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Abstract

We propose a generic method for the statistical analysis of collections of anatomical shape complexes, namely sets of surfaces
that were previously segmented and labeled in a group of subjects. The method estimates an anatomical model, the template
complex, that is representative of the population under study. Its shape reflects anatomical invariants within the dataset. In addition,
the method automatically places control points near the most variable parts of the template complex. Vectors attached to these
points are parameters of deformations of the ambient 3D space. These deformations warp the template to each subject’s complex in
a way that preserves the organization of the anatomical structures. Multivariate statistical analysis is applied to these deformation
parameters to test for group di↵erences. Results of the statistical analysis are then expressed in terms of deformation patterns of the
template complex, and can be visualized and interpreted. The user needs only to specify the topology of the template complex and
the number of control points. The method then automatically estimates the shape of the template complex, the optimal position of
control points and deformation parameters. The proposed approach is completely generic with respect to any type of application
and well adapted to e�cient use in clinical studies, in that it does not require point correspondence across surfaces and is robust to
mesh imperfections such as holes, spikes, inconsistent orientation or irregular meshing.

The approach is illustrated with a neuroimaging study of Down syndrome (DS). Results demonstrate that the complex of deep
brain structures shows a statistically significant shape di↵erence between control and DS subjects. The deformation-based modeling
is able to classify subjects with very high specificity and sensitivity, thus showing important generalization capability even given a
low sample size. We show that results remain significant even if the number of control points, and hence the dimension of variables
in the statistical model, are drastically reduced. The analysis may even suggest that parsimonious models have an increased
statistical performance.

The method has been implemented in the software Deformetrica, which is publicly available at www.deformetrica.org.
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1. Introduction

Non-invasive imaging methods such as Magnetic Resonance
Imaging (MRI) enable analysis of anatomical phenotypic vari-
ations over large clinical data collections. For example, MRI is
used to reveal and quantify e↵ects of pathologies on anatomy,
such as hippocampal atrophy in neurodegenerative diseases or
change in neuronal connectivity in neurodevelopmental disor-
ders. Subject-specific digital anatomical models are built from
the segmentation and labeling of structures of interest in im-
ages. In neuroanatomy, these structures of interest are often
volumes whose boundaries take the form of 3D surfaces. For a
given individual, the set of such labeled surfaces, which we call
an anatomical complex, is indicative of the shape of di↵erent
brain objects and their relative position. Our goal is to per-
form statistics on a series of such anatomical complexes from

subjects within a given population. We assume that the com-
plex contains the same anatomical structures in each subject,
so that interindividual di↵erences are not due to the presence
or absence of a structure or a split of one structure into two.
The quantification of phenotypic variations across individuals
or populations is crucial to find the anatomical substrate of neu-
rologic diseases, for example to find an early biomarker of dis-
ease onset or to correlate phenotypes with functional or geno-
typic variables. Not only the quantification, but also the de-
scription of the significant anatomical di↵erences are important
in order to interpret the findings and drive the search for biolog-
ical pathways leading to pathologies.

The core problem is the construction of a computational
model for such shape complexes that would allow us to mea-
sure di↵erences between them and to analyze the distribution
across a series of complexes. Geometric morphometric meth-
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ods make use of the relative position of carefully defined ho-
mologous points on surfaces, called landmarks (Bookstein,
1991; Dryden and Mardia, 1998). Landmark-free methods of-
ten use geometric characteristics of the surfaces. They there-
fore need to make strong assumptions about the topology of
the surface, for example limiting analysis to genus zero sur-
faces (Chung et al., 2003; Boyer et al., 2010) or using medial
representations (Styner et al., 2005; Bouix et al., 2005; Gorc-
zowski et al., 2010) or Laplace-Beltrami eigenfunctions (Reuter
et al., 2006). Such methods can rarely be applied to raw sur-
face meshes resulting from segmentation algorithms since such
meshes may include small holes, show irregular sampling or
split objects into di↵erent parts.

More important, such methods analyze the intrinsic shape of
each structure independently, therefore neglecting the fact that
brain anatomy consist of an intricate arrangement of various
structures with strong interrelationships. By contrast, we aim at
measuring di↵erences between shape complexes in a way that
can account for both the di↵erences in shape of the individual
components and the relative position of the components within
the complex. This goal cannot be achieved by concatenating the
shape parameters of each component or by finding correlations
between such parameters (Tsai et al., 2003; Gorczowski et al.,
2010), as such approaches do not take into account the fact that
the organization of the shape complex would not change, and
in particular, that di↵erent structures must not intersect.

One way to address this problem is to consider surfaces as
embedded in 3D space and to measure shape variations induced
by deformations of the underlying 3D space. This idea stems
from Grenanders group theory for modeling objects (Grenan-
der, 1994), which revisits morphometry by the use of 3D space
deformations. The similarity between shape complexes is then
quantified by the “amount” of deformation needed to warp one
shape complex to another. Only smooth and invertible 3D de-
formations (i.e., di↵eomorphisms) are used, so that the internal
organization of the shape complex is preserved during deforma-
tion since neither surface intersection nor shearing may occur.
The approach determines point correspondences over the whole
3D volume by using the fact that surfaces should match as a
soft constraint. The method is therefore robust to segmentation
errors in that exact correspondences among points lying on sur-
faces are not enforced. In this context, a di↵eomorphism could
be seen as a low-pass filter to smooth shape di↵erences. In this
paper, it is our goal to show that the deformation parameters
capture the most relevant parts of the shape variations, namely
the ones that would distinguish between normal and disease.

Here, we propose a method that builds on the implementa-
tion of Grenanders theory in the LDDMM framework (Miller
et al., 2006; Vaillant et al., 2007; McLachlan and Marsland,
2007). The method has 3 components: (i) estimation of an
average model of the shape complex, called the template com-
plex, which is representative of the population under study; (ii)
estimation of the 3D deformations that map the template com-
plex to the complex of each subject; and (iii) statistical analysis
of the deformation parameters and their interpretation in terms
of variations of the template complex. The first two steps are
estimated simultaneously in a combined optimization frame-

work. The resulting template complex and set of deformations
are now referred to as an atlas.

Previous attempts to estimate template shapes in this frame-
work o↵ered little control over the topology of the template,
whether it consists in the superimposition of a multitude of sur-
face sheets (Glaunès and Joshi, 2006) or a set of unconnected
triangles (Durrleman et al., 2009). The topology of the tem-
plate may be chosen as one of a given subject’s complex (Ma
et al., 2008), but this topology then inherits the mesh imperfec-
tions that result from an individual segmentation. In this paper,
we follow the approach initially suggested by Durrleman et al.
(2012), which leaves the choice of the topology of the template
with number of connected components to the user. This method
estimates the optimal position of the vertices so that the shape of
the template complex is an average of the subjects complexes.
Here, we extend this approach in order to guarantee that no self-
intersection could occur during the optimization.

The set of deformations that result from warping the tem-
plate complex to each subjects complex captures the variabil-
ity across subjects. The deformation parameters quantify how
the subjects anatomy is di↵erent from the template, and can
be used in a statistical analysis in the same spirit as in Vail-
lant et al. (2004) and Pennec (2006). We follow the approach
initiated in Durrleman et al. (2011, 2013), which uses control
points to parameterize deformations. The number of control
points is fixed by the user, and the method automatically adjusts
their position near the most variable parts of the shape complex.
The method therefore o↵ers control over the dimension of the
shape descriptor that is used in statistics, and thus avoids an
unconstrained increase with the number of surfaces and their
samplings (Vaillant and Glaunès, 2005). We show that statis-
tical performance is not reduced by this finite-dimensional ap-
proximation and that the parameters can robustly detect subtle
anatomical di↵erences in a typical low sample size study. We
postulate that in some scenarios, the statistical performance can
even be increased, as the ratio between the number of subjects
and the number of parameters becomes more favorable.

An important key element of the method is a similarity metric
between pairs of surfaces. Such a metric is needed to optimize
the deformation parameters that enable the best matching be-
tween shape complexes. We use the varifold metric that has
been recently introduced in Charon and Trouvé (2013). It ex-
tends the metric on currents (Vaillant and Glaunès, 2005) in
that it considers the non-oriented normals of a surface instead
of the oriented normals. The method is therefore robust to pos-
sible inconsistent orientation of the meshes. It also prevents the
“canceling e↵ect” of currents, which occurs if two surface ele-
ments with opposite orientation face each other, and which may
cause the template surface to fold during optimization. Other-
wise, the metric inherits the same properties as currents: it does
not require point-correspondence between surfaces and is ro-
bust to mesh imperfections such as holes, spikes or irregular
meshing (Vaillant and Glaunès, 2005; Durrleman et al., 2009).

This paper is structured as follows to give a self-contained
presentation of the methodology and results. We first focus on
the main steps of the atlas construction, while discussing the
technical details of the theoretical derivations in the appendices.
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We then present an application to neuroimage data of a Down
syndrome brain morphology study. This part focuses on the
new statistical analysis of deformations that becomes possible
with the proposed framework, and it also presents visual rep-
resentations that may support interpretation and findings in the
context of the driving clinical problem. The analysis also in-
cludes an assessment of the robustness of the method in various
settings.

2. Mathematical Framework

2.1. Kernel formulation of splines

In the spline framework, 3D deformations � are of the form
�(x) = x+v(x), where v(x) is the displacement of any point x in
the ambient 3D space, which is assumed to be the sum of radial
basis functions K located at control point positions {ck}k=1,...,Ncp :

v(x) =
NcpX

k=1

K(x, ck)↵k. (1)

Parameters ↵1, . . . ,↵Ncp are vector weights, Ncp the number of
control points and K(x, y) is a scalar function that takes any pair
of points (x, y) as inputs. In the applications, we will use the
Gaussian kernel K(x, y) = exp(� |x � y|2 /�2

V ), although other
choices are possible such as the Cauchy kernel K(x, y) = 1/(1+
|x � y|2 /�2

V ) for instance.
It is beneficial to assume that K is a positive definite symmet-

ric kernel, namely that K is continuous and that for any finite
set of distinct points {ci}i and vectors {↵i}i:

X

i

X

j

K(ci, c j)↵i
T↵ j � 0, (2)

the equality holding only if all ↵i vanish. Translation invariant
kernels are of particular interest. According to Bochner’s theo-
rem, functions of the form K(x� y) are positive definite kernels
if and only if their Fourier transform is a positive definite op-
erator, in which case (2) becomes a discrete convolution. This
theorem enables an easy check if the previous Gaussian func-
tion is indeed a positive-definite kernel, among other possible
choices.

