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Abstract. With the advent of digital scanners and deep learning, diag-
nostic operations may move from a microscope to a desktop. Hematoxylin
and Eosin (H&E) staining is one of the most frequently used stains for
disease analysis, diagnosis, and grading, but pathologists do need differ-
ent immunohistochemical (IHC) stains to analyze specific structures or
cells. Obtaining all of these stains (H&E and different IHCs) on a single
specimen is a tedious and time-consuming task. Consequently, virtual
staining has emerged as an essential research direction. Here, we pro-
pose a novel generative model, Structural Cycle-GAN (SC-GAN), for
synthesizing IHC stains from H&E images, and vice versa. Our method
expressly incorporates structural information in the form of edges (in
addition to color data) and employs attention modules exclusively in
the decoder of the proposed generator model. This integration enhances
feature localization and preserves contextual information during the gen-
eration process. In addition, a structural loss is incorporated to ensure
accurate structure alignment between the generated and input markers.
To demonstrate the efficacy of the proposed model, experiments are con-
ducted with two IHC markers emphasizing distinct structures of glands
in the colon: the nucleus of epithelial cells (CDX2) and the cytoplasm
(CK818). Quantitative metrics such as FID and SSIM are frequently used
for the analysis of generative models, but they do not correlate explicitly
with higher-quality virtual staining results. Therefore, we propose two
new quantitative metrics that correlate directly with the virtual staining
specificity of IHC markers.

Keywords: Structural Cycle GAN · Histopathology Images · Genera-
tive model · Virtual Immunohistochemistry Staining

1 Introduction

Histopathology image analysis has become a standard for diagnosing cancer,
tracking remission, and treatment planning. Due to the large amount of data
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analysis required, the reduction in the number of pathologists in some domains
[18,10,22] and the advent of digital scanners, automated analysis via deep learn-
ing methods is gaining importance in histopathology [12,16,24]. Pathologists
frequently use immunohistochemical (IHC) stain markers in addition to Hema-
toxylin and Eosin (H&E) to highlight certain protein structures [14] (not vis-
ible to the naked eye) that can help in identifying different objects essential
for the analysis of disease progression, grading, and treatment planning. While
some markers are accessible and time-efficient, others are not. Using conventional
methods to stain a single slide with multiple stains in a pathology laboratory
is time-consuming, laborious, and requires the use of distinct slides for analy-
sis, thereby increasing the difficulty of the task. To address these issues, virtual
staining offers a solution by generating all required stains on a single slide, sig-
nificantly reducing labor-intensive and time-consuming aspects of conventional
techniques.

Conditional-GAN (Pix2Pix) [9] and Cycle-GAN [26] are two pioneering gen-
erative adversarial networks (GAN) frameworks that have been frequently used
in virtual staining [21,20,13,25] with many other variants proposed [27,23,11].
The performance of Pix2Pix based-method relies heavily on the data sampling
procedure because this model is prone to hallucinations when patches of IHC
are not precisely registered to their corresponding H&E patches [21,20]. Regis-
tration of whole slide images (WSI) is a time-consuming and laborious process
increasing the time to deployment and analysis. Although Cycle-GAN doesn’t
require registered images it doesn’t explicitly focus on morphological relations
between objects (cells, glands) of the input (histopathology) images. Here we
propose a Structural Cycle-GAN (SC-GAN) model that alleviates the require-
ment of registering patches and focuses on the morphological relations. Using
structural information [25] has previously shown promising results, but the pro-
posed approach is novel in that it generates IHC stains based on structural
information derived from the H&E stain without relying on structural similar-
ity loss. Incorporating structural information [3] provides explicit geometrical
and morphological information to the model resulting in higher-quality virtually
generated stains.

Different IHC [17] stains highlight the nucleus, cell surface, or cytoplasm de-
pending on the activating agent. To emphasize specific classes of cells, virtual
staining models need to attend to a larger region of interest (cell environment).
SC-GAN uses the attention module to factor in the dependence of pixel staining
on its environment. Convolutional models have fixed ROIs around pixels of in-
terest but the attention module can account for long-range dependencies [19,4],
which are beneficial in histopathology applications.

