 P R Putamen right
61 Th L Thalamus left 149 Th R Thalamus right
62 GP L Globus pallidus left 150 GP R Globus pallidus right
63 MB L Midbrain left 151 MB R Midbrain right
64 Pons L Pons left 152 Pons R Pons right
65 Med L Medulla left 153 Med R Medulla right
66 SP WM L Superior parietal wm left 154 SP WM R Superior parietal wm right
67 CG WM L Cingulum wm left 155 CG WM R Cingulum wm right
68 SF WM L Superior frontal wm left 156 SF WM R Superior frontal wm right
69 MF WM L Middle frontal wm left 157 MF WM R Middle frontal wm right
70 IF WM L Inferior frontal wm left 158 IF WM R Inferior frontal wm right
71 Pr WM L Precentral wm left 159 Pr WM R Precentral wm right
72 Po WM L Postcentral wm left 160 Po WM R Postcentral wm right
73 A WM L Angular wm left 161 A WM R Angular wm right
74 PreCu WM L Pre-cuneus wm left 162 PreCu WM R Pre-cuneus wm right
75 Cu WM L Cuneus wm left 163 Cu WM R Cuneus wm right
76 L WM L Lingual wm left 164 L WM R Lingual wm right
77 Fu WM L Fusiform wm left 165 Fu WM R Fusiform wm right
78 SO WM L Superior occipital wm left 166 SO WM R Superior occipital wm right
79 IO WM L Inferior occipital wm left 167 IO WM R Inferior occipital wm right
80 MO WM L Middle occipital wm left 168 MO WM R Middle occipital wm right
81 ST WM L Superior temporal wm left 169 ST WM R Superior temporal wm right
82 IT WM L Inferior temporal wm left 170 IT WM R Inferior temporal wm right
83 MT WM L Middle temporal wm left 171 MT WM R Middle temporal wm right
84 LFO WM L Lateral fronto-orbital wm left 172 LFO WM R Lateral fronto-orbital wm right
85 MFO WM L Middle fronto-orbital wm left 173 MFO WM R Middle fronto-orbital wm right
86 SM WM L Supramarginal wm left 174 SM WM R Supramarginal wm right
87 Rect WM L Rectus wm left 175 Rect WM R Rectus wm right
88 Cere WM L Cerebellum wm left 176 Cere WM R Cerebellum wm right
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Table 4. The average and standard deviation of the affine transformation parameters
Dataset ID Translation Vector Magnitude (mm) Rotation Angle (degrees) Scale in x direction Scale in y direction Scale in z direction Skew A Skew B Skew C
phan1 time1 chop 0.263283 +/- 0.129780 0.4258 +/- 0.1765 0.974387 +/- 0.122766 0.991650 +/- 0.125002 0.978987 +/- 0.123368 -0.001053 +/- 0.001162 -0.000104 +/- 0.005986 -0.000753 +/- 0.001325
phan1 time1 unc hos 0.470658 +/- 0.232117 0.1534 +/- 0.0918 0.967640 +/- 0.120958 0.987012 +/- 0.123419 0.969454 +/- 0.121189 -0.002346 +/- 0.001614 0.001971 +/- 0.000873 -0.002854 +/- 0.002759
phan1 time1 unc res 0.189921 +/- 0.063812 0.2667 +/- 0.0947 0.969042 +/- 0.121136 0.981819 +/- 0.122801 0.968367 +/- 0.121047 0.001694 +/- 0.001812 -0.000951 +/- 0.001204 -0.003887 +/- 0.002544
phan1 time1 washu res 0.592816 +/- 0.167149 0.0998 +/- 0.108 0.972356 +/- 0.122509 0.985866 +/- 0.124311 0.980857 +/- 0.123619 -0.000613 +/- 0.001537 0.001895 +/- 0.001171 0.000042 +/- 0.002984
phan1 time2 chop 0.476715 +/- 0.158225 0.2922 +/- 0.1342 0.970214 +/- 0.122241 0.981341 +/- 0.123652 0.974277 +/- 0.122824 -0.004799 +/- 0.002259 0.001672 +/- 0.001119 -0.004175 +/- 0.002521
phan1 time2 unc hos 0.580458 +/- 0.205031 0.1544 +/- 0.0845 0.968968 +/- 0.121126 0.985392 +/- 0.123211 0.969308 +/- 0.121165 -0.000668 +/- 0.001327 0.003067 +/- 0.001256 -0.003470 +/- 0.001561
phan1 time2 unc res 0.282364 +/- 0.103415 0.3059 +/- 0.186 0.966004 +/- 0.120753 0.974620 +/- 0.121831 0.967014 +/- 0.120879 -0.000146 +/- 0.000979 0.001095 +/- 0.000984 0.001062 +/- 0.001672