Assuming K is a kernel allows us to define the pre-Hilbert
space V as the set of any finite sums of terms K(., c)↵ for vector
weights ↵. Given two vector fields v1 =

P
i K(., ci)↵i and v2 =P

j K(., c0j)� j, (2) ensures that the bilinear map

hv1, v2iV =
X

i

X

j

K(ci, c0j)↵i
T� j (3)

defines an inner-product on V . This expression also shows that
any vector field v 2 V satisfies the reproducing property:

hv,K(., c)↵iV = v(c)T↵, (4)

defined for any point c and weight ↵. The space of vector
fields V could be “completed” into a Hilbert space by con-
sidering possible infinite sums of terms K(., c)↵, for which (4)

still holds. Such spaces are called Reproducing Kernel Hilbert
Spaces (RKHS) (Zeidler, 1991).

Using matrix notations, we denote c and ↵ (resp. c

0 and �) in
R3N (resp. R3M) the concatenation of the 3D vectors ci and ↵i

(resp. c0j and � j), so that the dot product (3) writes hv1, v2iV =
↵T

K(c, c0)�, where K(c, c0) is the 3N ⇥ 3M matrix with entries
K(ci, c0j)I3⇥3.

2.2. Flows of di↵eomorphisms

The main drawback of such deformations is their non-
invertibility, as soon as the magnitude of v(x) or its Jacobian
is “too” large. The idea to build di↵eomorphisms is to use the
vector field v as an instantaneous velocity field instead of a dis-
placement field. To this end, we make the control points ck

and weights ↵k to depend on a “time” t that plays the role of a
variable of integration. Therefore, the velocity field at any time
t 2 [0, 1] and space location x is written as:

vt(x) =
NcpX

k=1

K(x, ck(t))↵k(t) (5)

for all t 2 [0, 1]
A particle that is located at x0 at t = 0 follows the integral

curve of the following di↵erential equation:

dx(t)
dt
= vt(x(t)), x(0) = x0, (6)

This equation of motion also applies for control points. Using
matrix notations, their trajectories follow the integral curves of

ċ(t) = K(c(t), c(t))↵(t), c(0) = c0. (7)

At this stage, point trajectories are entirely determined by time-
varying vector weights ↵k(t) and initial positions of control
points c0.

For each time t, one may consider the mapping x0 ! �t(x0),
where �t(x0) is the position at time t of the particle that was at
x0 at time t = 0, namely the solution of (6). At time t = 0,
�0 = IdR3 (i.e., �0(x0) = x0). At any later time t, the mapping is
a 3D di↵eomorphism. Indeed, it is shown in Miller et al. (2006)
that (6) has a solution for all time t > 0, provided that time-
varying vectors ↵k(t) are square integrable. It is also shown
that these mappings are smooth, invertible and with smooth in-
verse. In particular, particles cannot collide, thus preventing
self-intersection of shapes. At any space location x, one can
find a particle that passes by this point at time t via backward
integration, thus preventing shearing or tearing of the shapes
embedded in the ambient space.

For a fixed set of initial control points c0, the time-varying
vectors ↵(t) define a path (�t)t in a certain group of di↵eomor-
phisms, which starts at the identity �0 = IdR3 , and ends at �1,
the latter representing the deformation of interest. We aim to es-
timate such a path, so that the mapping �1 brings the template
shapes as close as possible to the shapes of a given subject. The
problem is that the vectors, which enable us to reach a given
�1 from the identity, are not unique. It is natural to choose the
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vectors that minimize the integral of the kinetic energy along
the path, namely

1
2

Z 1

0
kvtk2V dt =

1
2

Z 1

0
↵(t)T

K(c(t), c(t))↵(t)dt. (8)

We show in Appendix A that the minimizing vectors ↵(t), con-
sidering c(0) and c(1) fixed, satisfy a set of di↵erential equa-
tions. Together with the equations driving motion of control
points (7), they are written as:

8>>>>>>>>>><
>>>>>>>>>>:

ċk(t) =
NcpX

p=1

K(ck(t), cp(t))↵p(t)

↵̇k(t) = �
NcpX

p=1

↵k(t)T↵p(t)r1K(ck(t), cp(t))

(9)

Denoting S(t) =
 

c(t)
↵(t)

!
the state of the system of control

points at time t, (9) could be written in short as

Ṡ(t) = F(S(t)), S(0) =
 

c0
↵0

!
. (10)

The flow of deformations is now entirely parameterized by
initial positions of control points c0 and initial vectors ↵0
(called momenta in this context). Integration of (10) computes
the position of control points c(t) and momenta ↵(t) at any time
t from initial conditions. Control points and momenta define,
in turn, a time-varying velocity field vt via (5). Any configura-
tion of points in the ambient space, concatenated into a single
vector X0, follows the trajectory X(t) that results from the in-
tegration of (6). Using matrix notation, this ODE is written as
Ẋ(t) = vt(X(t)) = K(X(t), c(t))↵(t) with X(0) = X0, which can
be further shortened to:

Ẋ(t) = G(X(t),S(t)), X(0) = X0 (11)

A given set of initial control points c0 defines a sub-group
of finite dimension of our group of di↵eomorphisms. Paths of
minimal energy, also called geodesic paths, are parameterized
by initial momenta ↵0, which play the role of the logarithm
of the deformation �1 in a Riemannian framework. Integra-
tion of (10) computes the exponential map. It is easy to check
that kvtkV is constant along such geodesic paths. Therefore, the
length of the geodesic path that connects �0 = IdR3 to �1 (i.e.,R 1

0 kvtkV dt) simply equals the norm of the initial velocity (i.e.,
kv0kV ).

2.3. Varifold metric between surfaces
Deformation parameters c0,↵0 will be estimated so as to

minimize a criterion measuring the similarity between shape
complexes. To this end, we define a distance between sur-
face meshes in this section, and show how to use it for shape
complexes in the next section. If the vertices in two meshes
correspond, then the sum of squared di↵erences between ver-
tex positions could be used. However, finding such correspon-
dences is a tedious task and is usually done by deforming an

atlas to the meshes. This procedure leads to a circular defini-
tion, since we need this distance to find deformations between
meshes! Among distances that are not based on point corre-
spondences, we will use the distance on varifolds (Charon and
Trouvé, 2013). In the varifold framework, meshes are embed-
ded into a Hilbert space in which algebraic operations and dis-
tances are defined. In particular, the union of meshes translates
to addition of varifolds. The inner-product between two meshes
S and S0 is given as:

⌦S,S0↵W⇤ =
X

p

X

q

KW (cp, c0q)

⇣
nT

p n0q
⌘2

���np

���
���n0q

���
(12)

where cp and np (resp. c0q and n0q) denotes the centers and nor-
mals of the faces of S (resp. S0). The norm of the normals

���np

���
equals the area of the mesh cell. KW is a kernel, typically a
Gaussian function with a fixed width �W .

The distance between S and S0 then simply writes:
dW (S,S0)2 = kS � S0k2W⇤ = hS,SiW⇤ + hS0,S0iW⇤ �2 hS,S0iW⇤ .
One notices that the inner-product, and hence the distance, does
not require vertex correspondences. The distance measures
shape di↵erences in the di↵erence in normals directions, by
considering every pair of normals in a neighborhood of size�W .
It considers meshes as a cloud of undirected normals and there-
fore does not make any assumptions about the topology of the
meshes; one mesh may consist of several surface sheets, have
small holes or have irregular meshing. Di↵erences in shape at a
scale smaller than the kernel width �W are smoothed, thus mak-
ing the distance robust to spikes or noise that may occur during
image segmentation. The inner-product resembles the one in
the currents framework (Vaillant and Glaunès, 2005; Durrleman

et al., 2009), except that (nT
p n0q)2

|np||n0q| now replaces
⇣
nT

p n0q
⌘
. With this

new expression, the distance is invariant if some normals are
flipped. It does not require the meshes to have a consistent ori-
entation. Contrary to other correspondence-free distance such
as the Hausdor↵ distance, the gradient of this distance with re-
spect to the vertex positions is easy to compute, which is par-
ticularly useful for optimization.

We explain now how (12) is obtained. In the varifold frame-
work, one considers a rectifiable surface embedded in the am-
bient space as an (infinite) set of points with undirected unit
vectors attached to them. The set of undirected unit vectors is
defined as the quotient of the unit sphere in R3 by the two el-
ements group {±IdR3 }, and is denoted

 !S . We denote  !u the
class of u 2 R3 in

 !S , meaning that u, u/ |u| and �u/ |u| are
all considered as the same element:  !u . In a similar construc-
tion as the currents, we introduce square-integrable test fields !
which is function of space position x 2 R3 and undirected unit
vectors  !u 2  !S . Any rectifiable surface could integrate such
fields ! thanks to:

S(!) =
Z

⌦S
!(x,

 �!
n(x)) |n(x)| dx, (13)

where x denotes a parameterization of the surface S over a do-
main ⌦

S

, and where n(x) denotes the normal of S at point x.

4
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This expression is invariant under surface re-parameterization.
It shows that the surface is a linear form on the space of test
fields W. The space of such linear forms, denoted W⇤ the dual
space of W, is the space of varifolds.

For the same computational reasons as for currents, we as-
sume W to be a separable RKHS on R3 ⇥  !S with kernel K
chosen as:

K
⇣⇣

x, !u
⌘
,
⇣
y, !v

⌘⌘
= KW (x, y)

 
uT v
|u| |v|

!2

. (14)

It is the same kernel as currents for the spatial part KW , and a
linear kernel for the set of undirected unit vectors.

The reproducing property (4) shows that:

!(x,
 �!
n(x)) =

⌧
!,K

✓
(x,
 �!
n(x)), (., .)

◆�

W
.

Plugging this equation in (14) leads to

S(!) =
⌧
!,

R
⌦S
K

✓
(x,
 �!
n(x)), (., .)

◆
|n(x)| dx

�

W
.

The second part of the inner-product could be then identified
with the Riesz representant of the varifold S in W, denoted
L�1

W (S).
Therefore, the inner-product between two rectifiable surfaces

S and S0 is hS,S0iW⇤ = S(L�1
W (S0)) =

Z

⌦S

Z

⌦S0
KW (x, x0)

 
n(x)T n(x0)
|n(x)| |n(x0)|

!2

|n(x)|
���n0(x)

��� dxdx0 (15)

The expression in (12) is nothing but the discretization of this
last equation.