Visual inspection by pathologists is the optimal method for evaluating the
efficacy of any proposed virtual staining method, but it becomes impractical
due to cost and pathologist disagreement [1,5]. Quantitative evaluation metrics
FID, SSIM, and PSNR [15,27,2] are heavily favored for the analysis of generative
models. But in this study, we empirically observed that improvement in these
metrics for virtual staining doesn’t always correlate to better quality output.
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Therefore, two downstream task metrics are proposed, 1) Ratio of cell count in
Stained IHC and 2) Dice Score of positive cells in Stained IHC, which correlates
directly with virtual staining performance enhancement. The findings show that
a lower FID score does not always imply a better quality stain, however the
suggested downstream measures have significant correlations with stain quality.

The key contributions of the present work can be summarized as follows:

1. Propose Structural Cycle-GAN (SC-GAN) model that employs explicit struc-
tural data (edges) as input to generate IHC stains from H&E and vice versa.

2. SC-GAN leverages the attention module to account for cell environmental
dependencies and enforces structural consistency utilizing structural loss,
thereby eliminating the need for registered patches.

3. Propose new evaluation metrics with a stronger correlation to enhanced vir-
tual staining effectiveness and evaluate virtual staining results for two IHC
markers of glands in the colon, CDX2 (specific to epithelial cell nuclei) and
CK818 (cytoplasm), highlighting distinct cells.

2 Methodology

Fig. 1. Block Diagram of the proposed Structural Cycle-GAN (SC-GAN):
The Generator follows a ResNET-based architecture similar to [25], with the addition
of attention blocks in the decoder part. The proposed method does not necessitate
the registration of real H&E and IHC. The generation of H&E stains from IHC stains
follows the same architecture but incorporates the H&E Discriminator, maintaining
consistency in the overall model design and approach.

2.1 Structural Cycle-GAN (SC-GAN)

The proposed model, SC-GAN (Figure 1) is based on the Cycle-GAN framework
[26], a prominent computer vision model for image-to-image translation tasks.
The Cycle-GAN framework comprises two generators and two discriminators,
incorporating cycle consistency loss to regularize GAN models in both domain
A to B and B to A translations. Similarly, SC-GAN generators facilitate im-
age translation between different domains (H&E to IHC and vice versa), while
the discriminators discern between real and generated images. The proposed ap-
proach introduces specific modifications (mentioned in the following sections) to
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the generator architecture while adhering to the fundamental principles of the
Cycle-GAN framework.

2.2 Structural Information

Histopathology images frequently contain significant characteristics, such as cell
boundaries, tissue structures, or distinct patterns. Histopathology imaging ne-
cessitates structure uniformity, as the structure of the stains must be maintained
between stains. SC-GAN uses a canny-edge detector [3] to extract major struc-
tures/edges from the input stain and concatenate these with the brightfield color
channel of the input patch before passing them through the Generator. By ex-
plicitly providing structure as input, SC-GAN conditions the generation process
to take into account the cell’s morphological as well as its texture properties. In
addition to providing structural organization for cells, edges also serve as anchors
to improve image generation. This contributes to the production of images with
well-defined boundaries and structures, resulting in enhanced precision and aes-
thetically pleasing outcomes. The generator synthesizes the target color-stained
patches and their corresponding structures, which are then utilized as inputs for
the second generator, as illustrated in Figure 1.

