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Abstract Diffusion weighted imaging (DWI) is known to be prone to artifacts re-
lated to motion originating from subject movement, cardiac pulsation and breathing,
but also to mechanical issues such as table vibrations. Given the necessity for rigor-
ous quality control and motion correction, users are often left to use simple heuris-
tics to select correction schemes, but do not fully understand the consequences of
such choices on the final analysis, moreover being at risk to introduce confounding
factors in population studies. This paper reports work in progress towards a com-
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prehensive evaluation framework of HARDI motion correction to support selection
of optimal methods to correct for even subtle motion. We make use of human brain
HARDI data from a well controlled motion experiment to simulate various degrees
of motion corruption. Choices for correction include exclusion or registration of
motion corrupted directions, with different choices of interpolation. The compara-
tive evaluation is based on studying effects of motion correction on three different
metrics commonly used when using DWI data, including similarity of fiber orienta-
tion distribution functions (fODFs), global brain connectivity via Graph Diffusion
Distance (GDD), and reproducibility of prominent and anatomically defined fiber
tracts. Effects of various settings are systematically explored and illustrated, lead-
ing to the somewhat surprising conclusion that a best choice is the alignment and
interpolation of all DWI directions, not only directions considered as corrupted.

Key words: Diffusion MRI, HARDI, subject motion, motion correction, fiber ori-
entations, orientation distribution functions, tractography comparison, impact quan-
tification

1 Introduction

In today’s clinical diffusion-weighted (DW)-MRI acquisitions, subject motion is
considered one of the most relevant sources of noise artifacts [1], ranging from
physiological motion such as cardiac pulsation, to physical (voluntary or involun-
tary) movement by the patient. While physiological motion can be controlled by gat-
ing or in the sequence design, the physical patient movement during the diffusion-
encoding gradient pulses leads to severe signal perturbation which results in a sig-
nificant signal phase shift, or signal loss [2].

During a scanning session, the degree of patient’s cooperation may vary. For ex-
ample, elderly people who may become uncomfortable during large scanning ses-
sions, patients in pain who become restless and agitated during a scan and unsedated
pediatric subjects who will not cooperate long enough to be imaged without motion
artifacts, to name a few. As such, it is safe to assume that there are always motion
artifacts in any given DW-MRI acquisition, a proof-of-concept of this hypothesis
being presented in 2.1.1.

Motion effects can be reduced by real-time motion detection [3, 4], where the
acquisition and the source of motion are synchronized so that the data is never cor-
rupted. However, this prospective approach for motion correction might affect the
acquisition time. Further there is no guarantee that the head will ever move back
to the original position. Alternatively, the exclusion of one or more gradients bear-
ing strong motion artifacts can be exercised [5], a.k.a motion scrubbing in func-
tional MRI, however, this limits the ability to reconstruct crossing fibers especially
at small separation angles. As such, post-acquisition motion correction is impera-
tive to guarantee voxel-wise correspondence between different DWIs referring to
the same anatomical structure. A common practice is to heuristically select trans-
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Fig. 1 Experimental framework for subject motion simulation and HARDI-based reconstructions

evaluation
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formation parameter thresholds for detection of motion outliers, where registration
and interpolation is applied to gradient directions that are claimed to be corrupted.

To mitigate motion artifacts, raw DWIs are usually co-registered to the least
diffusion-weighted images using rigid transformation. Software packages for image-
based registration of DWIs are becoming readily available, e.g. FSL-MCFLIRT [6],
the Advanced Normalization Tools (ANTS) [7], TORTOISE [8] and DTIPrep [9].
Nonetheless, the interpolation step of a typical registration approach has been shown
to significantly change the noise properties of DWIs [10].

The optimal pre-processing pipeline for HARDI sequences remains an open
question and a challenge on real data. For example, is there a threshold that would
identify a motion-corrupted volume? How sensitive are HARDI reconstructions
to such a pre-defined threshold? What is the impact of various motion-correction
schemes on subsequent HARDI-based reconstructions and tractography? So far,
these issues have received, surprisingly, little attention in various DW-MRI stud-
ies of clinical populations.