For S a rectifiable surface and � a di↵eomorphism, the sur-
face �(S) can still be seen as a varifold. Indeed, a change
of variables shows that for ! 2 W, �(S)(!) = S(� ? !)

where � ? !(x, !n ) =
���(dx��1)T n

���!(�(x),
 ������!
(dx��1)T n) (Charon

and Trouvé, 2013). Therefore, the varifold metric can be used
to search for the di↵eomorphism � that best matches S to S0 by
minimizing dW (�(S),S0)2 = k�(S) � S0k2W⇤ .

In practice, the deformed varifold is computed by moving
the vertices of the mesh and leaving unchanged the connectiv-
ity matrix defining the mesh cells. This scheme amounts to an
approximation of the deformation by a linear transform over
each mesh cell. Therefore, the distance k�(S) � S0k2W⇤ is only
a function of X(1), i.e. A(X(1)), where we denote X0 the con-
catenation of the vertices of the mesh S and X(1) the position
of the vertices after deformation. Indeed, from the coordinates
in X(1), we can compute centers and normals of faces of the
deformed mesh that can be then plugged into (12) to compute
the distance k�(S) � S0k2W⇤ .

Note that the varifold framework extends to 1D mesh repre-
senting curves in the ambient space, by replacing normals by
tangents. In its most general form, varifold is defined for sub-
manifolds with tangent-space attached to each point and uses
the concept of Grassmannian (Charon and Trouvé, 2013).

2.4. Distances between anatomical shape complexes
The above varifold distance between surface meshes extends

to a distance between anatomical shape complexes. An anatom-
ical complex O is the union of labeled surface meshes, each
label corresponding to the name of an anatomical structure.
Meshes are pooled according to their labels into S1, . . . ,SN ,
where each Sk contains all vertices and edges sharing the same
label k. Let O0 = {S01, . . . ,S0N} be another shape complex with
the same number N of anatomical structures, but where the
number of vertices and connected components in each S

0
k may

be di↵erent than in Sk. The similarity measure between both
shape complexes is then defined as the weighted sum of the
varifold distance between pairs of homologous structures:

dW (O,O0)2 =

NX

k=1

1
2�2

k

���
Sk � S

0
k

���2
W⇤ (16)

The values of �k balance the importance of each structure
within the distance. They are set by the user.

This distance cannot be used ‘as’ in a statistical analysis,
since it is too flexible and, by construction, does not penalize
changes in the organization of shape complexes. The idea is
to use the distance on di↵eomorphisms as a proxy to measure
distances between shape complexes, the distance on varifolds
being used to find such di↵eomorphisms. Let O and O0 be two
shape complexes and {�t}t2[0,1] be a geodesic path connecting
�0 = IdR3 to �1 such that, �1(O) = O0. We can then define the
distance between O and O0 as the length of this geodesic path,
which equals the norm of the initial velocity field v0. Formally,
we define:

d�(O,O0)2 = kv0k2V = ↵T
0 K(c0, c0)↵0, (17)

for a given set of initial control points c0 and with ↵0 such that
�↵0

1 (O) = O0.
However, it is rarely possible to find such a di↵eomorphism

that exactly matches O and O0. It is even not desirable since
such a matching will be likely to capture shape di↵erences that
are specific to these two shape complexes and that poorly gen-
eralize to other instances. We prefer to replace the expression
in (17) with the following relaxed formulation:

d�(O,O0)2 = ↵T
0 K(c0, c0)↵0

with ↵0 = arg min
↵

dW (�↵1 (O),O0). (18)

In this expression, the distance between varifolds dW is used to
find the deformed shape complex �1(O) that is the closest to
the target complex O0 and the distance in the di↵eomorphism
group between O and �1(O) quantifies how far the two shape
complexes are. The minimizing ↵0 gives the relative position
of �1(O) (which is similar to O0) with respect to O0.

In the following, O will represent the template shape com-
plex that will be a smooth mesh with a simple topology and
regular meshing. By construction, the deformed template �1(O)
is as smooth and regular as the template itself, whereas the
subjects’ shape complex O0 may have irregular meshing, small
holes, spikes, etc.. On the one hand, dW is flexible and loose
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in the sense that it measures a global discrepancy between the
deformed template �1(O) and the observation O0, but does not
provide an accurate and computable description of the shape
di↵erences. On the other hand, d� captures only shape di↵er-
ences that are consistent with a smooth and invertible defor-
mation of the shape complex O, leaving in the residual norm
dW (�1(O),O0) all other di↵erences including noise and such
very small scale mesh deformations. Deformations can be seen
as a smoothing operator that captures only certain kind of shape
variations and encode them into a descriptor ↵0, which will be
used in the statistical analysis. The varifold metric dW allows us
to compute this distance d� without the need to smooth meshes,
to build single connected components, to control for mesh qual-
ity, etc.

2.5. Atlas construction method
We are now in a position to introduce the estimation of an

atlas from a series of anatomical shape complexes segmented
in a group of subjects. An atlas refers here to a prototype shape
complex, called a template, a set of initial control points located
near the most variable parts of the template and momenta pa-
rameterizing the deformation of the template to each subject’s
complex.

For Nsu subjects, let {O1, . . . ,ONsu } be a set of Nsu surface
complexes, each complex Oi being made of labeled meshes
Si,1, . . . ,Si,N . We define the template shape complex, denoted
O0, as a Fréchet mean, which is defined as the minimizer of the
sample variance: O0 = arg minO

P
i d�(O,Oi)2. The computa-

tion of d� in (18) requires the estimation of a di↵eomorphism �
by minimizing the varifold metric dW (�(O),Oi). The combina-
tion of the two minimization problems leads to the optimization
of the single joint criterion:

E(O0, c0{↵i
0}) =

NsuX

i=1

( NX

k=1

1
2�2

k

dW (�↵
i
0

1 (S0,k),Si,k)2

+ (↵i
0)T

K(c0, c0)↵i
0

)
. (19)

The sum
PN

i=1(↵i
0)T

K(c0, c0)↵i
0 =

PN
i=1

���vi
0

���2 is the sample vari-
ance. This term attracts the template complex to the “mean” of
the observations. The other term with the varifold metric acts
on the deformation parameters so as to have the best matching
possible between the template complex and each subject’s com-
plex. The weights�k can be now interpreted as Lagrange multi-
pliers. The momentum vectors ↵i

0 parameterize each template-
to-subject deformation. We assume here that they are all at-
tached to the same set of control points c0, thus allowing the
comparison of the momentum vectors of di↵erent subjects in
the statistical analysis.

We further assume that the topology of the template complex
is given by the user, so that the criterion depends only on the
positions of the vertices of the template meshes. The number
of control points is also set by the user, so that the criterion
depends only on the positions of such points. In practice, the
user gives as input of the algorithm a set of N meshes (typically
ellipsoid surface meshes) whose number of vertices and edges

connecting the vertices are not be changed during optimization.
The user also gives a regular lattice of control points as input of
the algorithm. Optimization of (19) finds the optimal position
of the vertices of the template meshes, the optimal position of
the control points and the optimal momentum vectors.

Let S

i
0 = {c0,p,↵i

0,p} denote the parameters of vi
0, and X0 the

vertices of every template surface concatenated into a single
vector. The flow of di↵eomorphisms results from the integra-
tion of Nsu di↵erential equations, as in (10): Ṡ

i(t) = F(Si(t))
with S

i(0) = S

i
0. As in (11), X0 follows the integral curve of Nsu

di↵erential equations: Ẋ

i(t) = G(Xi(t),Si(t)) with X

i(0) = X0.
The final value X

i(1) = �vi
0

1 (X0) gives the position of the vertices
of the deformed template meshes, from which we can compute
centers and normals of each face of the deformed meshes, pool
them according to mesh labels and compute each term of the
kind dW (�↵

i
0

1 (S0,k),Si,k)2 using the expression in (12). There-
fore, the varifold term essentially depends on the vector X

i(1)
and is denoted A(Xi(1)). By contrast, the norm of the initial ve-
locity, ↵i

0
T K(c0, c0)↵i

0 depends only on the initial conditions S

i
0

and is written as L(Si
0). The criterion (19) can be rewritten now

as:

E(X0, {Si
0}) =

NsuX

i=1

⇣
A(Xi(1)) + L(Si

0)
⌘
,

s.t.
(

Ṡ

i(t) = F(Si(t)) S

i(0) = S

i
0

Ẋ

i(t) = G(Xi(t),Si(t)) X

i(0) = X

i
0
. (20)

We notice that the parameters to optimize are the initial condi-
tions of a set of coupled ODEs and that the criterion depends
on the solution at time t = 1 of these equations. The gradient
of such a criterion is typically computed by integrating a set
of linearized ODEs, called adjoint equations, like in Durrleman
et al. (2011); Vialard et al. (2012); Cotter et al. (2012) for in-
stance. The derivation is detailed in Appendix B. As a result,
the gradient is given as:

8>>>>><
>>>>>:

r↵i
0
E = ⇠↵,i(0) + r↵i

0
L(Si

0)

r
c0 E =

NsuX

i=1

⇣
⇠c,i(0) + r

c0 L(Si
0)
⌘ , r

X0 E =
PNsu

i=1 ✓
i(0),

where the auxiliary variables ⇠i(t) = {⇠c,i(t), ⇠↵,i(t)} (of the same
size as S

i(t)) and ✓i(t) (of the same size as X0) satisfy the linear
ODEs (integrated backward in time):
8>>><
>>>:
✓̇

i(t) = �
⇣
@1G(Xi(t),Si(t))

⌘T
✓i(t), ✓i(1) = r

X

i(1)A

⇠̇
i(t) = ��@2G(Xi(t),Si(t)

�T✓i(t) � d
S

i(t)FT⇠i(t), ⇠i(1) = 0
.

Data come into play only in the gradient of the varifold met-
ric with respect to the position of the deformed template r

X

i(1)A
(derivation is straightforward and given in Appendix C). This
gradient indicates in which direction the vertices of the de-
formed template have to move to decrease the criterion. This
decrease could be achieved in two ways, by optimizing the
shape of the template complex or the deformations matching
the template to each complex. The vector ✓i transports the gra-
dient back to t = 0 where it is used to update the position of
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the vertices of the template complex. The vector ⇠i interpolates
at the control points the information in ✓i, which is located at
the template points, and is used at t = 0 to update deformation
parameters. A striking advantage of this formulation is that one
single gradient descent optimizes simultaneously the shape of
the template complex and deformation parameters.