2.3 Structural Loss

In addition to the losses used in Cycle-GAN [26], SC-GAN proposes a novel
structural loss (SL) to improve the generation of IHC stains from H&E stained
images and vice versa. The SL is intended to ensure that structural information,
such as margins and boundaries, is preserved in the generated stains. To calculate
the SL, SC-GAN uses the Mean Squared Error (MSE) loss between the generated
and the corresponding ground truth structural maps, as shown in the equation
below:

LSL = MSE(I[Smaps]−G[Smaps]), (1)

where I[Smaps] and G[Smaps] stand for the structural maps (canny edges) of
the input and generated stained images, respectively, and LSL stands for the
structural loss. In order to train the proposed model, the SL is combined with the
other losses used in CycleGAN, such as adversarial loss (Ladv), cycle-consistency
forward (Lcycle_f ) and backward losses (Lcycle_b), and identity loss (LI). The
final loss is:

L = λ1Ladv + λ2(Lcycle_f + Lcycle_b) + λ3LI + λ4LSL, (2)

where λ1, λ2, λ3, λ4 are hyperparameters.

2.4 Attention-Enabled Decoder

IHC staining not only depends on the cell type but also on the cell environment.
To emphasize the role of the cell environment SC-GAN uses an attention module



Structural Cycle GAN for Virtual Immunohistochemistry Staining 5

in the proposed generator. The attention block aims to enhance the generator’s
performance by selectively focusing on relevant cell environment details during
the image translation process. The addition of attention in the decoder ensures
that the generator concentrates on refining and enhancing the generated image,
as opposed to modifying the encoded features during the translation process.
The added attention module is depicted in Figure 1.

2.5 Additional Loss for Registered Data

This study also evaluates SC-GAN on a registered dataset, where H&E patches
are paired with their corresponding registered IHC patches while training. SC-
GAN is trained and evaluated with combination of registered and non-registered
patches in varying amounts. To leverage the registered data more effectively, we
introduce an additional supervision specifically for the registered data setting,
utilizing the Mean Absolute Error (MAE) loss as given below:

Lregistered = MAE(If −Gf ), (3)

where If and Gf stand for the input and generated stains, and Lregistered stands
for the loss associated with the registered settings. The MAE loss measures the
average absolute difference between the pixel intensities of generated markers
and their corresponding ground truth markers. The experimental results for SC-
GAN under registered settings are presented in Supplementary Table 3.

3 Results and Discussion

3.1 Dataset Details

The dataset included H&E WSIs from surveillance colonoscopies of 5 patients
with active ulcerative colitis. The slides were stained with H&E using the auto-
mated clinical staining process and scanned on an Aperio AT2 slide scanner with
a pixel resolution of 0.25 µm at 40x. After scanning, Leica Bond Rx autostainer
was used for restaining by immunohistochemistry with antibodies reactive with
CDX2 (caudal type homeobox-2) or CK8/18(cytokeratin-8/18).

We sampled patches from four patients, trained generation models (7,352 for
CDX2 and 7,224 for CK818), and used data from the fifth patient for testing
(1, 628 for CDX2 and 1, 749 for CK818). Each patient’s data consists of multiple
tissue samples, ranging from 16 to 24. The extracted RGB patches are of shape
512x512. The testing dataset contains registered H&E and IHC patches which
enables the development of two new metrics with a stronger correlation to the
efficacy of the generative model in virtual staining. Further details on these
metrics are provided in the section 3.2.

3.2 Model Architecture and Evaluation

Upsampling Method: In contrast to the Conv2DTranspose method tradition-
ally used for upsampling in generators [26], SC-GAN utilizes the UpSampling2D
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layer. This decision is based on empirical observations that demonstrate im-
proved results with UpSampling2D in terms of preserving fine details and reduc-
ing artifacts. The discriminator is the same as proposed in the CycleGAN model,
i.e., a patch discriminator. Hyperparameters are set to λ1 = 1.0, λ2 = 10.0, λ3 =
5.0, (the same as in the CycleGAN) and λ4 = 5.0 (via experimentation).5
Proposed Evaluations: SC-GAN reports the conventional evaluations such
as FID and SSIM similar to other virtual staining works [15,27]. However, our
findings reveal that these metrics do not exhibit a significant correlation with
improved virtual staining models (refer Figure 2 and Table 1). Consequently,
SC-GAN proposes the adoption of two new metrics that directly align with the
performance of the generative model.

– Ratio of cell count in Stained IHC: Compares the number of cells high-
lighted in the virtually stained image with the real stained image utilizing
DeepLIIF model [6].