This study does not focus on the closeness of HARDI-based reconstructions to
an existing truth, but on the effect of pre-processing schemes, in particular motion
correction, commonly deployed as a post-acquisition step, on succeeding steps. In
this paper, we propose a comprehensive experimental framework (see Figure 1) that
enables making use of human brain HARDI data from a well controlled motion
experiment to simulate various degrees of motion corruption. Choices for correc-
tion include scrubbing or registration of motion corrupted directions, with different
choices of interpolation, and also the option of registration/interpolation of all direc-
tions. The comparative evaluation covers three different metrics, including similarity
of fiber orientation distribution functions (fODFs) via Jensen-Shannon divergence
(JSD), global brain connectivity via Graph Diffusion Distance (GDD), and repro-
ducibility of four anatomically-defined fiber pathways via Cohen’s Kappa statistics.

On the basis of our findings, we recommend assuming there is always motion,
even subtle, in the acquired scans. As such, motion correction needs to be applied to
all gradient directions without relying heuristically on a threshold which determines
a gradient direction to be claimed as motion corrupted.

2 Materials and Methods
2.1 Phantom Acquisition

2.1.1 Proof-of-Concept:

To backup our assumption that motion is omnipresent, we analyze data from three
healthy human volunteers (males 30-40 years-old) visiting four clinical sites where
they signed a generic consent form at each site agreeing to be scanned for research
purposes. Each subject was scanned twice on a 3T Siemens Tim Trio scanner with
a strict calibration of image acquisition parameters. The scanning environment was
well controlled, a comfortable padding was used to minimize head motion while
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urging participants to remain without movement. Eddy current was compensated
by using a Twice-refocused Spine Echo (TRSE) protocol, with FoV = 209mm, 76
transversal slices, thickness = 2mm, (me)3 voxel resolution, matrix size = 1062,
TR = 11100ms, TE = 103ms, one baseline image with zero b-value and 64 DWI
with b-value at 2000 s/ mm?, with total scan time of 12.5 minutes.

FSL-MCFLIRT [6] was then used to provide the rigid transformation matrix (6
DOF) for each image volume having the baseline image as the reference for mo-
tion correction and normalized mutual information as the cost function. To quantify
motion, we used the magnitude of the translation vector (in mm) as well as the axis-
angle rotation representation (in degrees). The boxplots in Fig. 2 show the rotational
and translational components of the motion being detected from a total of 24 DWI
datasets. This shows an experimental proof of the existence of quantifiable motion
(on average 0.39° rotation and 0.61mm translation), even subtle, in the acquired
HARDI data. The graphs in Fig. 2 illustrate the arbitrariness of common calculation
of percentage of motion corruption, here shown as a function of thresholding on the
estimated motion parameters.
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Fig. 2 Average and standard deviation of the percentage of motion-corrupted gradient directions
as a function of thresholding on the estimated rotation angle in degrees (left) and the estimated
translation magnitude in mm (right) for three human phantoms scanned twice at four clinical sites.
The boxplots show the overall statistics of estimated motion parameters.

2.1.2 Atlas-Guided White Matter Parcellation:

For automated placement of 3D region-of-interests (ROIs) defining seeds for trac-
tography and connectivity, we used the publicly available JHU-DTI-SS (a.k.a.
“Eve”) atlas described in [11], which includes 176 core and peripheral ROIs. To
reduce variability introduced by individual parcellation in subject space, we defined
a common reference for our population (multiple acquisitions of the same phan-
tom). This is achieved by generating an unbiased average and diffeomorphic defor-
mations from the sets of images (using tensor maps extracted from HARDI). The
“Eve” Fractional Anisotropy (FA) atlas was registered to FA images of the phantom-
specific atlases using the ANTS [7] tool, along with mapping of the "Eve” white
matter labels. Finally, "Eve” labels were mapped back to coordinates of original
HARDI data by inverse diffeomorphic transforms.
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2.1.3 Human Motion Simulation:

As a pilot, one human phantom was asked to be re-scanned while having the head
tilted to simulate noticeable motion. The two datasets were then used to construct
motion-corrupted sequences. Based on alignment of the baseline images of the two
scans (original and tilted) using FSL-MCLFIRT, 12° rotation and 7 mm translation
were detected, while less than 1¢ of rotation and 0.8mm of translation were found
when aligning individual DWIs to their corresponding baseline image. We arbitrar-
ily considered the first out of the two scans as the “motion-free” sequence and used
it as a reference for performance evaluation of different motion correction schemes.
A random percentage of DW images (10, 30, 50, 70 and 90%, each with 10 different
random sets of gradient directions) drawn from the second scan (tilted brain) were
mixed with the first scan to construct 50 motion-corrupted datasets (10 experiments
times 5 corruption percentages).

2.1.4 Motion Correction Schemes:

We explored three motion correction schemes. In the first approach, we follow the
motion scrubbing approach, usually deployed in functional MRI, where we exclude
the affected gradient directions from subsequent computations (i.e., diffusion profile
reconstruction and tractography). In the second approach, we only align and interpo-
late the corrupted gradient directions. This mimics the situation where a pre-defined
motion parameter threshold is used to claim whether a DWI volume is motion-
corrupted. Note that the diffusion gradient vectors corresponding to the corrupted
volumes are re-oriented to incorporate the rotational component of subject motion.
In the third approach, assuming there is always motion, we force the alignment
and interpolation of all DWI volumes while the respective gradient vectors are re-
oriented accordingly. The interpolation step in the second and third approaches was
performed using FSL-MCFLIRT [6] with nearest neighbor, trilinear, sinc and spline
interpolants.

2.2 Reconstruction and Tractography

We employed the constrained spherical deconvolution (CSD) technique [12] to re-
construct fODFs using the DiPy library [13]. We used spherical harmonics repre-
sentation of order 8 which was kept constant for all our experiments. Full brain
tractography was performed using the EuDX deterministic tracking technique [14]
(implemented in the DiPy library), using random seeding inside the brain region and
a turning-angle threshold of 30° between two connected voxels. The fODFs and
tractography were computed for the 450 motion corrected sequences (50 datasets
times 9 correction schemes), as well as the motion-free sequence.

Further, a multi-ROI approach was used to reconstruct four prominent and pre-
viously well-described fiber pathways using the Template ROI set (TRS) defined
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in [15] which exploits the existing anatomical knowledge of tract trajectories. The
TRS (pass through and not-pass through) of four fundamental fiber bundles (left and
right hemispheres) were defined based on ”Eve” atlas-based parcellation of the orig-
inal DWI images. We report the matching results from the four bundles as defined
in [15]: the cortical spinal tract (CST), the inferior fronto-occipital tract (IFO), the
inferior longitudinal fasciculus (ILF), and the uncinate fasciculus (UNC).

2.3 Evaluation Metrics

2.3.1 Voxel-based Metric:

Similarities between the original motion-free fODFs and the fODFs corresponding
to the motion corrected images were measured using the Jensen-Shannon divergence
(JSD), which has been used to quantify differences between ODFs in various studies
[16].

2.3.2 Global Connectivity-based Metric:

We used the 176 core and peripheral ROIs defined in the white matter parcellation
(see 2.1.2) to compute weighted connectivity graphs from the full brain tractography
result. The edge weights were inversely proportional to the tracts lengths giving a
higher connection strength to short tracts to compensate for signal attenuation. The
brain connectivity graphs were then compared by means of the recently proposed
graph diffusion distance (GDD) metric [17], which takes into account the graph
structure in addition to the edge weights.