By construction, only the positions of the vertices of the
template shape complex are updated during optimization. The
edges in the template mesh remain unchanged, so that no shear-
ing or tearing could occur along the iterations. However, the
method does not guarantee that the template meshes do not self-
intersect after an iteration of the gradient descent. To prevent
such self-intersection, we propose to use a Sobolev gradient in-
stead of the current gradient, which was computed for the L2

metric on template points X0. The Sobolev gradient for the
metric given by a Gaussian kernel KX with width �X , is simply
computed from the L2 gradient as:

rX
x0,k

E =
NsuX

i=1

NxX

p=1

KX(x0,k, x0,p)✓i
p(0). (21)

We show in Appendix D that this new gradient rXE is the re-
striction to X0 of a smooth vector field us. Denoting X0(s) the
positions of the vertices of the template meshes at iteration s
of the gradient descent, we have that X0(s) =  s(X0(0)) where
 s is the family of di↵eomorphisms integrating the flow of us.
At convergence, the template meshes, therefore, have the same
topology as the initial meshes.

Eventually, the criterion is minimized using a line search gra-
dient descent method. The algorithm is initialized with tem-
plate surfaces given as ellipsoidal meshes, control points lo-
cated at the nodes of a regular lattice and momenta vectors set to
zero (i.e., no deformation). At convergence, the method yields
the final atlas: a template shape complex, optimized positions
of control points and deformation momenta.

2.6. Computational aspects

2.6.1. Numerical schemes
The criterion for atlas estimation is minimized using a line

search gradient descent method combined with Nesterov’s
scheme (Nesterov, 1983). Di↵erential equations are integrated
using a Euler scheme with prediction correction, also known
as Heun’s method, which has the same accuracy as the Runge-
Kutta scheme of order 2. Sums over the control points or over
template points are computed using projections on regular lat-
tices and FFTs using the method in Durrleman (2010, Chap.
2).

The method has been implemented in a software called
“Deformetrica”, which can be downloaded freely at www.

deformetrica.org.

2.6.2. Parameter setting
The method depends on the kernel width for the deformation

�V , for the varifolds �W and for the gradient �X , as well as
the weights �k that balance each data term against the sum of
squared geodesic distances between template and observations.

The kernel widths �V and �W compare with the shape sizes.
The varifold kernel width �W needs to be large enough to
smooth noise and to be sensitive to di↵erences in the relative
position between meshes (Durrleman, 2010, Ch. 1); otherwise
values that are too small tend to make the shapes orthogo-
nal. However, too large values tend to make all shape alike
and therefore alter matching accuracy. The deformation kernel
width �V compares with the scale of shape variations that one
expects to capture. Deformations are built essentially by inte-
grating small translations acting on the neighborhoods of radius
�V . With smaller values, the model considers more indepen-
dent local variations and the information in larger anatomical
regions is not well integrated. With larger values, the model is
based on almost rigid deformations.

The value of �X is essentially a fraction of �V : �V or 0.5�V

work well in practice. The weights �k are chosen so that data
terms have the same order of magnitude as the sum of squared
geodesic lengths. Values that are too small over-weight the im-
portance of the data term and prevent the template from con-
verging to the “mean” of the shape set. Values that are too large
alter matching accuracy and thus shape features captured by the
model.

A reasonable sampling of control points is reached for a dis-
tance between two control points being equal to the deforma-
tion kernel width �V . Finer sampling often induces a redundant
parameterization of the velocity fields as shown in Durrleman
(2010). Nonetheless, coarser sampling also may be su�cient
for the description of the observed variability, as shown in the
next experiments.

Kernel widths are chosen after few trials to register a pair
of shape complexes. The weights �k were then assessed while
building an atlas with 3 subjects. The initial distribution of the
control points was always chosen as the nodes of a regular lat-
tice with step �V or a down-sampled version of it. We always
keep �X = 0.5�V . A qualitative discussion about the e↵ects of
parameter settings can also be found in Durrleman (2010).

We will show that the method works well without fine param-
eter tuning and that statistical results are robust with respect to
changes in parameter settings.

3. Application to a Down syndrome neuroimaging study

We evaluate our method on a dataset of 3 anatomical struc-
tures segmented from MRIs of 8 Down syndrome (DS) sub-
jects and 8 control cases. The hippocampus, amygdala and
putamen of the right hemisphere (respectively in green, cyan
and orange in figures) form a complex of grey matter nuclei
in the medial temporal lobe of the brain. This study aims to
detect complex non-linear morphological di↵erences between
both groups, thus going beyond size analysis, which already
showed DS subjects to have smaller brain structures than con-
trols (Korenberg et al., 1994; Mullins et al., 2013). Whereas
our sample size is small in view of standard neuroimaging stud-
ies, the previous findings in neuroimaging of DS suggest large
morphometric di↵erences. We therefore hypothesize that such
di↵erences would also be reflected in the shapes of anatomical
structures, so that the proposed method could demonstrate its
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Initial Atlas Final Atlas Initial Atlas Final Atlas 

a - Atlas construction with 105 control points b- Atlas construction with 8 control points

Figure 1: Atlas estimated from di↵erent initial conditions. Left: 105 control points with initial spacing equal to the deformation
kernel width �V = 10 mm, Right: 8 control points. Arrows are the momentum vectors of DS subjects (red) and controls (blue).
Control points that were initially on a regular lattice move to the most variable place of the shape complex during optimization.
Arrows parameterize space deformations and are used as a shape descriptor of each subject in the statistical analysis.

strength to di↵erentiate intra-group variability from inter-group
di↵erences. To discard any linear di↵erences, including size,
we co-register all shape complexes using a�ne transforms.

We then construct an atlas using all data, setting �V =
10 mm, �W = 5 mm, �X = �V/2 and �k = �V for all nu-
clei, and control points initially located at the nodes of regular
lattice of step �V , yielding a set of 105 points. Robustness of
results with respect to these values is discussed in Sec. 3.6.

The resulting template shape complex (Fig. 1-a) averages the
shape characteristics of every individual in the dataset. The
position of each subject’s anatomical configuration (either DS
or controls) with respect to the template configuration is given
by initial momentum vectors located at control point positions
(arrows in Fig. 1). These momentum vectors lie in a finite-
dimensional vector space, whose dimension is 3 times the num-
ber of control points. Standard methods for multivariate statis-
tics can be applied in this space. The resulting statistics are
expressed in terms of a set of momentum vectors. The template
shape complex can be deformed in the direction pointed by
the statistics via the integration of the geodesic shooting equa-
tions (10) followed by the flow equations (11). This procedure,
also known as tangent-space statistics, is a way to translate the
statistics into deformation patterns, and hence eases the inter-
pretation of the results.

In the following sections, we show how such statistics can be
computed and visualized, using the Down syndrome data as a
case study.

3.1. Group di↵erences

The first step is to show the di↵erences between healthy con-
trols (HC) and DS subjects that have been captured by the at-
las. We compute the sample mean of the momenta for each
group separately: ↵HC = 1

NHC
su

P
i2HC
↵i and ↵DS = 1

NDS
su

P
i2DS
↵i,

where HC (resp. DS) denotes the set of indices corresponding
to healthy controls (resp. DS subjects). We then deform the
template complex in the direction of both means, thus show-
ing anatomical configurations that are typical of each group
(Fig. 2). The figure shows that nuclei of DS subjects are turned

toward the left part of the brain, with another torque that pushes
the hippocampus tail (its posterior part) toward the superior part
of the brain, and the head toward the inferior part. These two
torques are more pronounced near the hippocampus/amygdala
boundary than in the hippocampus tail or upper putamen re-
gion. The DS subjects’ amygdala also has lesser lateral exten-
sion than that of the controls.

We perform Linear Discriminant Analysis (LDA) to exhibit
the most discriminative axis between both groups in the mo-
menta space. For this purpose, we compute the initial veloci-
ties of the control points v

i = K(c0, c0)↵i. The sample covari-
ance matrix of these velocities, assuming equal variance in both
groups, is given by:

⌃ =
1

Nsu

0
BBBBB@
X

i2HC

(vi � v

HC)
⇣
v

i � v

HC
⌘T
+

X

i2DS

(vi � v

DS )(vi � v

DS )T

1
CCCCCA .

The direction of the most discriminative axis in the veloc-
ity space is defined as v

LDA± = v ± ⌃�1(vHC � v

DS ) where
v = 1

2 (vHC + v

DS ). The associated momentum vectors are
given as: ↵LDA± = K(c0, c0)�1

v

LDA± . The anatomical configu-
rations are generated deforming the template shape complex in
the two directions ↵LDA± . We normalize the directions, so that
their norm equals the norms between the means:

���↵LDA±
���

W⇤ =���↵HC � ↵DS
���

W⇤ . Therefore, the sum of the geodesic distance
between the template complex and each of the deformed com-
plexes is twice the norm between the means.

Results in Fig. 3 reveal similar thinning e↵ects and torques
as in Fig. 2. The figure also shows that putamen structures of
DS subjects are more bent than those of controls.

Remark 3.1. Note that if the number of observations is smaller
than 3 times the number of control points, then ⌃ is not invert-
ible, and we use instead the regularized matrix ⌃+ "I3. In prac-
tice, we use " = 10�2, which leads to a condition number of
the covariance matrix of order 1000. Statistics are not altered if
this number is increased to 0.1 and 1, for which the condition
number become 100 and 10 (results not shown).
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Anterior Right 

Figure 2: Template complex deformed using the mean deforma-
tion of controls (transparent shapes) and DS subjects (opaque
shapes), which illustrates the anatomical di↵erences that were
found between both groups.
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Figure 3: Most discriminative deformation axis showing the
anatomical features that are the most specific to the DS subjects
as compared to the controls. Di↵erences are amplified, since the
distance between the two configurations is twice the distance
between the means (black grids are mapped to the surface for
visualization only)

Remark 3.2. Note that we perform the statistical analysis us-
ing the velocity field sampled at the control points v =
K(c0, c0)↵ and the usual L2 inner-product. However, it would
seem more natural to use the RKHS metric on the momenta ↵
instead. Using the RKHS metric amounts to using ṽ = K

1/2↵ so
that the inner-product becomes (ṽi)T

ṽ

j = ↵iT
K(c0, c0)↵ j, which

is the inner-product between the velocity fields in the RKHS V .
One can easily check that without regularization (" = 0), the
most discriminant axis is the same in both cases, as will be the
LDA and ML classification criteria introduced in the sequel.
Using the identity matrix as a regularizer for the sample covari-
ance matrix above amounts to using the matrix K(c0, c0)�1 as
a regularizer in the RKHS space. More precisely, the matrix
⌃ + "I3 becomes ⌃̃ + "K(c0, c0)�1 where ⌃̃ is the sample co-
variance matrix of the ṽ

i’s. It is natural to use this regularizer,
since the criterion for atlas construction precisely assumes the
momentum vectors to be distributed with a zero-mean Gaussian
distribution with covariance matrix K(c0, c0)�1 (which leads to���vi

0

���2
V = ↵

i
0

T
K↵i

0 in (19)). For this reason, the same matrix
is used in Allassonnière et al. (2007) as a prior in a Bayesian
estimation framework.