Rcount =

(
|Gencell| − |GTcell|

|GTcell|

)
∗ 100, (4)

where Rcount stands for ratio of cell count in Stained IHC with ground
truth’s cell counts. |Gencell| and |GTcell| represent the number of generated
and ground truth cells, respectively, calculated using the DeepLIIF model
[6]. A few examples of such segmented images from both stains, CDX2 and
CK818 are shown in the Supplementary Figure 4. Additionally, DeepLIIF
successfully segments the H&E images for the IHC to H&E evaluation (refer
Supplementary Figure 5 and Table 3).

– Dice Score of positive cells in Stained IHC: Calculates the dice score
and intersection of union (IOU) of the stained cells (positive cells) in the
virtually generated image with respect to the real image. Both the metrics
are evaluated by pixel-wise thresholding of brown color in generated and real
IHC. Examples are depicted in Supplementary Figure 4.

3.3 Results

Table 1 presents the results of different models, including the proposed SC-GAN
model, along with relevant comparisons, evaluated using various metrics. The
conventional metrics, FID and SSIM, are included alongside the proposed met-
rics. The DeepLIIF model was utilized to segment and count the total number
of cells, positive (IHC) cells, and negative (background) cells. The evaluation
of cell counts was performed on a subset of the test dataset consisting of 250
registered patches, while the other metrics were calculated on full test dataset.

From Table 1, we observe that a lower FID score is not always associated
with a higher proposed metric that measures the number of valid IHC cells
highlighted by the generative model. Conventional metric values indicate that
the Pix2Pix model performs the best, despite producing qualitatively inferior
5 We will release all the code related to the paper at a future date for public usage.
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Table 1. Quantitative results for H&E to IHC Translation. EDAtt: Attention in
both Encoder and Decode, DAtt: Attention in the decoder, St: Structure, SL: Structural
Loss. Cell counting metrics (Total, Positive, and Negative) are calculated using equation
4, with values closer to zero indicating a more accurate generator. Qualitative results
of pix2pix are not viable for cell counting analysis (refer to Figure 2). IOU and DICE
metrics are reported for IHC-positive cells.

Conventional Proposed Metrics
Markers Models FID SSIM IOU DICE Total Positive Negative

Cells Cells Cells

CDX2

Pix2Pix [9] 6.58 18.54 - - - - -
Base Cycle-GAN [26] 20.93 38.23 51.79 44.3 2 4.94 46.32 -13.45
Cycle-GAN w/ EDAtt 13.34 40.16 44.93 46.25 -9.57 -20.78 -5.63
Cycle-GAN w/ DAtt 12.74 40.64 45.91 47.16 -12.09 -11.65 -12.28
Cycle-GAN w/ St 15.00 38.03 62.41 50.83 -2.13 2.90 -4.36
SC-GAN w/o SL 20.75 35.53 56.86 50.29 -6.22 -21.73 7.31

SC-GAN(Proposed) 14.05 38.91 63.35 51.73 -0.08 -16.23 1.63

CK818

Pix2Pix [9] 3.38 28.93 - - - - -
Base Cycle-GAN [26] 18.24 27.03 23.36 25.34 5.43 8.09 4.15
Cycle-GAN w/ EDAtt 15.02 34.16 34.91 33.19 5.83 10.87 3.40
Cycle-GAN w/ DAtt 16.21 34.24 36.23 33.61 3.19 4.35 2.63
Cycle-GAN w/ St 20.69 32.35 35.86 32.75 -1.79 -2.04 -1.67
SC-GAN w/o SL 22.26 32.22 14.25 17.65 9.04 -34.77 17.08

SC-GAN(Proposed) 15.32 33.86 26.16 27.66 0.22 3.48 -1.35

results compared to other models (refer Figure 2). Consequently, additional pro-
posed metrics are required for a thorough assessment. Table 1 demonstrates that
the cell IOU and DICE scores for the IHC images generated by the SC-GAN
are higher. This indicates that the proposed model exhibits greater specificity.
The proposed variations incorporating decoder attention, structural informa-
tion, and SL consistently exhibit the lowest deviation from the true cell counts
(total number of cells, positive and negative cells). These results demonstrate
the superiority of the proposed model, SC-GAN, over the base Cycle-GAN and
illustrate the significant impact of each module on the performance of virtual
staining. Furthermore, the qualitative results depicted in Figure 2 align with
these observations, as the proposed models consistently yield higher-quality re-
sults characterized by reduced false positives and increased true positives.