phan1 time2 washu res 0.519812 +/- 0.201197 0.1394 +/- 0.1097 0.971916 +/- 0.124449 0.988555 +/- 0.126727 0.974220 +/- 0.124811 -0.001642 +/- 0.001679 -0.001064 +/- 0.001624 -0.000475 +/- 0.002170
phan2 time1 chop 0.476104 +/- 0.150039 0.2744 +/- 0.2404 0.973545 +/- 0.124653 0.987570 +/- 0.126611 0.977957 +/- 0.125338 -0.000196 +/- 0.001119 0.002787 +/- 0.000843 0.000057 +/- 0.002648
phan2 time1 unc hos 0.310917 +/- 0.145060 0.1143 +/- 0.1271 0.973924 +/- 0.124700 0.989896 +/- 0.126798 0.972212 +/- 0.124521 0.001524 +/- 0.001987 0.001644 +/- 0.003226 -0.001149 +/- 0.002316
phan2 time1 unc res 0.573942 +/- 0.159912 0.338 +/- 0.2473 0.972004 +/- 0.125488 0.992603 +/- 0.128153 0.978598 +/- 0.126395 -0.001017 +/- 0.000745 -0.001052 +/- 0.001142 0.000181 +/- 0.001112
phan2 time1 washu res 0.399943 +/- 0.159193 0.2744 +/- 0.1721 0.973515 +/- 0.122656 0.990590 +/- 0.124862 0.978706 +/- 0.123327 0.001399 +/- 0.001533 -0.000429 +/- 0.002762 -0.002402 +/- 0.002564
phan2 time2 chop 0.334249 +/- 0.148992 0.5177 +/- 0.2077 0.975330 +/- 0.124881 0.986590 +/- 0.126375 0.977786 +/- 0.125299 0.000482 +/- 0.001227 0.000831 +/- 0.001404 0.001103 +/- 0.002349
phan2 time2 unc hos 0.657453 +/- 0.159169 0.551 +/- 0.1521 0.972614 +/- 0.122543 0.986810 +/- 0.124331 0.979568 +/- 0.123450 0.000448 +/- 0.001303 0.001030 +/- 0.000899 0.001600 +/- 0.002339
phan2 time2 unc res 0.166599 +/- 0.063907 0.4218 +/- 0.231 0.971802 +/- 0.122443 0.982748 +/- 0.123822 0.969650 +/- 0.122169 0.007760 +/- 0.001445 0.001021 +/- 0.001453 -0.000299 +/- 0.001389
phan2 time2 washu res 0.201228 +/- 0.058342 0.4382 +/- 0.1562 0.973766 +/- 0.123671 0.983821 +/- 0.124961 0.972836 +/- 0.123570 -0.002218 +/- 0.001863 -0.001634 +/- 0.002000 -0.001353 +/- 0.002329
phan3 time1 chop 0.259133 +/- 0.175041 0.6439 +/- 0.126 0.971986 +/- 0.123448 0.986653 +/- 0.125336 0.976689 +/- 0.124069 0.001603 +/- 0.001702 -0.004551 +/- 0.002228 0.003174 +/- 0.004675
phan3 time1 sea 0.452670 +/- 0.297523 0.3769 +/- 0.2054 0.988928 +/- 0.127704 0.991992 +/- 0.128127 0.989708 +/- 0.127798 0.003240 +/- 0.002314 0.000590 +/- 0.001049 0.000753 +/- 0.001993
phan3 time1 unc hos 0.635246 +/- 0.158109 0.1311 +/- 0.127 0.975263 +/- 0.122875 0.989361 +/- 0.124665 0.982201 +/- 0.123788 0.001640 +/- 0.001893 0.001942 +/- 0.000933 0.000695 +/- 0.003627
phan3 time1 unc res 0.539050 +/- 0.152979 0.4504 +/- 0.1164 0.973626 +/- 0.122668 0.987238 +/- 0.124383 0.979584 +/- 0.123445 0.001921 +/- 0.001540 0.004630 +/- 0.002217 0.000202 +/- 0.002536
phan3 time2 chop 0.280374 +/- 0.086683 0.1584 +/- 0.1157 0.973434 +/- 0.123631 0.984695 +/- 0.125073 0.972197 +/- 0.123512 0.002663 +/- 0.002568 0.003467 +/- 0.001624 0.000037 +/- 0.002711
phan3 time2 sea 0.556044 +/- 0.238928 0.2208 +/- 0.133 0.988590 +/- 0.127661 0.992080 +/- 0.128118 0.984150 +/- 0.127070 0.002273 +/- 0.001335 0.000950 +/- 0.000859 0.001297 +/- 0.002274
phan3 time2 unc hos 0.526151 +/- 0.216508 0.1569 +/- 0.1836 0.974415 +/- 0.122768 0.990469 +/- 0.124820 0.980314 +/- 0.123656 -0.001155 +/- 0.002091 0.002274 +/- 0.000998 0.003932 +/- 0.002886
phan3 time2 unc res 0.743160 +/- 0.172370 0.1276 +/- 0.0877 0.972536 +/- 0.124526 0.986215 +/- 0.126279 0.981740 +/- 0.125742 -0.000120 +/- 0.001058 0.002701 +/- 0.001266 0.002270 +/- 0.004077
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