3.2. Statistical significance
We estimate the statistical significance of the above group

di↵erences using permutation tests in a multivariate setting. In
our experiments, the number of subjects is always smaller than
the dimension of the concatenated momentum vectors, which
is 3 times the number of control points. In this case the distri-
bution Hotelling T 2 statistics cannot be computed and we use
permutations to give an estimate of this distribution.

Let (uk, �2
k) be the eigenvectors and eigenvalues sorted in

decreasing order of the sample covariance matrix ⌃ (without
regularization, i.e., " = 0). We truncate the matrix up to the
Nmodes largest eigenvalues that explain 95% of the variance: ⌃̃ =PNmodes

k=1 �2
kukuT

k . Its inverse is given by: ⌃̃�1 =
PNmodes

k=1
1
�2

k
ukuT

k .

We then compute the T 2 Hotelling statistics as:

T 2 =
Nsu � 2

4
(vHC � v

DS )T ⌃̃�1(vHC � v

DS ).

To estimate the distribution of the statistics under the null hy-
pothesis of equal means, we compute the statistics for 105 per-
mutations of the subjects’ indices i. Each permutation changes
the empirical means and within-class covariance matrices, and
thus the selected subspace and the statistics. The resulting p-
value equals p = 2.6 10�4, thus showing that our shape descrip-
tors are significantly di↵erent between DS and HC subjects at
the usual 5% level. The anatomical di↵erences highlighted in
Fig. 2 and 3 are not due to chance.

3.3. Sensitivity and specificity using cross-validation
Over-fitting is a common problem of statistical estimations in

a high dimension low sample size setting. We perform leave-out
experiments to evaluate the generalization errors of our model,
namely its sensitivity and specificity.

We compute an atlas with the same parameter setting and
initial conditions but with one control and one DS subject data
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LDA ML
specificity sensitivity specificity sensitivity

Shape complex 98 (63/64) 100 (64/64) 100 (64/64) 100 (64/64)
Hippocampus 97 (62/64) 87 (56/64) 92 (59/64) 100 (64/64)
Amygdala 98 (63/64) 100 (64/64) 91 (58/64) 100 (64/64)
Putamen 75 (48/64) 100 (64/64) 98 (63/64) 100 (64/64)
Composite 97 (62/64) 100 (64/64) 100 (64/64) 100 (64/64)

Table 1: Classification with 105 control points using LDA and
ML classifiers. Scores (in percentage) are computed using our
descriptor for shape complexes (first row), only one structure at
a time (rows 2-4) or a composite descriptor (fifth row).

out, yielding 82 = 64 atlases. Note that this is a design choice
since one does not necessarily need to have balanced groups to
apply the method. For each experiment, we register the tem-
plate shape complex to each of the left-out complex by mini-
mizing (19) for Nsu = 1 and considering template and control
points of the atlas fixed. The resulting momentum vectors are
compared with those of the atlas. We classify them based on
Maximum Likelihood (ML) ratios and LDA.

Let ↵test be the initial momenta parameterizing the deforma-
tion of the template shape complex to a given left-out shape
complex (seen as a test data), and v

test = K(c0, c0)↵test. In this
section, v, vHC and vDS denotes the sample mean using only the
training data (7 HC and 7 DS). In LDA, we write the classifica-
tion criterion as:

C(vtest) = (vtest � v)T⌃�1(vHC � v

DS ), (22)

where ⌃ denotes the regularized sample covariance matrix of
training data (for " = 10�2, see Remark 3.1). For a threshold ⌘,
the test data is classified as healthy control if C(vtest) > ⌘ and
DS subject otherwise. ROC curves are built when the thresh-
old ⌘ is varied. For estimating classification scores, we esti-
mate the threshold ⌘ on the training dataset so that the best
separating hyperplane (orthogonal to the most discriminative
axis ⌃�1(vHC � v

DS )) is positioned at equal distance to the two
classes. This threshold value is used for classifying the test
data.

For classifying in a Maximum Likelihood framework, we
compute the regularized sample covariance matrices ⌃DS =

1
NDs

su

P
i2DS

(vi�v

DS )(vi�v

DS )T and ⌃HC =
1

NHC
su

P
i2HC

(vi�v

HC)(vi�
v

HC)T . The classification criterion, also called the Mahalanobis
distance, is given by:

C(vtest) = (vtest � v

DS )T⌃�1
DS (vtest � v

DS )

� (vtest � v

HC)T⌃�1
HC(vtest � v

HC) (23)

and the classification rule remains the same.
The very high sensitivity and specificity reported in Table 1

(first row) show that the anatomical di↵erences between DS and
controls that were captured by the model are not specific to this
particular dataset, but are likely to generalize well to indepen-
dent datasets.

3.4. Shape complexes versus individual shapes
In this section, we aim to emphasize the di↵erences between

using a single model for the shape complex and using di↵erent
models for each individual component of a shape complex.

We perform the same experiments as described above, but
for each of the three structures independently. The atlas of
each structure has its own set of control points and momen-
tum vectors. The hypothesis of equal means for DS and con-
trol subjects is rejected with a probability of false positive of
p = 3.5 10�3 for the hippocampus, p = 4.7 10�3 for the puta-
men and p = 1.2 10�4 for the amygdala. The statistical signif-
icance is lower for the hippocampus and the putamen than for
the shape complex (p = 2.6 10�4), and higher for the amygdala.
The classification scores reported in Table 1 (rows 2 to 4) show
that none of the structures alone may predict the subject’s status
with the same performance as the shape complex. Although the
model for the amygdala has a higher statistical significance, it
has a lower specificity in the Maximum Likelihood approach.

For visualization of results from individual analyses, we de-
form each structure along its most discriminative axis. Be-
cause the 3 deformations are not combined into a single space
deformation, intersections between surfaces occur (Fig. 4).
The deformation of the amygdala, though highly significant,
is not compatible with the deformation of the hippocampus.
From an anatomical point of view, both parts of the amyg-
dala/hippocampus boundary should vary together, since almost
nothing separates the two structures at the image resolution.

The shape complex analysis in Fig 2 and 3 showed that
the most discriminative e↵ects involve deformations of specific
subregions, and in particular the most lower-anterior part of the
complex where the amygdala is located. Therefore, it is not sur-
prising that this structure shows higher statistical performance
than the hippocampus and putamen in an independent analysis
of each structure. However, the most discriminative deforma-
tions of each structure are not consistent among themselves,
thus misleading the interpretation of the findings. By contrast,
the shape complex analysis shows that the discriminative e↵ect
is not specific to the amygdala but to the whole lower ante-
rior part of the medial temporal lobe with strong correlations
between parts of the structures within this region. The shape
complex model may be slightly less significant, but it highlights
shape e↵ects that can be interpreted in the context of anatomical
deformations related to underlying neurobiological processes.

One could argue that independently analyzing each struc-
ture does not take into account the correlations among struc-
tures. To mimic what previously reported shape analysis meth-
ods do, we build a composite shape descriptor v

i by concate-
nating the velocities of each individual atlas v

i
1, v

i
2 and v

i
3 (for

each structure s = 1, 2, 3 and subject i, v

i
s = K(c0,s, c0,s)↵i

s
where ↵i

s’s are the initial momenta in each atlas). We use
this composite descriptor to compute means, sample covariance
matrices, most discriminative axis and classification scores as
above. This approach achieves a classification nearly as good
as with the single atlas method (Table 1, last row) with a very
high statistical significance p < 10�5. The direction of the
most discriminative axis v

LDA takes into account the correla-
tions between each structures. However, this vector does not
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Figure 4: Most discriminative deformation axis computed for
each structure independently. Surface intersection occurs in the
absence of a global di↵eomorphic constraint. (black grids are
mapped to the surface for visualization only)

parameterize a single di↵eomorphism– only each of its three
components does. To display these correlations, we compute
the initial momentum vectors associated with each component:
↵LDA

s = K(c0,s, c0,s)�1
v

LDA
s for s = 1, 2, 3, and then deform

each structure using a di↵erent di↵eomorphism. Even in this
case, surfaces intersect, thus showing that this way of taking
into account correlations does not prevent generating anatomi-
cal configurations that are not compatible with the data (Inline
Supplementary Figure S1). By contrast, the single atlas method
proposed in this work integrates topology constraints into the
analysis by the use of a single deformation of the underlying
space, and therefore correctly measures correlations that pre-
serve the internal organization of the anatomical complex.

3.5. E↵ects of dimensionality reduction

Our approach o↵ers the possibility to control the dimen-
sion of the shape descriptor by choosing the number of control
points given as input to the algorithm. In 3D, the dimension
of the shape descriptor is 3 times the number of control points.
In this section, we evaluate the impact of this dimensionality
for atlas construction and statistical estimations given our low
sample size setting.

We start with 105 control points on a regular lattice with
spacing equal to the deformation kernel width �V and then

Number of CP 8 12 16 24 36 105 600
Decrease of data term
(in % of initial value) 93.3 94.8 94.6 95.8 96.7 97.9 97.8

Table 2: Decrease of the data term during optimization for dif-
ferent number of control points and �V = 10 mm

successively down-sample this lattice. With only 8 points, the
number of deformation parameters is decreased by more than
one order of magnitude and the initial ellipsoidal shapes still
converge to a similar template shape complex (Fig. 1-b). The
main reason for it is that control points are able to move to the
most strategic places, noticeably at the tail of the hippocampus
and the anterior part of the amygdala where the variability is
the greatest. Qualitatively, the most discriminant axis is sta-
ble when the dimension is varied (Inline Supplementary Fig-
ure S2), as is the spectrum of the sample covariance matrices of
the momentum vectors (Inline Supplementary Figure S3). The
method is able to optimize the “amount” of variability captured
for a given dimension of deformation parameters. Nevertheless,
the residual data term at convergence increases. The initial data
term (i.e., varifold norm) decreases by 97.8% for 105 points,
and only by 93.3 for 8 points, thus showing that the sparsest
model captured less variability in the dataset (Table 2).