SC-GAN has better performance while generating CDX2 stains compared to
CK818 (refer Table 1). As CDX2 is a nuclear marker, more precise structural
information is required to generate an accurate stain. On the other hand, CK818
is a cytoplasmic (surface) stain, where the cell environment plays a more crucial
role. Hence, attention-based models exhibit higher accuracy for CK818 stains,
as they focus on capturing contextual information. This suggests that the im-
portance of input features, whether structure or attention map, varies according
to the type of stain being generated.

The Supplementary Table 2 and Figure 5 present the results for the IHC
to H&E translation. These results demonstrate that SC-GAN performs well not
only for the H&E to IHC translation but also for the reverse process. This
observation is reinforced by the cell counting metric, which demonstrates the
superior performance of SC-GAN in both translation directions.
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Fig. 2. Qualitative results for generated CDX2 marker. GT:Ground Truth,
Gen:Generated, EDAtt: Attention in both Encoder and Decoder, DAtt: Attention in
decoder, St: Structure, SL: Structural Loss. The proposed model, SC-GAN, performs
better than the base Cycle-GAN by effectively suppressing false positives and accu-
rately coloring the cells while preserving their structure. The final row showcases the
effectiveness of virtual staining, where the given H&E staining successfully reproduces
the IHC stain, even though some information was lost during the original IHC staining
process. Notably Cycle-GAN w/ DAtt performs better than Cycle-GAN w/ EDAtt
model.

Registered data results: In Supplementary Table 3, the influence of train-
ing the SC-GAN model with registered data is examined. The table reveals that
incorporating registered data has minimal impact on the model’s performance,
indicating that SC-GAN can operate effectively without the need for registered
data. Furthermore, it demonstrates that the translation capability of the SC-
GAN model works in the feature space rather than relying solely on pixel-to-
pixel translation. This characteristic enhances the robustness of the proposed
SC-GAN model, making it suitable for virtual staining applications when there
is limited availability of registered data.

4 Conclusion and Future Work

We proposed a novel methodology, SC-GAN that combines structural informa-
tion, attention, and a structural loss to enhance the generation of IHC markers
from H&E-stained images and vice versa. The proposed quantitative metrics fo-
cused on deviation in cell counts and dice score with respect to the real IHC
images, shows direct correlation with virtual staining efficacy. Results high-
light the need for different information in generative models based on stain
properties (nuclear vs cytoplasmic, structure vs attention). SC-GAN outper-
forms in non-registered datasets, eliminating the need for laborious WSI image
alignment. However, quantitative cell counting metrics rely on the real stain
availability presents a limitation requiring further investigation. Additionally,
future work can explore the potential benefits of integrating multi-scale struc-
tural information derived from wavelet [7] or MIND [8] features. The applica-
bility of the proposed model to other IHC markers and its potential for gen-
erating marker-specific protocols are additional avenues for investigation. This
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could involve adapting a unified model architecture to effectively account for the
unique characteristics associated with different stains. These can further improve
the proposed methodology and increase its applicability for virtual staining in
histopathology.
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5 Supplementary

Table 2. Quantitative results for IHC to H&E Translation. EDAtt: Attention in
both Encoder and Decode, DAtt: Attention in the decoder, St: Structure, SL: Structural
Loss. Cell counting metrics (Total Cells) are calculated using equation 4, with values
closer to zero indicating a more accurate generator. SC-GAN performs well not only
for the H&E to IHC translation but also for the reverse process as shown by the results
below.