2.3.3 Tract-based Metric:

The spatial matching between motion-free and motion-corrected tracts was exam-
ined using Cohen’s Kappa statistic [18]. The Kappa statistic measures the level of
agreement of the tracking results (determined by cross-tabulating tract detection for
two given tracking results) and corrects for agreement that would be expected by
chance (determined by the marginal frequencies of each tracking result).

3 Results and Discussion

The average JSD metric was computed using the fODF reconstruction from the
raw dataset not corrupted by mixing DWI directions from the tilted-brain scan as a
reference (i.e. only presenting subtle motion inherent to a scan). We differentiated
between regions where multiple fibers were detected versus single fiber regions. Fig-
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ure 3 shows the average JSD values for single and multiple fiber regions as a func-
tion of motion corrupted percentage. As anticipated, heterogeneous regions are more
affected (showing larger average JSD) by the interpolation step of motion correction
in general when compared to that of single fiber regions, regardless of the interpo-
lation scheme employed. It can be observed that the impact of motion scrubbing
(removing gradient directions) becomes more pronounced when compared to in-
terpolation. The JSD values indicate minimal deformations in fODFs reconstructed
after forcing the alignment and interpolation of all gradient directions.

—&—Motion Scrubbing
0.4 r— —a—Interpolate Corrupted Directions (nearest neighbor)
Interpolate Corrupted Directions (trilinear)
—a—Interpolate Corrupted Directions (spline)
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Fig. 3 The average Jensen-Shannon divergence (JSD) values for single fiber regions (left) and for
multiple fiber regions (right)

Figure 4(left) shows the average GDD metric computed based on the weighted
connectivity graphs from tractography result based on raw scan reconstructions ver-
sus that of motion-corrected ones. One may observe consistent findings when com-
pared to the JSD metric; the global brain connectivity is least affected by the motion
correction step when forcing the alignment and interpolation of all gradient direc-
tions without setting a pre-defined threshold to claim corrupted volumes. Although
excluding corrupted gradients might seem an alternative choice for motion correc-
tion, the connectivity graphs show high deviations (larger GDD) especially when
the percentage of directions being corrupted is increased.
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Fig. 4 Left: Average Graph Diffusion Distance (GDD). Right: Average Cohen’s Kappa statistic
for the cortical spinal tract (CST) for the left hemisphere.

Figure 4(right) shows the average Kappa statistic computed from the CST tract
in the left hemisphere (other fiber tracts showed similar trends, yet their graphs
were omitted due to space limitation). Being consistent with the results from JSD
and GDD metrics, motion scrubbing shows a significant decrease in the degree of
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tract agreement when increasing percentage of motion corruption which in turn
yields discarding more gradient directions. Nonetheless, the maximal agreement is
achieved when aligning and interpolating all gradient directions to correct for mo-
tion, even if considered subtle, see Figure 5 for a sample tractography result. One
can observe that the detected tracts when corrupted gradients are excluded deviate
from being anatomically realistic. This is due to insufficient number of gradients
and unbalanced sampling of the g-space.

Template-based ROI Reference CST Motion Scrubbing Interpolate Corrupted Interpolate ALL

k=02 Directions Directions
k=05 k=07

Fig. 5 Sample tractography result for the cortical spinal tract (CST) (left hemisphere) with 50%
motion corruption.

4 Conclusion

Although there is excellent theoretical work on DWI acquisition parameters and
ODF reconstruction schemes, as well as its effects on the quality and crossing fiber
resolution, standard users lack clear guidelines and recommendations on the best
ways to approach and correct for motion in practical settings. This work investi-
gates motion correction using transformation and interpolation of affected DWI di-
rections versus the exclusion of subsets of DWIs, and its impact on the reconstructed
fODFs, on brain connectivity and on the detection of fiber tracts. The various effects
are systematically explored and illustrated via living phantom data, leading to the
conclusion that motion, even subtle, exists in every acquired DW scan while subse-
quent reconstructions are least affected by the motion correction step when forcing
the alignment and interpolation of all gradient directions without setting pre-defined
thresholds to claim corrupted volumes.
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