If there could be an infinite number of control points, their
optimal locations would be on surface meshes themselves.
Therefore, one might place one control point at each ver-
tex (Vaillant and Glaunès, 2005; Ma et al., 2008). In our case,
such a parameterization would involve 23058 control points.
Nonetheless, this number can be arbitrarily increased or de-
creased by up/down sampling of the initial ellipsoids, regardless
of the variability in the dataset! We increase the number of con-
trol points to 650 and notice that the estimated template shapes
are the same as with 105 control points (results not shown), and
that the atlas explains the same proportion of the initial data
term (Table 2). Therefore, increasing the number of control
points does not allow us to capture more information, which is
essentially determined by the deformation kernel width �V , but
distributes this information over a larger number of parameters.
This conclusion is in line with Durrleman et al. (2009), who
show that such high dimensional parameterizations are very re-
dundant.

The statistical significance, as measured by the p-value as-
sociated with the Hotelling T 2 statistics, is not increased with
higher dimensions (Fig. 5-b). It is even smaller than in small
dimensions, the maximum being reached for 16 control points
(p < 10�5). Leave-2-out experiments give 100% specificity and
sensitivity using the ML approach, regardless of the number
of control points used. To highlight di↵erences, we performed
classification using the hippocampus shape only. Again, the
performance of the classifier does not necessarily decrease with
the number of control points (Table 3). ROC curves in Fig. 6
show that the atlases with 48 and 18 control points have poorer
performance than atlases with 12 and 8 control points.

These results suggest that using atlases of small dimension
could have even greater statistical power, especially in a small
sample size setting. Nevertheless, two di↵erent dimensionality
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Figure 5: Statistical significance of the group means di↵erence for a varying number of control points. The solid (resp. dashed)
lines correspond to the 0.1 (resp. 0.05) significance thresholds, respectively. The ability of the classifier to separate DS subjects to
controls is little altered by the deformation kernel width �V . Increasing the number of control points, and hence the dimensionality
of the atlas, does not necessarily increase statistical performance.

reduction techniques compete with each other in these experi-
ments. The first is the use of a small set of control points, which
is a built-in dimensionality reduction technique, which has the
advantage to optimize simultaneously the information captured
in the data and the encoding of this information in a space of
fixed dimension. The second is a post-hoc dimensionality re-
duction using PCA when computing classification scores that
project shape descriptors into the subspace, explaining 95% of
the variance captured. The variation of the p-values, when the
number of modes selected in the PCA is varied, shows that
a number of modes optimizes the statistical significance, be-
tween 6 and 8 modes (Inline Supplementary Figure S5). For
each number of modes, an optimal number of control points
also maximizes significance, and this number is never greater
than 105 when one control point is placed at every �V .

It is di�cult to distinguish the e↵ects of the two techniques
in such a low sample size setting. With 8 control points and a
few dozen or more subjects, we could estimate full-rank covari-
ance matrices and would not need the post-hoc dimensionality
reduction techniques. A fair comparison between post-hoc and
built-in dimensionality reduction would be then possible. Our
hypothesis is that, in this regime, the trend of increased statisti-
cal significance when the number of control points is decreased
would be amplified. Indeed, the ratio between the number of
variables to estimate and the number of subjects is more favor-
able in such a scenario, thus making the statistical estimations
more stable.

3.6. E↵ects of parameter settings
We assess the robustness of the results with respect to pa-

rameter settings. We change the values of the deformation
and varifold kernel widths by ±50%, namely by setting �V =
5, 10 or 15 mm and �W = 2.5, 5, or 7.5 mm. Other settings are
kept fixed, namely the weights �k = 10 mm, the gradient ker-
nel width �X = 0.5�V and the initial distance between control
points, which always equals �V . Classification scores are re-
ported in Table 4 and show a great robustness of the statistical
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Figure 6: ROC curves for hippocampus classification using a
di↵erent number of control points in the atlas and ML classi-
fier. Atlases with 48 and 18 control points exhibit poorer per-
formance than those with 12 and 8 control points.

estimates, noticeably for the ML method. We note a decrease
in the specificity in the LDA classifier for the large deforma-
tion kernel width �V = 15 mm. With large deformation kernel
widths, the atlas captures more global shape variations, which
might not be as discriminative as more local changes. This ef-
fect is more pronounced with increased varifold width �W , as
surface matching accuracy decreases, thus further reducing the
variability captured in the atlas. These results show that the
performance of the atlas is stable for a large range of reason-
able values, and therefore that they are not due to fine parameter
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# Control Points 48 18 12 8 4

LDA specificity 97 (62/64) 91 (58/64) 92 (59/64) 95 (61/64) 78 (50/64)
sensitivity 87 (56/64) 89 (57/64) 89 (57/64) 89 (57/64) 81 (52/64)

ML specificity 92 (59/64) 92 (59/64) 97 (69/64) 97 (62/64) 84 (54/64)
sensitivity 100 (64/64) 100 (64/64) 98 (63/64) 100 (64/64) 97 (62/64)

Table 3: Classification ratios based solely on hippocampus shape. LDA and ML classification are performed with a varying number
of control points in the atlas. Ratios are in percentages. Reducing the number of control points to 12 or 8 may increase statistical
performance.

tuning.
The shape of the template also depends on the parameter set-

ting, and notably the deformation kernel width �V . With larger
values, the template shape captures more rigid variations, which
translates into a smoother shape. With smaller values, the tem-
plate captures finer details in the data (Inline Supplementary
Figure S4)

The dimension of the atlas is intrinsically linked with the de-
formation kernel width. Deformations with smaller �V need
more control points to potentially deform every small region of
the shape complex. Deformations with larger�V have fewer de-
grees of freedom and could be decomposed using fewer control
points. Placing one control point at the nodes of lattice of step
�V yields 15 control points for �V = 15 mm, 105 control points
for �V = 10 mm and 650 control points for �V = 5 mm. We
build an atlas for each of these values of �V and with down/up
sampling the set of associated control points. All these atlases
show a good significance level, far below the usual 0.05 thresh-
old. On average, the statistical significance is decreased with
increasing �V , as the atlas represents a coarser and coarser de-
scription of the variability within the dataset (Fig. 5). With
�V = 15 mm (Fig. 5-c), the maximum significance is reached
for 8 control points, and the significance is decreased with in-
creasing dimensionality. With �V = 5 mm (Fig. 5-a), the same
trend is observed, except an unexpected increase in statistical
significance at very high dimensions. These results show that
the discussion about dimensionality reduction in the previous
section does not depend on a particular choice of deformation
kernel width.

We also assess the influence of the amount of regulariza-
tion in the covariance matrices ", which otherwise are singu-
lar. We increase the value used in the previous experiment from
" = 10�2 to " = 0.1, " = 1 and " = 10. With these values,
the condition number of the covariance matrix decreased from
1000 to 100, 10 and 1 respectively. A decrease in the sensitivity
of the classifier was detected only for " = 10, that is when the
regularization became of the same order as the largest eigenval-
ues of the matrix. The choice of this setting has, therefore, very
little influence on the classification results.

It is clear that the weights �k’s also should have been ad-
justed. As noted in Akin and Mumford (2012), adjusting the
weights could increase matching accuracy, and possibly in-
crease statistical performance. As explained in Sec. 2.6.2, these
values were chosen so that the data term has the same order of
magnitude as the sum of squared geodesic distances. However,
it is clear from a statistical point of view that these values mea-

LDA ML
specificity sensitivity specificity sensitivity

�W = 2.5 98 (63/64) 100 (64/64) 100 (64/64) 100 (64/64)
�V = 5 �W = 5 98 (63/64) 100 (64/64) 100 (64/64) 100 (64/64)

�W = 7.5 98 (63/64) 100 (64/64) 100 (64/64) 100 (64/64)
�W = 2.5 98 (63/64) 100 (64/64) 100 (64/64) 100 (64/64)

�V = 10 �W = 5 98 (63/64) 100 (64/64) 100 (64/64) 100 (64/64)
�W = 7.5 94 (60/64) 100 (64/64) 100 (64/64) 100 (64/64)
�W = 2.5 89 (57/64) 100 (64/64) 100 (64/64) 100 (64/64)

�V = 15 �W = 5 83 (53/64) 100 (64/64) 100 (64/64) 100 (64/64)
�W = 7.5 84 (54/64) 100 (64/64) 100 (64/64) 100 (64/64)

Table 4: Classification scores when deformation and varifold
kernel widths are varied. Regularization of the covariance ma-
trices " = 10�2. Results are overall very stable when settings
are varied. Very large kernel widths penalize the matching ac-
curacy between the template and the subject shape complexes,
thus eventually altering classification performance.

sure noise variance, and therefore should be estimated from the
data and not fixed by the user. This estimation could be done
in a Bayesian framework by adapting to varifolds the method
proposed in Allassonnière et al. (2007, 2010) for images.

Overall, these experiments demonstrate the reproducibility
of our results under various parameter settings. They show that
the method could be applied in real cases without fine parameter
tuning.

4. Discussion and Conclusion

This paper presents a comprehensive framework for the sta-
tistical analysis of shape complexes extracted from 3D anatom-
ical images. The method can deal with raw surfaces result-
ing from nearly any segmentation methods thanks to its robust-
ness to noise, mesh imperfections and inconsistencies in mesh
orientation. The scheme estimates a template shape complex
with a fixed topology that is representative of the anatomy, and
computes modes of deformation that preserve template struc-
ture and capture variability in data. Such topology constraints
lead to modes of variations that are anatomically realistic and
interpretable. The proposed approach therefore contrasts with
the study of correlations between shape models that are esti-
mated independently for each component within a shape com-
plex. Given a typical neuroimaging study of a complex of
deep brain structures in Down syndrome subjects, the method
can find discriminative anatomical features with high statisti-
cal significance and small generalization errors, even with a
limited number of observations. We show the robustness of
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these results in various experimental settings, demonstrating
the e↵ectiveness of the method without fine parameter tuning.
The scientific community can evaluate the method by down-
loading the software Deformetrica, which is freely available at
www.deformetrica.org.