CDX2 to H&E CK818 to H&E
Conventional Proposed Metrics Conventional Proposed Metrics

Models FID SSIM Total Cells FID SSIM Total Cells
Base Cycle-GAN 14.98 39.33 17.35 11.29 24.40 0.92
Cycle-GAN w/ EDAtt 12.99 45.50 4.26 14.1 28.08 -4.99
Cycle-GAN w/ DAtt 13.21 45.53 -4.99 10.45 26.96 -1.78
Cycle-GAN w/ St 14.41 40.36 10.83 15.32 29.66 2.07
SC-GAN w/o SL 14.47 43.51 7.87 11.72 25.79 3.18
SC-GAN(Proposed) 12.9 44.05 4.77 12.84 28.13 -0.47

Fig. 3. Qualitative results for generated CK818 marker. GT: Ground Truth,
Gen: Generated, EDAtt: Attention in both Encoder and Decoder, DAtt: Attention
in decoder, St: Structure, SL: Structural Loss. The superior performance of attention
models demonstrates that CK818 is dependent on the cell environment for better re-
sults. Although lower brown color intensities lead to lower IOU and DICE scores for
CK818 virtual markers (Table 2), the impact on cell counting metrics is minimal, as
evidenced by the quality of the threshold mask and segmented mask illustrated in Sup-
plementary Figure 4.
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Table 3. Quantitative results for IHC to H&E Translation for the regis-
tered data. Cell counting metrics (Total, Positive, and Negative) are calculated using
equation 4, with values closer to zero indicating a more accurate generator. Incorpo-
rating registered data has minimal impact on the model’s performance, indicating that
SC-GAN can operate effectively without the need for registered data. IOU and DICE
metrics are reported for IHC-positive cells. Non-Reg and Reg stand for non-registered
and registered datasets for training.

Conventional Proposed Metrics
Markers Models FID SSIM IOU DICE Total Positive Negative

Cells Cells Cells

CDX2

Reg SC-GAN 19.71 35.76 33.44 38.54 -16.56 -16.48 7.23
Reg+10% Reg SC-GAN 14.6 40.56 56.76 48.22 -1.08 5.25 -3.88

Non-Reg+30% Reg SC-GAN 13.53 39.70 41.72 43.64 -8.49 -33.45 2.58
Non-Reg+50% Reg SC-GAN 27.42 35.22 47.78 46.39 -11.46 12.27 -21.98
Non-Reg+80% Reg SC-GAN 19.13 40.31 37.97 40.6 -15.13 -17.98 -13.87

SC-GAN (Non-Reg) 14.05 38.91 63.35 51.73 -0.08 -16.23 1.63

CK818

Reg SC-GAN 23.50 32.71 13.48 17.08 8.99 -20.55 20.23
Non-Reg+10% Reg SC-GAN 18.16 36.26 33.86 33.73 8.23 -18.13 3.45
Non-Reg+30% Reg SC-GAN 25.51 34.06 25.29 25.7 7.99 8.09 4.15
Non-Reg+50% Reg SC-GAN 23.77 30.85 13.14 16.49 20.09 3.53 33.80
Non-Reg+80% Reg SC-GAN 19.62 35.55 20.92 24.03 6.17 -15.33 16.53

SC-GAN(Non-Reg) 15.32 33.86 26.16 27.66 0.22 3.48 -1.35

Fig. 4. Masking and Segmentation examples on CDX2 and CK818 markers.
GT: Ground Truth, Seg: Segmentation, Gen: Generated. GT and Gen Masks are cre-
ated by pixel-wise thresholding of brown color, IOU and DICE for proposed metrics
are calculated using both of these masks. GT and Gen Cell Seg are generated using
the DeepLIIF[6] model, which are utilized for proposed cell counting metrics.

Fig. 5. Qualitative results for generated H&E from CDX2 and CK818 mark-
ers. The proposed model, SC-GAN demonstrates superior performance compared to
the base Cycle-GAN by accurately coloring the cells while preserving their structure.
It also shows the segmentation of H&E utilizing the DeepLIIF[6] model.
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