The statistical analysis on deformations that we proposed is
essentially multivariate. Statistics show the correlations be-
tween the deformation patterns in every region of the brain. The
visualization of the deformations gives a comprehensive view
of how these local deformations are combined into a consistent
deformation of the underlying tissue. This analysis is there-
fore in strong contrast with voxel-based methods, which test at
every voxel the di↵erence in image intensities (Ashburner and
Friston, 2000) or the di↵erence in the Jacobian determinant of
the template-to-subject deformations (Thompson et al., 2000).
In particular, the analysis of the Jacobian determinant only in-
dicates local contraction or expansion of the tissue, while ig-
noring more complex deformations patterns such as torques or
a shift between two structures. Such cofounding e↵ects may be
misleading when interpreting the results.

In contrast to such mass-univariate methods, our multivari-
ate approach also avoids the problem of correction for multi-
ple comparisons. The dimension of the variables used in the
statistical analysis is essentially determined by the deformation
kernel width �V and therefore by the scale of anatomical vari-
ants that are captured by the model. In the current scheme, the
choice of the number of control points is left to the user, using
a practical heuristics that consists in placing one point for every
deformation kernel width �V . We show that this number could
be even drastically reduced without altering statistical signifi-
cance and generalization ability of the model. This built-in di-
mensionality reduction may lead to increased statistical perfor-
mance as suggested by our results, although our initial results
need to be confirmed and supported using more subjects and
di↵erent datasets. The fact that the dimension is determined by
the user before any experiments allows one to adjust the scale
�V according to the number of available subjects, and also eases
the power calculations and sample sizes estimates required in
clinical trials. This finite-dimensional setting also paves the
way for estimating mean and covariance matrices during the op-
timization in a Bayesian framework, following research by Al-
lassonnière et al. (2007) and Allassonnière and Kuhn (2009).
Constraining statistical inference to take place in a small dimen-
sional space is likely to increase the convergence speed of the
statistical estimates, as compared to performing the inference
in very high dimensions and then performing post-hoc dimen-
sionality reduction, using PCA for instance.

Cross-validation showed the very good prediction capabil-
ity of our model. The prediction of Down syndrome based on
neuroimaging data has little clinical interest, since subjects are
characterized by their genotype and especially the copy num-
ber of chromosome 21, which is known with very high confi-
dence. However, the shape deformation studies as shown here
may give new insights into anatomical changes linked to genet-
ics, and associations between morphologic di↵erences and cog-
nitive and behavioral scores. Nonetheless, our model is com-
pletely generic and can be applied to di↵erent pathologies for

which the clinical status may be more di�cult to assess. This
prediction capability of the method demonstrates its potential
in computer-aided diagnosis or prognosis in studies where a
subject’s status is based only on clinical diagnosis with lim-
ited reproducibility, such as in neurodegenerative diseases, or
for pre-diagnostic prediction of disease onset based on image
data. Shape descriptors, which encode the joint shape vari-
ability of sets of anatomical structures with a small number of
parameters, would be preferable to study correlations between
anatomical phenotypes and genotype, in the spirit of Korbel
et al. (2009)), where these image-derived parameters can take
the place of clinical variables.
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Appendix A Geodesic equations

We derive here the minimum action principle of Lagrangian
mechanics. A variation �↵(t) of the time-varying momentum
vectors ↵(t) induces a variation of the control point positions
�c(t), which in turn induces a variation �E of the quantity E =R 1

0 ↵(t)T
K(c(t), c(t))↵(t)dt.

Since ċ = K(c, c)↵, we have

�ċ = K(c, c)�↵ + d
c

(
K(c, c)↵) �c, (24)

and

E =
Z 1

0
↵T

ċdt. (25)

Therefore, we have

ċ

T�↵ = ↵T
K(c, c)�↵ = ↵T�ċ � ↵T d

c

(
K(c, c)↵) �c (26)

and

�E =
Z 1

0

⇣
ċ

T�↵ + ↵T�ċ
⌘

dt

=

Z 1

0

⇣
2↵T�ċ � ↵T d

c

(
K(c, c)↵) �c

⌘
dt.

(27)

Assuming �c(0) = �c(1) = 0, integration by parts yields:

�E = �
Z 1

0

⇣
2↵̇ + d

c

(
K(c, c)↵)T ↵

⌘T
�cdt (28)

The linear ODE with source term (24) shows that there is a
one-to-one relationship between �c and �↵. Since �↵ is arbi-
trary, so is �c and

↵̇ = �1
2

d
c

(
K(c, c)↵)T ↵ (29)

along extremal paths.
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K(c, c)↵ is a 3Ncp vector, whose kth coordinate is the 3D
vector:

PNx
p=1 K(ck, cp)↵p. Therefore,

dci (K(c, c)↵)k =

NcpX

p=1

↵pr1K(ck, cp)T�(i � k) + ↵ir2K(ck, ci)T

(30)
Using the fact that K is symmetric (hence r1K(x, y) =

r2K(y, x)) we have:

↵̇i = �1
2

NcpX

k=1

(dci (K(c, c)↵)k)T↵k = �
0
BBBBBB@

NcpX

k=1

r1K(ci, ck)↵T
k

1
CCCCCCA↵i

(31)

Appendix B Gradient of the atlas criterion

We provide here the di↵erentiation of the criterion for atlas
construction:

E(X0, c0, {↵i
0}) =

NsuX

i=1

⇣
A(Xi(1)) + L(Si

0)
⌘

(32)

subject to:
8>><
>>:

Ṡ

i(t) = F(Si(t)) S

i(0) = {c0,↵
i
0}

Ẋ

i(t) = G(Xi(t),Si(t)) X

i(0) = X0
(33)

where
L(Si

0) = ↵i
0

T
K(c0, c0)↵i

0 (34)

X is a vector of length 3Nx, where Nx is the number of points
in the template shape, c and ↵ are two vectors of length 3Ncp
each, where Ncp is the number of control points, so that S is a
vector of length 6Ncp.

F(S) =
 

Fc(c,↵)
F↵(c,↵)

!
is a vector of length 6Ncp, which is de-

composed into two vectors of size 3Ncp. The kth coordinate
(among Ncp) of Fc and F↵ is the 3D vector:

Fc(S)k =

NcpX

p=1

K(ck(t), cp(t))↵p(t)

F↵(S)k = �
NcpX

p=1

↵k(t)T↵p(t)r1K(ck(t), cp(t))

(35)

G(X,S) is a vector of size 3Nx. Its kth coordinate (among
Nx) is the 3D vector:

G(X,S)k =

NcpX

p=1

K(xk(t), cp(t))↵p(t) (36)

Similarly,

L(Si
0) =

NcpX

p=1

NcpX

q=1

↵i
0,p

T
K(c0,p, c0,q)↵i

0,q (37)

B.1 Gradient in matrix form
The di↵erentiation of the criterion can be done for each sub-

ject i independently. Therefore, we di↵erentiate only one term
of the sum in (32) for a generic subject’s index i that we omit in
the rest of this section for clarity purposes.

A small perturbation �S0 induces a perturbation of the motion
of the control points and momenta �S(t), which, in turn, induces
a perturbation of the template points’ trajectory �X(t) and then
of the criterion �E, which we write, thanks to the chain rule

�E =
�r

X(1)A
�T �X(1) +

�r
S0 L

�T �S0. (38)

According to (33), the perturbations �S(t) and �X(t) satisfy
the linearized ODEs:

�̇S(t) = dS (t)F�S(t) �S(0) = �S0

˙�X(t) = @1G�X(t) + @2G�S(t) �X(0) = �X0

The first ODE is linear. Its solution is given by:

�S(t) = exp
 Z t

0
d

S(u)Fdu
!
�S0. (39)

The second ODE is linear with source term. Its solution is
given by:

�X(t) =
Z t

0
exp

 Z t

u
@1Gds

!
@2G(u)�S(u)du

+ exp
 Z t

0
@1G(s)ds

!
�X0 (40)

Plugging (39) into (40) and then into (38) leads to:
8>>>><
>>>>:

r
S0 E =

Z 1

0

⇣
R0t

T@2G(X(t),S(t))T Vt1
Tr

X(1)A
⌘

dt + r
S0 L

r
X0 E = V01

Tr
X(1)A

,

(41)
where we denoted Rst = exp

⇣R t
s d

S(u)Fdu
⌘

and Vst =

exp
⇣R t

s @1G(X(u), S (u))du
⌘
.

Let us denote ✓(t) = Vt1
Tr

X(1)A, g(t) = @2G(t)T✓(t) and
⇠(t) =

R 1
t Rts

T g(s)ds, so that the gradient (41) can be rewrit-
ten as:

8>>>><
>>>>:

r
S0 E =

Z 1

0
R0s

T g(s)ds + r
S0 L = ⇠(0) + r

S0 L

r
X0 E = ✓(0)

.

Now, we need to make explicit the computation of the auxil-
iary variables ✓(t) and ⇠(t). By definition of Vt1, we have V11 =
Id and dVt1/dt = Vt1@1G(t), which implies that ✓(1) = rX(1)A
and ✓̇(t) = �@1G(t)T✓(t).

For ⇠(t), we notice that Rts = Id � R s
t

dRus
du du = Id +R s

t RusdS(u)F(u)du. Therefore, using Fubini’s theorem, we get:

⇠(t) =
Z 1

t
Rts

T g(s)ds

=

Z 1

t

 
g(s) + d

S(s)FT
Z 1

s
Rsu

T g(u)du
!

ds

=

Z 1

t

⇣
g(s) + d

S(s)FT⇠(s)
⌘

ds.
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This last equation is nothing but the integral form of the ODE
given in the main text.

Given the actual values of S0 and X0, one needs to integrate
the geodesic shooting equations and the flow equation in (33)
forward in time to give the full path of parameters S(t) and tem-
plate shape points X(t). Then, one needs to compute the gra-
dient of the data term r

X(1)A, which is given in Appendix C.
This term indicates in which direction one has to move the ver-
tices of the deformed template shape in order to better match
the observations. This term is transported back to time t = 0 by
the coupled linear equations satisfied by ⇠ and ✓. The values of
time t = 0 of these auxiliary variables are used to update the de-
formation parameters (position of control points and momenta)
and the position of the vertices of the template surfaces.

B.2 Gradient in coordinates

Expanding the variables S

i(t) = {c0,k(t),↵i
0,k(t)}, X

i(t) =
{Xi

k(t)}, ✓i(t) = {✓i
k(t)} and ⇠i(t) = {⇠c,i

k (t), ⇠↵,ik (t)}, we have

rc0,k E =
NsuX

i=1

⇠c,i
k (0) + rc0,k L(Si

0)

r↵i
0,k

E =
NsuX

i=1

⇠↵,ik (0) + r↵i
k
L(Si

0)

rx0,p E =
NsuX

i=1

✓i
p(0)

where the gradient of L is given as (from now on, we omit
the subject’s index i for clarity purposes):

r↵0,k L = 2
NcpX

p=1

K(c0,k, c0,p)↵0,p

rc0,k L = 2
NcpX

p=1

↵0,p
T↵0,kr1K(c0,k, c0,p)

The term @1G(X(t),S(t)) is a block-matrix of size 3Ncp⇥3Nx
whose (k, p)th 3 ⇥ 3 block is given as:

dXkG(X(t),S(t))p =

NcpX

j=1

↵ j(t)r1K(Xp(t), c j(t))T�(p � k)

so that the vector ✓(t) is updated according to:

�✓̇k(t) =
NcpX

p=1

↵p(t)T ✓k(t)r1K(Xk(t), cp(t)) (42)

The terms @
c

gG(X(t),S(t)) and @↵G(X(t),S(t)) are both matri-
ces of size 3Nx⇥3Ncp, whose (k, p) block is given, respectively,
by:

dckGp = ↵k

⇣
r1K(ck, Xp)

⌘T

d↵kGp = K(ck, Xp)I3

The di↵erential of the function F(S) =
 

Fc(c,↵)
F↵(c,↵)

!
can be

decomposed into 4 blocks as follows:

d
S(t)F =

 
@

c

Fc @↵Fc

@
c

F↵ @↵F↵

!
(43)

Therefore, the update rules for the auxiliary variables ⇠c(t)
and ⇠↵(t) are given as:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

�⇠̇c
k(t) =

NxX

p=1

↵k(t)T ✓p(t)r1K(ck(t), Xp(t))

+ (@
c

Fc)T ⇠c(t)k + (@
c

F↵)T ⇠↵(t)k

�⇠̇↵k (t) =
NxX

p=1

K(ck(t), Xp(t))✓p(t)

+ (@↵Fc)T ⇠c(t)k + (@↵F↵)T ⇠↵(t)k

with

(@cFc)T ⇠c(t)k =

NcpX

p=1

⇣
↵p(t)T ⇠c

k(t) + ↵k(t)T ⇠c
p(t)

⌘
r1K(ck(t), cp(t))

(@cF↵)T ⇠↵(t)k =

NcpX

p=1

↵k(t)T↵p(t)r1,1K(ck(t), cp(t))T
⇣
⇠↵p(t) � ⇠↵k (t)

⌘

(@↵Fc)T ⇠c(t)k =

NcpX

p=1

K(ck(t), cp(t))⇠c
j(t)

(@↵F↵)T ⇠↵(t)k =

NcpX

p=1

r1K(ck(t), cp(t))T
⇣
⇠↵p(t) � ⇠↵k (t)

⌘
↵p(t)

In these equations, we supposed the kernel symmetric:
K(x, y) = K(y, x). If the kernel is a scalar isotropic kernel of
the form K = f (kx � yk2)I3, then we have:

r1K(x, y) = 2 f 0(kx � yk2)(x � y)

r1,1K(x, y) = 4 f 00(kx � yk2)(x � y)(x � y)T + 2 f 0(kx � yk2)I3

Appendix C Gradient of the varifold metric for meshes

We derive here the gradient of the varifold metric with re-
spect to the position of the vertex of the mesh. Let S be a tri-
angular mesh. For each face fk, we denote nk its normal, pk its
center and uk = nk/ |nk |1/2. Let T be another triangular mesh,
mk its normal, qk its center and vk = mk/ |mk |1/2. Our goal is
to compute the gradient of d(S,T )2 with respect to xi, a given
vertex of S. The chain rule gives:

rxi d(S,T )2 =
X

fk3xi

(dxi nk)T (dnk uk)Truk d(S,T )2 + (dxi pk)Trpk d(S,T )2, (44)

where we sum over all the faces that have xi among their ver-
tices.
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Given the inner-product between varifolds (see main text),
we have:

ruk d(S,T )2 = 4

0
BBBBBB@

NSX

i=1

KW (pk, pi)uiuT
i �

NTX

j=1

KW (pk, q j)v jvT
j

1
CCCCCCA uk,

(45)
and denoting pk,d the dth coordinate of the 3D vector pk,

⇣
rpk d(S,T )2

⌘
d
=

2uT
k

0
BBBBBB@

NSX

i=1

@KW (pk, pi)
@pk,d

uiuT
i �

NTX

j=1

@KW (pk, q j)
@pk,d

v jvT
j

1
CCCCCCA uk (46)

Finally, for a face fk, we have nk =
1
2 (X1 � X0) ⇥ (X2 � X0)

and pk =
1
3 (X0 + X1 + X2), where we denote X0, X1, and X2

the vertices of the face. If we denote e the edge opposite to the
vertex xi (i.e., e = X2 � X1 if xi = X0), we have for a generic
3D-vector V:

(dxi nk)T V =
1
2

e ⇥ V and (dxi pk)T V =
1
3

V. (47)

and since uk = nk/ |nk |1/2,

dnk uk =
1
|nk |1/2

0
BBBB@I3 � 1

2
nknT

k

|nk |2
1
CCCCA =

1
|uk |

0
BBBB@I3 � 1

2
ukuT

k

|uk |2
1
CCCCA (48)

The gradient is computed by plugging (45), (46), (47)
and (48) into (44). The gradient is computed by scanning each
face of the mesh S and adding the contribution of this face to
each of its vertices.

One can easily verify that (44) is independent of the ordering
of the vertices, thus showing its invariance with respect to the
local orientation of the mesh.

Appendix D Di↵eomorphic template evolution

The purpose of this section is to prove that no self-
intersection may occur during the optimization of the template
shape, by showing that the updates of the template follow a
geodesic flow of di↵eomorphisms. Using notations of the main
text, rEx0,p is the gradient of the criterion with respect to the
position of the vertex x0,p of the current template using the L2

metric, and rXEx0,p its smoothed version using a metric given
by a Gaussian kernel with width �X > 0, KX , so that:

rX
x0,kE =

NXX

p=1

KX(x0,k, x0,p)rEx0,p = �us(x0,k) ,

where us is a vector field in VX , the RKHS associated with the
Gaussian kernel KX . In particular, if  s is the flow associated
with integration of us, we get X0(s) =  s(X0(0)). An impor-
tant point to be verified here is that this flow exists and gener-
ates a continuous curve s !  s of C1 di↵eomorphisms so that
the template components cannot degenerate or self-intersect.
Let ⌦X be the open set of the configurations X0 such that all
the mesh faces associated with X0 are non-degenerated (posi-
tive area) and that any pairs of distinct vertices do not coincide

in space. The total energy E(X0, {Si
0}) is C1 on an open set

⌦X ⇥RNS so that the local existence of the gradient descent fol-
lows from the Cauchy-Lipschitz theorem. Now, if we consider
a maximal solution on [0, s f [, we will prove below (and this is
the key estimate) that

Z s f

0
|us|2VX ds  E0

.
= E(X0(0), {Si

0(0)}) < 1 (49)

so that the flow  s is a flow of C1 di↵eomorphisms staying at
a bounded distance dX(Id, s)  pE0 from the identity and
X0(s) =  s(X0(0)) stays in a compact set of ⌦X . In particular,
since the di↵erential d and d �1 can be controlled uniformly
by dX(Id, ), we get that no face can degenerate during the gra-
dient descent, that the distance between two distinct vertices or
two surface patches (up to the continuous limit) cannot vanish.

Now, we prove (49). From the RKHS property of the kernel
we get

|us|2VX =

NxX

p=1

⇣
rEx0,p

⌘T
0
BBBBBB@

NxX

q=1

KX(x0,p, x0,q)rEx0,q

1
CCCCCCA

= �
NxX

p=1

⇣
rEx0,p

⌘T
us(x0,p)

 �
X

p

⇣
rEx0,p

⌘T dx0,p

ds
�

NsuX

i=1

⇣
r

S

i
0
E
⌘T dS

i
0

ds
|                  {z                  }

�0

= �dE
ds

so that
R s f

0 |us|2VX ds  E(X0(0))� E(X0(s f ))  E(X0(0)) (we use
here that E � 0) and

R s f

0 |us|2VX ds < 1.
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Székely, G., Hahn, H. (Eds.), Proc. Information Processing in Medical Imag-
ing (IPMI), pp. 123–134.

Durrleman, S., Prastawa, M., Korenberg, J.R., Joshi, S., Trouvé, A., Gerig,
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Figure S1: Most Discriminative Axis computed using a com-
posite descriptor. The direction takes into account the corre-
lations among the three structures. However, it does not pa-
rameterize a single space deformation, but three of them, and
intersections between surfaces occur. Moreover the patterns of
shape variations are rather di↵erent from the results using a sin-
gle atlas of shape complex, in particular the relative position
of the amygdala (in blue) with respect to the hippocampus (in
green)
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Figure S2: Most Discriminative Axis in the atlas with 8 control
points. The patterns of shape variations are qualitatively similar
with the axis shown using 105 control points, especially for the
hippocampus and amygdala (in green and cyan), and to a lesser
extent for the putamen. This experiment shows the robustness
of the findings with respect to di↵erent initial conditions
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Figure S3: Cumulative variance explained using the sample co-
variance matrix of the momentum vectors. The spectrum is
slightly more concentrated with 8 control points than with 105.
The total variance explained in both cases is similar: �2 = 27.1
for 105 points and �2 = 23.6 for 8 points
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a - �V = 5 mm b- �V = 15 mm

Figure S4: Template shape complex estimated with two di↵erent deformation kernel widths �V , while keeping �W = 7.5 mm. The
smaller the width, the more local the variations captured by the model. The larger the width, the more global and rigid the variations
captured by the model, resulting in surfaces with fewer details
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Figure S5: P-values computed for a di↵erent number of control points and a di↵erent number of selected modes. Solid (resp.
dashed) lines correspond to the 10% (resp 5%) significance levels, respectively. For a given number of modes, the best p-value is
never achieved for the largest number of control points, showing the interest of small-dimensional models. It seems also that there
is an optimal number of modes to be selected, for which the statistical power is overall increased (between 6 and 8 modes). With a
few subjects more, we could estimate a full-rank covariance matrix and make the method less and less sensitive to the number of
modes selected. We hypothesize that the e↵ect of the number of control points will be more pronounced in this regime (Note that
the Fig. 5-b is built from these plots: for each number of control points, we picked the p-values that correspond to the number of
modes explaining 95% of the variance, which was always either 8 or 9.)
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